
ARTICLES

Artificial
intelligence
and A Finite and Real-Time
Editor

Language Processing

Pete;r Friedland Processor for Natural
Language
People process natural language in real time and with very limited short-term
memories. This article describes a computational architecture for syntactic
performance that also requires fixed finite resources.

Glenn David Blank

Natural languages are amazingly versatile, but not infi-
nitely so. I start with the premise that syntactic perfor-
mance requires only fixed finite resources. I have
found a performance processor that needs only a static
state space. The processor operates in O(n) or real time.
This is a significant improvement on the O(n”) time
available for context-free languages [lo, 25, 321. Effi-
cient performance also depends on holding down gram-
mar size. The processor presented here represents syn-
tactic versatility wit.hout incurring combinatorial
redundancy in the number of transitions or rules. It
avoids both excess grammar size and excessive compu-
tational complexity.

I view the purpose of syntax as chiefly to expedite
and simplify the processing of semantic and discourse
structures. Excessive computational complexity ob-
scures this function, Some researchers have advocated
ignoring syntax altogether. But syntax always shows up
somewhere, if not in a module that observes generali-
ties efficiently, then in redundancies spread throughout
a lexicon or linguistic knowledge base. Instead, I be-
lieve that the fixed finite resources hypothesis is a
practical design principle for syntactic engines.

Most modern syntactic formalisms, calling for un-
bounded resources, are prone to intractability [l], The
designers of such formalisms accept Chomsky’s argu-
ment that finite automata cannot model the competence
of native speakers. A generation ago in this publication,
Wosods cited Chomsky to justify the unbridled recur-
sion and manifold tests and registers of Augmented
Transition Networks (ATNs). These facilities make his
scheme “equivalent to a Turing machine in power,”
because “the actions which it performs are ‘natural’
ones for the analysis of language [34, p. 600].

Nevertheless, there are well-known limitations on
human capabilities for processing syntax. Miller and

01989 ACM OOOl-0782/89/1000-1174 $1.50

Chomsky recognized “the obvious fact that [speakers
and hearers] are limited finite devices” [22,, p. 4651.
There is a small but long-standing tradition of work
modeling syntax with finite resources, for embedding
[9, 18, 19, 27, 351 and also for keeping track of ambigu-
ity [ll, 20, 231. One model [8] tries to be finite in both
of these dimensions.’ Exploiting these performance lim-
itations leads to a more psychologically realistic and
computationally efficient model of language processing.

Let me emphasize this point. Evidence that suggests
that syntactic competence requires more than context-
free power does not necessarily rule out performance
with finite resources. A performance model may ex-
plicitly include memory limitations as part of its design.
It is entirely a question of whether syntactic perfor-
mance ever calls for unbounded resources. For exam-
ple, Pullum [24] affirms Chomsky’s view that natural
languages cannot be regular, citing evidence from Cen-
tral Sudanic languages where center-embedding is ap-
parently more common and acceptable. The empirical
question is, do speakers of Sudanic languages generate
sentences with unboundedly or even unusually deep
center-embedding? Bresnan et al. [5] claim that cross-
serial dependencies in Dutch argue against describing
this language in terms of context-free rules. The empir-
ical question is, can Dutch speakers generate unbound-
edly or even unusually wide cross-serial clependencies?
If not, then the fixed finite resources hypothesis is tena-
ble. If one can count up the dependencies on one’s
fingers, than surely one can model them with finite
resources. Indeed, Pullum does acknowledge that hear-
ers may indeed process sentences “as if they were finite
automata” [24, p. 1141.

Register Vector Grammars (RVG) are equivalent to
finite state automata (FSA). Implied in the name are

’ Church’s model is not a fixed finite system. however: it expands and shrinks
as a function of input. He uses a heuristic to prevent it from ever actually
requiring unbounded resources.

1174 Communications of the ACM October 1989 Volume 32 Number 10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F67933.67935&domain=pdf&date_stamp=1989-10-01

Articles

two major innovations that allow RVG to be far more
efficient and compact than simple FSA, with respect to
natural languages. First the vectors. Simple FSA repre-
sent states and categories as simple symbols-nodes
and arcs in transition diagrams. Most modern syntactic
formalisms abstract over category-symbols, with non-
terminals and tree structures. RVG instead abstracts
over state-symbols-with vectors of ternary-valued fea-
tures. As we shall see, this technique helps to eliminate
a great deal of redundancy from grammars. It keeps
grammar size quite small.

Second are the registers, which keep track of alterna-
tive states. RVG is able to guarantee linear time be-
cause it pre-allocates only a small number of these reg-
isters. The processor supports reanalysis of structural
ambiguities by backtracking to system states in these
registers. However, the number of registers never
grows; instead, RVG reuses them, thus systematically
forgetting many (but not all) ambiguities. This approach
puts a tight leash on nondeterminism; it also mimics
human behavior.

This article begins by introducing the RVG architec-
ture, comparing it first with its cousin, the nondeter-
ministic finite automaton, and eventually with more
computationally complex formalisms. This is followed
by a description of how to rein in nondeterminism with
a small number of registers, and an outline of planned
enhancements to the basic architecture, with respect to
handling subcategorization, agreement, conjunction,
and canonical structures. The article will conclude by
presenting an analysis of complexity demonstrating
that the algorithm is indeed linear, and empirical re-
sults for small fragments of English.

REGISTER VECTOR GRAMMAR
As the fixed finite resources hypothesis implies, RVG is
equivalent to a nondeterministic FSA. The RVG autom-
aton is a 5-tuple (S, C, I, F, T), where S is a finite set of
states, C is a finite set of input symbols (called cate-
gories), I is the initial state, F is a set of final states, and
T is a transition relation mapping S X C to S. This
definition is of course the same as that of a nondeter-
ministic FSA. The difference lies in the nature of RVG’s
states and transition relation.

Ternary Feature Vectors
The states and transition relation of RVG are repre-
sented in terms of vectors of ternary-valued features. A
feature vector f is denoted by the features (fi . . f,,) Each
feature may take on one of three possible values; “+“,
“2’) or ‘y.9, (eon,? “ off” or “don’t care”). A particular
grammar involves vectors of some fixed length, k. I f k is
9, then a state vector might look like this: ++?--?-+.

The transition relation of RVG relies on two ternary
vector operators. Given two vectors of ternary features,
the match operator produces a Boolean result:

match (fi, g,)

TRUE = if fi = gi or f< = ? or gi = ?
FALSE otherwise

match (f, 81

TRUE = if match (fi, gi) = TRUE for all i

FALSE otherwise.

For example, match (+ - ?, + ? ?) is TRUE, but match
(+ + +, + ? -) is FALSE, since a + opposes a - in the
this position.

The change operator takes two vectors and produces
a third. Definite values (+ or -) in the second vector
override corresponding values in the first vector, but
indefinite values (?) have no effect. Formally:

change (fiv gi) =
if gi =+ or gi =-
if gi =?

change (f, g) = (change (fi, gi))

For example, change (-+?-+?-+?, ---+++???)
produces - - - + + + - + ?. Note that the change opera-
tor is asymmetric: the output vector gets the definite
values (+ or -) of the second argument. Where the
second argument has indefinite values (?), though, the
values of the first argument “pass through.”

RVG’s transition relation is implemented by three
data structures:

l A table of productions (the Synindex). Each production
in the Synindex is a 5-tuple (cat, cond, change, lex-
flag, actions), where cat is a symbol, cond and change
are ternary vectors, lexflag is a character differentiat-
ing different types of productions, and actions is a list
of executable functions. A lexflag with value I desig-
nates one production as InitFinal. The initial state I is
InitFinal’s change vector. The set of final states Fare
just those that match InitFinal’s cond vector.

l A list of lexical entries (the Lexicon). Each lexical en-
try is a 2-tuple (morph, lexcat), where morph is its
morphological description and lexcat is a list of cate-
gory labels.

l The current syntactic state register (SynState). The
SynState holds a ternary-valued vector, which the
transition function matches and updates.

We can now define RVG’s transition relation. Given
S, a set of state vectors, C, a set of category symbols (in
the lexicon), and Synindex, a set of productions, there is
a relation R on S x C to S. Relation (SynState, lexcat,
SynState) is a member of R if there is a production
(cat, cond, change, lexflag, actions) such that:

1) match(cond, SynState) is TRUE
2) cat = lexcat
3) SynState + change(SynState, change)

Simple Rigid and Free Order Languages
Figure 1 shows a RVG for a simple Subject-Verb-Object
(SVO) language:

Each feature in this grammar is associated with a
position in the left to right order of categories. The first
feature, S, associates with the subject constituent posi-
tion, feature V with the verb position, and 0 with the

October 1989 Vofume 32 Number 20 Communications of the ACM 1175

Articles

object. Thus features can control the occurrence of cat-
egories. (They need not necessarily have to do with
part:icular categories or positions, as we shall see.)

Here is how the above grammar recognizes George
loves Martha. [The two vectors on each line are the
state before and after each production fires.)

Word Commentary -- SynState
+++ Initialize with CLOSE’s change

(InitFinal)
Geo.rge +++ -+-I- Production SUBJ fires:

match (+++, +??) + TRUE
(matches +S
change (+++-, ??) --$ -++
(new SynState with -S)

loves -++ --+ VERB’s cond requires +V;
its change is -V.

Martha --+ --- OBJ’s cond requires +O;
its change is -0.

. --- +++ CLOSE’s cond requires -S & -V
(InitFinal)

Figure 2 shows a simple nondeterministic finite state
automaton (FSA) which is equivalent to the above RVG
Synindex. The five nodes in this diagram are equiva-
lent to the five states reachable by the grammar of
Figure 1. Note that in the simple FSA representation, to
represent the optionality of OBJ, we need to draw two
CLOSE arcs. RVG avoids this redundancy because ter-
nary values provide explicitly for optionality. The cond
of CLOSE, --?, matches either --+ or ---,

A.nother example better demonstrates the expressive-
ness of vectors. Suppose we want to model a partially
free-order language. It allows SUBJ to occur freely, but
requires VERB to appear before OBJ. Figure 3 illustrates
the RVG version (with no change to the lexicon of Fig-
ure 1). The only difference between Figures 1 and 3 is
that the latter relaxes one constraint. The cond of VERB
which had -S now has ?S. Relaxing S allows VERB to
occur freely with respect to SUBJ.

Compare the above with the equivalent FSA diagram
shown in Figure 4.

The simple FSA notation leads to much redundancy
for this language. For example, the diagram shows ex-
plicitly that SUBJ may occur first, or follow VERB, or
follow both VERB and OBJ. Though the number of con-
stituents is the same, the number of transitions have
multiplied. The RVG, on the other hand, relaxes just
one constraint; the number of productions does not

Feature Key Lexicon
car Position Label word catlist
SUB.3 +?? -11 1 - s George SUB.7 OBJ
"EP3 -+? ?-? 2 - " Martha S"BJ OBJ
OBJ ?-* ??- 3 - 0 loYeS VERB
CLO.jE --? CLOSE

FIGURE 1. RVG for SVO Language

FIGURE 2. Simple FSA for SVO Language

change. A completely free-order language (still obligat-
ing SUBJ and VERB) requires 22 transitions in diagram
form. The equivalent RVG just relaxes another con-
straint, changing OBJ’s cond from -V to ?V.

The RVG format is thus more compact than that of
simple FSA. In this case, it is better at expressing syn-
tactic obligations, regardless of order. In all of the gram-
mars above, SUBJ and VERB must occur before CLOSE
can fire. In both Figures 1 and 3, the cond of CLOSE
requires --?. Only the change vector of SUBJ and
VERB can turn off the first two features. We call CLOSE
a terminator category; it acts as a gate through which
only acceptable utterances may pass.

In general, RVG is able to represent a potentially
huge number of states and transitions with a remark-
ably compact transition table (Synindex). RVG con-
strains the number of potentially reachable states by
means of a particular configuration of features in the
table. So a rigid-order grammar (Figure 1) has fewer
reachable states than a free-order one (Figure 3); but
grammar size is the same. For each category there are
many FSA transitions but just one RVG production.

Simple FSA are unable to pass information from state
to state, except via simple linear precedence. Individual
transitions represent local constraints; such as that
SUBJ must precede VERB. It is difficult to express dis-
continuous, non-local constraints. The only recourse is
to plot separate paths through the transition network
for each non-local constraint. Interaction of constraints
soon leads to an explosion in the size of the grammar.

In RVG the state, a vector, keeps a record of some
non-local context. Note that this does not add any com-
putational power to FSA. Only the match and change
operators are different. Instead of insisting on exact
identity, RVG allows partial matching with I‘?” values.
Instead of wholesale substitution, RVG allows partial
change. This modification allows feature values to “pass
through” productions to subsequent states-a form of
constraint propagation. There is thus no need to multi-
ply transitions through intervening states, as in simple
FSA. Technically, any RVG is equivalent to some sim-

cat cond change Position Label
SUBJ -e?? -?? 1 - s
VERB ?f? ?-? 2 - v
OBS ?-f ??- 3 - 0
CLOSE --? +++ InitFinal

FIGURE 3. RVG for Partially Free-Order Language

1176 Communications of the ACM October 1989 Volume 32 Number 10

Articles

Init Final

FIGURE 4. FSA for Partially Free-Order Language

ple FSA. But if that FSA must allow for optionality and
non-local constraints, it will be much larger.

RVG throws out sentence diagrams. States are no
longer simple nodes, and rules are not longer rote pat-
terns. State vectors abstract over state nodes. To be
sure, the vectors of a Synindex are equivalent to some
vast diagram, but for a natural language, the diagram is
enormous and tangled with redundancies. Other for-
malisms introduce computationally expensive devices
to supplement and untangle the diagrams; RVG simply
abandons diagrams altogether. The only complexity it
adds is the functional complexity of its match and
change operators.

Think of grammars as telephone switchboards or
computer chips or neural networks. An RVG is able to
schedule a great variety of events with a compact,
dense matrix of productions and features.

Notation for an RVG Assembler
The feature keys shown in Figures 1 and 3 are not used
by the RVG processor itself. Feature vectors are ac-
tually in binary form (two bits per ternary feature), and
ternary vector operations are composed of fast bitwise
logic operators. Since match and change operate on all
features at once, we can exploit the bit vector parallel-
ism that already exists on conventional computers.

Feature keys do make it easier to describe vectors,
though. The current RVG development environment
therefore allows one to create, edit and debug RVGs
using a symbolic notation, which is translated into effi-
cient RVG “machine” code.’ In the following figures,
the ordering-features section is a feature key, associat-
ing labels with feature key. In Figure 5, the cond vector
of production SUBJ is +S - HEAD, which translates to
+???- (“?” is the default feature value). A range nota-
tion allows one to set all the features in a vector seg-
ment to a value: +S..O translates to the binary equiva-
lent of +++.

The assembler also provides for macro substitution.
The macros section associates a symbol prefixed
by I‘#” with a vector (in symbolic form). For example
in Figure 5 macro #NPOn expands to the vector

’ Our translator is analogous to an assembler, inasmuch as it preserves a close
correspondence to the “machine” code. Reed [26] describes a compiler that
translates rules in an extended context-free notation into a combination of
RVG vectors and context-free rules. While this notation may appear more
perspicuous to those trained in the phrase structure paradigm, it is incompati.
ble with the fixed finite resources hypothesis (and its full benefits). Nor does
it encourage users to understand and effectively exploit the nature of RVG’s
expressiveness.

+DET..HEAD. Macros may then appear in lieu of fea-
ture specifications in the grammar. This is a simple way
to provide for generalizations, such as the features re-
quired to open or close a phrase. The assembler is left-
to-right, so it is possible to override values in ranges or
macros.

Non-lexical Productions and Phrase Embedding
A lexicon is a collection of entries, each of which hold
syntactic, morphological and (eventually) semantic in-
formation. The syntactic information is a set of cate-
gories, corresponding to productions in the Synindex.

A left-to-right RVG recognizer accepts a word when
it finds a production whose cat corresponds to one of
the word’s categories and whose cond matches the
SynState register; it then advances its state by updating
SynState with that production’s change and consuming
the word from the input string. An RVG generator is
the same with respect to matching and updating Syn-
State, instead buffering words to an output string.

It is useful to allow non-lexical productions, which
advance SynState but do not consume words from in-
put (or buffer words to output). Each production’s lex-
flag notes this distinction. “L” for lexical productions
and “N” for non-lexical productions3

Figure 5 demonstrates the use of a lexicon and non-
lexical categories to process simple noun phrases (NPs).

RVG treats NP embedding as a special case of discon-
tinuity. Non-lexical productions SUBJ and OBJ turn on
features DET and HEAD. Feature HEAD acts as a
switch, distinguishing clausal from phrasal productions.
All of the causal productions (SUBJ through CLOSE)
must wait until HEAD is off again-a discontinuous
constraint. Meanwhile, the phrasal productions (NAME,
DET and NOUN) may occur at various positions in
clause structure, because they ignore the features per-
taining to clauses. E.g., NAME has ?S ?V ?O in both its
cond and change. The change of NAME or NOUN turns
HEAD off again, re-enabling the clausal productions.

This effect is not so readily achieved by simple FSA.
It is tempting to allow the equivalent of SUBJ and OBJ
to branch to the same set of transitions for NPs. The

orderins features s " 0 DET HEAD

p SUBJ N cond +S -HEAD change -3 (Itwon
p VERB L cond -S +" -HEAD change -"
p CmJ N cond -v +o -HEAD change -0 #liPOn
p CLOSE I co*d -$ -" -HEAD change +s..o XNPOff
(Phrasal productions follow)
p DET L Ccmd #won change -DET
p NOUN L cond +"ERD change XNPOff
p NAME L cond #tieOn change XNPOff

entries (Lexicon)
e George cat N&ME e Martha cat NAME e loves cat VERB
e the cat DET e quiche cat NOUN e . cat CLOSE

FIGURE 5. RVG for Embedding Noun Phrases

a The default is “L”. Also, the InitFinal production, flagged “I”. is always
lexical.

October 1989 Volume 32 Number 10 Communications of the ACM 1177

Articles

problem is, where should the network branch at the
end of the phrase--to the node past SUBJ or the one
past OBJ? A simple FSA loses track of where it left off.
Thfa only recourse is to multiply transitions for NPs at
each possible position where they may occur! Another
alternative is to introduce recursive subnetworks-push
the state of the clause level network onto a stack, then
traverse a separate phrase level subnetwork. But RVG
is able to model phrase embedding without increasing
computational complexity. One segment of the state
vector shows the identical topology for all NPs.

Note that this topology is part of the same flat vector.
It is thus straightforward to model free order languages
that allow scrambbng of phrasal elements. For exam-
ple, in Warlpiri the head and modifier of a phrase may
be widely separated in clause structure [lo]. Such lan-
guages use case-marking inflections to identify the role
of loose modifiers. In languages like English or Latin,
phrase level features screen out clause level produc-
tions, as in Figure 5. A phrase-terminating production
updates the SynState to close the noun phrase for a
particular role. In radically non-configurational
lan.guages such as Warlpiri, phrasal modifiers may
rec:ur by selectively ignoring constraints. A phrase-
terminating production just signals that it has seen
some role. Loose modifiers are non-local options.

The advantage of non-lexical productions is that they
reduce redundancy of lexical categories, and thereby
make grammars more compact. A grammar with non-
lexical productions is equivalent to a larger one with-
out them. To eliminate non-lexicals, merge each one
with each of the lexical productions that can follow it.
For example, the following lexical productions could
replace non-lexical production SUBJ in Figure 5:

p SUBJ-DET L
cond +S #NPOff change -S - DET

p SUBJ-NOUN L
cond +S #NPOff change -S

p SUBJ-NAME L
cond +S #NPOff change -S

Each production takes the cond of SUBJ and composes a
change vector from SUBJ and the production that could
follow it-DET, NOUN and NAME. Since RVG allows
multiple non-lexical productions between lexical pro-
ductions, the equivalent grammar would have to com-
bine all allowable sequences.“ Non-lexicals thus elimi-
na.te a great deal of redundancy in the grammar.

Note that simple FSA could not use empty categories
to mimic the compact RVG treatment of NP embedding.
Empty categories do not add any capacity to record or
propagate non-local constraints.

WH-QUESTIONS
A notorious example of discontinuous constraints is
w/z-questions. These begin with wh-words (or phrases)

-
‘The processor guarantees a finite number of states by requiring that a non-
lexical fire at most once between lexical productions. See the section on
Subcategorization.

such as who or what, and require that somewhere in
the sentence there be one missing noun phrase (a gap
or trace):

(1) Who loves Pamela?
(gap for subject)

(2) Who does Pamela love?
(gap for object)

(3) Who do the men think that Pamela loves?
(gap in complement clause)

(4) Who does George love Pamela?
(ungrammatical: no gap)

RVG models this dependency easily, as shown in Fig-
ure 6.

Production WH turns on feature +GAP. Production
CLOSE’s cond, which determines possible final states,
requires -GAP. So, somewhere between WH and
CLOSE, some production must turn this feature off: a
discontinuous constraint. The only production which
can do so is NGAP. Its cond recognizes +GAP, and its
change turns it off. Most other productions have ?GAP
in both cond and change vectors, so this constraint sim-
ply passes through any intervening productions. Thus
ternary vector functionality makes constraint propaga-
tion very efficient. Note also that vectors allow for mul-
tiple constraints: the cond of NGAP also requires
#NPOn, the segment of features that open a noun
phrase, so that this production can fire only when a
noun phrase is possible and a gap is possible. The change
of NGAP disables both feature GAP and ;a11 the features
for a noun phrase.

Here is how the grammar of Figure 6 rlecognizes sen-
tences (1) through (3):

(1) WH:who; SUBJ:NGAP:VERB:love;
0BJ:NAME:pamela; CLOSE:?;

(2) WH:who; QUES:do; SUBJ:NAME:pamela;
VERB:love; OBJ:NGAP:CLOSE:?;

(3) WH:who; QUES:do; SUBJ:DET:the; NOUNmen;
VERB:think; CTHAT:that; SUBJ:Name: Pamela;
VERB:love; OBJ:NGAP:CLOSE:?;

ordering-features s " 0 A"X GAP DET "EAD
maCrOS #won +DET..HEAD XNPOff -DET..HEAD
productions
p SUB3 N cond +s XNPOff change -s lNP0"
p VERB L cond -s +v XNPOff change -" -,A"X
p OBJ N fond -V +0 #NPOff change -0 timon
p CTHAT N Gcmd -" +o XNPOff change +S..A"X #NPOff
p CLOSE I cond -s -v -GRP #NPOff change +s..?+ux -GRP..HEAn
(Productions for W-questions follow)
P WH L cond +S -GAP #NPOff change &AI'
p QUES I, cond +S +A"X XNPO'if change -MS,:
Q NGAP N cond +GR? #NPOn change #NPDff -GAP
p DET L cond +DET change -DE:!
p NOUN ,, cond +HERD change #NPOff
P NAME I. cond #NPOn change tNPOff

FIGURE 6. RVG for WH-Questions

1170 Communications of the ACM October 1989 Volutnc 32 Number 10

The last category before each word is a lexical produc-
tion; e.g., WH before who, VERB before love, etc. Any
categories preceding the lexical category are non-
lexical; e.g., SUBJ and NGAP before VERB.

Implementation of unbounded dependencies is par-
ticularly elegant. The complement clause, introduced
by production CTHAT, right-embeds-reusing the same
state register. The change vector of CTHAT prepares
State for a new clause: +S..AUX#NPOff. It defaults to
?GAP. Therefore the value of feature GAP passes from
the matrix clause right on through to the right-em-
bedded complement clause. In sentence (3, production
NGAP fires after OBJ in the complement. As usual,
NGAP must still fire before CLOSE can. No complicated
gap-passing mechanism is necessary.

Adding more possibilities for noun phrase gaps is just
a matter of introducing the corresponding possibilities
for noun phrases. Allowing for prepositional wh-ques-
tions (e.g., In which box did the robot put the hammer?) is
a matter of an additional constraint, which will interact
with different productions.

Embedding
Clause embedding was Chomsky’s [7] primary evidence
against finite automata for processing natural lan-
guages. Human performance for center-embedding is,
however, severely limited. For example:

(4) The mouse the cat chased squeaked.
(5) The mouse the cat the dog bit chased squeaked.

Embedding object relatives once is not unusual, but
twice is boggling. Miller and Chomsky [22] acknowl-
edge that such limitations indicate that the human sen-
tence processing mechanism must indeed be finite.
(Grammatical competence, which abstracts away from
such non-linguistic considerations as stammering or
memory limitations, is non-finite.)

RVG allows shallow center-embedding with a tri-
leveled state register:

SynState
ClauseLevel 3 Main clause vector

1st embedded vector
2nd embedded vector

The SynState register remains finite. Only now it has
ordered levels as well as features. RVG shifts from level
to level by changing the value of the index, ClauseLevel.
A pair of actions manage clause-shifting: ShiftDown to
increment ClauseLevel and ReturnLIp to decrement it.

The tri-leveled SynState register is similar to a pro-
cessing model of Cowper [9]. As in Cowper’s model,
RVG prefers to iterate at the same level whenever
possible. Note that there is no limit on left- or right-
embedding:

(6) My mother’s girl friend’s husband’s car broke down.
(7) I saw a dog that chased a cat that caught a mouse

that ate some cheese.

Neither left-embedding of genitive phrases, as in (6),

nor right-embedding of complement clauses as in (71,

need invoke clause-shifting. Once the obligatory constit-
uents of a clause-subject, predicate and complemen-
tizer in (4)-have appeared, the processor can right-
embed. RVG, like a simple FSA, puts no limit on edge
embeddings (iteration).

The tri-leveled SynState does not increase complex-
ity in any significant way. There is an equivalent
single-level SynState model. Recall that a segment of
the SynState vector manages NPs. Similarly, three seg-
ments of one long, flat vector could manage three
clause levels. Shifting from clause to clause, by opening
and closing windows on relevant segments, would then
no longer require any special actions. The drawback of
a flat vector technique is that, for each level, the gram-
mar must replicate most productions, with different
cond and change corresponding to each clause segment.
E.g., VERB0 would match and change feature VO in the
main clause segment. VERB1 would match and change
Vl in the first embedded segment, etc. The clause-
shifting mechanism simply eliminates this redundancy.

Figure 7 demonstrates center- and right-embedding
of relative clauses. It is a modification of the grammar
of Figure 6 (using the same lexicon).

Figure 7 distinguishes two ways to introduce noun
phrase post-modifiers. Productions MODC and MODR
both set up a new clause-with #ClauseOn in their
change vectors. MODC center-embeds, by invoking ac-
tion Shiftdown, so that its change applies to the next
clause level. MODR, on the other hand, right-embeds-
that is, it simply reuses the current clause level. An-
other difference is that MODC turns on feature
MTERM, which forces MODEND to fire eventually, and
invoke action ReturnUp. Here is a sample parse:

(8) Men who hate men that eat quiche love pizza.
SUBJ:NOUN:men; MODC:REL:who;
SUBJ:NGAP:VERB:hate; 0BJ:NOUN:men;
MODR:REL:that; SUBJ:NGAP:VERB:eat;
0BJ:NOUN:quiche; NPEND:MODEND:VERB:love;
0BJ:NOUN:pizza; CLOSE:.;

The first relative clause center-embeds (MODC), since

.Xd~~i~g-f~~t”FS s v 0 AUX GAP DET HEAD NTERM RET. MTERM
m.aC~OS #won +DET..NTERM #NPOff -DET..NTERM

#ClauseOn +S..A”X -GAP..MTERM #ClauseOff -S..MTERM ?O
p SVBJ N CO"d +s #NPOff change -s #NPOn
$3 "GRB L cond -s +v #NPOff change -" -AUX
p OBJ N CO"d -v +o #NPOff change -0 #liPOn
p CTHAT L cond -" +o #NPOff change +S..A"X #NPOff
p CLOSE I conc3 #ClauseOff change #clauseon
P WH I. cond +s -GAP -RET. #NPOff change +GAP
P QUES L COrKi +s +*lJx #NPOff change -A"X -REL
p NGAP N conci +GAP #NPcm change -GAP ltNPOff
p DET L Ccmd #PiPOIl change -DET
p NOUN L cond +m.w. .NTERM change -DET..HEAD
p NAME t C0r.d #won change #NPOff
INP post-modifiers start a new clause, with result vector.)

p MODC N cond +wmP.M cv -REL change #ClauseOn iREI, +MTERM
action ShiftDown (center-embed)

p MODR N Ccmd +NTE* -v change #ClauseOn +REL
p REL L cm"d +s -GAP +REL #NPOff change iGAP fSimil.ar to WHI
(New terminators: WEND for phrases, MODEND for post-modifmrs)

p NPEND N cond +Ni"ERM change -*TERM
p MODEND N con* #ClauseOff +iYmP.M change -REL -NTEP.N

action ReturnUp

FIGURE 7. Adding Relative Clauses

October 1989 Volume 32 Number 10 Communications of the ACM 1179

Articles

it occurs to the left of the predicate, whereas the sec-
ond one right-embeds (MODR), since it occurs to the
right of the predicate. When MODC fires, it invokes
action ShiftDown and turns feature MTERM on. This
feature value passes right through MODR, and eventu-
all:y triggers MODEND, which invokes action ReturnUp.

Global constraints on movement in other formalisms
have direct and simple implementation in RVG. For
example, consider Ross’s Complex NP Constraint [28],
which rules out sentences like this:

(9) *What have you met the man who invented?

Though there are two wh-words in this sentence, one
cannot fill both gaps in the relative clause-the missing
subject and object of invented. The grammar of Figure
7 models this constraint in terms of feature GAP.
MODR’s cond requires that GAP be off. In other words,
GAP is obligatory at each clause level. Since MODC
invokes ShiftDown, its change applies to a different fea-
ture GAP, at a lower clause level.

In many dialects of English, sentence (10) is grammat-
ica.1 but (11) is not:

(10) Who does George believe saw Martha?
(11) *Who does George believe that saw Martha?

That is, subject gaps may not appear after the comple-
mentizer that. One way to model this constraint, var-
iously called the Empty Subject Filter or Sentential
Subject Constraint, is with an additional feature,
NOSUBJGAP. Production CTHAT’s change turns on
NOSUBJGAP. NGAP’s cond requires -NOSUBJGAP,
so that it cannot fire after SUBJ, in this context. Finally,
VERB’s change arbitrarily turns NOSUBJGAP off again,
thus enabling NGAP after OBJ (or any other phrase
position).

RVG represents non-local constraints (alias “move-
ment” or “extraposition”) the same way as local ones: in
terms of features whose values propagate through state
vectors. For example, one may extrapose the object to
the front of a sentence, as in Quiche George loves!
Simply add one production to Figure 7:

p TOPIC N cond +S #NPOff change -0 #NPOn

The cond of TOPIC is the same as that of SUBJ, allowing
it occur at the beginning of the sentence. The change is
the same as that of OBJ, enabling a noun phrase and-
here is the crucial part-disabling a subsequent OBJ.
The latter is a discontinuous constraint.5

Comparison with other Syntactic Formalisms
Context-free phrase structure rules are almost as poor
as FSA at handling non-local constraints. The prolifera-
tion of state-symbols that riddles simple FSA also
plagues phrase structure (PS) rules. The patterns on
the right-hand sides of PS rules inherit an inability to
pass information from state-symbol to state-symbol,

other than via convoluted linear precedence. Transition
networks and rule patterns are good at linear con-
straints but poor at non-linear ones. Chomsky [i’] noted
the inadequacy of PS rules to describe the versatility of
natural language syntax without loss of generality. He
therefore introduced Transformational Grammar, rele-
gating PS rules to a base that generates only kernel
sentences. RVG eliminates PS rules altogether.

Recognizing the problems with PS rules, proponents
of Generalized Phrase Structure Grammar (GPSG) [13]
have developed a more abstract format. By separating
immediate dominance (ID) from linear precedence (LP)
information, they get a more succinct rep:resentation of
syntax, especially of free order languages. ID rules spec-
ify the obligatory constituents in a local tree; this is
roughly analogous to how RVG models obligatory re-
quirements in terminator categories like CLOSE.
Though ID/LP itself is succinct, it does lit.tle to alleviate
the non-local constraint propagation problem. The
GPSG scheme still generates an “object grammar” with
large local sets of PS rules. The more varied the linear
sequences of a language, the larger the object grammar.
Estimates of the number of rules in an object grammar
for a natural language range as high as trillions or more
[I, 301. As Shieber [SO] points out, grammar size does
affect processing complexity; efficient traditional
context-free algorithms are O(n3 1 G 1’1, where G is the
size of the grammar. He outlines an algorithm that can
parse using the much smaller number of ID/LP rules,
directly. However, Barton et al. [I, pp. 191ff] show that
Shieber’s algorithm is exponential in grammar size, due
to expansion of ID rules. RVG avoids this problem by
eschewing expansion of rules (and recursdve expansion
of rules) altogether.

Many modern syntactic formalisms have in common
the paradigm of unification. Basically, unification is an
algorithm for matching graph structures (usually di-
rected acyclic graphs). Computational linguists use this
technique to write grammars that involve propagating
constraints through syntactic trees in the state space.
Thus unification can be a way to tackle the non-local
constraint propagation problem. However, this adds
complexity on top of context free power. Features “per-
colate” up and then “drip” down trees; moreover, most
formalisms add additional global filters or principles to
govern this activity.” Whereas unification matches
complex graph structures, RVG just matches flat vec-
tors. Whereas unification is monotonic (once a variable
is bound it remains bound), RVG allows changes. Unifi-
cation ensures that category-symbols (and features un-
der them) are recoverable. Since recoverability is not
an issue with state-symbols, the full power of the
change operator can be exploited. RVG has an un-
abashedly left-to-right bias. It passes constraints
through a changing state vector, and is willing to reuse
a state register rather than expand the fixed state space.

‘P, more efficient scheme for topicalization would delay the decision about
whether the first noun phrase is SUBJ or TOPIC until the end of the phrase. In
other words, let productions SUBJ, TOPIC (and for that matter OBJ) fire after
noun phrases. in order to avoid reanalysis.

‘For example, the Head-Feature Principle of GPSG. Barton et al. [l] show
how this succinct but powerful mechanism can lead to uxnputational intract-
ability.

1180 Communications of the ACM October 1989 Volume 32 Number 10

Articles

ATNs use transition diagrams chiefly to represent lo-
cal ordering. Discontinuous constraints typically in-
volve setting, passing and testing myriad separate regis-
ters. This is what gives ATNs Turing machine power.
Without restrictions on the use of registers, guarantee-
ing even polynomial recognition is impossible. The
ATN treatment of wh-questions is especially difficult,
typically passing a “hold” list from network to network.
Reining in such a powerful mechanism, in accordance
with “movement” constraints, is even harder.

It is interesting that Woods [34] actually anticipated
something very much like RVG:

In the absurd extreme, it is possible to reduce any
transition network to a one-state network by using a
flag for each arc and placing conditions on the arcs
which forbid them to be followed unless one of the
flags for a possible immediately preceding arc has
been set. The obvious inefficiency here is that at
every step it would be necessary to consider each
arc of the network and apply a complicated test to
determine whether the arc can be followed.

Indeed, RVG might look like such a “one-state” net-
work, since it throws out the diagrams. Nevertheless,
an RVG processor does pass through many states, as
feature values change. Woods simply did not see the
possibility of decomposing the state(-symbol) itself. In-
stead of both arcs and flags, RVG uses just features to
forbid or permit transitions. Instead of an indefinite
number of registers, RVG collects all constraints on or-
der in just one current state register. Instead of the
“complicated test” that worries Woods, RVG applies an
efficient ternary vector match operation.

Since human syntactic performance does not call for
unbounded embedding, it is possible to avoid even
context-free power. Instead of the computational com-
plexity of a push-down automaton, RVG adds the func-
tional complexity of ternary vector match and change.
Instead of abstract, graph-structured categories, RVG
has abstract, vectorized states. Its features are features
of ordering, abstracted over the state-nodes in transi-
tion diagrams, or the states between category symbols in
rule patterns. RVG’s states are thus able to be sensitive
to context-non-local constraints-without being “con-
text-sensitive” in the automata-theoretic sense.7

BOUNDARY BACKTRACKING
Structural ambiguity is a crucial problem for natural
language processing. It is typically treated as a nonde-
terministic search problem, testing various structural
alternatives until accepting one (or more] interpreta-
tion. Common methods of dealing with ambiguity back-
tracking, pseudo-parallelism or chart parsing-put no
bound on the search space. Unbounded search is, how-
ever, computationally wasteful and cognitively unreal-
istic.

‘Petri nets anticipate the possibility of automata that straddle the traditional
Chomsky hierarchy. RVGs are strongly equivalent to safe Petri nets, which
are in turn weakly equivalent to FSA (see [IS] for details).

The fact that RVG is equivalent to FSA does not nec-
essarily solve this problem. A nondeterministic FSA
still involves a search through a search space that
grows, in the worst case, exponentially. There are well-
known methods to convert any nondeterministic FSA
into a deterministic one. This conversion may, how-
ever, explode grammar (machine) size exponentially.
Because RVG already eliminates combinatorial redun-
dancies by explicitly allowing for optionality and non-
local constraints, conversion to simple deterministic
FSA is neither trivial nor desirable.

Instead, RVG tolerates nondeterminism, by putting
strict limits on it. The technique is boundary back-
tracking.

RVG watches each major syntactic boundary (such
as opening or closing a clause or phrase). At each
boundary-crossing, it stores its system state in an asso-
ciated register. If the processor ever gets stuck, it can
backtrack to a previous system state-but only to one
actually held in a register. There is an array of bound-
ary registers. The fixed size of this array puts a cap on
the growth of the state-space for nondeterministic
search.

Each register associates with a major boundary in left
to right syntax. Here is a set (not necessarily definitive)
of boundaries:

Curr (the current state)
Word (when a word is processed)
OpenClause(when a new clause opens)
MidClause (when about to process main predicate)
CloseClause(when clause right-embedding is possible)
Phrase (when a NP opens, or closes left of

predicate)

Since RVG allows center-embedding only to a finite
depth, it maintains OpenClause through Phrase by
ClauseLevel. The processor automatically adds the
clause level number to the boundary name at run time:
i.e., OpenClauseO, OpenClausel, OpenClause2, Mid-
ClauseO, etc.

The Algorithm
If RVG were completely nondeterministic, its algorithm
would be almost the same as that of a nondeterministic
FSA. The only difference is ternary vector match and
change. Boundary backtracking is a control schema for
nondeterministic search within a fixed state space. It
has three basic aspects:

1) Local parallelism. From word to word, the proces-
sor tries all syntactic interpretations. It searches depth-
first, looking for all possible sequences of non-lexical
productions leading to a lexical production for a given
word.

2) Saving states. The grammar must explicitly spec-
ify when to save states in boundary registers. Associ-
ated with a few productions are save actions. For exam-
ple, production OPENC invokes action save
OpenClause. A save action puts the current system

October 1989 Volume 32 Number 10 Communications of the ACM 1181

Articles

state with the boundary name or a temporary SaveList.
The processor copies these states into the named
boundary registers when it reaches a lexical category.
In preparation for the next word, it also automatically
updates the Curr and Word registers.

3) Bczckfrackin,g. Access to boundary registers is Last
In First Out, mediated by a separate array of boundary
subscripts, Resume. The processor tries to continue from
staltes in boundary registers until no more are left. Ini-
tially, and after each word, it finds the Curr register. If
this state fails (no production matches), or if a produc-
tion successfully compIetes a sentence, the processor
gets the next available state via Resume. Thus it tries to
report all possible interpretations. The limit on this be-
havior is that save actions reuse state registers.8

Examples
The phenomenon of garden-path sentences suggests that
there are severe limits in human performance for keep-
ing track of ambiguities. For example:

(12) The horse raced past the barn fell.

People do not readily understand this sentence, even
though there is a perfectly grammatical interpretation.
The problem is the category ambiguity of raced. It
could be either intransitive (serving as main predicate)
or transitive (serving as a passive post-modifer of horse).
Most people prefer the intransitive reading; they are
thus “led down the garden path,” and cannot recognize
the correct interpretation.

When the RVG processor crosses the same boundary
twice, it reuses the associated register. It therefore loses
any state already held in that register. This allows the
sta.te space to remain bounded; it can also lead to
garden-path effects. Suppose that race has three syn-
tactic categories, NOUN, VINTRANS and VTRANS.
The processor chooses the first one that fits the current
context. In this case, because of the verbal inflection of
raced, it skips NOUN in favor of VINTRANS.

Between horse and raced the processor goes through
two boundary productions. The first production, closing,
a noun phrase to the left of the predicate, triggers ac-
tion save Phrase. Before accepting the main predicate,
another production triggers action save MidClause.
After these, lexical production VITRANS fires. Before
processing to the next word, the processor automati-
cally saves states from the current SaveList into bound-
ary registers. In this case there are three: PhraseO,
MidClause and Word.

After the processor accepts the preposition past, and
starts another noun phrase, it again saves in register
PhraseO. It therefore loses the state previously stored in.
this register--the state closing the noun phrase be-
tween horse and raced. So, when the processor gets to
fell, and backtracks, it will not find the passive post-
modifier interpretation of raced anywhere. Note that

‘ln order to guarantee that Resume never exceeds its fixed limit, the processor
throws out any duplicate subscripts before storing a new one.

1182 Communications of the ACM

the post-modifier interpretation is not available in
MidClauseO, since by then the processor had already
closed off the noun phrase.

Contrast the processor’s behavior for this sentence:

(13) The horse found by the barn fell.

Here, found is also ambiguous, between active or pas-
sive transitive. Choosing the active interpretation first,
the processor closes off the NP, and saves states in
Phrase0 and MidClauseO. This path gets stuck when it
reaches by, where it expects a direct object. So the
processor backtracks. In this case, there has been no
intervening NP. The processor finds the passive inter-
pretation of found in register PhraseO, and successfully
analyzes it as a post-modifier.

Sentence length does not necessarily limit boundary
backtracking. (Thus BB contrasts with the Sausage Ma-
chine of [B].) Hence it has no problems wi.th sentences
like these:

(14) Have the boys take the exam.
(15) Have the boys taken the exam?
(16) Have the boys who have a reputation for playing

hookey taken the exam?

To be sure, there may be backtracking. Suppose have
has categories QUES and IMP. The processor will recog-
nize sentence (14) directly. For sentences (15) and (16),
it will backtrack to the OpenClause boundary, reana-
lyze taken as IMP, then accept the rest of the sentence
directly.

Local parallelism
The boundary backtracking algorithm, notwithstanding
the name, actually combines aspects of backtracking
and parallel search. Both use bounded resources. Local
processing (of words) is parallel and exhaustive; non-
local processing (of constituents) is serial and preferen-
tial. In accordance with recent psycholinguistic re-
search [31], search for lexical entries is parallel and
exhaustive. In addition, search for all locial syntactic
interpretations-any non-lexical productions leading to
a lexical production for a given word-is also parallel
and exhaustive. This search for non-lexical interpreta-
tions is called local parallelism. The bound on local par-
allelism is related to the number of non-lexical produc-
tions in the grammar; in practice, it is quite small. Non-
local processing is serial. When necessary, it backtracks
to states held in boundary registers. The bound on non-
local processing is the number of registers. (It is non-
local processing that would otherwise lead to a combi-
natorial explosion in state space.)

The following examples illustrate the role of local
parallelism:

(17) Is the block sitting on the table?
(18) Is the block sitting on the table red?

At first glance sentence (18) looks very similar to (12),
the garden-path sentence. Again, the processor must
choose between either a main predicate or a post-
modifier interpretation of a verb. The difference is,

October 1989 Volu;we 32 Number 10

Articles

raced is ambiguous between two distinct categories (in-
transitive vs. transitive), whereas sitting involves just
one category. The ambiguity of (18) is just a matter of
non-lexical interpretation. The processor must deter-
mine if sitting is the main verb, as in (17), or a post-
modifier, as it turns out in (18). The processor looks for
all possible local non-lexical interpretations for a given
lexical category, and saves all boundaries traversed
along the way. Between block and sitting, the main
predicate reading of sitting saves states in Phrase0 and
MidClauseO. In parallel, the post-modifier reading of
sitting saves a state in MidClausel. When the processor
reaches red, backtracking is able to resume from regis-
ter MidClausel.

The difference between sentences (12) and (18) is
subtle. The garden-path sentence involves a tensed in-
transitive verb (the first lexical category of raced),
which cannot function as a post-modifier. It crosses
boundaries only at the main clause level-Phrase6 and
MidClauseO. Sentence (18), on the other hand, involves
a progressive verb (sitting), which can function as
either a main verb or a post-modifier. It crosses bound-
aries at both the main and first embedded clause levels,
in parallel. Thus it is possible to resume sentence (18),
but not garden-path sentences like (12).

This model affects the way one categorizes verbs.
Consider another example:

(16) Was the book read to the children interesting?

Many dictionaries list read as either transitive or in-
transitive. Why, then, doesn’t sentence (19) lead to a
garden path? The answer is that read is a transitive
verb with an optional truncation of its object (like eat,
cook, etc.). On this analysis, read does not actually
have an intransitive category; instead it has just one
major category, plus a subcategory that options a miss-
ing, implied object. (Subcategorization is discussed in
an upcoming section.)

An advantage of local parallelism is that it could
without much difficulty be modified to accommodate
non-syntactic criteria. The syntactic component makes
predictions about preferences by the order of produc-
tions-analogous to arc-ordering in ATNs [XI]. We
have seen that race prefers intransitive before transi-
tive; a grammar of English models the effect of minimal
attachment [ll, 151 by ordering a phrase-closing pro-
duction before productions that open post-modifiers.
Category preferences are not the whole story, of course;
semantics or intonation can bias the attachment prefer-
ences as well. In the right context, even garden-path
sentences become comprehensible. For example:

(20) There were two horses in the field. The horse
raced past the barn fell.

RVG provides for actions associated with productions,
already used to shift clause level and save states. Other
actions may perform tests on semantic structure to pro-
vide on-line guidance to a parser or generator, Though
syntax is autonomous in the sense that it has its own

data structures, there can be interaction between syn-
tax and semantics during processing, especially near
phrase and clause boundaries (see [2, 6, 121). In an
interactive processor, while trying local attachments in
parallel, syntax proposes and semantics disposes. Sup-
pose we hook a referential semantics module up with
RVG. Let production DEFEND, which fires just before
closing a definite noun phrase, invoke referential
analysis for the phrase. If there is an unambiguous re-
ferent for the description so far, reference succeeds.
(In the nulI context, reference succeeds, finding un-
ambiguously nothing.) For the context of (26) reference
for the horse fails, because there are two equally plau-
sible referents. DEFEND fails, so the processor looks for
the postmodifier interpretation instead.

Boundary Backtracking vs. Bounded Lookahead
Boundary backtracking is an alternative to the bounded
lookahead scheme of Marcus [16]. His processor also
posits limited resources for resolving structural ambigu-
ity. It builds up partial constituents in a lookahead
buffer having a small, fixed number of cells. When the
buffer gets full, the processor must commit itself to an
interpretation; it allows no backtracking. By this ac-
count, garden-path sentences occur when the processor
is forced to make such a commitment, incorrectly.

As Church [8, p. 571 notes, “in some sense, [bounded]
backup, lookahead and parallelism are all very similar.”
Whereas unbounded backtracking saves all choice al-
ternatives at every choice point, bounded backtracking
would presumably fix the size of the backtracking
stack. It is not clear, however, that there is any arbi-
trary limit that would both account for garden-path
sentences and still process the temporarily ambiguous
sentences that people do understand.

Boundary backtracking, on the other hand, does not
rely on arbitrary bounds on artificial data structures
(such as a stack or a buffer). Instead, it is motivated by
perceptual boundaries in syntax. There is much psy-
cholinguistic evidence for such boundaries in human
sentence processing. Click studies [12] and eye-fixation
studies [6] indicate that reading comprehension activity
increases at phrase and clause boundaries. Structurally
ambiguous units retard processing time up to clause-
closing boundaries, beyond which they do not [2].

Marcus’ model makes no provision for noticing legiti-
mate structural ambiguities, e.g., They are flying
planes. In a footnote, Marcus does suggest that his pro-
cessor could flag any output that is potentially ambigu-
ous, but “some external mechanism will then be
needed to force the interpreter to reparse the input,
taking a different analysis path” [20, p. 131. Instead of
ruling out nondeterminism, boundary backtracking
reins it in. It remains sensitive to some (but not all)
ambiguity. So it discovers the second interpretation of
They are flying planes after it returns to the Mid-
Clause0 register. Boundary backtracking does forget
many ambiguities, as in garden-path sentences like (12).
Whether humans retain just those ambiguities that the
boundary backtracking model does is an interesting

October 1989 Volume 32 Number 10 Communications of the ACM 1183

Articles

empirical question. The computational import is that
there will be far fewer possibilities for a processor to
consider.

Some readers may object that a model that simply
rejects garden-path sentences is too stringent. Indeed,
Marcus notes that native speakers can understand
garden-path sentences with conscious effort. “A higher
levlel problem solver uses a set of grammatical heuris-
tics . . . to discover where the processor went astray”
[20, p, 2051. As with globally ambiguous sentences,
Marcus’ solution smacks of a homunculus. The “external
mechanism” or “higher level problem solver” is far
more powerful than the sentence processor itself, since
it is able to “force” the processor to behave differently.
Church [8] suggests adding an ad hoc horse-racing rule
to the grammar.

The boundary backtracking model suggests a simple
and general heuristic. Suppose we allocate one more
register, Extra. The processor can then accept a garden-
path sentence by saving, in Extra, a state from another
boundary register--just as it is about to be reused. For
example, when the processor fails to recognize sen-
tence (12), it can start over, only this time copying the
contents from Phrase0 to Extra before it gets reused. It
can then backtrack to Extra as it would to a state in
any other boundary register. This strategy adds no sig-
nificant complexity to the algorithm. It has the virtue of
allowing the processor’s coverage to degrade gradually,
in a manner similar to human performance [8].

Finally, the boundary backtracking algorithm is re-
versible. Boundaries support re-starts for natural lan-
gu,age generation as well as parsing. When speakers
stammer or rephrase their speech, they appear to re-
su:me at boundaries [28]. Boundary registers can help a
co:mputational generator by providing a small number
of definite states at which failed attempts may resume.

Adjunction
RVG’s approach to right-embedding, discussed the pre-
vious section on wh-questions, predicts the awkward-
ness of sentences like these:

(211) Mary sang a song that she had learned in Europe
before the war to her children.

(22) I called the guy who smashed my brand new car a
rotten driver.

Sentence (21) right-embeds upon reaching the comple-
mentizer that. By then, all obligatory constituents in
the matrix clause have appeared. Later, the processor
cannot adjoin to her children to the matrix clause. This
policy is similar to Kimball’s principle of early closure
[15], or Cowper’s “Poker Principle” [8]-once the oblig-
atory cards are on the table, one cannot pick them up
again.

Though sentences (21) and (22) are awkward, they
are certainly comprehensible. Cowper notes that the
lost clause “must be retrieved from some kind of less
immediate memory storage in order for the last constit-
uent to be added [9, p. 461. She does not explain the
nature of this auxiliary storage. It is, I suggest, a bound-

ary register. When the processor right-embseds, it also
saves its state in register CloseClauseO. If necessary, it
can retrieve this state later. This behavior is similar to
right association [8, 111. The RVG processor prefers to
attach material to the current clause, but if necessary
can explicitfy resume a clause frorn a CloseClause regis-
ter, in order to add a late adjunct or optional argument.
Explicit resuming is a failure-driven strategy. Unlike
backtracking, it does not actually return to a prior posi-
tion in the input stream. Instead. it processes the cur-
rent word with an earlier syntactic state-.at the end of
an earlier matrix clause.

PLANNED IMPROVEMENTS
Thus far this article has presented a basic architecture
for syntax as a scheduling system, ordering sequences
of events in time. (Indeed, it is a general-purpose auto-
mata, with applicability for scheduling any comparably
complex sequence of events [8].) There are of course
many other issues for syntax, which is only part of
natural language as a whole.

Subcategorization
The current scheme only provides for major categories.
Subcategories could be represented by multiplying ma-
jor categories, but it is useful to avoid such redundan-
cies. For example, the verb put requires a locative
phrase-one cannot say *I put it. We would rather not
have to introduce distinctions between all the various
kinds of verbs and their complements at the major cat-
egory level.

A better approach is to factor out subcategories, as
non-lexical productions that precede the major lexical
productions. In other words, subcategory productions
will be semi-lexical. Like non-lexical productions, sub-
categories do not consume (or produce) words; never-
theless, lexical entries must be able to specify their
subcategories. Each lexical entry will have a category
set (implemented as a bit vector): the set of productions
that may fire up to this word. For example, the lexical
entry for put will include in its category set (among
other things) a non-lexical subcategory LOCREQ. This
production fires before the lexical production for the
verb. The change vector of LOCREQ turns on a feature
in the state register, +LOC. The clause terminator pro-
duction, CLOSE, requires that this feature be turned
off, which only a production recognizing a locative
phrase can do.

Adding category sets to the lexicon constrains non-
lexicals generally. For example, phrase-opening pro-
ductions require words that could legitimately open
phrases-determiners, adjectives, nouns, etc., but not
tensed verbs, prepositions, etc. Specifying constraints in
this form can fine-tune the description and perfor-
mance of grammars. Category sets also provide a way to
guarantee that a non-lexical production will fire at
most once between words. This guarantee eliminates
the possibility of infinite cycles between words, and
makes local parallelism tractable.

1184 Communications of the ACM October 1989 Volume 3.2 Number 10

Articles

Agreement
RVG is unusual in that features control precedence re-
lations. In most other formalisms, features enforce
agreement, e.g., determiner and head noun must agree
in number. RX could include agreement features in its
state vectors. DET-PL turns on a feature +PL which
rules out NOUNSG, etc. This would lead to some re-
dundancy among productions, though, multiplying
every combination of productions by every possible
way they might agree. A better approach is to manage
agreement features separately. In addition to ordering
vectors, each state register configuration includes mor-
phosyntactic agreement vectors. Generalized actions
combine agreement values from inflections and lexical
entries with values in the agreement vector. Such ac-
tions cut across syntactic categories and thus avoid du-
plication. So long as the agreement register is finite and
reusable, there is no significant increase of complex-
ity. (The current architecture already provides for an
efficient treatment of inflectional morphology and
idioms [I 7).

Conjunction
Boundary backtracking suggests a systematic way to
handle conjunction that avoids a great deal of redun-
dancy. Conjuncts typically attach at boundaries:

(23) Joe loves Sue and Bob.
Word

(24) Joe loves Sue and her husband.
Phrase0

(25) Joe loves Sue but dislikes Bob.
MidClause

(26) Joe loves Sue but he dislikes Bob,
Clause0

(27) Joe loves Sue and Bob Martha.
Clause0

As with adjunctions, processing conjunctions may in-
volve trying to explicitly resume from states available
in boundary registers. Sentence (25), for example, re-
sumes from the State stored in the MidClause bound-
ary, just before loves. To be sure, conjunction may in-
volve more than resuming a state. As sentence (27)
suggests, a conjunction production should also option
possibilities for ellipsis-in terms of ordering features.

Structures
The current system produces as output a linear trace of
the productions fired for each possible recognition of a
sentence. Building diagnostic traces does not add any
significant complexity to the recognition algorithm. It
simply concatenates a record for each production fired
to the trace. Boundary registers maintain a copy of a
current trace as part of a state configuration. The fixed
finite resources hypothesis obviously restricts the kinds
of diagnostic structures RVG can possibly build. It can-
not build indefinitely center-embedded tree structures,
nor can it keep track of all conceivable parses for am-
biguous sentences. These restrictions are not onerous,
though.

While helpful for grammar development, linear
traces are not grammar structures, nor are they in-
tended as such. Rather, actions associated with produc-
tions can do the work necessary to support interpreta-
tion. The current model already provides for actions to
handle center-embedding and saving states in bounda-
ries. To these we are adding a repertoire of actions for
compositional interpretation.

The notion of using actions associated with produc-
tions to support interpretation is a common one, found
for example in ATNs. The problem here is to limit the
complexity of these actions. The modus operandi with
respect to actions is that they, too, abide by the fixed
finite resources hypothesis. The syntactic categories
and ordering positions of natural languages are closed
classes. That is why RVG can schedule productions
with a small grammar and a fixed finite register config-
uration. Similarly, affixes, pronouns and grammatical
roles are also closed classes. This suggests that agree-
ment, anaphora and predicate-argument calculus are
also susceptible to processing by a small repertoire of
generalized actions and a fixed finite register configura-
tion. While long-term memory is presumably quite
large and not necessarily real time in response (that’s
why people need external memory aids), short-term
memory is quite limited and thus real time. The key to
real-time sentence processing is determining the struc-
ture of this short-term register configuration.

Our approach draws on ideas from other researchers
who have sought to limit computational performance
capability to finite state. Church [8, p. 661 dealt with
the problem of keeping track of ambiguous preposi-
tional phrases. Rather than maintaining separate inter-
pretations for each possible attachment (which could
lead to an exponential growth in state space), Church
advocated a pseudo-attachment strategy. To quote his
thesis: “YAP has a marked rule to pseudo-attach (attach
both ways) when it sees both alternatives and it cannot
decide which is correct.” Martin et al. [Zl, p. 2791 apply
this idea to several notoriously ambiguous constructs,
including reduced relatives, conjunction and noun-
noun modification. “The approach taken here is to flat-
ten the syntactic structure of these phrases. . . . In this
way, the parser will not waste time trying all possible
bracketings; it will be content with a canonical one that
represents them all.” Basically, this amounts to a strat-
egy of least commitment: if there is a locally unresolva-
ble ambiguity, then allow an alternative category that
explicitly leaves things undetermined. This attitude is
crucial in a processor with restricted resources. To take
a simple example, the words the and sheep are ambigu-
ous or undetermined, depending on how one looks at
them, with respect to number. If they are ambiguous,
the processor must consider singular and plural possi-
bilities separately. I f they are undetermined, on the
other hand, it does not have to decide. The processor
generates just one canonical representation, which it
may refine subsequently.

October 1989 Volume 32 Number 10 Communications of the ACM 1185

Articles

ANALYSIS OF COMPLEXITY
What is the time complexity of RVG? There are two
considerations: 1) the size of the processor and 2) the
size of the grammar. The RVG performance model
makes important improvements in both of these dimen-
sions: processor size is fixed as a small number of
boundary registers, and grammar size is held down by
ternary vector functionality.

Processor size is the number of boundary registers.
Grammar size is the number of categories, c, which
must be considered at each state. Factoring out c, it can
be shown that boundary backtracking is linear with
respect to input.

Consider the simple case where just a single bound-
ary register allows backtracking to grammatical bound-
ary .B. In a sentence of n words (call them w,, wz, . . . ,
w,), B can be crossed from 0 to II times. Suppose B is
crossed exactly once, at arbitrary word w,:

WlWz . . . Wi-lW8.. . W,

Words w, through UJi-1 will be considered just once
(since no states are saved for backtracking prior to word
wi). Words Wi through w, can be considered, in the
worst case, c times, where c is the number of alterna-
tives stored in the boundary register associated with B.
The worst case occurs when, for each of the first c - 1
alternatives in B, the recognizer goes all the way to the
last word of the sentence (wu,) before failing and back-
tracking to word wi:

‘I’ = f(w, . . . U’i-1) + C*t(Wi . . . Wn) < C*t(Wl . . . Wfl)

T is O(n), or proportional to the length of the input
string, whatever c might be.

Now consider the general case, where B is crossed x
times, 0 =Z x < n. Here is where the policy of reuse
comes in, every time B is crossed. Let Wil, W,Z . . . , Wir,
(1 2s il < i2 < . . . c ix < n) be the words at which B is
crossed:

WI . . w ,,-, WR . . WiP-,wf: . . WE.. . wn

Again, words w, through wile1 are considered just once,
since no state is saved prior to the first crossing of B.
Words wir through W;Z-I may be considered, in the
worst case, cl times, where cl is the number of alterna-
tives saved in B. The worst case occurs when, for each
of the cl - 1 interpretations, Wil through Wiz-1 are con-
sidered before a failure occurs (at i2 - 1). The processor
must then backtrack to word Wil in order to get the
next interpretation. Note that words Wil through ~~2-1
can be considered no more than cl times. As soon as
wi:! is accepted, backtracking to any word prior to Wi2
will be impossible, since a new State will then be saved
in B, “forgetting” any state from before Wi2. Similarly,
wi:! through wij-.r are considered, in the worst case, c2
times (where c2 is the number of alternatives saved at
word wi2). And so on through words wiX to w,, which
can be considered no more than cx times. Thus, the
maximum recognition time is:

I- = f(Wl . . . Wil-1) + Cl*t(Wil . . . WiZ-1)

+ C2*t(Wi2.. . Wi3-1) + . . . + CX*t(W&. . . W,)

=z C*t(W, . . . w,), where c’ = max(cl, c2, . . . , cx)

When only a single boundary register is usad, recogni-
tion time is O(n).

The case of b boundary registers is a further generali-
zation of this result. Registers BRI through BRt, (ordered
as some permutation of BRI, BRZ, BR,, . . . , BRbml, de-
pending on the order in which the associated bounda-
ries are crossed) each appear in the Resume array at
most once. For each of cl alternatives saved in BR, (the
first register pushed into the Resume array), the recog-
nizer may consider at most c2 interpretations saved in
BR, (the second register pushed into Resume). Simi-
larly, for each interpretation in BR,, the recognizer can
consider at most c3 interpretations saved in BR3, and so
forth. Thus, the maximum number of times any word
Wi may be considered when using b boundary registers
is cl*c2*c3* . . . *cb. For a sentence of n words recog-
nized with b boundary registers:

T G cn = O(n), where c = clc2* . . .* cb

Therefore, with b boundary registers, recognition time
is still O(n).

The significance of this result is that it avoids the
potentially exponential blowup associated with simple
unbounded backtracking, which never “forgets” any
states. Note that local parallelism is quite tractable (so
long as grammar size is), but global parallelism is not, at
least not for arbitrarily long, complicated sentences.

The second dimension is grammar size, which also
has a significant impact on processing time [l]. RVG is
efficient with respect to grammar size in t.wo respects.
First, it eliminates a great deal of redundancy found in
formalisms that overly commit to strict linear prece-
dence. Thus the number of productions is compara-
tively small. As it should be: the syntactic categories of
a language are a closed class. With p productions (each
with two vectors) and f features, an RVG of size p*2*f
can represent a state space with at least f’ FSA transi-
tions. (The number of FSA transitions may be even
greater if there are iterative productions, with no corre-
sponding increase in size for the equivalent RVG.) Sec-
ond, constraint propagation through state vectors
sharply reduces the size of the reachable state space.g

Here is how Reed [25, p. 381 describes the efficiency
of RVG:

The vector of one of the RVG states ma:y absorb,
representationally, many additional pratductions.
Thus, the RVG-based parser offers the efficiency of
being less sensitive to the branching factors of gram-
mars.

Holding down branching factors is a direct consequence
of holding down grammar size.

‘Similarly, Barton et al. [I] show how constraint propagation could improve
the performance of the Kimmo morphological analyzer.

1166 Communications OJ the ACM October 1989 Volume 32 Number 10

Articles

What about the number of features? The number of
ordering features f should also be small: the left-to-right
ordering positions of a language are another closed
class, We may estimate f as the sum of L + N, where L
is the number of local constituent positions and N is the
number of non-local constraints. L has to do with the
linear precedence of categories; e.g. in English, subject
appears before predicate, quantifiers precede adjectives,
etc. Note that L is somewhat smaller than the number
of categories, since many categories share the same
temporal position. For example, many categories may
appear in the predicate position-verbs, prepositions,
adjectives, etc. Instead of many state-nodes, there is
just one feature representing this abstract position. N
has to do the non-local constraints between constitu-
ents, such as gapping and constraints on gapping. Note
that it is possible to eliminate redundancy here as well.
We have seen, for example, that the Complex NP Con-
straint requires no extra features. Both L and N are thus
reasonably small, so f will be as well. Crucially, there is
no combinatorial redundancy here.

EMPIRICAL RESULTS
I have conducted computational experiments to quan-
tify the efficiency of the RVG algorithm. The design of
these experiments is similar to those of Tomita [32,
chap. 61 and Reed [25].”

The experiments investigate the relationship of pars-
ing times to sentence length, sentence ambiguity and
grammar size. Parsing time, for Tomita, is CPU time
minus time for garbage collection. Measuring time in
this manner, though of interest, is problematic, since
much depends on CPU capabilities and details of imple-
mentation. Moreover, garbage collection is a significant
factor. The RVG architecture generates no garbage,
whereas the Earley, Tomita, and Reed algorithms have
considerable memory overhead. (To get polynomial
time they keep track of all partial constituents in mem-
ory.) Therefore, following Reed [25], I also measured
abstract machine time-the number of state changes.
Grammar size and memory requirements are also in-
structive in evaluating efficiency as well as learnability
of architectures.

Two experiments compared th RVG formalism with
efficiency context-free parsers. The first one involves a
grammar and sentnece set (1 < n) obtained by the fol-
lowing schema:

det noun verb det noun
E.g., The robot saw a cat in the park

(prep det noun)“-’
with a telescope . . .

Tomita showed that parsing time for this algorithm
grows polynomially with respect to sentence length. I
predicted linear growth for RVG with boundary back-
tracking. The first experiment confirms this prediction,

“Reed’s work is an amalgamation of RVG’s constraint propagation technique
[4] and Earley’s algorithm [lo]. Like Earley’s, Reed’s algorithm is O(n3): it does
not exploit short-term memory limitations of human performance.

both in terms of CPU and abstract machine time (see
Figures 8 and 9). The second experiment involved im-
plementing an RVG grammar with the same coverage
as Tomita’s Grammar III, for which he provides a
testbed of 40 sentences (Appendix G). These sentences,
taken from computer science textbooks, average 11.2
words in length, and involve a variety of syntactic
structures: relative and reduced relative clauses, ger-
unds, infnitive and that complements, sentential, con-
juncts, noun-noun modification, etc. This experiment
further corroborates RVG’s efficiency (see Figures 10
and 11). In terms of CPU time, RVG is performing about
an order of magnitude faster than Tomita’s algorithm-
in compiled C on an IBM AT versus interpreted Lisp on
a DEC-20. In terms of abstract machine time, RVG is
performing one to two orders of magnitude faster (based
on statistics from [25].

RVG gains efficiency by a) ruling out spurious ambi-
guities by constraint propagation and b) losing potential
interpretations to reuse. The RVG model weeds out
many structurally plausible but uninteresting interpre-
tations. Indeed, of the forty sentences in Tomita’s
testbed, only one is reported as ambiguous: Time flies
like an arrow. The parser gets the proverb in which
time is a noun as well as an analysis in which time is
an imperative verb (by backtracking to the OpenClause
boundary). It does not report interpretations in which
time is a denominal or adjective modifying flies. These
possibilities are available locally, while in the noun
phrase, but are lost by the time the parser reaches the
end of the sentence. Getting the right interpretation
will, to be sure, require integration of syntax and se-
mantics. Semantics must choose the preferred interpre-
tation while it is available, locally.

Perhaps as significant as its efficiency in time is that
the RVG algorithm pre-allocates all memory resources,
statically. This eliminates the overhead of dynamic
memory allocation and garbage collection. Polynomial
algorithms such as Earley’s and Tomita’s have a high
memory overhead, maintaining a chart or graph for all
possible interpretations. Hence the RVG algorithm
looks especially promising for real-time applications
running in relatively small machines.

RVG eschews transition diagrams and phrase struc-
ture rules, as well as the trees which become great
forests in Tomita’s algorithm. It is significant that
Tomita’s grammar badly overgenerates, ignoring issues
of agreement and gapping. These are of course difficult
to express in terms of simple context-free rules, but
straightforward in RVG. Tomita’s grammar has about
220 rules, while the RVG version has 60 rules, each
with two vectors of 30 features. An important predic-
tion is that whereas context-free grammars will get
enormous as coverage increases, the size of an RVG
will grow very slowly. Other formalisms trade more
computational complexity for less grammar size.

Both the features and productions of RVG are suscep-
tible to parallelism. The current RVG processor, run-
ning on conventional computers, already exploits fea-
ture parallelism. It sees all the features in a vector at

October 1989 Volume 32 Number 10 Communications of the ACM

Articles

Transitiona

9 12 15 21 24 27 30 33 36 39 42 46 9 12 16 18 21 24 27 30 33 3fl 39 42 45

Length of Sentence (Words) Length of Sentence (Words)

-- Seconds per Sentence - Tram per Sentence

FtGURE 8. PP Attachment-CPU Time FIGURE 9. PP Attachment-Abstract Machine Time

Seconds Transitions

- Seconds - Trens per Sentence

FIGURE 10. Tomita’s Testbed-CPU Time FIGURE 11. Tomita’s Testbed-Abstract Machine Time

once, as a whole, just as a simple FSA sees all the bits
in a. state-symbol, whole. The only difference is that
RVG looks at the bits with a ternary rather than a
binary logic. The operators of the ternary vector logic
look at all features in a vector in parallel. On binary
computers, ternary vectors are implemented as a pair of
bit vectors, and ternary operators exploit the low-level
parallelism of bit-wise operators, e.g., on a 32-bit ma-
chine, 32 features at a time. (Such micro-parallelism is
of c:ourse plausible in neural machines as well.)

Because RVG represents more information about syn-
tactic state in the state itself, it is able to be quite
compact in its representation of natural language gram-
mars, and hence quite efficient in processing them.

Acknowledgments. RVG originates in unpublished
work by A.E. Kunst, to whom I am also grateful for help
wii.h this article. Brad James helped develop the analy-
sis of complexity. Thanks also to Edwin J. Kay for help
with subsequent drafts.

REFERENCES
1. Barton, G., Berwick, R., and Ristad, E. Computational Complexity and

Natural Language. MIT Press, Cambridge, Mass., 1987.
2. Bever, T., Garrett, M., and Hartig. R. The interaction of perceptual

processes and ambiguous sentences. Memory and Cognition I, 3
(1973), 277-286.

3. Blank, G. Responsive system control using register vector grammar.
In Proceedings of the IEEE International Symposium on Intelligent Con-
trol (Philadelphia, Penn., Jan. 19-20, 1987), pp. 461466.

4. Blank, G. Regtster vector grammar: A new kind of finite state au-

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Length of Sentence (Words)

tomaton. In Proceedings of the Ninth International Conference on Artifi-
cial Intelligence (UCLA, Aug. 18-23, 1985). pp. 749.-756.
Bresnan, J., Kaplan, R., Peters, S., and Zaenan, A. Cross-serial de-
pendencies in Dutch. Linguistic Inquiry 13, 4 (1982), 613-635.
Carrithers. C., and Bever. T. Eye-fixation patterns during reading
confirm theories of language comprehension. Cog. Sci. 8, 2 (19841,
157-172.
Chomsky, N. Syntactic sfructures. Mouton, The Hague, Netherlands,
1957.
Church, K. On memory limifations in natural language processing. IU
Linguistics Club, Bloomington, Ind., 1982.
Cowper, E. Constraints on sentence complexity: A model for syntactic
processing. Ph.D. dissertation, Brown University, 1976.
Earley, J. An efficient context-free algorithm. Commun. ACM 6. 8
(Aug. 1970],94-102.
Frazier, L., and Fodor. J. The sausage machine: A new two-stage
parsing model. Cognition 6, 4 (19781, 291-295.
Garrett, M., and Bever, T. The perceptual segmentation of sentences.
In The Structure and Psychology of Language, T. Bever and W. Weksel,
Eds. Holt. Rinehart & Winston, New York, 1970.
Gazdar, G., Klein, E., Pullum, G., and Sag, I. Generalized Phrase Struc-
ture Grammar. Harvard University Press, Cambridge, Mass., 1985.
Hale, K. On the position of Walpiri in a typology of the base. Indiana
University Linguistics Club, Bloomington, Ind., 1981.
Kimball, J. Seven principles of surface structure parsing in natural
language. Cognition 2, 1 (19731, 15-47.
Kunst, A. Petri net automata and the representation of natural lan-
guages. Unpublished MS.
Kunst, A., and Blank, G. Processing morphology: Words and cliches.
In Computing in the Humanities, R.W. Bailey, Ed. North-Holland, The
Hague (1982),123-131.
Langendoen, D. Finite-state parsing of phrase-structure languages
and the status of readjustment rules in grammar. Linguistic Inquiry 6,
4 (1975), 533-554.
Langendoen, D., and Langsam. Y. The representalion of constituent
structures for finite-state parsing. In Proceedings of 22nd Annual
Meeting of the Associafion for Computational Linguistics. (Stanford,
Calif., 1984), pp. 24-27.
Marcus, M. A theory of syntactic recognition for natural language. MIT
Press, Cambridge, Mass., 1980.

maa Co.mmunications of the ACM October 1989 Volume 32 Number 10

Articles

21. Martin, W., Church, K., and Patil, R. Preliminary analysis of a
breadth-first parsing algorithm: Theoretical and experimental re-
sults. In Natural Language Parsing Systems. L. Bolt, Ed. Springer Ver-
lag, Berlin, 1987.

22. Miller, G., and Chomsky, N. Finitary models of language users. In
Handbook of Mathematical Psychology, R. D. Lute et al., Eds. Wiley,
New York. 1963.

23. Milne, R. Resolving lexical ambiguity in a deterministic parser.
Comp. Ling. 12, 1 (1986). l-12.

24. Pullum, G. Syntactic and semantic parsability. In Proceedings of
COLING84 (Stanford University, July 19&l), pp. 112-122.

25. Reed, J. An efficient context-free parsing algorithm based on Regis-
ter Vector Grammars. In Proceedings of the Third Annual IEEE Confer-
ence on Expert Systems in Government. (1987). pp. 34-40.

26. Reed, J. Compiling phrase structure rules into Register Vector Gram-
mar. In Proceedings of the Fifth Annual IEEE Conference on Al Systems
in Government. (1989).

27. Reich, P. The finiteness of natural language. Language 45, 4 (1969).
831-43.

28. Ross, J. Constraints on Variables in Syntax. Ph.D. dissertation, MIT,
Cambridge, Mass., 1967.

29. Schegloff, E. The relevance of repair to syntax-for-conversation. In
Synfax and Semantics, 12: Discourse and Syntax. Academic Press, New
York, 1979, pp. X11-288.

30. Shieber, S. Direct parsing of ID/LP grammars. Ling. Phil. 7 [1984),
135-54.

31. Seidenberg, M., Tanenhaus, M. Leiman, Jr., and Bienkowski, M.
Automatic access of the meaning of ambiguous words in context:
Some limitations of knowledge-based processing. Cog. Psy. 14,4
(1982), 489-537.

32. Tomita, M. Efficienf Parsing for Natural Language. Kluwer Academic
Publishers, Norwell, Mass., 1987.

33. Wanner, E. The ATN and the sausage machine: Which one is balo-
ney? Cog. 8 (1980). 209-225.

34. Woods, W. Transition network grammars for natural language
analysis. Commun. ACM 13, 10 (Oct. 1970), 591-606.

35. Yngve, V. A model and an hypothesis for language structure. In
Proceedings of the American Philosophical Society 104 (1960), 444-466.

CR Categories and Subject Descriptors: 12.7 [Artificial Intelligence]:
Natural Language Processing--language parsing and understanding; 1.2.8
[Artificial Intelligence]: Problem Solving, Control Methods and
Search-backtracking

General Terms: Design, Experimentation
Additional Key Words and Phrases: Computational complexity, com-

putational linguistics, finite automata, generation, grammars, nondeter-
minism. parsing, search, syntax

ABOUT THE AUTHOR:

GLENN DAVID BLANK is an assistant professor in the Com-
puter Science and Electrical Engineering Department at Lehigh
University. His research interests include computational lin-
guistics, cognitive science, knowledge-based systems and intel-
ligent real-time systems. He received a Ph.D. in Cognitive Sci-
ence from the University of Wisconsin-Madison in 1984.
Author’s Present Address: Lehigh University, Computer Sci-
ence and Electrical Engineering Department, Packard Labora-
tory 19, Bethlehem, PA 18015-3084. gdbO@lehigh.edu or
glennb@scarecrow.csee.lehigh.edu.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

Reports on original work emphasizing practice and experience...

acm Transactions on
Computer Systems

Editor-in-Chief, Anita K. Jones Included in STN’s Compuscience, AMSs
University of Virgirk, Charlottesville, VA Mathsci, Science Abstracts, Computer Literature

1, -

ACM Trwsndions on Computer Sysfems (TOCS)
Index, and Computer Aided De&/Computer

reports original work in the design, implementa-
Aided Manufacturing Abstracts.

tion, and use of computer systems.

A
reas also include computer systems
architecture, distributed systems, and
networks. Papers treat design principles,
explicit system case studies, specifica-

tion, processor management, memory and
communication management, implementation
techniques, system/user interfaces and protocols,
experimentation with system control parameters,
security, reliability, and performance.

TOCS, a quarterly journal, emphasizes prac-
tice and experience. ISSN: 0734-2071,

Order No. 111000 - Vol. 8 (1990)
Subscriptions: $95.00/yes: - Mbrs. $24.00
Student Mbrs. $19.00
Single Issues: $33.00 - Mbrs. $19.00
Back Volumes: $132.00 - Mbrs. $64.00
Student Mbrs. $17/year

Please Send All Orders and Inquiries to:
P.O. Box 12115
Church Street Station
New York, NY 10249

Circle # 114 on Reader Service Card

October 1989 Volume 32 Number 10 Communications of the ACM 1189

