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Natural languages are amazingly versatile, but not infi- 
nitely so. I start with the premise that syntactic perfor- 
mance requires only fixed finite resources. I have 
found a performance processor that needs only a static 
state space. The processor operates in O(n) or real time. 
This is a significant improvement on the O(n”) time 
available for context-free languages [lo, 25, 321. Effi- 
cient performance also depends on holding down gram- 
mar size. The processor presented here represents syn- 
tactic versatility wit.hout incurring combinatorial 
redundancy in the number of transitions or rules. It 
avoids both excess grammar size and excessive compu- 
tational complexity. 

I view the purpose of syntax as chiefly to expedite 
and simplify the processing of semantic and discourse 
structures. Excessive computational complexity ob- 
scures this function, Some researchers have advocated 
ignoring syntax altogether. But syntax always shows up 
somewhere, if not in a module that observes generali- 
ties efficiently, then in redundancies spread throughout 
a lexicon or linguistic knowledge base. Instead, I be- 
lieve that the fixed finite resources hypothesis is a 
practical design principle for syntactic engines. 

Most modern syntactic formalisms, calling for un- 
bounded resources, are prone to intractability [l], The 
designers of such formalisms accept Chomsky’s argu- 
ment that finite automata cannot model the competence 
of native speakers. A generation ago in this publication, 
Wosods cited Chomsky to justify the unbridled recur- 
sion and manifold tests and registers of Augmented 
Transition Networks (ATNs). These facilities make his 
scheme “equivalent to a Turing machine in power,” 
because “the actions which it performs are ‘natural’ 
ones for the analysis of language [34, p. 600]. 

Nevertheless, there are well-known limitations on 
human capabilities for processing syntax. Miller and 
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Chomsky recognized “the obvious fact that [speakers 
and hearers] are limited finite devices” [22,, p. 4651. 
There is a small but long-standing tradition of work 
modeling syntax with finite resources, for embedding 
[9, 18, 19, 27, 351 and also for keeping track of ambigu- 
ity [ll, 20, 231. One model [8] tries to be finite in both 
of these dimensions.’ Exploiting these performance lim- 
itations leads to a more psychologically realistic and 
computationally efficient model of language processing. 

Let me emphasize this point. Evidence that suggests 
that syntactic competence requires more than context- 
free power does not necessarily rule out performance 
with finite resources. A performance model may ex- 
plicitly include memory limitations as part of its design. 
It is entirely a question of whether syntactic perfor- 
mance ever calls for unbounded resources. For exam- 
ple, Pullum [24] affirms Chomsky’s view that natural 
languages cannot be regular, citing evidence from Cen- 
tral Sudanic languages where center-embedding is ap- 
parently more common and acceptable. The empirical 
question is, do speakers of Sudanic languages generate 
sentences with unboundedly or even unusually deep 
center-embedding? Bresnan et al. [5] claim that cross- 
serial dependencies in Dutch argue against describing 
this language in terms of context-free rules. The empir- 
ical question is, can Dutch speakers generate unbound- 
edly or even unusually wide cross-serial clependencies? 
If not, then the fixed finite resources hypothesis is tena- 
ble. If one can count up the dependencies on one’s 
fingers, than surely one can model them with finite 
resources. Indeed, Pullum does acknowledge that hear- 
ers may indeed process sentences “as if they were finite 
automata” [24, p. 1141. 

Register Vector Grammars (RVG) are equivalent to 
finite state automata (FSA). Implied in the name are 

’ Church’s model is not a fixed finite system. however: it expands and shrinks 
as a function of input. He uses a heuristic to prevent it from ever actually 
requiring unbounded resources. 
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two major innovations that allow RVG to be far more 
efficient and compact than simple FSA, with respect to 
natural languages. First the vectors. Simple FSA repre- 
sent states and categories as simple symbols-nodes 
and arcs in transition diagrams. Most modern syntactic 
formalisms abstract over category-symbols, with non- 
terminals and tree structures. RVG instead abstracts 
over state-symbols-with vectors of ternary-valued fea- 
tures. As we shall see, this technique helps to eliminate 
a great deal of redundancy from grammars. It keeps 
grammar size quite small. 

Second are the registers, which keep track of alterna- 
tive states. RVG is able to guarantee linear time be- 
cause it pre-allocates only a small number of these reg- 
isters. The processor supports reanalysis of structural 
ambiguities by backtracking to system states in these 
registers. However, the number of registers never 
grows; instead, RVG reuses them, thus systematically 
forgetting many (but not all) ambiguities. This approach 
puts a tight leash on nondeterminism; it also mimics 
human behavior. 

This article begins by introducing the RVG architec- 
ture, comparing it first with its cousin, the nondeter- 
ministic finite automaton, and eventually with more 
computationally complex formalisms. This is followed 
by a description of how to rein in nondeterminism with 
a small number of registers, and an outline of planned 
enhancements to the basic architecture, with respect to 
handling subcategorization, agreement, conjunction, 
and canonical structures. The article will conclude by 
presenting an analysis of complexity demonstrating 
that the algorithm is indeed linear, and empirical re- 
sults for small fragments of English. 

REGISTER VECTOR GRAMMAR 
As the fixed finite resources hypothesis implies, RVG is 
equivalent to a nondeterministic FSA. The RVG autom- 
aton is a 5-tuple (S, C, I, F, T), where S is a finite set of 
states, C is a finite set of input symbols (called cate- 
gories), I is the initial state, F is a set of final states, and 
T is a transition relation mapping S X C to S. This 
definition is of course the same as that of a nondeter- 
ministic FSA. The difference lies in the nature of RVG’s 
states and transition relation. 

Ternary Feature Vectors 
The states and transition relation of RVG are repre- 
sented in terms of vectors of ternary-valued features. A 
feature vector f  is denoted by the features (fi . . f,,) Each 
feature may take on one of three possible values; “+“, 
“2’) or ‘y.9, (eon,? “ off” or “don’t care”). A particular 
grammar involves vectors of some fixed length, k. I f  k is 
9, then a state vector might look like this: ++?--?-+. 

The transition relation of RVG relies on two ternary 
vector operators. Given two vectors of ternary features, 
the match operator produces a Boolean result: 

match (fi, g,) 

TRUE = if fi = gi or f< = ? or gi = ? 
FALSE otherwise 

match (f, 81 

TRUE = if match (fi, gi) = TRUE for all i 

FALSE otherwise. 

For example, match (+ - ?, + ? ?) is TRUE, but match 
(+ + +, + ? -) is FALSE, since a + opposes a - in the 
this position. 

The change operator takes two vectors and produces 
a third. Definite values (+ or -) in the second vector 
override corresponding values in the first vector, but 
indefinite values (?) have no effect. Formally: 

change (fiv gi) = 
if gi =+ or gi =- 
if gi =? 

change (f, g) = (change (fi, gi)) 

For example, change (-+?-+?-+?, ---+++???) 
produces - - - + + + - + ?. Note that the change opera- 
tor is asymmetric: the output vector gets the definite 
values (+ or -) of the second argument. Where the 
second argument has indefinite values (?), though, the 
values of the first argument “pass through.” 

RVG’s transition relation is implemented by three 
data structures: 

l A table of productions (the Synindex). Each production 
in the Synindex is a 5-tuple (cat, cond, change, lex- 
flag, actions), where cat is a symbol, cond and change 
are ternary vectors, lexflag is a character differentiat- 
ing different types of productions, and actions is a list 
of executable functions. A lexflag with value I desig- 
nates one production as InitFinal. The initial state I is 
InitFinal’s change vector. The set of final states Fare 
just those that match InitFinal’s cond vector. 

l A list of lexical entries (the Lexicon). Each lexical en- 
try is a 2-tuple (morph, lexcat), where morph is its 
morphological description and lexcat is a list of cate- 
gory labels. 

l The current syntactic state register (SynState). The 
SynState holds a ternary-valued vector, which the 
transition function matches and updates. 

We can now define RVG’s transition relation. Given 
S, a set of state vectors, C, a set of category symbols (in 
the lexicon), and Synindex, a set of productions, there is 
a relation R on S x C to S. Relation (SynState, lexcat, 
SynState) is a member of R if there is a production 
(cat, cond, change, lexflag, actions) such that: 

1) match(cond, SynState) is TRUE 
2) cat = lexcat 
3) SynState + change(SynState, change) 

Simple Rigid and Free Order Languages 
Figure 1 shows a RVG for a simple Subject-Verb-Object 
(SVO) language: 

Each feature in this grammar is associated with a 
position in the left to right order of categories. The first 
feature, S, associates with the subject constituent posi- 
tion, feature V with the verb position, and 0 with the 
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object. Thus features can control the occurrence of cat- 
egories. (They need not necessarily have to do with 
part:icular categories or positions, as we shall see.) 

Here is how the above grammar recognizes George 
loves Martha. [The two vectors on each line are the 
state before and after each production fires.) 

Word Commentary -- SynState 
+++ Initialize with CLOSE’s change 

(InitFinal) 
Geo.rge +++ -+-I- Production SUBJ fires: 

match (+++, +??) + TRUE 
(matches +S 
change (+++-, ??) --$ -++ 
(new SynState with -S) 

loves -++ --+ VERB’s cond requires +V; 
its change is -V. 

Martha --+ --- OBJ’s cond requires +O; 
its change is -0. 

. --- +++ CLOSE’s cond requires -S & -V 
(InitFinal) 

Figure 2 shows a simple nondeterministic finite state 
automaton (FSA) which is equivalent to the above RVG 
Synindex. The five nodes in this diagram are equiva- 
lent to the five states reachable by the grammar of 
Figure 1. Note that in the simple FSA representation, to 
represent the optionality of OBJ, we need to draw two 
CLOSE arcs. RVG avoids this redundancy because ter- 
nary values provide explicitly for optionality. The cond 
of CLOSE, --?, matches either --+ or ---, 

A.nother example better demonstrates the expressive- 
ness of vectors. Suppose we want to model a partially 
free-order language. It allows SUBJ to occur freely, but 
requires VERB to appear before OBJ. Figure 3 illustrates 
the RVG version (with no change to the lexicon of Fig- 
ure 1). The only difference between Figures 1 and 3 is 
that the latter relaxes one constraint. The cond of VERB 
which had -S now has ?S. Relaxing S allows VERB to 
occur freely with respect to SUBJ. 

Compare the above with the equivalent FSA diagram 
shown in Figure 4. 

The simple FSA notation leads to much redundancy 
for this language. For example, the diagram shows ex- 
plicitly that SUBJ may occur first, or follow VERB, or 
follow both VERB and OBJ. Though the number of con- 
stituents is the same, the number of transitions have 
multiplied. The RVG, on the other hand, relaxes just 
one constraint; the number of productions does not 

Feature Key Lexicon 
car Position Label word catlist 
SUB.3 +?? -11 1 - s George SUB.7 OBJ 
"EP3 -+? ?-? 2 - " Martha S"BJ OBJ 
OBJ ?-* ??- 3 - 0 loYeS VERB 
CLO.jE --? CLOSE 

FIGURE 1. RVG for SVO Language 

FIGURE 2. Simple FSA for SVO Language 

change. A completely free-order language (still obligat- 
ing SUBJ and VERB) requires 22 transitions in diagram 
form. The equivalent RVG just relaxes another con- 
straint, changing OBJ’s cond from -V to ?V. 

The RVG format is thus more compact than that of 
simple FSA. In this case, it is better at expressing syn- 
tactic obligations, regardless of order. In all of the gram- 
mars above, SUBJ and VERB must occur before CLOSE 
can fire. In both Figures 1 and 3, the cond of CLOSE 
requires --?. Only the change vector of SUBJ and 
VERB can turn off the first two features. We call CLOSE 
a terminator category; it acts as a gate through which 
only acceptable utterances may pass. 

In general, RVG is able to represent a potentially 
huge number of states and transitions with a remark- 
ably compact transition table (Synindex). RVG con- 
strains the number of potentially reachable states by 
means of a particular configuration of features in the 
table. So a rigid-order grammar (Figure 1) has fewer 
reachable states than a free-order one (Figure 3); but 
grammar size is the same. For each category there are 
many FSA transitions but just one RVG production. 

Simple FSA are unable to pass information from state 
to state, except via simple linear precedence. Individual 
transitions represent local constraints; such as that 
SUBJ must precede VERB. It is difficult to express dis- 
continuous, non-local constraints. The only recourse is 
to plot separate paths through the transition network 
for each non-local constraint. Interaction of constraints 
soon leads to an explosion in the size of the grammar. 

In RVG the state, a vector, keeps a record of some 
non-local context. Note that this does not add any com- 
putational power to FSA. Only the match and change 
operators are different. Instead of insisting on exact 
identity, RVG allows partial matching with I‘?” values. 
Instead of wholesale substitution, RVG allows partial 
change. This modification allows feature values to “pass 
through” productions to subsequent states-a form of 
constraint propagation. There is thus no need to multi- 
ply transitions through intervening states, as in simple 
FSA. Technically, any RVG is equivalent to some sim- 

cat cond change Position Label 
SUBJ -e?? -?? 1 - s 
VERB ?f? ?-? 2 - v 
OBS ?-f ??- 3 - 0 
CLOSE --? +++ InitFinal 

FIGURE 3. RVG for Partially Free-Order Language 
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Init Final 

FIGURE 4. FSA for Partially Free-Order Language 

ple FSA. But if that FSA must allow for optionality and 
non-local constraints, it will be much larger. 

RVG throws out sentence diagrams. States are no 
longer simple nodes, and rules are not longer rote pat- 
terns. State vectors abstract over state nodes. To be 
sure, the vectors of a Synindex are equivalent to some 
vast diagram, but for a natural language, the diagram is 
enormous and tangled with redundancies. Other for- 
malisms introduce computationally expensive devices 
to supplement and untangle the diagrams; RVG simply 
abandons diagrams altogether. The only complexity it 
adds is the functional complexity of its match and 
change operators. 

Think of grammars as telephone switchboards or 
computer chips or neural networks. An RVG is able to 
schedule a great variety of events with a compact, 
dense matrix of productions and features. 

Notation for an RVG Assembler 
The feature keys shown in Figures 1 and 3 are not used 
by the RVG processor itself. Feature vectors are ac- 
tually in binary form (two bits per ternary feature), and 
ternary vector operations are composed of fast bitwise 
logic operators. Since match and change operate on all 
features at once, we can exploit the bit vector parallel- 
ism that already exists on conventional computers. 

Feature keys do make it easier to describe vectors, 
though. The current RVG development environment 
therefore allows one to create, edit and debug RVGs 
using a symbolic notation, which is translated into effi- 
cient RVG “machine” code.’ In the following figures, 
the ordering-features section is a feature key, associat- 
ing labels with feature key. In Figure 5, the cond vector 
of production SUBJ is +S - HEAD, which translates to 
+???- (“?” is the default feature value). A range nota- 
tion allows one to set all the features in a vector seg- 
ment to a value: +S..O translates to the binary equiva- 
lent of +++. 

The assembler also provides for macro substitution. 
The macros section associates a symbol prefixed 
by I‘#” with a vector (in symbolic form). For example 
in Figure 5 macro #NPOn expands to the vector 

’ Our translator is analogous to an assembler, inasmuch as it preserves a close 
correspondence to the “machine” code. Reed [26] describes a compiler that 
translates rules in an extended context-free notation into a combination of 
RVG vectors and context-free rules. While this notation may appear more 
perspicuous to those trained in the phrase structure paradigm, it is incompati. 
ble with the fixed finite resources hypothesis (and its full benefits). Nor does 
it encourage users to understand and effectively exploit the nature of RVG’s 
expressiveness. 

+DET..HEAD. Macros may then appear in lieu of fea- 
ture specifications in the grammar. This is a simple way 
to provide for generalizations, such as the features re- 
quired to open or close a phrase. The assembler is left- 
to-right, so it is possible to override values in ranges or 
macros. 

Non-lexical Productions and Phrase Embedding 
A lexicon is a collection of entries, each of which hold 
syntactic, morphological and (eventually) semantic in- 
formation. The syntactic information is a set of cate- 
gories, corresponding to productions in the Synindex. 

A left-to-right RVG recognizer accepts a word when 
it finds a production whose cat corresponds to one of 
the word’s categories and whose cond matches the 
SynState register; it then advances its state by updating 
SynState with that production’s change and consuming 
the word from the input string. An RVG generator is 
the same with respect to matching and updating Syn- 
State, instead buffering words to an output string. 

It is useful to allow non-lexical productions, which 
advance SynState but do not consume words from in- 
put (or buffer words to output). Each production’s lex- 
flag notes this distinction. “L” for lexical productions 
and “N” for non-lexical productions3 

Figure 5 demonstrates the use of a lexicon and non- 
lexical categories to process simple noun phrases (NPs). 

RVG treats NP embedding as a special case of discon- 
tinuity. Non-lexical productions SUBJ and OBJ turn on 
features DET and HEAD. Feature HEAD acts as a 
switch, distinguishing clausal from phrasal productions. 
All of the causal productions (SUBJ through CLOSE) 
must wait until HEAD is off again-a discontinuous 
constraint. Meanwhile, the phrasal productions (NAME, 
DET and NOUN) may occur at various positions in 
clause structure, because they ignore the features per- 
taining to clauses. E.g., NAME has ?S ?V ?O in both its 
cond and change. The change of NAME or NOUN turns 
HEAD off again, re-enabling the clausal productions. 

This effect is not so readily achieved by simple FSA. 
It is tempting to allow the equivalent of SUBJ and OBJ 
to branch to the same set of transitions for NPs. The 

orderins features s " 0 DET HEAD 

p SUBJ N cond +S -HEAD change -3 (Itwon 
p VERB L cond -S +" -HEAD change -" 
p CmJ N cond -v +o -HEAD change -0 #liPOn 
p CLOSE I co*d -$ -" -HEAD change +s..o XNPOff 
(Phrasal productions follow) 
p DET L Ccmd #won change -DET 
p NOUN L cond +"ERD change XNPOff 
p NAME L cond #tieOn change XNPOff 

entries (Lexicon) 
e George cat N&ME e Martha cat NAME e loves cat VERB 
e the cat DET e quiche cat NOUN e . cat CLOSE 

FIGURE 5. RVG for Embedding Noun Phrases 

a The default is “L”. Also, the InitFinal production, flagged “I”. is always 
lexical. 
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problem is, where should the network branch at the 
end of the phrase--to the node past SUBJ or the one 
past OBJ? A simple FSA loses track of where it left off. 
Thfa only recourse is to multiply transitions for NPs at 
each possible position where they may occur! Another 
alternative is to introduce recursive subnetworks-push 
the state of the clause level network onto a stack, then 
traverse a separate phrase level subnetwork. But RVG 
is able to model phrase embedding without increasing 
computational complexity. One segment of the state 
vector shows the identical topology for all NPs. 

Note that this topology is part of the same flat vector. 
It is thus straightforward to model free order languages 
that allow scrambbng of phrasal elements. For exam- 
ple, in Warlpiri the head and modifier of a phrase may 
be widely separated in clause structure [lo]. Such lan- 
guages use case-marking inflections to identify the role 
of loose modifiers. In languages like English or Latin, 
phrase level features screen out clause level produc- 
tions, as in Figure 5. A phrase-terminating production 
updates the SynState to close the noun phrase for a 
particular role. In radically non-configurational 
lan.guages such as Warlpiri, phrasal modifiers may 
rec:ur by selectively ignoring constraints. A phrase- 
terminating production just signals that it has seen 
some role. Loose modifiers are non-local options. 

The advantage of non-lexical productions is that they 
reduce redundancy of lexical categories, and thereby 
make grammars more compact. A grammar with non- 
lexical productions is equivalent to a larger one with- 
out them. To eliminate non-lexicals, merge each one 
with each of the lexical productions that can follow it. 
For example, the following lexical productions could 
replace non-lexical production SUBJ in Figure 5: 

p SUBJ-DET L 
cond +S #NPOff change -S - DET 

p SUBJ-NOUN L 
cond +S #NPOff change -S 

p SUBJ-NAME L 
cond +S #NPOff change -S 

Each production takes the cond of SUBJ and composes a 
change vector from SUBJ and the production that could 
follow it-DET, NOUN and NAME. Since RVG allows 
multiple non-lexical productions between lexical pro- 
ductions, the equivalent grammar would have to com- 
bine all allowable sequences.“ Non-lexicals thus elimi- 
na.te a great deal of redundancy in the grammar. 

Note that simple FSA could not use empty categories 
to mimic the compact RVG treatment of NP embedding. 
Empty categories do not add any capacity to record or 
propagate non-local constraints. 

WH-QUESTIONS 
A notorious example of discontinuous constraints is 
w/z-questions. These begin with wh-words (or phrases) 

- 
‘The processor guarantees a finite number of states by requiring that a non- 
lexical fire at most once between lexical productions. See the section on 
Subcategorization. 

such as who or what, and require that somewhere in 
the sentence there be one missing noun phrase (a gap 
or trace): 

(1) Who loves Pamela? 
(gap for subject) 

(2) Who does Pamela love? 
(gap for object) 

(3) Who do the men think that Pamela loves? 
(gap in complement clause) 

(4) Who does George love Pamela? 
(ungrammatical: no gap) 

RVG models this dependency easily, as shown in Fig- 
ure 6. 

Production WH turns on feature +GAP. Production 
CLOSE’s cond, which determines possible final states, 
requires -GAP. So, somewhere between WH and 
CLOSE, some production must turn this feature off: a 
discontinuous constraint. The only production which 
can do so is NGAP. Its cond recognizes +GAP, and its 
change turns it off. Most other productions have ?GAP 
in both cond and change vectors, so this constraint sim- 
ply passes through any intervening productions. Thus 
ternary vector functionality makes constraint propaga- 
tion very efficient. Note also that vectors allow for mul- 
tiple constraints: the cond of NGAP also requires 
#NPOn, the segment of features that open a noun 
phrase, so that this production can fire only when a 
noun phrase is possible and a gap is possible. The change 
of NGAP disables both feature GAP and ;a11 the features 
for a noun phrase. 

Here is how the grammar of Figure 6 rlecognizes sen- 
tences (1) through (3): 

(1) WH:who; SUBJ:NGAP:VERB:love; 
0BJ:NAME:pamela; CLOSE:?; 

(2) WH:who; QUES:do; SUBJ:NAME:pamela; 
VERB:love; OBJ:NGAP:CLOSE:?; 

(3) WH:who; QUES:do; SUBJ:DET:the; NOUNmen; 
VERB:think; CTHAT:that; SUBJ:Name: Pamela; 
VERB:love; OBJ:NGAP:CLOSE:?; 

ordering-features s " 0 A"X GAP DET "EAD 
maCrOS #won +DET..HEAD XNPOff -DET..HEAD 
productions 
p SUB3 N cond +s XNPOff change -s lNP0" 
p VERB L cond -s +v XNPOff change -" -,A"X 
p OBJ N fond -V +0 #NPOff change -0 timon 
p CTHAT N Gcmd -" +o XNPOff change +S..A"X #NPOff 
p CLOSE I cond -s -v -GRP #NPOff change +s..?+ux -GRP..HEAn 
(Productions for W-questions follow) 
P WH L cond +S -GAP #NPOff change &AI' 
p QUES I, cond +S +A"X XNPO'if change -MS,: 
Q NGAP N cond +GR? #NPOn change #NPDff -GAP 
p DET L cond +DET change -DE:! 
p NOUN ,, cond +HERD change #NPOff 
P NAME I. cond #NPOn change tNPOff 

FIGURE 6. RVG for WH-Questions 
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The last category before each word is a lexical produc- 
tion; e.g., WH before who, VERB before love, etc. Any 
categories preceding the lexical category are non- 
lexical; e.g., SUBJ and NGAP before VERB. 

Implementation of unbounded dependencies is par- 
ticularly elegant. The complement clause, introduced 
by production CTHAT, right-embeds-reusing the same 
state register. The change vector of CTHAT prepares 
State for a new clause: +S..AUX#NPOff. It defaults to 
?GAP. Therefore the value of feature GAP passes from 
the matrix clause right on through to the right-em- 
bedded complement clause. In sentence (3, production 
NGAP fires after OBJ in the complement. As usual, 
NGAP must still fire before CLOSE can. No complicated 
gap-passing mechanism is necessary. 

Adding more possibilities for noun phrase gaps is just 
a matter of introducing the corresponding possibilities 
for noun phrases. Allowing for prepositional wh-ques- 
tions (e.g., In which box did the robot put the hammer?) is 
a matter of an additional constraint, which will interact 
with different productions. 

Embedding 
Clause embedding was Chomsky’s [7] primary evidence 
against finite automata for processing natural lan- 
guages. Human performance for center-embedding is, 
however, severely limited. For example: 

(4) The mouse the cat chased squeaked. 
(5) The mouse the cat the dog bit chased squeaked. 

Embedding object relatives once is not unusual, but 
twice is boggling. Miller and Chomsky [22] acknowl- 
edge that such limitations indicate that the human sen- 
tence processing mechanism must indeed be finite. 
(Grammatical competence, which abstracts away from 
such non-linguistic considerations as stammering or 
memory limitations, is non-finite.) 

RVG allows shallow center-embedding with a tri- 
leveled state register: 

SynState 
ClauseLevel 3 Main clause vector 

1st embedded vector 
2nd embedded vector 

The SynState register remains finite. Only now it has 
ordered levels as well as features. RVG shifts from level 
to level by changing the value of the index, ClauseLevel. 
A pair of actions manage clause-shifting: ShiftDown to 
increment ClauseLevel and ReturnLIp to decrement it. 

The tri-leveled SynState register is similar to a pro- 
cessing model of Cowper [9]. As in Cowper’s model, 
RVG prefers to iterate at the same level whenever 
possible. Note that there is no limit on left- or right- 
embedding: 

(6) My mother’s girl friend’s husband’s car broke down. 
(7) I saw a dog that chased a cat that caught a mouse 

that ate some cheese. 

Neither left-embedding of genitive phrases, as in (6), 

nor right-embedding of complement clauses as in (71, 

need invoke clause-shifting. Once the obligatory constit- 
uents of a clause-subject, predicate and complemen- 
tizer in (4)-have appeared, the processor can right- 
embed. RVG, like a simple FSA, puts no limit on edge 
embeddings (iteration). 

The tri-leveled SynState does not increase complex- 
ity in any significant way. There is an equivalent 
single-level SynState model. Recall that a segment of 
the SynState vector manages NPs. Similarly, three seg- 
ments of one long, flat vector could manage three 
clause levels. Shifting from clause to clause, by opening 
and closing windows on relevant segments, would then 
no longer require any special actions. The drawback of 
a flat vector technique is that, for each level, the gram- 
mar must replicate most productions, with different 
cond and change corresponding to each clause segment. 
E.g., VERB0 would match and change feature VO in the 
main clause segment. VERB1 would match and change 
Vl in the first embedded segment, etc. The clause- 
shifting mechanism simply eliminates this redundancy. 

Figure 7 demonstrates center- and right-embedding 
of relative clauses. It is a modification of the grammar 
of Figure 6 (using the same lexicon). 

Figure 7 distinguishes two ways to introduce noun 
phrase post-modifiers. Productions MODC and MODR 
both set up a new clause-with #ClauseOn in their 
change vectors. MODC center-embeds, by invoking ac- 
tion Shiftdown, so that its change applies to the next 
clause level. MODR, on the other hand, right-embeds- 
that is, it simply reuses the current clause level. An- 
other difference is that MODC turns on feature 
MTERM, which forces MODEND to fire eventually, and 
invoke action ReturnUp. Here is a sample parse: 

(8) Men who hate men that eat quiche love pizza. 
SUBJ:NOUN:men; MODC:REL:who; 
SUBJ:NGAP:VERB:hate; 0BJ:NOUN:men; 
MODR:REL:that; SUBJ:NGAP:VERB:eat; 
0BJ:NOUN:quiche; NPEND:MODEND:VERB:love; 
0BJ:NOUN:pizza; CLOSE:.; 

The first relative clause center-embeds (MODC), since 

.Xd~~i~g-f~~t”FS s v 0 AUX GAP DET HEAD NTERM RET. MTERM 
m.aC~OS #won +DET..NTERM #NPOff -DET..NTERM 

#ClauseOn +S..A”X -GAP..MTERM #ClauseOff -S..MTERM ?O 
p SVBJ N CO"d +s #NPOff change -s #NPOn 
$3 "GRB L cond -s +v #NPOff change -" -AUX 
p OBJ N CO"d -v +o #NPOff change -0 #liPOn 
p CTHAT L cond -" +o #NPOff change +S..A"X #NPOff 
p CLOSE I conc3 #ClauseOff change #clauseon 
P WH I. cond +s -GAP -RET. #NPOff change +GAP 
P QUES L COrKi +s +*lJx #NPOff change -A"X -REL 
p NGAP N conci +GAP #NPcm change -GAP ltNPOff 
p DET L Ccmd #PiPOIl change -DET 
p NOUN L cond +m.w. .NTERM change -DET..HEAD 
p NAME t C0r.d #won change #NPOff 
INP post-modifiers start a new clause, with result vector.) 

p MODC N cond +wmP.M cv -REL change #ClauseOn iREI, +MTERM 
action ShiftDown (center-embed) 

p MODR N Ccmd +NTE* -v change #ClauseOn +REL 
p REL L cm"d +s -GAP +REL #NPOff change iGAP fSimil.ar to WHI 
(New terminators: WEND for phrases, MODEND for post-modifmrs) 

p NPEND N cond +Ni"ERM change -*TERM 
p MODEND N con* #ClauseOff +iYmP.M change -REL -NTEP.N 

action ReturnUp 

FIGURE 7. Adding Relative Clauses 
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it occurs to the left of the predicate, whereas the sec- 
ond one right-embeds (MODR), since it occurs to the 
right of the predicate. When MODC fires, it invokes 
action ShiftDown and turns feature MTERM on. This 
feature value passes right through MODR, and eventu- 
all:y triggers MODEND, which invokes action ReturnUp. 

Global constraints on movement in other formalisms 
have direct and simple implementation in RVG. For 
example, consider Ross’s Complex NP Constraint [28], 
which rules out sentences like this: 

(9) *What have you met the man who invented? 

Though there are two wh-words in this sentence, one 
cannot fill both gaps in the relative clause-the missing 
subject and object of invented. The grammar of Figure 
7 models this constraint in terms of feature GAP. 
MODR’s cond requires that GAP be off. In other words, 
GAP is obligatory at each clause level. Since MODC 
invokes ShiftDown, its change applies to a different fea- 
ture GAP, at a lower clause level. 

In many dialects of English, sentence (10) is grammat- 
ica.1 but (11) is not: 

(10) Who does George believe saw Martha? 
(11) *Who does George believe that saw Martha? 

That is, subject gaps may not appear after the comple- 
mentizer that. One way to model this constraint, var- 
iously called the Empty Subject Filter or Sentential 
Subject Constraint, is with an additional feature, 
NOSUBJGAP. Production CTHAT’s change turns on 
NOSUBJGAP. NGAP’s cond requires -NOSUBJGAP, 
so that it cannot fire after SUBJ, in this context. Finally, 
VERB’s change arbitrarily turns NOSUBJGAP off again, 
thus enabling NGAP after OBJ (or any other phrase 
position). 

RVG represents non-local constraints (alias “move- 
ment” or “extraposition”) the same way as local ones: in 
terms of features whose values propagate through state 
vectors. For example, one may extrapose the object to 
the front of a sentence, as in Quiche George loves! 
Simply add one production to Figure 7: 

p TOPIC N cond +S #NPOff change -0 #NPOn 

The cond of TOPIC is the same as that of SUBJ, allowing 
it occur at the beginning of the sentence. The change is 
the same as that of OBJ, enabling a noun phrase and- 
here is the crucial part-disabling a subsequent OBJ. 
The latter is a discontinuous constraint.5 

Comparison with other Syntactic Formalisms 
Context-free phrase structure rules are almost as poor 
as FSA at handling non-local constraints. The prolifera- 
tion of state-symbols that riddles simple FSA also 
plagues phrase structure (PS) rules. The patterns on 
the right-hand sides of PS rules inherit an inability to 
pass information from state-symbol to state-symbol, 

other than via convoluted linear precedence. Transition 
networks and rule patterns are good at linear con- 
straints but poor at non-linear ones. Chomsky [i’] noted 
the inadequacy of PS rules to describe the versatility of 
natural language syntax without loss of generality. He 
therefore introduced Transformational Grammar, rele- 
gating PS rules to a base that generates only kernel 
sentences. RVG eliminates PS rules altogether. 

Recognizing the problems with PS rules, proponents 
of Generalized Phrase Structure Grammar (GPSG) [13] 
have developed a more abstract format. By separating 
immediate dominance (ID) from linear precedence (LP) 
information, they get a more succinct rep:resentation of 
syntax, especially of free order languages. ID rules spec- 
ify the obligatory constituents in a local tree; this is 
roughly analogous to how RVG models obligatory re- 
quirements in terminator categories like CLOSE. 
Though ID/LP itself is succinct, it does lit.tle to alleviate 
the non-local constraint propagation problem. The 
GPSG scheme still generates an “object grammar” with 
large local sets of PS rules. The more varied the linear 
sequences of a language, the larger the object grammar. 
Estimates of the number of rules in an object grammar 
for a natural language range as high as trillions or more 
[I, 301. As Shieber [SO] points out, grammar size does 
affect processing complexity; efficient traditional 
context-free algorithms are O(n3 1 G 1’1, where G is the 
size of the grammar. He outlines an algorithm that can 
parse using the much smaller number of ID/LP rules, 
directly. However, Barton et al. [I, pp. 191ff] show that 
Shieber’s algorithm is exponential in grammar size, due 
to expansion of ID rules. RVG avoids this problem by 
eschewing expansion of rules (and recursdve expansion 
of rules) altogether. 

Many modern syntactic formalisms have in common 
the paradigm of unification. Basically, unification is an 
algorithm for matching graph structures (usually di- 
rected acyclic graphs). Computational linguists use this 
technique to write grammars that involve propagating 
constraints through syntactic trees in the state space. 
Thus unification can be a way to tackle the non-local 
constraint propagation problem. However, this adds 
complexity on top of context free power. Features “per- 
colate” up and then “drip” down trees; moreover, most 
formalisms add additional global filters or principles to 
govern this activity.” Whereas unification matches 
complex graph structures, RVG just matches flat vec- 
tors. Whereas unification is monotonic (once a variable 
is bound it remains bound), RVG allows changes. Unifi- 
cation ensures that category-symbols (and features un- 
der them) are recoverable. Since recoverability is not 
an issue with state-symbols, the full power of the 
change operator can be exploited. RVG has an un- 
abashedly left-to-right bias. It passes constraints 
through a changing state vector, and is willing to reuse 
a state register rather than expand the fixed state space. 

‘P, more efficient scheme for topicalization would delay the decision about 
whether the first noun phrase is SUBJ or TOPIC until the end of the phrase. In 
other words, let productions SUBJ, TOPIC (and for that matter OBJ) fire after 
noun phrases. in order to avoid reanalysis. 

‘For example, the Head-Feature Principle of GPSG. Barton et al. [l] show 
how this succinct but powerful mechanism can lead to uxnputational intract- 
ability. 
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ATNs use transition diagrams chiefly to represent lo- 
cal ordering. Discontinuous constraints typically in- 
volve setting, passing and testing myriad separate regis- 
ters. This is what gives ATNs Turing machine power. 
Without restrictions on the use of registers, guarantee- 
ing even polynomial recognition is impossible. The 
ATN treatment of wh-questions is especially difficult, 
typically passing a “hold” list from network to network. 
Reining in such a powerful mechanism, in accordance 
with “movement” constraints, is even harder. 

It is interesting that Woods [34] actually anticipated 
something very much like RVG: 

In the absurd extreme, it is possible to reduce any 
transition network to a one-state network by using a 
flag for each arc and placing conditions on the arcs 
which forbid them to be followed unless one of the 
flags for a possible immediately preceding arc has 
been set. The obvious inefficiency here is that at 
every step it would be necessary to consider each 
arc of the network and apply a complicated test to 
determine whether the arc can be followed. 

Indeed, RVG might look like such a “one-state” net- 
work, since it throws out the diagrams. Nevertheless, 
an RVG processor does pass through many states, as 
feature values change. Woods simply did not see the 
possibility of decomposing the state(-symbol) itself. In- 
stead of both arcs and flags, RVG uses just features to 
forbid or permit transitions. Instead of an indefinite 
number of registers, RVG collects all constraints on or- 
der in just one current state register. Instead of the 
“complicated test” that worries Woods, RVG applies an 
efficient ternary vector match operation. 

Since human syntactic performance does not call for 
unbounded embedding, it is possible to avoid even 
context-free power. Instead of the computational com- 
plexity of a push-down automaton, RVG adds the func- 
tional complexity of ternary vector match and change. 
Instead of abstract, graph-structured categories, RVG 
has abstract, vectorized states. Its features are features 
of ordering, abstracted over the state-nodes in transi- 
tion diagrams, or the states between category symbols in 
rule patterns. RVG’s states are thus able to be sensitive 
to context-non-local constraints-without being “con- 
text-sensitive” in the automata-theoretic sense.7 

BOUNDARY BACKTRACKING 
Structural ambiguity is a crucial problem for natural 
language processing. It is typically treated as a nonde- 
terministic search problem, testing various structural 
alternatives until accepting one (or more] interpreta- 
tion. Common methods of dealing with ambiguity back- 
tracking, pseudo-parallelism or chart parsing-put no 
bound on the search space. Unbounded search is, how- 
ever, computationally wasteful and cognitively unreal- 
istic. 

‘Petri nets anticipate the possibility of automata that straddle the traditional 
Chomsky hierarchy. RVGs are strongly equivalent to safe Petri nets, which 
are in turn weakly equivalent to FSA (see [IS] for details). 

The fact that RVG is equivalent to FSA does not nec- 
essarily solve this problem. A nondeterministic FSA 
still involves a search through a search space that 
grows, in the worst case, exponentially. There are well- 
known methods to convert any nondeterministic FSA 
into a deterministic one. This conversion may, how- 
ever, explode grammar (machine) size exponentially. 
Because RVG already eliminates combinatorial redun- 
dancies by explicitly allowing for optionality and non- 
local constraints, conversion to simple deterministic 
FSA is neither trivial nor desirable. 

Instead, RVG tolerates nondeterminism, by putting 
strict limits on it. The technique is boundary back- 
tracking. 

RVG watches each major syntactic boundary (such 
as opening or closing a clause or phrase). At each 
boundary-crossing, it stores its system state in an asso- 
ciated register. If the processor ever gets stuck, it can 
backtrack to a previous system state-but only to one 
actually held in a register. There is an array of bound- 
ary registers. The fixed size of this array puts a cap on 
the growth of the state-space for nondeterministic 
search. 

Each register associates with a major boundary in left 
to right syntax. Here is a set (not necessarily definitive) 
of boundaries: 

Curr (the current state) 
Word (when a word is processed) 
OpenClause(when a new clause opens) 
MidClause (when about to process main predicate) 
CloseClause(when clause right-embedding is possible) 
Phrase (when a NP opens, or closes left of 

predicate) 

Since RVG allows center-embedding only to a finite 
depth, it maintains OpenClause through Phrase by 
ClauseLevel. The processor automatically adds the 
clause level number to the boundary name at run time: 
i.e., OpenClauseO, OpenClausel, OpenClause2, Mid- 
ClauseO, etc. 

The Algorithm 
If RVG were completely nondeterministic, its algorithm 
would be almost the same as that of a nondeterministic 
FSA. The only difference is ternary vector match and 
change. Boundary backtracking is a control schema for 
nondeterministic search within a fixed state space. It 
has three basic aspects: 

1) Local parallelism. From word to word, the proces- 
sor tries all syntactic interpretations. It searches depth- 
first, looking for all possible sequences of non-lexical 
productions leading to a lexical production for a given 
word. 

2) Saving states. The grammar must explicitly spec- 
ify when to save states in boundary registers. Associ- 
ated with a few productions are save actions. For exam- 
ple, production OPENC invokes action save 
OpenClause. A save action puts the current system 
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state with the boundary name or a temporary SaveList. 
The processor copies these states into the named 
boundary registers when it reaches a lexical category. 
In preparation for the next word, it also automatically 
updates the Curr and Word registers. 

3) Bczckfrackin,g. Access to boundary registers is Last 
In First Out, mediated by a separate array of boundary 
subscripts, Resume. The processor tries to continue from 
staltes in boundary registers until no more are left. Ini- 
tially, and after each word, it finds the Curr register. If 
this state fails (no production matches), or if a produc- 
tion successfully compIetes a sentence, the processor 
gets the next available state via Resume. Thus it tries to 
report all possible interpretations. The limit on this be- 
havior is that save actions reuse state registers.8 

Examples 
The phenomenon of garden-path sentences suggests that 
there are severe limits in human performance for keep- 
ing track of ambiguities. For example: 

(12) The horse raced past the barn fell. 

People do not readily understand this sentence, even 
though there is a perfectly grammatical interpretation. 
The problem is the category ambiguity of raced. It 
could be either intransitive (serving as main predicate) 
or transitive (serving as a passive post-modifer of horse). 
Most people prefer the intransitive reading; they are 
thus “led down the garden path,” and cannot recognize 
the correct interpretation. 

When the RVG processor crosses the same boundary 
twice, it reuses the associated register. It therefore loses 
any state already held in that register. This allows the 
sta.te space to remain bounded; it can also lead to 
garden-path effects. Suppose that race has three syn- 
tactic categories, NOUN, VINTRANS and VTRANS. 
The processor chooses the first one that fits the current 
context. In this case, because of the verbal inflection of 
raced, it skips NOUN in favor of VINTRANS. 

Between horse and raced the processor goes through 
two boundary productions. The first production, closing, 
a noun phrase to the left of the predicate, triggers ac- 
tion save Phrase. Before accepting the main predicate, 
another production triggers action save MidClause. 
After these, lexical production VITRANS fires. Before 
processing to the next word, the processor automati- 
cally saves states from the current SaveList into bound- 
ary registers. In this case there are three: PhraseO, 
MidClause and Word. 

After the processor accepts the preposition past, and 
starts another noun phrase, it again saves in register 
PhraseO. It therefore loses the state previously stored in. 
this register--the state closing the noun phrase be- 
tween horse and raced. So, when the processor gets to 
fell, and backtracks, it will not find the passive post- 
modifier interpretation of raced anywhere. Note that 

‘ln order to guarantee that Resume never exceeds its fixed limit, the processor 
throws out any duplicate subscripts before storing a new one. 
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the post-modifier interpretation is not available in 
MidClauseO, since by then the processor had already 
closed off the noun phrase. 

Contrast the processor’s behavior for this sentence: 

(13) The horse found by the barn fell. 

Here, found is also ambiguous, between active or pas- 
sive transitive. Choosing the active interpretation first, 
the processor closes off the NP, and saves states in 
Phrase0 and MidClauseO. This path gets stuck when it 
reaches by, where it expects a direct object. So the 
processor backtracks. In this case, there has been no 
intervening NP. The processor finds the passive inter- 
pretation of found in register PhraseO, and successfully 
analyzes it as a post-modifier. 

Sentence length does not necessarily limit boundary 
backtracking. (Thus BB contrasts with the Sausage Ma- 
chine of [B].) Hence it has no problems wi.th sentences 
like these: 

(14) Have the boys take the exam. 
(15) Have the boys taken the exam? 
(16) Have the boys who have a reputation for playing 

hookey taken the exam? 

To be sure, there may be backtracking. Suppose have 
has categories QUES and IMP. The processor will recog- 
nize sentence (14) directly. For sentences (15) and (16), 
it will backtrack to the OpenClause boundary, reana- 
lyze taken as IMP, then accept the rest of the sentence 
directly. 

Local parallelism 
The boundary backtracking algorithm, notwithstanding 
the name, actually combines aspects of backtracking 
and parallel search. Both use bounded resources. Local 
processing (of words) is parallel and exhaustive; non- 
local processing (of constituents) is serial and preferen- 
tial. In accordance with recent psycholinguistic re- 
search [31], search for lexical entries is parallel and 
exhaustive. In addition, search for all locial syntactic 
interpretations-any non-lexical productions leading to 
a lexical production for a given word-is also parallel 
and exhaustive. This search for non-lexical interpreta- 
tions is called local parallelism. The bound on local par- 
allelism is related to the number of non-lexical produc- 
tions in the grammar; in practice, it is quite small. Non- 
local processing is serial. When necessary, it backtracks 
to states held in boundary registers. The bound on non- 
local processing is the number of registers. (It is non- 
local processing that would otherwise lead to a combi- 
natorial explosion in state space.) 

The following examples illustrate the role of local 
parallelism: 

(17) Is the block sitting on the table? 
(18) Is the block sitting on the table red? 

At first glance sentence (18) looks very similar to (12), 
the garden-path sentence. Again, the processor must 
choose between either a main predicate or a post- 
modifier interpretation of a verb. The difference is, 
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raced is ambiguous between two distinct categories (in- 
transitive vs. transitive), whereas sitting involves just 
one category. The ambiguity of (18) is just a matter of 
non-lexical interpretation. The processor must deter- 
mine if sitting is the main verb, as in (17), or a post- 
modifier, as it turns out in (18). The processor looks for 
all possible local non-lexical interpretations for a given 
lexical category, and saves all boundaries traversed 
along the way. Between block and sitting, the main 
predicate reading of sitting saves states in Phrase0 and 
MidClauseO. In parallel, the post-modifier reading of 
sitting saves a state in MidClausel. When the processor 
reaches red, backtracking is able to resume from regis- 
ter MidClausel. 

The difference between sentences (12) and (18) is 
subtle. The garden-path sentence involves a tensed in- 
transitive verb (the first lexical category of raced), 
which cannot function as a post-modifier. It crosses 
boundaries only at the main clause level-Phrase6 and 
MidClauseO. Sentence (18), on the other hand, involves 
a progressive verb (sitting), which can function as 
either a main verb or a post-modifier. It crosses bound- 
aries at both the main and first embedded clause levels, 
in parallel. Thus it is possible to resume sentence (18), 
but not garden-path sentences like (12). 

This model affects the way one categorizes verbs. 
Consider another example: 

(16) Was the book read to the children interesting? 

Many dictionaries list read as either transitive or in- 
transitive. Why, then, doesn’t sentence (19) lead to a 
garden path? The answer is that read is a transitive 
verb with an optional truncation of its object (like eat, 
cook, etc.). On this analysis, read does not actually 
have an intransitive category; instead it has just one 
major category, plus a subcategory that options a miss- 
ing, implied object. (Subcategorization is discussed in 
an upcoming section.) 

An advantage of local parallelism is that it could 
without much difficulty be modified to accommodate 
non-syntactic criteria. The syntactic component makes 
predictions about preferences by the order of produc- 
tions-analogous to arc-ordering in ATNs [XI]. We 
have seen that race prefers intransitive before transi- 
tive; a grammar of English models the effect of minimal 
attachment [ll, 151 by ordering a phrase-closing pro- 
duction before productions that open post-modifiers. 
Category preferences are not the whole story, of course; 
semantics or intonation can bias the attachment prefer- 
ences as well. In the right context, even garden-path 
sentences become comprehensible. For example: 

(20) There were two horses in the field. The horse 
raced past the barn fell. 

RVG provides for actions associated with productions, 
already used to shift clause level and save states. Other 
actions may perform tests on semantic structure to pro- 
vide on-line guidance to a parser or generator, Though 
syntax is autonomous in the sense that it has its own 

data structures, there can be interaction between syn- 
tax and semantics during processing, especially near 
phrase and clause boundaries (see [2, 6, 121). In an 
interactive processor, while trying local attachments in 
parallel, syntax proposes and semantics disposes. Sup- 
pose we hook a referential semantics module up with 
RVG. Let production DEFEND, which fires just before 
closing a definite noun phrase, invoke referential 
analysis for the phrase. If there is an unambiguous re- 
ferent for the description so far, reference succeeds. 
(In the nulI context, reference succeeds, finding un- 
ambiguously nothing.) For the context of (26) reference 
for the horse fails, because there are two equally plau- 
sible referents. DEFEND fails, so the processor looks for 
the postmodifier interpretation instead. 

Boundary Backtracking vs. Bounded Lookahead 
Boundary backtracking is an alternative to the bounded 
lookahead scheme of Marcus [16]. His processor also 
posits limited resources for resolving structural ambigu- 
ity. It builds up partial constituents in a lookahead 
buffer having a small, fixed number of cells. When the 
buffer gets full, the processor must commit itself to an 
interpretation; it allows no backtracking. By this ac- 
count, garden-path sentences occur when the processor 
is forced to make such a commitment, incorrectly. 

As Church [8, p. 571 notes, “in some sense, [bounded] 
backup, lookahead and parallelism are all very similar.” 
Whereas unbounded backtracking saves all choice al- 
ternatives at every choice point, bounded backtracking 
would presumably fix the size of the backtracking 
stack. It is not clear, however, that there is any arbi- 
trary limit that would both account for garden-path 
sentences and still process the temporarily ambiguous 
sentences that people do understand. 

Boundary backtracking, on the other hand, does not 
rely on arbitrary bounds on artificial data structures 
(such as a stack or a buffer). Instead, it is motivated by 
perceptual boundaries in syntax. There is much psy- 
cholinguistic evidence for such boundaries in human 
sentence processing. Click studies [12] and eye-fixation 
studies [6] indicate that reading comprehension activity 
increases at phrase and clause boundaries. Structurally 
ambiguous units retard processing time up to clause- 
closing boundaries, beyond which they do not [2]. 

Marcus’ model makes no provision for noticing legiti- 
mate structural ambiguities, e.g., They are flying 
planes. In a footnote, Marcus does suggest that his pro- 
cessor could flag any output that is potentially ambigu- 
ous, but “some external mechanism will then be 
needed to force the interpreter to reparse the input, 
taking a different analysis path” [20, p. 131. Instead of 
ruling out nondeterminism, boundary backtracking 
reins it in. It remains sensitive to some (but not all) 
ambiguity. So it discovers the second interpretation of 
They are flying planes after it returns to the Mid- 
Clause0 register. Boundary backtracking does forget 
many ambiguities, as in garden-path sentences like (12). 
Whether humans retain just those ambiguities that the 
boundary backtracking model does is an interesting 
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empirical question. The computational import is that 
there will be far fewer possibilities for a processor to 
consider. 

Some readers may object that a model that simply 
rejects garden-path sentences is too stringent. Indeed, 
Marcus notes that native speakers can understand 
garden-path sentences with conscious effort. “A higher 
levlel problem solver uses a set of grammatical heuris- 
tics . . . to discover where the processor went astray” 
[20, p, 2051. As with globally ambiguous sentences, 
Marcus’ solution smacks of a homunculus. The “external 
mechanism” or “higher level problem solver” is far 
more powerful than the sentence processor itself, since 
it is able to “force” the processor to behave differently. 
Church [8] suggests adding an ad hoc horse-racing rule 
to the grammar. 

The boundary backtracking model suggests a simple 
and general heuristic. Suppose we allocate one more 
register, Extra. The processor can then accept a garden- 
path sentence by saving, in Extra, a state from another 
boundary register--just as it is about to be reused. For 
example, when the processor fails to recognize sen- 
tence (12), it can start over, only this time copying the 
contents from Phrase0 to Extra before it gets reused. It 
can then backtrack to Extra as it would to a state in 
any other boundary register. This strategy adds no sig- 
nificant complexity to the algorithm. It has the virtue of 
allowing the processor’s coverage to degrade gradually, 
in a manner similar to human performance [8]. 

Finally, the boundary backtracking algorithm is re- 
versible. Boundaries support re-starts for natural lan- 
gu,age generation as well as parsing. When speakers 
stammer or rephrase their speech, they appear to re- 
su:me at boundaries [28]. Boundary registers can help a 
co:mputational generator by providing a small number 
of definite states at which failed attempts may resume. 

Adjunction 
RVG’s approach to right-embedding, discussed the pre- 
vious section on wh-questions, predicts the awkward- 
ness of sentences like these: 

(211) Mary sang a song that she had learned in Europe 
before the war to her children. 

(22) I called the guy who smashed my brand new car a 
rotten driver. 

Sentence (21) right-embeds upon reaching the comple- 
mentizer that. By then, all obligatory constituents in 
the matrix clause have appeared. Later, the processor 
cannot adjoin to her children to the matrix clause. This 
policy is similar to Kimball’s principle of early closure 
[15], or Cowper’s “Poker Principle” [8]-once the oblig- 
atory cards are on the table, one cannot pick them up 
again. 

Though sentences (21) and (22) are awkward, they 
are certainly comprehensible. Cowper notes that the 
lost clause “must be retrieved from some kind of less 
immediate memory storage in order for the last constit- 
uent to be added [9, p. 461. She does not explain the 
nature of this auxiliary storage. It is, I suggest, a bound- 

ary register. When the processor right-embseds, it also 
saves its state in register CloseClauseO. If necessary, it 
can retrieve this state later. This behavior is similar to 
right association [8, 111. The RVG processor prefers to 
attach material to the current clause, but if necessary 
can explicitfy resume a clause frorn a CloseClause regis- 
ter, in order to add a late adjunct or optional argument. 
Explicit resuming is a failure-driven strategy. Unlike 
backtracking, it does not actually return to a prior posi- 
tion in the input stream. Instead. it processes the cur- 
rent word with an earlier syntactic state-.at the end of 
an earlier matrix clause. 

PLANNED IMPROVEMENTS 
Thus far this article has presented a basic architecture 
for syntax as a scheduling system, ordering sequences 
of events in time. (Indeed, it is a general-purpose auto- 
mata, with applicability for scheduling any comparably 
complex sequence of events [8].) There are of course 
many other issues for syntax, which is only part of 
natural language as a whole. 

Subcategorization 
The current scheme only provides for major categories. 
Subcategories could be represented by multiplying ma- 
jor categories, but it is useful to avoid such redundan- 
cies. For example, the verb put requires a locative 
phrase-one cannot say *I put it. We would rather not 
have to introduce distinctions between all the various 
kinds of verbs and their complements at the major cat- 
egory level. 

A better approach is to factor out subcategories, as 
non-lexical productions that precede the major lexical 
productions. In other words, subcategory productions 
will be semi-lexical. Like non-lexical productions, sub- 
categories do not consume (or produce) words; never- 
theless, lexical entries must be able to specify their 
subcategories. Each lexical entry will have a category 
set (implemented as a bit vector): the set of productions 
that may fire up to this word. For example, the lexical 
entry for put will include in its category set (among 
other things) a non-lexical subcategory LOCREQ. This 
production fires before the lexical production for the 
verb. The change vector of LOCREQ turns on a feature 
in the state register, +LOC. The clause terminator pro- 
duction, CLOSE, requires that this feature be turned 
off, which only a production recognizing a locative 
phrase can do. 

Adding category sets to the lexicon constrains non- 
lexicals generally. For example, phrase-opening pro- 
ductions require words that could legitimately open 
phrases-determiners, adjectives, nouns, etc., but not 
tensed verbs, prepositions, etc. Specifying constraints in 
this form can fine-tune the description and perfor- 
mance of grammars. Category sets also provide a way to 
guarantee that a non-lexical production will fire at 
most once between words. This guarantee eliminates 
the possibility of infinite cycles between words, and 
makes local parallelism tractable. 
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Agreement 
RVG is unusual in that features control precedence re- 
lations. In most other formalisms, features enforce 
agreement, e.g., determiner and head noun must agree 
in number. RX could include agreement features in its 
state vectors. DET-PL turns on a feature +PL which 
rules out NOUNSG, etc. This would lead to some re- 
dundancy among productions, though, multiplying 
every combination of productions by every possible 
way they might agree. A better approach is to manage 
agreement features separately. In addition to ordering 
vectors, each state register configuration includes mor- 
phosyntactic agreement vectors. Generalized actions 
combine agreement values from inflections and lexical 
entries with values in the agreement vector. Such ac- 
tions cut across syntactic categories and thus avoid du- 
plication. So long as the agreement register is finite and 
reusable, there is no significant increase of complex- 
ity. (The current architecture already provides for an 
efficient treatment of inflectional morphology and 
idioms [I 7). 

Conjunction 
Boundary backtracking suggests a systematic way to 
handle conjunction that avoids a great deal of redun- 
dancy. Conjuncts typically attach at boundaries: 

(23) Joe loves Sue and Bob. 
Word 

(24) Joe loves Sue and her husband. 
Phrase0 

(25) Joe loves Sue but dislikes Bob. 
MidClause 

(26) Joe loves Sue but he dislikes Bob, 
Clause0 

(27) Joe loves Sue and Bob Martha. 
Clause0 

As with adjunctions, processing conjunctions may in- 
volve trying to explicitly resume from states available 
in boundary registers. Sentence (25), for example, re- 
sumes from the State stored in the MidClause bound- 
ary, just before loves. To be sure, conjunction may in- 
volve more than resuming a state. As sentence (27) 
suggests, a conjunction production should also option 
possibilities for ellipsis-in terms of ordering features. 

Structures 
The current system produces as output a linear trace of 
the productions fired for each possible recognition of a 
sentence. Building diagnostic traces does not add any 
significant complexity to the recognition algorithm. It 
simply concatenates a record for each production fired 
to the trace. Boundary registers maintain a copy of a 
current trace as part of a state configuration. The fixed 
finite resources hypothesis obviously restricts the kinds 
of diagnostic structures RVG can possibly build. It can- 
not build indefinitely center-embedded tree structures, 
nor can it keep track of all conceivable parses for am- 
biguous sentences. These restrictions are not onerous, 
though. 

While helpful for grammar development, linear 
traces are not grammar structures, nor are they in- 
tended as such. Rather, actions associated with produc- 
tions can do the work necessary to support interpreta- 
tion. The current model already provides for actions to 
handle center-embedding and saving states in bounda- 
ries. To these we are adding a repertoire of actions for 
compositional interpretation. 

The notion of using actions associated with produc- 
tions to support interpretation is a common one, found 
for example in ATNs. The problem here is to limit the 
complexity of these actions. The modus operandi with 
respect to actions is that they, too, abide by the fixed 
finite resources hypothesis. The syntactic categories 
and ordering positions of natural languages are closed 
classes. That is why RVG can schedule productions 
with a small grammar and a fixed finite register config- 
uration. Similarly, affixes, pronouns and grammatical 
roles are also closed classes. This suggests that agree- 
ment, anaphora and predicate-argument calculus are 
also susceptible to processing by a small repertoire of 
generalized actions and a fixed finite register configura- 
tion. While long-term memory is presumably quite 
large and not necessarily real time in response (that’s 
why people need external memory aids), short-term 
memory is quite limited and thus real time. The key to 
real-time sentence processing is determining the struc- 
ture of this short-term register configuration. 

Our approach draws on ideas from other researchers 
who have sought to limit computational performance 
capability to finite state. Church [8, p. 661 dealt with 
the problem of keeping track of ambiguous preposi- 
tional phrases. Rather than maintaining separate inter- 
pretations for each possible attachment (which could 
lead to an exponential growth in state space), Church 
advocated a pseudo-attachment strategy. To quote his 
thesis: “YAP has a marked rule to pseudo-attach (attach 
both ways) when it sees both alternatives and it cannot 
decide which is correct.” Martin et al. [Zl, p. 2791 apply 
this idea to several notoriously ambiguous constructs, 
including reduced relatives, conjunction and noun- 
noun modification. “The approach taken here is to flat- 
ten the syntactic structure of these phrases. . . . In this 
way, the parser will not waste time trying all possible 
bracketings; it will be content with a canonical one that 
represents them all.” Basically, this amounts to a strat- 
egy of least commitment: if there is a locally unresolva- 
ble ambiguity, then allow an alternative category that 
explicitly leaves things undetermined. This attitude is 
crucial in a processor with restricted resources. To take 
a simple example, the words the and sheep are ambigu- 
ous or undetermined, depending on how one looks at 
them, with respect to number. If  they are ambiguous, 
the processor must consider singular and plural possi- 
bilities separately. I f  they are undetermined, on the 
other hand, it does not have to decide. The processor 
generates just one canonical representation, which it 
may refine subsequently. 
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ANALYSIS OF COMPLEXITY 
What is the time complexity of RVG? There are two 
considerations: 1) the size of the processor and 2) the 
size of the grammar. The RVG performance model 
makes important improvements in both of these dimen- 
sions: processor size is fixed as a small number of 
boundary registers, and grammar size is held down by 
ternary vector functionality. 

Processor size is the number of boundary registers. 
Grammar size is the number of categories, c, which 
must be considered at each state. Factoring out c, it can 
be shown that boundary backtracking is linear with 
respect to input. 

Consider the simple case where just a single bound- 
ary register allows backtracking to grammatical bound- 
ary .B. In a sentence of n words (call them w,, wz, . . . , 
w,), B can be crossed from 0 to II times. Suppose B is 
crossed exactly once, at arbitrary word w,: 

WlWz . . . Wi-lW8.. . W, 

Words w, through UJi-1 will be considered just once 
(since no states are saved for backtracking prior to word 
wi). Words Wi through w, can be considered, in the 
worst case, c times, where c is the number of alterna- 
tives stored in the boundary register associated with B. 
The worst case occurs when, for each of the first c - 1 
alternatives in B, the recognizer goes all the way to the 
last word of the sentence (wu,) before failing and back- 
tracking to word wi: 

‘I’ = f(w, . . . U’i-1) + C*t(Wi . . . Wn) < C*t(Wl . . . Wfl) 

T is O(n), or proportional to the length of the input 
string, whatever c might be. 

Now consider the general case, where B is crossed x 
times, 0 =Z x < n. Here is where the policy of reuse 
comes in, every time B is crossed. Let Wil, W,Z . . . , Wir, 
(1 2s il < i2 < . . . c ix < n) be the words at which B is 
crossed: 

WI . . w ,,-, WR . . WiP-,wf: . . WE.. . wn 

Again, words w, through wile1 are considered just once, 
since no state is saved prior to the first crossing of B. 
Words wir through W;Z-I may be considered, in the 
worst case, cl times, where cl is the number of alterna- 
tives saved in B. The worst case occurs when, for each 
of the cl - 1 interpretations, Wil through Wiz-1 are con- 
sidered before a failure occurs (at i2 - 1). The processor 
must then backtrack to word Wil in order to get the 
next interpretation. Note that words Wil through ~~2-1 
can be considered no more than cl times. As soon as 
wi:! is accepted, backtracking to any word prior to Wi2 
will be impossible, since a new State will then be saved 
in B, “forgetting” any state from before Wi2. Similarly, 
wi:! through wij-.r are considered, in the worst case, c2 
times (where c2 is the number of alternatives saved at 
word wi2). And so on through words wiX to w,, which 
can be considered no more than cx times. Thus, the 
maximum recognition time is: 

I- = f(Wl . . . Wil-1) + Cl*t(Wil . . . WiZ-1) 

+ C2*t(Wi2.. . Wi3-1) + . . . + CX*t(W&. . . W,) 

=z C*t(W, . . . w,), where c’ = max(cl, c2, . . . , cx) 

When only a single boundary register is usad, recogni- 
tion time is O(n). 

The case of b boundary registers is a further generali- 
zation of this result. Registers BRI through BRt, (ordered 
as some permutation of BRI, BRZ, BR,, . . . , BRbml, de- 
pending on the order in which the associated bounda- 
ries are crossed) each appear in the Resume array at 
most once. For each of cl alternatives saved in BR, (the 
first register pushed into the Resume array), the recog- 
nizer may consider at most c2 interpretations saved in 
BR, (the second register pushed into Resume). Simi- 
larly, for each interpretation in BR,, the recognizer can 
consider at most c3 interpretations saved in BR3, and so 
forth. Thus, the maximum number of times any word 
Wi may be considered when using b boundary registers 
is cl*c2*c3* . . . *cb. For a sentence of n words recog- 
nized with b boundary registers: 

T G cn = O(n), where c = clc2* . . .* cb 

Therefore, with b boundary registers, recognition time 
is still O(n). 

The significance of this result is that it avoids the 
potentially exponential blowup associated with simple 
unbounded backtracking, which never “forgets” any 
states. Note that local parallelism is quite tractable (so 
long as grammar size is), but global parallelism is not, at 
least not for arbitrarily long, complicated sentences. 

The second dimension is grammar size, which also 
has a significant impact on processing time [l]. RVG is 
efficient with respect to grammar size in t.wo respects. 
First, it eliminates a great deal of redundancy found in 
formalisms that overly commit to strict linear prece- 
dence. Thus the number of productions is compara- 
tively small. As it should be: the syntactic categories of 
a language are a closed class. With p productions (each 
with two vectors) and f features, an RVG of size p*2*f 
can represent a state space with at least f’ FSA transi- 
tions. (The number of FSA transitions may be even 
greater if there are iterative productions, with no corre- 
sponding increase in size for the equivalent RVG.) Sec- 
ond, constraint propagation through state vectors 
sharply reduces the size of the reachable state space.g 

Here is how Reed [25, p. 381 describes the efficiency 
of RVG: 

The vector of one of the RVG states ma:y absorb, 
representationally, many additional pratductions. 
Thus, the RVG-based parser offers the efficiency of 
being less sensitive to the branching factors of gram- 
mars. 

Holding down branching factors is a direct consequence 
of holding down grammar size. 

‘Similarly, Barton et al. [I] show how constraint propagation could improve 
the performance of the Kimmo morphological analyzer. 
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What about the number of features? The number of 
ordering features f should also be small: the left-to-right 
ordering positions of a language are another closed 
class, We may estimate f as the sum of L + N, where L 
is the number of local constituent positions and N is the 
number of non-local constraints. L has to do with the 
linear precedence of categories; e.g. in English, subject 
appears before predicate, quantifiers precede adjectives, 
etc. Note that L is somewhat smaller than the number 
of categories, since many categories share the same 
temporal position. For example, many categories may 
appear in the predicate position-verbs, prepositions, 
adjectives, etc. Instead of many state-nodes, there is 
just one feature representing this abstract position. N 
has to do the non-local constraints between constitu- 
ents, such as gapping and constraints on gapping. Note 
that it is possible to eliminate redundancy here as well. 
We have seen, for example, that the Complex NP Con- 
straint requires no extra features. Both L and N are thus 
reasonably small, so f will be as well. Crucially, there is 
no combinatorial redundancy here. 

EMPIRICAL RESULTS 
I have conducted computational experiments to quan- 
tify the efficiency of the RVG algorithm. The design of 
these experiments is similar to those of Tomita [32, 
chap. 61 and Reed [25].” 

The experiments investigate the relationship of pars- 
ing times to sentence length, sentence ambiguity and 
grammar size. Parsing time, for Tomita, is CPU time 
minus time for garbage collection. Measuring time in 
this manner, though of interest, is problematic, since 
much depends on CPU capabilities and details of imple- 
mentation. Moreover, garbage collection is a significant 
factor. The RVG architecture generates no garbage, 
whereas the Earley, Tomita, and Reed algorithms have 
considerable memory overhead. (To get polynomial 
time they keep track of all partial constituents in mem- 
ory.) Therefore, following Reed [25], I also measured 
abstract machine time-the number of state changes. 
Grammar size and memory requirements are also in- 
structive in evaluating efficiency as well as learnability 
of architectures. 

Two experiments compared th RVG formalism with 
efficiency context-free parsers. The first one involves a 
grammar and sentnece set (1 < n) obtained by the fol- 
lowing schema: 

det noun verb det noun 
E.g., The robot saw a cat in the park 

(prep det noun)“-’ 
with a telescope . . . 

Tomita showed that parsing time for this algorithm 
grows polynomially with respect to sentence length. I 
predicted linear growth for RVG with boundary back- 
tracking. The first experiment confirms this prediction, 

“Reed’s work is an amalgamation of RVG’s constraint propagation technique 
[4] and Earley’s algorithm [lo]. Like Earley’s, Reed’s algorithm is O(n3): it does 
not exploit short-term memory limitations of human performance. 

both in terms of CPU and abstract machine time (see 
Figures 8 and 9). The second experiment involved im- 
plementing an RVG grammar with the same coverage 
as Tomita’s Grammar III, for which he provides a 
testbed of 40 sentences (Appendix G). These sentences, 
taken from computer science textbooks, average 11.2 
words in length, and involve a variety of syntactic 
structures: relative and reduced relative clauses, ger- 
unds, infnitive and that complements, sentential, con- 
juncts, noun-noun modification, etc. This experiment 
further corroborates RVG’s efficiency (see Figures 10 
and 11). In terms of CPU time, RVG is performing about 
an order of magnitude faster than Tomita’s algorithm- 
in compiled C on an IBM AT versus interpreted Lisp on 
a DEC-20. In terms of abstract machine time, RVG is 
performing one to two orders of magnitude faster (based 
on statistics from [25]. 

RVG gains efficiency by a) ruling out spurious ambi- 
guities by constraint propagation and b) losing potential 
interpretations to reuse. The RVG model weeds out 
many structurally plausible but uninteresting interpre- 
tations. Indeed, of the forty sentences in Tomita’s 
testbed, only one is reported as ambiguous: Time flies 
like an arrow. The parser gets the proverb in which 
time is a noun as well as an analysis in which time is 
an imperative verb (by backtracking to the OpenClause 
boundary). It does not report interpretations in which 
time is a denominal or adjective modifying flies. These 
possibilities are available locally, while in the noun 
phrase, but are lost by the time the parser reaches the 
end of the sentence. Getting the right interpretation 
will, to be sure, require integration of syntax and se- 
mantics. Semantics must choose the preferred interpre- 
tation while it is available, locally. 

Perhaps as significant as its efficiency in time is that 
the RVG algorithm pre-allocates all memory resources, 
statically. This eliminates the overhead of dynamic 
memory allocation and garbage collection. Polynomial 
algorithms such as Earley’s and Tomita’s have a high 
memory overhead, maintaining a chart or graph for all 
possible interpretations. Hence the RVG algorithm 
looks especially promising for real-time applications 
running in relatively small machines. 

RVG eschews transition diagrams and phrase struc- 
ture rules, as well as the trees which become great 
forests in Tomita’s algorithm. It is significant that 
Tomita’s grammar badly overgenerates, ignoring issues 
of agreement and gapping. These are of course difficult 
to express in terms of simple context-free rules, but 
straightforward in RVG. Tomita’s grammar has about 
220 rules, while the RVG version has 60 rules, each 
with two vectors of 30 features. An important predic- 
tion is that whereas context-free grammars will get 
enormous as coverage increases, the size of an RVG 
will grow very slowly. Other formalisms trade more 
computational complexity for less grammar size. 

Both the features and productions of RVG are suscep- 
tible to parallelism. The current RVG processor, run- 
ning on conventional computers, already exploits fea- 
ture parallelism. It sees all the features in a vector at 
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once, as a whole, just as a simple FSA sees all the bits 
in a. state-symbol, whole. The only difference is that 
RVG looks at the bits with a ternary rather than a 
binary logic. The operators of the ternary vector logic 
look at all features in a vector in parallel. On binary 
computers, ternary vectors are implemented as a pair of 
bit vectors, and ternary operators exploit the low-level 
parallelism of bit-wise operators, e.g., on a 32-bit ma- 
chine, 32 features at a time. (Such micro-parallelism is 
of c:ourse plausible in neural machines as well.) 

Because RVG represents more information about syn- 
tactic state in the state itself, it is able to be quite 
compact in its representation of natural language gram- 
mars, and hence quite efficient in processing them. 
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