
A Prototype Intelligent Prettyprinter for Pascal

Kirt A. Winter
Hewlett Packard

Electronic Design Division
P.O. Box 617

MS 1U05L
Colorado Springs, CO 80901-0617

(winter@hpldola.hp.com)

Curtis R. Cook
Computer Science Department

Oregon State University
Corvallis, OR 97331-390
(cook@mist.cs.orst.edu)

Introduction

A prettyprinter is a program that formats a source code listing to
illuminate its structure and thereby improve its readability. A prettyprinter
replaces white spaces (new lines, returns, tabs, spaces) in the program using
formatting instructions that specify what layout the source code should
have. Prettyprinters are a common software tool and often there are several
prettyprinters available for most widely used programming languages. For
most, if not all languages, there is no commonly accepted program source
code format or layout. The little programming style research on the effect
of formatting factors (primarily indentation) in comprehension has been
inconclusive, but seems to suggest that there is no best source program
layout style. In addition most programmers have developed (or learned) a
formatting style that they prefer. Hence there are a wide variety of
formatting styles, with little evidence to suggest that a "best" style exists.
Despite this, prettyprinters up to this point have tended to reflect the
formatting preferences of the prettyprinter's designer.

In this article we describe IPP, a prototype flexible, intelligent
prettyprinter for Pascal that "learns" the formatting style preferred user by
examining a sample of source code formatted in the preferred style. We will
describe the motivation, design, irnplementation, capabilities and limitations
of IPP. Even though IPP was designed for Pascal, its principles and concepts
apply to flexible prettyprinters for other programming languages (though not
necessarily all programming languages).

116 SIGPLAN Notices, Vol. 24, No. 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F68127.68135&domain=pdf&date_stamp=1989-08-11

Prettypdnters and Formatting Style

As mentioned in the Introduction, prettyprinting is illuminating the
logical structure of the source to improve its readability [LEDG75]. There
have been many articles which describe various prettyprinters and/or
formatting styles for Pascal{ [BATE81], [CRID78], [GROG79], [MARC81],
[PETE77]}. In this paper we will concentrate on prettyprinting issues as they
relate to Pascal, although most of these issues apply to other programming
languages as well.

In changing the spacing of a program, a prettyprinter needs much of the
functionality of a language compiler. The prettyprinter must recognize
keywords, language constructs, and white spaces (new lines, returns, tabs,
and spaces) that appear between them. It replaces the white spaces in the
program using the formatting instructions for that construct and hence
transforms the format of the source code into the style known by the
prettyprinter. There are numerous prettyprinters available for most
programming languages, each with a different formatting convention that the
implementor believes best displays the logical structure of the program.

The goal of formatting style is to improve the readability of the source
code. Formatting style rules for Pascal (and most programming languages)
vary greatly in textbooks and articles. And while textbooks and articles
agree that a consistent formatting style is important, they do not carefully
define what they mean by consistency. For instance, does consistency
exclude using an indentation pattern for the compound statement in the
WHILE statement that is slightly different from the one used for the THEN
and ELSE parts of a conditional statement?

Enforcement of formatting consistency seems to be the major function
of most prettyprinters. The "consistent" set of style rules are generally the
ones selected by the author of the prettyprinter. As might be expected the
formatting styles range from the expected to the slightly bizarre. No
experimental or empirical data supporting the choice of a particular set of
formatting style rules is mentioned.

If we assume that there is no difference in the effort required to
produce any particular formatting style (by using a prettyprinter), then one
could argue that comprehension should be the deciding factor in choosing a
formatting style. However, at this point in time, the contribution of
formatting style to source code comprehension is only partially understood.
There is evidence that source layout has a larger than expected impact on
program comprehension and the ease of performing maintenance tasks
[OMAN89]. Oman and Cook [OMAN89] present principles for program layout and
commenting and an implementation of the principles that significantly

117

improves program comprehension.

It would seem highly unlikely that there is a "best" formatting style for
comprehension in the sense that a majority programmers will have superior
comprehension for that style compared to all others. It would seem more
plausible that no one style will be best for any sizable group and that a
majority of programmers will have different preferences. Hence format
style seems highly individualistic.

All of this suggests the need for a prettyprinter with the flexibility to
allow the users to specify the formatting style they prefer. It would provide
all the consistency advantages of traditional prettyprinters while allowing
users to specify their own formatting style. Current prettyprinters are
inflexible or have very limited flexibility in that they allow the user to
choose a few options such the number of spaces on indentation. There are
two notable exceptions. One is a LISP prettyprinter that allows the user to
control the appearance of the output by user specified "deformat" functions
that provide templates for various types of control structures and functions
[WATE83]. But writing "deformat" functions could hardly be described as a
trivial task, at least for a new user. The second is a formatter for Logitech's
Modula-2 that learns a format style from a template file [LOGI87]. The user
edits the syntactical constructs in the template file to reflect his or her
style preferences. The prettyprinter extracts the formatting data from the
template file.

IPP (Intelligent PrettyPrinter)

IPP achieves both consistency and flexibility. Early in the design of IPP
it was determined that the white space tokens that lie between keywords,
symbols, or language constructions would be used to capture the formatting
style. By capturing the rules for these white space tokens, a prettyprinter
can duplicate a wide variety of formatting styles. A quick count showed that
at least 40 of these tokens would be required to capture just the control
structures of Pascal.

We considered using menu systems or a simple ASCII file for the user to
specify these rules. Both of these appeared overly tedious and burdensome
for the user. It seemed, from a programmer's standpoint, that the best way
to describe a preferred source code format style was to show an example of
it to another person. Thus it was decided to have IPP learn the user's
preferred style conventions from a sample of code provided by the user. We
made this decision and completed IPP before we discovered a similar scheme
was used in Logitech's Modula-2 prettyprinter [LOGI87]. However, the
Logitech prettyprinter requires the use of a special template file and not any
sample of code.

118

In parsing a source program for output, a prettyprinter recognizes the
spaces between keywords and control structures (white space tokens) and
replaces them using formatting instructions. By extending the prettyprinter
so that it not only recognizes, but analyzes and saves white space tokens in
another file, one can create a prettyprinter that "learns" a style from a code
sample provided to it. This is the method used to convey a particular
formatting style to IPP. The code sample can be any program with the
desired formatting style, either provided by the user in the form of code that
was written by the user or another programmer or by modifying the special
program supplied with IPP that contains instances of all Pascal white space
token rules recognized by IPP.

Figures 1-3 illustrate how IPP works. IPP learns the style from the
small program in Figure 1 using the default settings for tab expansion (four
spaces) and applies what it learned on the program in Figure 2 to produce the
reformatted version in Figure 3. Note that many source code editors allow a
tab character to be defined in terms of spaces. To allow for this kind of
editor and to make IPP's job easier (only spaces and new lines have to be
considered), the tab expansion size is left as a command line option, with a
default of four spaces.

What did IPP learn from the code in Figure 17 First IPP learned that the
name of the program should follow the keyword PROGRAM with one space
between them. Other things IPP learned were where a BEGIN should appear in
IF and ELSE constructions, that the components of a compound statement
should line up one tab stop deeper than their controlling BEGIN, as well as
where to put THEN keywords, and how to handle ELSE-IF constructions.

A current limitation of this "show me" type of learning is the absolute
(as opposed to relative) alignment of source code. Examples of this type of
formatting are often found in comment blocks and case statements. This
will be discussed later in the section on Limitations.

Design and Implementation of IPP

IPP is targeted for the Turbo Pascal dialect of the Pascal language and
thus supports standard Pascal. Currently it recognizes 48 white space
tokens (each composed of two integers) to capture formatting style. IPP
does not analyze data declarations, nor does it analyze anything below the
statement level.

IPP has been developed as a command line executed program which uses
redirection as its source code input/output form. Options from the command
line control the tab to space conversion, and mode (learn or format). For

119

example, the command line

ipp L <style1 .pas -3

causes IPP to learn ("L") the formatting style in the file "style1 .pas" with tab
stops set at every 3 spaces. After executing this command IPP is now ready
to apply the style it learned from "style1 .pas". Then the command to format
the file "messy.pas" according to this style and create a formatted file called
"neat.pas" is

ipp <messy.pas >neat.pas

In the learn mode, IPP is given a source file to analyze in order to
imitate its format. IPP identifies and analyzes white space tokens, storing
them in a style sheet that is later written to disk. In the format mode, IPP
is given a source file to format. IPP identifies white space tokens and
replaces them in the output stream with those previously stored in its "style
sheet" file. This changes the source file's original format to the formatting
style previously learned by IPP.

The white space in a source program file is (in freely formatable
languages) completely ignored by the compiler. Any number of white space
characters can be used between keywords and symbols as the white space
only serves as a delimiter between tokens of the language. However, the way
in which one uses white spaces can have a great effect on the visual layout
of the source code. For instance indentation is used to indicate nested
structures and levels of nesting.

For IPP, a white space token consists of two integer values. One is for
the number of new line characters, and the other for the change of
indentation from the previous line. In learn mode IPP analyzes the white
spaces in the construct and sets the appropriate integer values in the style
sheet. In format mode IPP simply finds and replaces white space tokens in a
construct with one previously learned for that construct. For other instances
of white space, the white space is either placed directly in the output, or
modified to line up with the beginning of the previous line, depending on the
situation.

IPP consists of six separately compilable C modules (totaling
approximately 45K bytes) and was developed on an MS-DOS system using
Microsoft C 4.0.

1. NLEX.C: Performs basic lexical analysis of the source code. In addition to
the operations performed by most lexical analyzers, NLEX returns white
space tokens that are used and/or replaced by the PBRAIN.C module.

120

2. SYMTAB.C: Uses a binary search to identify keywor~s in identifiers
returned by NLEX.

3. FORMFILE.C: Performs all input and output associated with style files. A
style file is simply a collection of approximately 100 integers which
describe the formatting characteristics that are to be used by the
prettyprinter.

4. QUEUE.C: A reusable module developed to implement the queue which is
used to hold tokens that were retrieved from the NLEX in look-ahead
operations.

5. PBRAIN.C: Contains the function which perform the low-level formatting
transformations. Functions are provided to allow easy look-ahead for
particular tokens, as well as for input and output of Pascal source code.
Most of the functionality required by the recursive descent parser for learn
and output is defined here.

6. IPP.C: Contains the main program and the recursive descent parser for
Pascal. It currently implements all Pascal control structures, but does not
parse below the statement level. It frequently calls a look-ahead function to
insure that the appropriate places for white space tokens are recognized.

Various other files are used to declare structures and enumerated types that
are used by the other modules.

Limitations

Since IPP is a prototype designed primarily to test the feasibility of a
prettyprinter learning formatting style, it has several limitations.

1. It is certainly possible to look for more instances of white space than
IPP does. In fact, for a truly usable prettyprinter, one would probably
consider adding many more. For example, IPP does not analyze data
declaration or analyze anything below the statement level. This means that
arithmetic expressions, function or procedure calls, Boolean expressions, and
several other features that could be formatted are not. However, it should be
clear that the concepts used to capture other control structures' layouts
could easily be extended to these cases as well.

2. iPP assumes statements enclosed by BEGIN-END pairs all have the same

indentation.

3. IPP ignores any physical line length.

121

4. Since all white space tokens are stored in relative terms as the change in
indentation from the previous line, IPP does not preserve absolutely aligned
constructs such as in-line comments. In-line comments may be aligned at
the beginning of a line or block of compound statements or at the end of a
line. tPP must decide whether to use the white space before or after the
comment block, or perhaps some combination of the two. In addition for
lines containing a statement with a comment aligned at the end of the line,
the number of spaces between the end of the statement and the comment may
vary. IPP uses the white space after the comment. However, it should be
noted that dealing with comments is one of the hardest problems in writing a
prettyprinter [RUBI83].

5. Error messages are not provided, and errors may cause unpredictable
results. IPP does not check the code sample it learns from for consistency.
Also IPP assumes a syntactically correct source program.

Conclusions

IPP is a flexible prettyprinter that can learn a wide variety of
formatting styles. It solves the problem of the volume of information to be
given to specify a formatting style by learning the preferred formatting
style from a sample piece of code.

Because of its flexibility IPP accommodates both a company formatting
standard and individual preferences. Thus it possible for members of a
development team, who find that the company's style standard causes them
difficulty in understanding or maintaining code, to format source code they
work with into a style they prefer and then convert it back to the company
standard when they are finished. IPP could also be used to easily develop
experimental materials for studies of the effects of formatting style on
comprehension.

For those interested, IPP is available in MS-DOS executable form for a
$15 handling fee. It will be provided on a 5.25" media formatted to 360K by
MS-DOS 3.0. Included will be the executable version of the program, a brief
"user's manual" file, and the previous mentioned program which contains all
white space tokens that IPP recognizes, in several "stylish" forms. The
version of IPP supplied was created to handle the Turbo Pascal 3.0 language
(no separately compiled UNITS). Requests should be mailed to Kirt Winter,
2340 Rossmere, Colorado Springs, CO 80919.

122

References

[BATE81] Bates, R.M., A Pascal Prettyprinter With a Different Purpose. ACM
SIGPLAN Notices, Vol. 16, No. 3, Mar. 1981, pp. 10- 17.

[CRID78] Crider, J.E., Structured Formatting of Pascal Program. ACM
SIGPLAN Notices, Vol. 13 No. 11, Nov. 1978, pp. 15-22.

[GROG79] Grogono, P., On Layout, Identifiers and Semicolons in Pascal
Programs. ACM SIGPLAN Notices Vol. 14 No. 4, Apr. 1979, pp 35-40.

[LEDG75] Ledgard, H.F. "Programming Proverbs". Hayden, Rochelle Park, New
Jersey, 1975.

[LOGI87] Logitech Modula-2 manual, Logitech Inc., Fremont, California, 1987,
pp. 17-19.

[MARC81] Marca, D. Some Pascal Style Guidelines. ACM SIGPLAN Notices Vol.
16, No. 4, Apr. 1981, pp. 70-80.

[OMAN89] Oman, P. and Cook, C.R., Typographic Style is More than Cosmetic,
Oregon State University Computer Science Technical Report 89-60-5
(Submitted for publication).

[PETE77] Peterson, J.L., On the Formatting of Pascal Programs. ACM SIGPLAN
Notices Vol. 12, No. 12, pp. 83-86.

[RUBI83] Rubin, L., Syntax-directed Pretty Printing - A First Step Towards a
Syntax-Directed Editor, IEEE Transactions on Software Engineering, Vol.
SE-9, No. 2, Mar. 1983, pp 119-127.

[WATE83] Waters, R.C., User Format Control in a LISP Prettyprinter. ACM
Transactions on Programming Languages and Systems, Vol 5, No. 4.

123

program learn if elses;

begin
if (color = yellow) then

paint_it
else

if not
begin

dont_painLit;
running then

end.

fix_it;
check it

end
else if not (running_well) then

tune it up
else
begin

end

brag to friends;
take care of it

i

Figure 1" A style for IPP to learn.

program
test if elses;

begin

end.

if crying then begin
feed baby;
if baby_not_full then feed_ _
else putbottle_away;
burp_baby
end

else if wet then change_baby
else begin

play_with_baby;
talk_with_baby
end

it more

Figure 2: A piece of code for IPP to format.

124

program test if elses;

begin

end.

if crying then
begin

feed baby;
if baby_not_full then

feed it more
else

put_bottle_away;
burp_baby

end
else if wet then

change_baby
else
begin

play_with_baby;
talk_with_baby

end

Figure 3: Result of applying IPP to Figure 2.

125

