
The Alonzo Functional Programming Language

John D. Ramsdell*
The MITRE Corporation

Bedford, MA 01730

Abstract

Alonzo is a programming language for specifying an
output s tream of characters as a function of a given
input stream of characters. It is a non-strict language
based on the untyped A-calculus, and it has been en-
riched by adding syntax for local bindings and mutual
recursion. Primitive data and their operators have
been included along with strict vectors.

Contents

1 D e s i g n Goa l s 1

Basic Concepts 2
2.1 True and False 2
2.2 Pairs and Lists 2

3 E x p r e s s i o n s 2
3.1 Variable Reference 2
3.2 Literal Expressions 2
3.3 The List Expression 2
3.4 The Vector Expression 2
3.5 Lambda Expressions 2
3.6 Parenthesized Expressions 3

4 P r o g r a m S t r u c t u r e 3

5 S t a n d a r d F u n c t i o n s 3
5.1 Type Predicates 3
5.2 Integer Operators 3
5.3 Character Operators 4
5.4 Vector Operators 4

6 Formal Def in i t ion 4
6.1 Syntax 5
6.2 Semantics 5

A Edit ing Alonzo Programs 6

*This work was supported by the MITRE Sponsored Re-
search Program.

1 Des ign Goals

Alonzo was designed for programming multicomput-
ers [AS88]. It was designed under the assumption
that communication to and from the multicomputer
is slow, so that communication is limited to streams
of characters.

Another design goal was to display a useful func-
tional programming language in which both the syn-
tax and the semantics are simple and regular, and
the syntax closely reflects the semantics. This is in
contrast with many new functional programming lan-
guages, such as Haskell [HW88], which were designed
to be intuitively obvious to a programmer with a
mathematical background at the risk of simplicity.
An example of a useful feature of Alonzo syntax con-
cerns the ease in which definitions may be introduced
into expressions. All parenthesized expressions may
begin with local definitions. A benefit of having sim-
ple syntax and semantics is that it was straightfor-
ward to implement a compiler for Alonzo in Alonzo.

The language was designed to allow a simple em-
bedding in the Scheme dialect of Lisp [RC86]. Many
of the s tandard functions have been taken from
Scheme along with much of Scheme's syntactic con-
ventions. Even the form of this report was greatly
influenced by the Scheme report [RC86].

There exists two implementations of Alonzo. A
Scheme implementat ion was used to boots t rap an im-
plementation built on a fast reduction machine writ-
ten in ANSI C. An existing Alonzo compiler image
for the C machine allows the use of Alonzo without a
Scheme system. Both implementations use Turner 's
combinators [Tur79], however, both provide facilities
for linking supercombinators [Hug82] or other opti-
mized combinators.

A major challenge in producing a successful par-
allel implementation of Alonzo will be finding an al-
gori thm which discovers much of the potential op-
portunities for parallel reduction of Alonzo expres-

152 SIGPLAN Notices, Vol. 24, No. 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F68127.68139&domain=pdf&date_stamp=1989-08-11

sions. If we limit ourselves to the reduction of ex-
pressions known to be needed, we require a strictness
analysis of a @namicalty typed variant of the un-
typed A-calculus. One approach to such a task is to
type fragments of Alonzo programs, and use existing
strictness analysis algorithms [BIIA86] limited to just
these fragments. The interest in strictness analysis is
one important reason Alonzo has a formal definition.

2 Basic Concepts

The lexical conventions used in writing Alonzo pro-
grams are nearly identical to Scheme's conventions,
which, in turn, are much like most dialects of Lisp.
The notation for strings, whitespace, comments, and
quotation is as is Scheme's. Identifier notation is like
Scheme's, except the list of syntactic keywords which
may not be used as variables has been changed to:

define, lambda, list, quote, and vector.

2 .1 T r u e a n d F a l s e

The boolean values are the functions which select be-
tween two alternatives, with true being associated
with selecting the first alternative and false selecting
the second alternative.

(define (true x y) x)
(def ine (false x y) y)

2 .2 P a i r s a n d L i s t s

The pairing function was chosen to be non-strict, so
its definition is the obvious one [Bar84, pages 132-
135]. The pairing of two expressions is the function
which applies its argument to the first expression, and
applies that result to the second expression.

(def ine (p a i r x y)
(lambda (z) z x y))

Lists are built out of pairs using the special value,
null , to mark the cmpty list.

3 Expressions

Computat ion is associated with finding a value as-
sociated with an Alonzo expression. That process
will be called reduction, and an expression is said to
reduce t0 (==:>) a value. Some expressions will be
defined by giving another equivalent replacement ex-
pression. In that case, the original expression is said
to expand to ()) the replacement expression. The
notation (thing1} . . . means zero or more occurrences
of (thing}.

3 .1 V a r i a b l e R e f e r e n c e

(variable}

Naming an identifier reduces to the value bound to
the identifier. A reference to an unbound identifier is
an error.

3 . 2 L i t e r a l E x p r e s s i o n s

(quote (datum)) I '(datum) [(constant }

(quote (datum}) reduces to (datum}, which is either
an integer, a character, the empty list, or the pairing
function applied to two (datum}'s. A (string} is a list
of characters, and a (symbol} is a list of characters in
which all upper case characters have been translated
to lower case. A parenthesized quoted expression is
converted to a (datum / using the pairing function.

(quote ()) ~ null.
(quote 'Ab) ~ (list #\a #\b).
(quote (0 1 2)) ----+ (l i s t 0 1 2).

(quote (datum}) may be abbreviated as '(datum}.
The two notations are equivalent in all respects. In-
tegers, characters, and strings reduce to themselves
and need not be quoted.

3 . 3 T h e L i s t E x p r e s s i o n

(l i s t (expression1) . . .)

The l i s t syntax expands to a nul l terminated list
containing as many expressions as given. The list is
linked using the pairing function of Section 2.2

3 . 4 T h e V e c t o r E x p r e s s i o n

(vector (expression l) . . . (expression n))

The v e c t o r syntax expands to the application of a
vector constructor to the n expressions. The con-
structor is the result of applying the make-vec tor
function described in Section 5.4 to n.

3 . 5 L a m b d a E x p r e s s i o n s

(larabda ((variable1) . . .) (body})

A lambda expression of one variable reduces to a func-
tion. As in the A-calculus, the application of the func-
tion to an expression is equivalent to substituting the
expression for all occurrences of the variable in the
body of the function. As Alonzo is a non-strict lan-
guage, the actual argument given to a function need
not be reduced.

153

A lambda expression with more than one formal
parameter expands to a lambda expression of the
first formal parameter in which the body is a lambda
expression of the rest of the formal parameters. A
lambda expression with an empty formal parameter
list is equivalent to a parenthesized expression.

3 . 6 P a r e n t h e s i z e d E x p r e s s i o n s

((body})

A (body) is a possibly empty sequence of definitions
followed by an expression or an application. Juxta-
position of two expressions gives an application. The
left expression must reduce to a function, and the
right expression will be given to the function as its
actual argument. Application is left associative.

(a b c) , ((a b) e) .

Definitions bind expressions to variables. The
scope of the bound variables is the entire (body) in
which the variables are defined. Mutual recursive
function can be defined, as the variables will be visi-
ble to the expressions defining all other variables. It
is an error if the definitions at the begining of a body
define the same variable more than once.

The syntax of a definition follows.

(define (variable) (body})
(define ((variable0} (variable1) . . .) (body})

In the first instance, the variable is bound to
the expression ((body}) . In the second instance,
(variable0) is bound the the expression

(larabda ((variable1) . . .) (body}).

As an example, another equivalent way of writing the
pairing function of Section 2.2 is

(define (pair x y z) z x y).

4 P r o g r a m Struc ture

An Alonzo program maps an input stream of charac-
ters to an output stream of characters. A stream of
characters is like a list of characters in that the glue
used to hold them together is the pairing function
of Section 2:2. Unlike lists, streams never terminate.
T ha t is, a s t ream is always a function which can be
applied to a function of the form

(lambda (c s) (body}) ,

and c will be bound to an expression which reduces to
a character, and s will be bound to another stream.

A program is syntactically a (body/, i.e. a sequence
of definitions followed by an expression or an appli-
cation. The output stream is defined to be the re-
sult of applying the expression ((body)) to the input
stream. Given an output stream ~, the output is
computed as follows:

1. Let c be the value associated with reducing the
expression (o" (lambda (c s) c)) .

2. If c is not a character, an error must be signaled.

3. Print c.

4. Set o" to (o" (lambda (c s) s)) .

5. Go to step 1.

The reduction in step 1 may not pause if the ini-
tial segment of the input s tream currently available
is sufficient to allow the computat ion of c.

5 S tandard Funct ions

Standard Alonzo functions are pat terned after many
essential Scheme procedures defined in [RC86].

5 . 1 T y p e P r e d i c a t e s

Every object in Alonzo is either an integer, a charac-
ter, the null list, or a function. Some functions are
also vectors.

Reduces one argument and returns true if the
nt is an integer, otherwise false is returned.

Reduces one argument and returns true if the
nt is a character, otherwise false is returned.

Reduces one argument and returns true if
the argument is the empty list, otherwise false is re-
turned.

Reduces one argument and returns true if the
argument is a function, otherwise false is returned.
I v e e r ° r ? I Reduces one argument and returns true if
the argument is a vector, otherwise false is returned.
All vectors are functions.

5 . 2 I n t e g e r O p e r a t o r s

It is an error to apply any function in this subsection
to non-integral arguments.
I z e r o ? , even? , odd?] Each reduces one argument
and returns true if the argument is zero, even, or
odd, respectively, otherwise false is returned for any
other integer.

154

+~id- , *, m ~ Each reduces two arguments
7gtu'7~ls" the sum, difference, product, maximum,

or minimum, respectively, if both arguments are in-
tegers.
~uotient, remainder] Each reduces two argu-
ments and returns the quotient or remainder, respec-
tively, such that for integer i and j with j # 0

(= i (+ (* j (q u o t i e n t i j))
(remainder i j))) ~ lrue.

] =, <, >, <=, >=] Each reduces two arguments and
returns the appropriate boolean value if the first ar-
gument is equal to, less than, greater than, less or
equal to, or greater or equal to, respectively, the sec-
ond argument.
[ab~] Reduces one argument and returns the magni-
tude value of the argument.
] int->char I Reduces one argument and returns the
character corresponding to the integer, i n t - > c h a r is
the inverse of c h a r - > i n t . Application of i n t - > c h a r
to an integer which has no corresponding character is
an error.

5 . 3 C h a r a c t e r O p e r a t o r s

It is an error to apply any functions in this subsection
to non-characters.
I char=? , char<? , char>? , char<=?, char>=?]
Each reduces two arguments and returns the appro-
priate boolean value if the first argument is equal to,
less than, greater than, less or equal to, or greater or
equal to, respectively, the second argument. These
functions impose a total ordering on the set of char-
acters. It is guaranteed that under this ordering:

® The upper case characters are in order.

® The lower case characters are in order.

® The digits are in order.

® Either all the digits precede all the upper case
letters, or vice versa.

• Either all the digits precede all the lower case
letters, or vice versa.

] c h a r - > i n t I Reduces one argument and returns
the integer representation of a character such that
the integer ordering is consistent with the charac-
ter ordering. Tha t is, for any characters c and d,
(char=<? c d) has the same boolean value as

(=< (c h a r - > i n t c) (c h a r - > i n t d))

~ - ~ Reduces one argument and returns true if
that character is the quit character. Adding the quit

(body} ::= {definitions)(application>.
(definitions) ::= (d e f i n e (pattern) (body))*.
(application} ::= {expression>

l {application} (expression).
{expression) ::= (variable} I (constant }

] '{datum)
1 (quote (datum))
] (list {expression)*)
] (v e c t o r (expression)*)
1 (larabda ((variable)*) {body))
I ({body)).

{pattern) ::= {variable)
] ({pattern} {variable)*) .

{constant) ::= (integer) I (character)
] (string).

{datum} ::= (constant}] (symbol)
] ({list)).

{list} ::= <datum}*
] {datum}*. (datum).

Figure 1: Alonzo Syntax

character to the output stream may have some imple-
mentation defined behavior, such as saving an image
of an Alonzo program or simply exiting.

5 .4 V e c t o r O p e r a t o r s

A vector is a function which when applied to an in-
teger index i, returns the i-th element of the vector.
Indexing is zero-based, so legal indices for a vector
of length n satisfies 0 < i < n. The application of a
vector to an illegal index is an error.

[make-vector] Reduces one argument and if it is the
non-negative integer n, creates a function which con-
structs a vector of length n. If the vector constructor
is applied to n arguments, it reduces each argument,
and returns an n-vector containing the arguments.
The application of make-vec tor to other than a non-
negative integer is an error.
] vector-length[Reduces one argument and if it is a
I w

vector, returns its length. Application of this function
to a non-vector is an error.

6 Formal De f in i t i on

This section provides formal descriptions of what has
already been described informally in previous sec-
tions.

155

6 .1 S y n t a x

The complete grammar for Alonzo is given in Fig-
ure 1. The start symbol is (body). The termi-
nal symbols include (variable), (integer), (character),
(symbol), and (string). The grammer is extended
BNF in that (thing)* means zero or more occurrences
of (thing).

6 . 2 S e m a n t i c s

This section provides a formal denotational semantics
for the primative expressions in Alonzo and a few se-
lected standard functions. The concepts and notation
used here are described in [Sto77].

6.2.1 A b s t r a c t S y n t a x

C E Con integers, characters, and '0
I E Ide identifiers (variables)

E E Exp expressions
A ~ App applications
B G Bod bodies
P ~ Pgm = Bod programs

E ::= C [I I (larabda (I) B) I (B).
A ::= E I A E.
B ::= (d e f i n e I B)* A.
P ::= B.

6.2.2 Domain Equations

C primitive constants
H C C characters and .L

p E U = Ide ~ E environments
a E A = E ~-~ K ~-~ H applicable values

E V = C + A wlues of computations
e E E = K ~ H values of expressions
x E K = V ~ H continuations
c E S = H x S character streams

6.2.3 S e m a n t i c F u n c t i o n s

C : Con ~ V
g : E x p ~--~ U ~-~ K ~--~ H

A : A p p ~--~ U ~--~ K ~--~ H

B : B o d ~-~ U ~-~ K ~--~ H

P : Pgm~--~ S H S

The definition of C has been deliberately omitted.

E[c] = apx.x(c[c])
g[I] = Ap~.x(p[I])
g[(lambda (I) B)] = A p . f u n c t ~c .B[B]p[e / I]

g[(B)] = BIB]
f u n c t = A a x . x (a in V)

A[E] = E[E]
A [A E] = A p . a p p l y (A [A] p) ($ [E] p)

apply = A e o q n . e o A u . u E A ~ (v I A)elX, x_L

B[A] = A[A]
B[(define I B) A] = A p . A [A] p ~ x (A e . B [B] p [e / I]) / I]

B[(de f ine I1 B 1) . . . (d e ~ i n e In Bn) A] =
Ap.t ien

.

B[B1]p[e l , . . . , , n l h , . . . , I,~]

B [B n] p [q , . . . , e n / I 1 , . . . , In])
A Q . . . e n . A [A] p [q , . . . , e n / I i , . . . , I , ~]

l ien ..~)~.fiX()tO2.G(~)t61... ~n-61)... (~)i61... 6n .6n))
I1, • •., In must be unique identifiers.

P0 is an environment containing only the bindings
for the standard functions.
P IP] = Ao'. app ly (B[B]po) (in a) out

in = fix(A¢o'.a = .L ~ Ax.x..L,
f u n c t Ae. apply (apply e (a .l. 1))

(¢(0 12)))
out = f i x (A t u . u ~ A --+ ± , p u t (u [A)¢)
put = A a ¢ . g e t a = _l_ --~ .L, (get a , a rest ¢)
get = A a . a f i rs t Au.u E H ---, u, .L
f i r s t = 81]'(larabda (x y) x)]po
rest = g[(larabda (x y) y)]lpo

6.2.4 P r i m i t i v e s

p0[nul l?] = f u n c t Aex . eAu .u = nul l ~ t rue x , f a l s e x

t rue = g[(lambda (x y) x)]p0
fa lse = I [(l ambda (x y) y)]P0

po [ma.ke-vect ors =

m k v e c (n) =
A q . . . en X . q Av l ¢n AUn . vecre fn ul . . . vn x in V

vecre f n = Aul . . . un.

f u n c t Aen . eAv . v = 0 ~ ~;vl,

= n - 1 ~ x u n , x.l_

6.2.5 D e r i v e d E x p r e s s i o n T y p e s

(d e f i n e ((pattern) (va r i ab l e1) . . .) (body))
(define (pattern)

(lambda ((variable1) . . .) (body)))

(larabda () (body)) , ((body))
(lambda ((variable0) (variable1) . . .) (body))

, (lambda ((variableo))
(larabda((variable~) . . .) (body/))

156

(l i s t) ~ (quote ())
(l i s t {expression0) (expression1) . . .)

((lambda (x y z) z x y)
(expression0/ (l i s t (expression1) . . .))

(v e c t o r (expression 1) . . . (expression,i))
(v n (expression1) . . . (expressionn))

where v is the value of make-vector described in
Section 5.4.

(quote (integer)) , (integer)
(quote (character)) , (character)
(quote (string))) (string)
(quote (symbol))) (list of characters)
(quote (. (datum)))

, (quote (datum))
(quote ((datum) (list)))

) ((l a m b d a (x y z) z x y)
(quote (datum)) (quote ((list))))

'(datum) , (quote (datum))

(string) , (list of characters)

A Edi t ing A l o n z o Programs

The syntactic conventions of Alonzo programs are
much like Scheme's, so editors that are tailored for
Scheme are automatically tailored for Alonzo. Ex-
perience has shown that the effective use of Scheme
pretty printers requires special treatment of condi-
tionals. The trick is to define i f as follows, and use
this i f for all conditionals.

(d e f i n e (if t e s t cons alt)
(t e s t cons a l t))

[HW88]

IRes6]

[Sto77]

[Wur79]

languages. In 1982 ACM Symposium o n

LISP and Functional Programming, pages
1-10, Pittsburg, PA, August 1982.

Paul Hudak and Philip Wadler et. al. Re-
port on the functional programming lan-
guage haskell--draft proposed standard.
Technical Report YALEU/DCS/RR-666,
Yale University, New Haven, CN, Decem-
ber 1988.

Jonathan Rees and William Clinger eds.
Revised S report on the algorithmic lan-
guage scheme. ACM SIGPLAN Notices,
21(12):37-79, December 1986.

Joseph E. Stoy. Denotational Semantics:
The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, Cam-
bridge, MA, 1977.

D. A. Turner. A new implementation tech-
nique for applicative
languages, Software--Practice and Experi-
ence, 9(1):31-49, September 1979.

R e f e r e n c e s

[ASSS]

[Bar84]

[BHA86]

[HugS2]

William C. Athas and Charles L. Seitz.
Multicomputers: Message-passing concur-
rent computers. Computer, 21(8):9-24, Au-
gust 1988.

H. P. Barendregt. The Lambda Calcu-
lus. North-Holland, Amsterdam, revised
edition, 1984.

Geoffrey L. Burn, Chris Hankin, and Sam-
son Abramsky. Strictness analysis for
higher-order functions. Science of Com-
puter Programming, 7:249-278, 1986.

R. J. M. Hughes. Super combinators: A
new implementation method for applicative

157

