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Abstract  

Alonzo is a programming language for specifying an 
output  s tream of characters as a function of a given 
input stream of characters. It is a non-strict language 
based on the untyped A-calculus, and it has been en- 
riched by adding syntax for local bindings and mutual  
recursion. Primitive data  and their operators have 
been included along with strict vectors. 
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1 Des ign Goals 

Alonzo was designed for programming multicomput- 
ers [AS88]. It was designed under the assumption 
that  communication to and from the multicomputer 
is slow, so that  communication is limited to streams 
of characters. 

Another  design goal was to display a useful func- 
tional programming language in which both the syn- 
tax and the semantics are simple and regular, and 
the syntax closely reflects the semantics. This is in 
contrast with many new functional programming lan- 
guages, such as Haskell [HW88], which were designed 
to be intuitively obvious to a programmer with a 
mathematical  background at the risk of simplicity. 
An example of a useful feature of Alonzo syntax con- 
cerns the ease in which definitions may be introduced 
into expressions. All parenthesized expressions may 
begin with local definitions. A benefit of having sim- 
ple syntax and semantics is that  it was straightfor- 
ward to implement a compiler for Alonzo in Alonzo. 

The language was designed to allow a simple em- 
bedding in the Scheme dialect of Lisp [RC86]. Many 
of the s tandard functions have been taken from 
Scheme along with much of Scheme's syntactic con- 
ventions. Even the form of this report  was greatly 
influenced by the Scheme report  [RC86]. 

There exists two implementations of Alonzo. A 
Scheme implementat ion was used to boots t rap an im- 
plementation built on a fast reduction machine writ- 
ten in ANSI C. An existing Alonzo compiler image 
for the C machine allows the use of Alonzo without a 
Scheme system. Both implementations use Turner 's  
combinators [Tur79], however, both provide facilities 
for linking supercombinators [Hug82] or other opti- 
mized combinators. 

A major  challenge in producing a successful par- 
allel implementation of Alonzo will be finding an al- 
gori thm which discovers much of the potential  op- 
portunities for parallel reduction of Alonzo expres- 
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sions. If we limit ourselves to the reduction of ex- 
pressions known to be needed, we require a strictness 
analysis of a @namicalty typed variant of the un- 
typed A-calculus. One approach to such a task is to 
type fragments of Alonzo programs, and use existing 
strictness analysis algorithms [BIIA86] limited to just 
these fragments. The interest in strictness analysis is 
one important  reason Alonzo has a formal definition. 

2 Basic Concepts  

The lexical conventions used in writing Alonzo pro- 
grams are nearly identical to Scheme's conventions, 
which, in turn, are much like most dialects of Lisp. 
The notation for strings, whitespace, comments, and 
quotation is as is Scheme's. Identifier notation is like 
Scheme's, except the list of syntactic keywords which 
may not be used as variables has been changed to: 

define, lambda, list, quote, and vector. 

2 .1  T r u e  a n d  F a l s e  

The boolean values are the functions which select be- 
tween two alternatives, with true being associated 
with selecting the first alternative and false selecting 
the second alternative. 

(define (true x y) x) 
(def ine (false x y) y) 

2 .2  P a i r s  a n d  L i s t s  

The pairing function was chosen to be non-strict, so 
its definition is the obvious one [Bar84, pages 132- 
135]. The pairing of two expressions is the function 
which applies its argument to the first expression, and 
applies that  result to the second expression. 

(def ine ( p a i r  x y) 
(lambda (z) z x y ) )  

Lists are built out of pairs using the special value, 
null ,  to mark the cmpty list. 

3 Expressions 

Computat ion is associated with finding a value as- 
sociated with an Alonzo expression. That  process 
will be called reduction, and an expression is said to 
reduce t0 (==:>) a value. Some expressions will be 
defined by giving another equivalent replacement ex- 
pression. In that  case, the original expression is said 
to expand to ( )) the replacement expression. The 
notation (thing1} . . .  means zero or more occurrences 
of (thing}. 

3 .1  V a r i a b l e  R e f e r e n c e  

(variable} 

Naming an identifier reduces to the value bound to 
the identifier. A reference to an unbound identifier is 
an error. 

3 . 2  L i t e r a l  E x p r e s s i o n s  

(quote  (datum)) I '(datum) [ (constant } 

(quote (datum}) reduces to (datum}, which is either 
an integer, a character, the empty list, or the pairing 
function applied to two (datum}'s. A (string} is a list 
of characters, and a (symbol} is a list of characters in 
which all upper case characters have been translated 
to lower case. A parenthesized quoted expression is 
converted to a (datum / using the pairing function. 

(quote ()) ~ null. 
(quote 'Ab) ~ (list #\a #\b). 
(quote (0 1 2)) ----+ ( l i s t  0 1 2).  

(quote  (datum}) may be abbreviated as '(datum}. 
The two notations are equivalent in all respects. In- 
tegers, characters, and strings reduce to themselves 
and need not be quoted. 

3 . 3  T h e  L i s t  E x p r e s s i o n  

( l i s t  (expression1) . . . )  

The l i s t  syntax expands to a nul l  terminated list 
containing as many expressions as given. The list is 
linked using the pairing function of Section 2.2 

3 . 4  T h e  V e c t o r  E x p r e s s i o n  

(vector (expression l) . . .  (expression n)) 

The v e c t o r  syntax expands to the application of a 
vector constructor to the n expressions. The con- 
structor is the result of applying the make-vec tor  
function described in Section 5.4 to n. 

3 . 5  L a m b d a  E x p r e s s i o n s  

(larabda ((variable1) . . . )  (body}) 

A lambda expression of one variable reduces to a func- 
tion. As in the A-calculus, the application of the func- 
tion to an expression is equivalent to substituting the 
expression for all occurrences of the variable in the 
body of the function. As Alonzo is a non-strict lan- 
guage, the actual argument given to a function need 
not be reduced. 
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A lambda expression with more than one formal 
parameter  expands to a lambda expression of the 
first formal parameter  in which the body is a lambda 
expression of the rest of the formal parameters.  A 
lambda expression with an empty  formal parameter  
list is equivalent to a parenthesized expression. 

3 . 6  P a r e n t h e s i z e d  E x p r e s s i o n s  

((body})  

A (body) is a possibly empty sequence of definitions 
followed by an expression or an application. Juxta- 
position of two expressions gives an application. The 
left expression must reduce to a function, and the 
right expression will be given to the function as its 
actual argument.  Application is left associative. 

(a  b c) , ( ( a  b) e ) .  

Definitions bind expressions to variables. The 
scope of the bound variables is the entire (body) in 
which the variables are defined. Mutual recursive 
function can be defined, as the variables will be visi- 
ble to the expressions defining all other variables. It 
is an error if the definitions at the begining of a body 
define the same variable more than once. 

The syntax of a definition follows. 

(define (variable) (body}) 
(define ((variable0} (variable1) . . .  ) (body}) 

In the first instance, the variable is bound to 
the expression ((body}) .  In the second instance, 
(variable0) is bound the the expression 

(larabda ((variable1) . . .  ) (body}).  

As an example, another equivalent way of writing the 
pairing function of Section 2.2 is 

(define (pair x y z) z x y). 

4 P r o g r a m  Struc ture  

An Alonzo program maps an input stream of charac- 
ters to an output  stream of characters. A stream of 
characters is like a list of characters in that  the glue 
used to hold them together is the pairing function 
of Section 2:2. Unlike lists, streams never terminate. 
T ha t  is, a s t ream is always a function which can be 
applied to a function of the form 

(lambda (c s) (body}) ,  

and c will be bound to an expression which reduces to 
a character, and s will be bound to another stream. 

A program is syntactically a (body/,  i.e. a sequence 
of definitions followed by an expression or an appli- 
cation. The output  stream is defined to be the re- 
sult of applying the expression ( (body) )  to the input 
stream. Given an output  stream ~, the output  is 
computed as follows: 

1. Let c be the value associated with reducing the 
expression (o" (lambda (c s)  c ) ) .  

2. If c is not a character, an error must be signaled. 

3. Print c. 

4. Set o" to (o" ( lambda (c s)  s ) ) .  

5. Go to step 1. 

The reduction in step 1 may not pause if the ini- 
tial segment of the input s tream currently available 
is sufficient to allow the computat ion of c. 

5 S tandard  Funct ions  

Standard Alonzo functions are pat terned after many 
essential Scheme procedures defined in [RC86]. 

5 . 1  T y p e  P r e d i c a t e s  

Every object in Alonzo is either an integer, a charac- 
ter, the null list, or a function. Some functions are 
also vectors. 

Reduces one argument and returns true if the 
nt is an integer, otherwise false is returned. 

Reduces one argument and returns true if the 
nt is a character, otherwise false is returned. 

Reduces one argument and returns true if 
the argument is the empty list, otherwise false is re- 
turned. 

Reduces one argument and returns true if the 
argument is a function, otherwise false is returned. 
I v e e r ° r ?  I Reduces one argument and returns true if 
the argument is a vector, otherwise false is returned. 
All vectors are functions. 

5 . 2  I n t e g e r  O p e r a t o r s  

It is an error to apply any function in this subsection 
to non-integral arguments. 
I z e r o ? ,  even? ,  odd?] Each reduces one argument 
and returns true if the argument is zero, even, or 
odd, respectively, otherwise false is returned for any 
other integer. 
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+~id- ,  *, m ~  Each reduces two arguments 
7gtu'7~ls" the sum, difference, product, maximum, 

or minimum, respectively, if both arguments are in- 
tegers. 
~uotient, remainder] Each reduces two argu- 
ments and returns the quotient or remainder, respec- 
tively, such that  for integer i and j with j # 0 

(= i (+ (* j ( q u o t i e n t  i j ) )  
(remainder i j))) ~ lrue. 

] =, <, >, <=, >= ] Each reduces two arguments and 
returns the appropriate boolean value if the first ar- 
gument is equal to, less than, greater than, less or 
equal to, or greater or equal to, respectively, the sec- 
ond argument. 
[ab~] Reduces one argument and returns the magni- 
tude value of the argument. 
] int->char I Reduces one argument and returns the 
character corresponding to the integer, i n t - > c h a r  is 
the inverse of c h a r - > i n t .  Application of i n t - > c h a r  
to an integer which has no corresponding character is 
an error. 

5 . 3  C h a r a c t e r  O p e r a t o r s  

It is an error to apply any functions in this subsection 
to non-characters. 
I char=? ,  char<? ,  char>? ,  char<=?, char>=?] 
Each reduces two arguments and returns the appro- 
priate boolean value if the first argument is equal to, 
less than, greater than, less or equal to, or greater or 
equal to, respectively, the second argument. These 
functions impose a total ordering on the set of char- 
acters. It is guaranteed that  under this ordering: 

® The upper case characters are in order. 

® The lower case characters are in order. 

® The digits are in order. 

® Either all the digits precede all the upper case 
letters, or vice versa. 

• Either all the digits precede all the lower case 
letters, or vice versa. 

] c h a r - > i n t  I Reduces one argument and returns 
the integer representation of a character such that  
the integer ordering is consistent with the charac- 
ter ordering. Tha t  is, for any characters c and d, 
(char=<? c d) has the same boolean value as 

(=< ( c h a r - > i n t  c) ( c h a r - > i n t  d))  

~ - ~  Reduces one argument and returns true if 
that  character is the quit character. Adding the quit 

(body} ::= {definitions)(application>. 
(definitions) ::= ( d e f i n e  (pattern) (body))*. 
(application} ::= {expression> 

l {application} (expression). 
{expression) ::= (variable} I (constant } 

] '{datum) 
1 (quote (datum)) 
] (list {expression)* ) 
] ( v e c t o r  (expression)*) 
1 (larabda ((variable)*) {body)) 
I ({body)).  

{pattern) ::= {variable) 
] ({pattern} {variable)* ) .  

{constant) ::= (integer) I (character) 
] (string). 

{datum} ::= (constant} ] (symbol) 
] ({list)). 

{list} ::= <datum}* 
] {datum}*.  (datum). 

Figure 1: Alonzo Syntax 

character to the output stream may have some imple- 
mentation defined behavior, such as saving an image 
of an Alonzo program or simply exiting. 

5 .4  V e c t o r  O p e r a t o r s  

A vector is a function which when applied to an in- 
teger index i, returns the i-th element of the vector. 
Indexing is zero-based, so legal indices for a vector 
of length n satisfies 0 < i < n. The application of a 
vector to an illegal index is an error. 

[make-vector]  Reduces one argument and if it is the 
non-negative integer n, creates a function which con- 
structs a vector of length n. If the vector constructor 
is applied to n arguments, it reduces each argument, 
and returns an n-vector containing the arguments. 
The application of make-vec tor  to other than a non- 
negative integer is an error. 
] vector-length[ Reduces one argument and if it is a 
I w 

vector, returns its length. Application of this function 
to a non-vector is an error. 

6 Formal  De f in i t i on  

This section provides formal descriptions of what has 
already been described informally in previous sec- 
tions. 

155 



6 .1  S y n t a x  

The complete grammar for Alonzo is given in Fig- 
ure 1. The start  symbol is (body). The termi- 
nal symbols include (variable), (integer), (character), 
(symbol), and (string). The grammer is extended 
BNF in that  (thing)* means zero or more occurrences 
of (thing). 

6 . 2  S e m a n t i c s  

This section provides a formal denotational semantics 
for the primative expressions in Alonzo and a few se- 
lected standard functions. The concepts and notation 
used here are described in [Sto77]. 

6.2.1 A b s t r a c t  S y n t a x  

C E Con integers, characters, and '0  
I E Ide identifiers (variables) 

E E Exp expressions 
A ~ App applications 
B G Bod bodies 
P ~ Pgm = Bod programs 

E ::= C [ I I (larabda (I) B) I (B). 
A ::= E I A E. 
B ::= ( d e f i n e  I B)* A. 
P ::= B. 

6.2.2 Domain  Equations  

C primitive constants 
H C C characters and .L 

p E U = Ide ~ E environments 
a E A = E ~-~ K ~-~ H applicable values 

E V = C + A wlues of computations 
e E E = K ~ H values of expressions 
x E K = V ~ H continuations 
c E S = H x S character streams 

6.2.3 S e m a n t i c  F u n c t i o n s  

C : Con ~ V 
g :  E x p  ~--~ U ~-~ K ~--~ H 

A :  A p p ~--~ U ~--~ K ~--~ H 

B :  B o d  ~-~ U ~-~ K ~--~ H 

P : Pgm~--~ S H S 

The definition of C has been deliberately omitted. 

E[c] = apx.x(c[c]) 
g[I] = Ap~.x(p[I]) 
g[(lambda (I) B)] = A p . f u n c t  ~c .B[B]p[e / I ]  

g[(B)] = BIB] 
f u n c t  = A a x . x ( a  in V) 

A[E] = E[E] 
A [ A  E] = A p . a p p l y ( A [ A ] p ) ( $ [ E ] p )  

apply = A e o q n . e o A u . u  E A ~ (v I A)elX, x_L 

B[A] = A[A] 
B[(define I B) A] = A p . A [ A ] p ~ x ( A e . B [ B ] p [ e / I ] ) / I ]  

B[(de f ine  I1 B 1 ) . . . ( d e ~ i n e  In Bn) A] = 
Ap.t ien 

. 

B[B1]p[e l ,  . . . , , n l h ,  . . . , I,~] 

B [ B n ] p [ q , . . . ,  e n / I 1 , . . . ,  In]) 
A Q . . . e n . A [ A ] p [ q , . . . , e n / I i , . . . , I , ~ ]  

l ien ..~ )~.fiX()tO2.G(~)t61... ~n-61)... (~)i61... 6n .6n ) ) 
I1, • •.,  In must be unique identifiers. 

P0 is an environment containing only the bindings 
for the standard functions. 
P IP ]  = Ao'. app ly (B[B]po ) (  in a )  out  

in = fix(A¢o'.a = .L ~ Ax.x..L, 
f u n c t  Ae. apply (apply  e (a .l. 1)) 

(¢(0 12))) 
out  = f i x ( A t u . u  ~ A --+ ± ,  p u t ( u  [ A)¢) 
put  = A a ¢ . g e t  a = _l_ --~ .L, (get  a ,  a rest  ¢) 
get = A a . a  f i rs t  Au.u  E H ---, u, .L 
f i r s t =  81]'(larabda (x y) x)]po 
rest  = g[( larabda (x y) y)]lpo 

6.2.4 P r i m i t i v e s  

p0[nul l? ]  = f u n c t  Aex . eAu .u  = nul l  ~ t rue  x , f a l s e  x 

t rue  = g[( lambda (x y) x)]p0 
fa lse  = I [ ( l ambda  (x y) y)]P0 

po [ma.ke-vect ors = 

m k v e c ( n )  = 
A q  . . . en X . q  Av l  . . . .  ¢n AUn . vecre fn ul  . . . vn x in V 

vecre f  n = Aul . . .  un. 

f u n c t  Aen . eAv . v  = 0 ~ ~;vl, 

= n - 1 ~ x u n ,  x.l_ 

6.2.5 D e r i v e d  E x p r e s s i o n  T y p e s  

( d e f i n e  ((pattern) (va r i ab l e1 ) . . . )  (body)) 
(define (pattern) 

(lambda ((variable1) . . . )  (body)))  

(larabda () (body)) , ((body))  
(lambda ((variable0) (variable1) . . .  ) (body)) 

, (lambda ((variableo)) 
(larabda((variable~) . . .  ) (body/) )  
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( l i s t )  ~ (quote ())  
( l i s t  {expression0) (expression1) . . . )  

((lambda (x y z) z x y) 
(expression0/ ( l i s t  (expression1) . . . ) )  

( v e c t o r  (expression 1) . . .  (expression,i)) 
(v n (expression1) . . .  (expressionn)) 

where v is the value of make-vector  described in 
Section 5.4. 

(quote (integer)) , (integer) 
(quote (character)) , (character) 
(quote (string)) ) (string) 
(quote (symbol)) ) (list of characters) 
(quote ( . (datum))) 

, (quote (datum)) 
(quote ((datum) (list))) 

) ( ( l a m b d a  (x  y z )  z x y)  
(quote (datum)) (quote ((list)))) 

'(datum) , (quote (datum)) 

(string) , (list of characters) 

A Edi t ing  A l o n z o  Programs  

The syntactic conventions of Alonzo programs are 
much like Scheme's, so editors that are tailored for 
Scheme are automatically tailored for Alonzo. Ex- 
perience has shown that the effective use of Scheme 
pretty printers requires special treatment of condi- 
tionals. The trick is to define i f  as follows, and use 
this i f  for all conditionals. 

( d e f i n e  (if t e s t  cons  alt) 
( t e s t  cons  a l t ) )  
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