I-Structures: Data Structures
for
Parallel Computing

Arvind*
Rishiyur S. Nikhil
Keshav K. Pingalif

TR 87-810
February 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

*

This research was done at the MIT Laboratory for Computer Science. Funding for
this project is provided in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under the Office of Naval research contract N00014-84- K-0099.

*Keshav Pingali was also supported by an IBM Faculty Development Award.

I-Structures: Data Structures for Parallel Computing

Arvind! (MIT)
Rishiyur S. Nikhil! (MIT)
Keshav K. Pingali* (Cornell University)

Abstract

It is difficult simultaneously to achieve elegance, efficiency and parallelism in

functional programs that manipulate large data structures. We demonstrate

this through careful analysis of program examples using three common func-

tional data-structuring approaches— lists using Cons and arrays using Update

(both fine-grained operators), and arrays using make-array (a “bulk” oper-
ator). We then present I-structures as an alternative, defining precisely the

parallel operational semantics of Id, a language with I-structures. We show

elegant, efficient and parallel solutions for the program examples in Id. I--
structures make the language non-functional, but do not raise determinacy is-

sues. Finally, we show that even in the context of purely functional languages,

I-structures are invaluable for implementing functional data abstractions.

1 Introduction .

There is widespread agreement that only parallelism can bring about significant improve-
ments in computing speed (several orders of magnitude faster than today’s supercomput-
ers). Unfortunately, most of the computing models that we are comfortable and familiar
with are based on current von Neumann, sequential architectures, and do not seem exten-
sible in any straightforward way to parallel machines.

Functional languages have received much attention as appropriate vehicles for program-
ming parallel machines, for several reasons. They are high-level, “declarative” languages,
insulating the programmer from architectural details. Their operational semantics in terms
of rewrite rules offers plenty of exploitable parallelism, freeing the programmer from having

0 Authors’ addresses:
t MIT Lab. for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA
{ Dept. of Computer Science, 303A Upson Hall, Cornell University, Ithaca, NY 14850, USA

This research was done at the MIT Laboratory for Computer Science. Funding for this project is provided
in part by the Advanced Research Projects Agency of the Department of Defense under the Office of Naval
Research contract N00014-84-K-0099.

Keshav Pingali was also supported by an IBM Faculty Development Award.

This paper will also appear in the proceedings of the Los Alamos Workshop on Graph Reduction(October
1986) and as M.I.T. CSG Report 269.

to “identify” parallelism explicitly. They are deferminate, freeing the programmer from
details of scheduling and synchronization of parallel activities.

In this paper, we focus on the issue of data structures. We first demonstrate some
difficulties in the treatment of data structures in functional languages, and then propose
an alternative, called “I-structures”. Our method will be to take some test applications,
and compare their solutions using functional data structures, and using I-structures. We
study the solutions from the point of view of

o efficiency (amount of unnecessary copying, speed of access, number of reads and
writes, overheads in construction, efc.),

e parallelism (amount of unnecessary sequentialization), and

e ease of coding.

We hope to show that it is very difficult to achieve all three objectives using functional
data structures.

Since our ideas about I-structures evolved in the context of scientific computing, most
of the discussion will be couched in terms of arrays.! All our program examples are written
in Id, which is a functional language augmented with I-structures. It is the language we
use in our research on parallel architectures. Of course, the efficiency and parallelism of
a program depend on the underlying implementation model. Our findings are based on
our own extensive experience with dataflow architectures— in particular the MIT Tagged-
Token Dataflow Architecture, the centerpiece of our research [3,15]. We have also carefully
studied other published implementations of functional languages. However, it is beyond
the scope of this paper to delve into such levels of implementation detail, and so we conduct
our analyses at a level which does not require any knowledge of dataflow on the part of
the reader. In Section 5, we present an abbreviated version of the rewrite-rule semantics
of Id, which captures precisely the parallelism of the dataflow machine; we leave it to the
intuition of the reader to follow the purely functional examples prior to that section.

While the addition of I-structures takes us beyond functional languages, Id does not lose
any of the properties that make functional languages attractive for parallel machines. In
particular, Id remains a higher-order, determinate language, s.e., its rewrite-rule semantics
remains confluent. In the final section of the paper, we discuss the implications of such
an extension to a functional language. We also show that I-structures are not enough—
there are some applications that are not solved efficiently whether we use functional data
structures or I-structures. This class of applications is a subject of current research.

2 The Test Problems

In this section we describe four small example applications which we use to study functional
data structures and I-structures.

1However, it would be erroneous to infer that our conclusions are relevant only to programs with arrays.

2.1 Example A
Build a matrix with
Ali,jl=1i+j

Note that the computation for each element is independent of all the others.

2.2 Example B (Wavefront)

Build a matrix with:

AL, j]=1

Ali, 1] =1

A[’)]] = A[' - l’j] +A[’ - l’j - 1] + A[')J - 1]
The left and top edges of the matrix are all 1. The computation of each remaining element
depends on its neighbors to the left and above. In a parallel implementation one can thus

imagine the computation proceeding as a “wavefront” from the top and left edges to the
bottom-right corner of the matrix:

1 517

1| 5 25

1| 7| | 25 |
l

2.3 Example C (Inverse Permutation)

This problem was posed to one of us (Arvind) by Barendregt. Given a vector B of size n
containing a permutation of integers 1..n, build a new vector A of size n such that:

A[B[i]] =i
The computation for each of A’s components is independent of the others. (This is called

an inverse permutation because the result A also contains a permutation of 1..n, and when
the operation is repeated with A as argument, the original permutation is returned.)

3

2.4 Example D (Shared Computation)

Build two arrays A and B of size n such that

Ali] = f (ki)
Bli] =g (h i)

such that the h part of the computation for every i’th element of the two arrays is shared.?

This example illustrates shared computation across arrays. Sharing could also occur
across indices in a single array— for example, the computations for A[2i] and A[2i + 1]
may have a common sub-computation. And of course, in other applications the two types
of sharing may be combined.

3 Fine-Grained Functional Data Structure Operations

We begin by looking at two data-structuring operations traditionally found in functional
languages. In Section 3.1, we look at “Cons”, a pairing operation, and in Section 3.2, we
look at “Update”, an operation that specifies a single, incremental change in an array. We
call them “fine-grained” operations because more useful operations such as a vector sum,
matrix multiplication, efc. must be programmed in terms of a number of uses of these
primitives.

3.1 Cons: Simulating Large Data Structures Using Lists

Functional languages have traditionally had a two-place “Cons” constructor as a basic data-
structuring mechanism. Given Cons, one can of course write suitable array abstractions as
a first step towards solving our examples. In this section we quickly reject this as a serious
solution.

A typical representation for arrays using Cons would be to maintain an array as a list
of elements, a matrix as a list of arrays, and so on. An abstraction for a general access to
an array component may be defined as follows:

Def select A i = If (i == 0) Then hd A
Else select (tl1 A) (i-1) ;
Because of the list traversal, selection takes O(n) reads, where n is the length of the array.

Now consider a vector sum, programmed in terms of select:

Def vector_sum A B i = If (i > n) Then nil
Else cons ((select A i) + (select B i))
vector_sum A B (i+1) ;

2Here we use juxtaposition to indicate function application— notation that is common in functional
languages. Application associates to the left, so that “¢f x y” stands for “(£ x) y”.

This function performs O(n?) reads, where a corresponding FORTRAN program would
perform only O(n) reads.

This problem can be mitigated at the expense of ignoring the select abstraction and -

taking advantage of the underlying list representation so that the list-traversing overhead
is not cumulative: ‘

Def vector_sum_2 A B = If (null A) Then nil
Else cons ((hd A) + (hd B))
vector_sum_2 (tl A) (tl1 B) ;

This solution performs O(n) reads (though it is still inefficient because it is not tail-
recursive).

Unfortunately, every new abstraction must be carefully recoded like this because com-
binations of given abstractions are not efficient. For example,

vector_sum_2 A (vector-sum_2 B C)

creates and traverses an intermediate list unnecessarily.

Coding new abstractions efficiently is difficult because the list representation dictates
a preferred order in which arrays should be constructed and traversed, an order that
is extremely difficult to circumvent. Consider one of the most basic array operations:
multiplication of two matrices A and B as described in a mathematics textbook:

Cli, j] = Ali,] o B[*, j]

where o is the “inner-product”. But this requires a traversal of B by column, which is
very inefficient in our list representation. One may propose first to transpose B; but even
a transpose is not easy to code efficiently (we invite the reader to attempt it!), and even if
it were, we still pay the overhead of making an intermediate copy of the matrix.

Finally, the use of a “fine-grained” data-structuring primitive such as Cons places an
enormous burden on the storage allocator because of the large number and frequency of
requests. Note also that in many typical implementations where a Cons cell occupies
twice the storage of a number (for two pointers), the storage requirements for the list
representation of a vector of numbers can be more than twice the storage for the numbers
alone.

For the rest of the paper, we will assume primitives that allocate contiguous storage
for each array, so that there is not much storage overhead, and so that array accesses take
constant time.

3.2 Update: A Functional Array Operator

Instead of simulating arrays using lists, one could provide array operators directly. We
now describe one such set of operators.

An array is allocated initially using the expression

array (1,u)

which returns an array whose index bounds are (1,u), and all of whose locations contain
some standard initial value (call it “nil”).3 '

The expression
update A i v

returns an array that is identical to “A”, except at index “i”, where it contains the value
“y”. Despite its imperative-sounding name, this is a funcfsonal operation— it returns a
new array and does not disturb A.

A component of an array is selected using the expression
A[i]

which returns the value at index “i” from array “A”.

For multi-dimensional arrays, we could nest 1-dimensional arrays, or we could introduce
new primitives such as

matrix ((1li,ui),(1j,uj))
update A (i,j) v
Ali,j]

These operations leave a lot of room for choosing the internal representation of arrays.
In order to achieve constant time access, at the expense of O(n) allocation and update,
we will only look at representations that allocate arrays as contiguous chunks of memory.
Other researchers have looked at implementations based on trees, where selection and
update are both O(log n), and where it is possible to have extensible arrays: Ackerman [1]
studied implementations based on binary trees, and Thomas [7] studied implementations
based on 2-3 trees.

But none of these implementations are adequate in of themselves— they all involve far
too much unnecessary copying and unnecessary sequentialization, as we will demonstrate
in the next section. Thus, they are always considered along with some major compile-time
and/or run-time optimizations to recoup efficiency and parallelism, and these are discussed
in subsequent sections.

3In Id, the comma is an infix tupling operation, so that the expression “e1,...,en"” denotes a n-tuple
whose components are the values of e1l, ..., en respectively.

3.2.1 Copying and Sequentialization of Update

A direct implementation of the “apdate A i v” operator would be:

e allocate an array with the same index bounds as “A”,

“a

e copy all elements from “A” to the result array, except at location “i”,
e store value “v” in location “i” of the result array,

e return the pointer to the result array.
The array selection operation would simply read a memory location at an appropriate
offset from the pointer to the array argument.

Example A will suffice to demonstrate that such a direct implementation is grossly
inefficient. Here is a solution that allocates an array, and then uses (tail-) recursion to
traverse and fill it with the appropriate contents:

Def A = { A = matrix ((1,m),(1,n))
In
traverse A 1 1 } ;

Def traverse A i j =
{ next_A = update A (i,j) (i+j) ;
In
It (j < n) Then traverse next_A i (j+1)
Else If (i < m) Then traverse next_A (i+1) 1
Else next_A } ;

We use the syntax
{ BINDING ... BINDING In EXPRESSION }

for blocks, which are like “letrec” blocks in other functional languages, and follow the usual
static scoping rules.

We prefer to use the following loop syntax to express the tail-recursions:

{ A = matrix ((1,m),(1,n))
In
{For i From 1 To m Do
Next A = {For j From 1 To n Do
Next A = update A (i,j) (i+j)
Finally A}
Finally A}

In the first iteration of the inner loop body, the “A” on the right-hand side refers to its
value in the surrounding scope (in this case, the matrix of “nil”s allocated at the top of
the block). In each iteration of the loop, the phrase “Next A” binds the value of A for the
next iteration. The phrase “Finally A” specifies the ultimate value to be returned at the
end of the iteration.

There are two major difficulties in such a program. The first is its profligate use of
storage. It is clear that, using a direct implementation of update, we would create (mn+1)
arrays, of which only one- the final one- is of interest. Each intermediate array carries
only incrementally more information than the previous intermediate array.

The second criticism of this program is that it over-specifies the order of the updates.
In the problem specification, each element can be computed independently of the others.
However, because of the nature of the update primitive, it is necessary for us to chain all
the updates involved in producing the final value into a linear sequence.

The necessity to sequentialize the updates also affects program clarity adversely— it is
an extra (and unnecessary) bit of detail to be considered by the programmer and reader.
Consider a solution for the wavefront problem (Example B):

{ A = matrix ((1,m),(1,n))
In

{For i From 1 To

Next A = {For

v

Do
From 1 To n Do
If (i = 1) or (j = 1) Then 1
Else A[li-1, j]

+ A[i-1,j-1]

+ Al i ,j-11) ;

Next A = update A (i,j) v
Finally A}

Finally A}

I < B

It takes some careful thought to convince oneself that the above program is correct— that
the array selections in computing “v” actually read previously computed values and not
“nil”, the original contents of A. For example, if the recurrence had been specified instead
as A;_1 ;+A;—1 j+1+A; j+1 (with appropriate boundary conditions), the programmer would
have to realize that the j iteration would have to be reversed to count down from n to
1. This is a great departure from the “declarative” nature of the original recurrence
specification.

3.2.2 Using Reference Counts to Reduce Storage Requirements

Several researchers have recognized that we can use reference counts to improve the effi-
ciency of the update operation. The idea is very simple: assume that associated with each
data structure is a number, called its “reference count” (RC), which counts the number of
pointers to it that are currently outstanding. The RC of a structure is incremented every
time a copy of its pointer is made and decremented every time its pointer is discarded.

If the RC of the argument array is 1 when the update operation executes, there can be -
no other references to the array. The update operation can thus safely be performed in
situ, by destructively writing the value into the existing array and returning a pointer to
the existing array. This is of course much cheaper than allocating and filling a new array.
This solution has been studied carefully in [1]. Unfortunately, except where the program
is written with an artificial sequentialization of array accesses and updates, opportunities
for this optimization occur but rarely in a parallel machine.

We must also consider that every update operation now pays the overhead of checking
the RC. Further, the space and time behavior of the program becomes very unpredictable,
because whether or not the RC is 1 depends on the particular schedule for processes
chosen by the operating system. This can depend, for example, on the current load and
configuration of the machine.*

In [8], Hudak has proposed a technique called “abstract reference counting”, in which a
program is analyzed statically to predict the reference counts of arrays at various program
points (see also [6]). When the analysis predicts that the reference count of the array
argument to an update operation will be one, the compiler generates code to perform an
update in situ.

Hudak’s analysis was performed with respect to a sequential operational semantics,
and relies on the sequential chaining of the collection of update operations. In this regard,
Hudak reports great success in his experiments. We believe that it will be possible to
predict that in our program for Example A, the reference count for each update will
indeed be one; thus exactly one array will be allocated, and all the updates will be done
destructively, resulting in a program as efficient (and as sequential) as its FORTRAN
counterpart!

Another problem is that the analysis can be sensitive to the order in which the pro-
grammer writes his program. Consider a program to compute an array that is identical to
a given array A except that the i’th and j’th elements are exchanged:

1) { vj = Al[j]

2) In { vi=Al[i]
3) In { B = update A i vj
4) In update B j vi }}}

Consider a sequential operational semantics that specifies that the bindings of a block are
executed before the body of the block. Static analysis may then predict that lines 1 and
2 have been completed before executing line 3, and so the reference count of A in line 3
should be 1. Thus the update can be done in place. Similarly, the update in line 4 can
also be done in place. But the programmer could easily have written the program with
lines 2 and 3 exchanged:

1) { vj = A[j] °

4Maintaining RCs at run time also raises other issues which are beyond the scope of this paper, such as
how much additional code/network-traffic there is to maintain RCs; how much contention there is at the RC
field of an array amongst all operations on that array; how atomically to increment/decrement the RC field;
how to avoid races between increment and decrement operations, ete.

3) In { B = update A i vj
2) In { vi = A[i]
4) In update B j vi }}}

The reference count of A in line 3 is no longer 1 because of the outstanding reference in
line 2, and so the update in line 3 cannot be done in place. The update in line 4 can still
be done in place.

Now consider a parallel operational semantics for the language. A precise example of
such a semantics is given in Section 5, but, for now, imagine that the bindings of a block
can be executed in parallel with the body, with sequencing, if any, based only on data
dependencies. All four lines of the program are now initiated in parallel. Since there are
no data dependencies between lines 2 and 3, their order of execution is unpredictable.
Thus, static analysis cannot draw any definite conclusions about the reference count of A

in line 3.

3.2.3 Using Subscript Analysis to Increase Parallelism

We have seen that the nature of the update primitive requires the programmer to sequen-
tialize the sequence of updates in computing an array. Reference count analysis sometimes
determines that these updates may be done in place.

If static analysis could further predict that the subscripts in the sequence of updates
were disjoint, then the updates would commute— they could then all be done in parallel.
Using such analysis on our program for Example A in Section 3.2.1, the compiler could
generate code to perform all the mn updates in parallel.

Subscript analysis has been studied extensively, most notably by Kuck et al. at the
University of Illinois [11,14] and Kennedy at Rice University [2]. Most of this work was done
in the context of vectorizing compilers for FORTRAN. In general, this is an intractable
problem, but in the commonly occuring case where the subscripts are of the form ai +b (a
and b are constants, i is a loop index), subscript analysis can reveal parallelism. However,
there is a significant cost to this analysis, both in terms of compilation speed and in terms
of the effort to develop a compiler.

Compared to FORTRAN, subscript analysis is on the one hand easier in functional
languages due to referential transparency, but on the other hand more difficult because of
dynamic storage allocation.

An example of a program where subscript analysis cannot extract any useful informa-
tion is a solution to Example C, the Inverse Permutation problem:

Def B = { B = array (1,u)
In
For i From 1 To n Do
Next B = update B A[i] i
Finally B } ;

10

In order to parallelize the loop, the compiler needs to know about the contents of A, such
as the fact that it contains a permutation of 1..n. This is in general too much to ask of
compile-time analysis. This situation is not artificial or unusual— it occurs all the time in
practical codes, such as in sorting algorithms that avoid copying large elements of arrays
by manipulating their indices instead, and in Monte Carlo techniques and Random Walks.

3.3 Discussion

We hope we have convinced the reader of the inadequacy of “fine-grained” functional data
structuring mechanisms such as Cons and Update, especially in a parallel environment.
(Some of these problems are solved using the “make-array” primitive discussed in the
next section.)

Writing programs directly in terms of these primitives does not result in very per-
spicuous programs— Cons requires the programmer continuously to keep in mind the list
representation, and update requires the programmer to devise a sequential chaining of
more abstract operations. In both cases, it is advisable first to program some higher-level
abstractions and subsequently to use those abstractions.

Both operators normally involve substantial unnecessary copying of intermediate data
structures and substantial unnecessary sequentialization. It was possible to avoid these
overheads only when the compiler could be assured that a) reference counts were one, and
that b) the subscripts in a chain of updates were disjoint.®* Automatic detection of these
properties does not seem tractable in general.

There is a disquieting analogy with FORTRAN here. Our functional operators force
over-specification of a problem solution, and static analysis attempts to relax unnecessary
constraints. Parallelizing FORTRAN compilers face the same problem, albeit for a different
reason (side effects).

4 Make-Array: A Bulk Functional Data Structure Op-
eration

Many researchers (notably Keller) have proposed a “bulk” array-definition primitive that
treats an array as a “cache” for a function over a rectangular subset of its domain [10,5].
For example, the expression

make-array (1,u) £

where (1,u) is a pair (2-tuple) of integers and £ is a function, returns an array whose
index bounds are (1,u), and whose i’th component contains (£ i). We will often refer
to £ as the “filling function”. A

One can think of the array as a cache for £ because for i within bounds, A[i] returns
the same value as (£ i), but (hopefully) at significantly lower cost.

5Originally, I-structures were functional data structures with these two properties [4].

11

Higher dimensional arrays may be constructed either by nesting arrays, or by general-
izing the primitive. Thus, '

make-matrix ((1i,ui),(1j,uj)) £

produces a matrix where the (i,j)’th component contains £ (i,j). The first argument
is a pair of pairs of integers, and specifies the index bounds of the matrix.

4.1 Example A

We can now readily see the solution for Example A:
Def £ (i,j) =i + j;
Def A = make-matrix ((1,m),(1,n)) £

which is concise and elegant and does not pose any serious problem for an efficient, parallel
implementation.

4.2 Strictness of make-array

Before moving on to the remaining examples, it is worth noting that make-array need not
be strict, t.e., the array may be “returned” before any of the component values have been

filled in.

An eager implementation (such as a dataflow implementation) may behave as follows:
the bounds expression is first evaluated, and storage of the appropriate size allocated.
Then, n independent processes are initiated, computing (£ 1), ..., (£ n) respectively—
each process, on completion, writes into the appropriate location in the array. Meanwhile,
a pointer to the array is returned immediately as the result of the make-array expression.
Some synchronization mechanism is necessary at each array location, so that a consumer
that tried to read some A[i] while it is still empty is made to wait until the corresponding
(£ i) has completed. (Later, we shall see how I-structures provide this synchronization.)

A lazy implementation of make-array may behave as follows: the bounds expression
is first evaluated, and storage of the appropriate size allocated. Each location A[i] is
then loaded with the suspension for (£ i), and the pointer to the array is returned. A
subsequent attempt to read A[i] will trigger the evaluation of the suspension, and the
value will overwrite the suspension.

This kind of non-strictness permits a “pipelined” parallelism in that the consumer of an
array can begin work on parts of the array while the producer of the array is still working
on other parts. Of course, even the Cons and Update operators of Section 3 could benefit
from this type of non-strictness.

12

4.3 Example B (Wavefront)
A straightforward solution that comes to mind immediately for the wavefront example is:

Def £ (i,j) = If (i == 1) or (j == 1) Then 1
Else f (i-1, j)
+ £ (i-1, j-1)
+f£ (i, j-1) ;

Def A = make-matrix ((1,m),(1,n)) £ ;

But this is extremely inefficient because “¢ (i, j)” is evaluated repeatedly for each (i,j),
not only to compute the (i,j)’th component, but also during the computation of every
component to its right and below. (This is the typical exponential behavior of a recursively
defined Fibonacci function.)

The trick is to recognize that the array is a “cache” or “memo” for the function, and to
use the array itself to access already-computed values. This can be done with a recursive

definition for A:

Def £ X (i,j) =If (i ==1) or (j == 1) Then 1
Else X[i-1, j]
+ X[i-1, j-1]
+x[i, j-11 ;

Det g =£f A ;
Def A = make-matrix ((i,m),(1,n)) g;

Here, the function £ is a curried function of two arguments, a matrix and a pair of integers.
By applying it to A, g becomes a function on a pair of integers, which is a suitable argument
for make-matrix. The function g, in defining A, carries a reference to A itself, so that the
computation of a component of A has access to other components of A.

In order for this to achieve the desired caching behavior, the language implementa-
tion must handle this correctly, i.e., the A used in g must be the same A produced by
make-matrix and not a new copy of the definition of A.

Assuming the language implementation handles this correctly, the main inefficiency
that remains is that the If-Then-Else is executed at every location.

Note that in a general recursive definition, it will be impossible to predict statically in
what order the components must be filled to satisfy the dependencies, and so a compiler
cannot “pre-schedule” the computation of the components of an array. Thus, any imple-
mentation necessarily must use some of the dynamic synchronization techniques mentioned
in Section 4.2.

4.4 Example C (Inverse Permutation)

Unfortunately, make-array does not do so well on Example C (Inverse Permutation):

13

Det find i j = If (B[j] == i) Then j
Else find i (j+1) ;

Def f i = find i 1 ;
Def A = make-array (1,n) f ;

The problem is that each (£ i) that is responsible for filling the i’th location of A needs
to search B for the location that contains i, and this search must be linear. Thus, the cost
of the program is O(n?). |

It is possible to come up with a slightly different array primitive that addresses this
problem. Consider

make-array-1 (1,u) £

where each (£ i) returns (j,v), so that A[j] = v, i.e., the “filling function” £ is now
responsible for computing not only a component value, but also its index.® Example C
may now be written: '

Def £ i = B[i],i ;
Def A = make-array-1i (i,n) f ;

Of course, if B does not contain a permutation of 1..n, a run-time error must be detected—
either two (£ i)’s will attempt to write the same location, or some (£ i) will attempt to
write out of bounds.

Note that this new primitive, make-array-1, no longer has the simple and elegant
characterization of make-array as being a “cache” for the filling function— the relation
between the array and the filling function is no longer straightforward. In supplying a
filling function for make-array-1, the programmer must now take care that the indices
computed by £ form a permutation of 1..n. '

4.5 Example D (Shared Computation)

A straightforward solution to the shared computation problem may be written as follows:

Def fh i = £ (h i) ;
Def gh i = g (h i) ;

Def A = make-array (i,n) fh ;
Def B = make-array (i,n) gh ;

6We first heard this solution independently from David Turner and Simon Peyton-Jones, in a slightly
different form— instead of having a filling function £, they proposed an association-list of index-and-value
pairs. This solution is also mentioned by Wadler in [17].

for A and for B.

One possible way out is first to cache the values of (b i) in an array C:
Def C = make-array (i,n) h ;

Def fh i = £ c[i] ;
Def gh i = g C[i] ;

Def A = make-array (i,n) fh ;
Def B = make-array (i,n) gh ;

The drawback is the overhead of allocating, writing, reading and deallocating the interme-
diate array C.

To regain the sharing, one could imagine the following scenario performed by an au-
tomatic program transformer. The two make-arrays are expanded into, say, two loops.
Recognizing that the loops have the same index bounds, they are fused into a single
loop. Within the resulting loop, there will be two occurrences of (h i); this common
sub-expression can then be eliminated.

We believe that this scenario is overly optimistic. It is very easy to modify the example
very slightly and come up with something for which an automatic program transformer
would have no chance at all— for example, by changing or displacing the index bounds of
one array, or by having a sharing relationship that is not one-to-one, etc.

4.6 Discussion

Any functional data-structuring primitive must specify two things: the storage to be al-
located and the contents of that storage. For example, Cons el e2 specifies a two-cell
storage allocation, together with the contents of the two cells.

For a large data structure such as an array, it is obviously not feasible to enumerate
expressions specifying the contents of all the components. Thus, functional primitives
for large data structures must specify a regular way to generafe the contents. Thus,
make-array takes the “filling” parameter £, and sets up n independent processes, with the
i’th process responsible for computing and filling the #’th location.

We saw two problems with this process structure. First, this early binding of the #’th
process to the i’th location could not handle things like the inverse permutation. Second,
there was no convenient way to express shared computation between the filling processes.

The variant make-array-1 solved the first problem, by leaving it up to each of the ¢
processes to decide which index j it was responsible for; but it still did not address the issue
of shared computation, which could only be performed with the overhead of constructing
intermediate arrays or lists. In recent correspondence with us, Phil Wadler has conjectured
that, using the version of make-array-1 that uses association lists of index-and-value pairs

15

together with his “list-less transformer” [16], these problems may indeed be solved without.
any overhead of intermediate lists. We have yet to investigate the viability of this approach.

All the examples we have seen are quite small and simple; even so, we saw that the
first, straightforward solution that came to mind was in many cases quite unacceptable,
and that the programmer would have to think twice to achieve any efficiency at all. The
complications that were introduced to regain efficiency had nothing to do with improving
the algorithms— they were introduced to get around the language limitations.

We are thus pessimistic about relying on a fixed set of functional data structuring
primitives. We have encountered situations where the problems illustrated above do not .
occur in isolation— recursive definitions are combined with shared computations across
indices and across arrays. In these situations, writing efficient programs using functional
array primitives has proven to be very difficult, and is almost invariably at the expense of
program clarity. Perhaps, with so many researchers currently looking at this problem, new
functional data-structuring primitives will emerge that will allow us to revise our opinion.

5 I-Structures

In the preceding discussion of functional data structures, we saw that the source of ineffi-
ciency is the fact that the various primitives impose too rigid a structure on the processes
responsible for filling in the components of the data structure. Imperative languages do
not suffer from this drawback, because the allocation of a data structure (variable declara-
tion) is decoupled from the filling-in of that data structure (assignment). But imperative
languages, with unrestricted assignments, complicate parallelism because of timing and
determinacy issues. I-structures are an attempt to regain that flexibility without losing
determinacy.

In the Section 5.1 we present the operations that define I-structures with an informal
and intuitive explanation.

In Sections 5.2 and 5.3, respectively, we present a precise operational semantics for the
functional subset of Id, and for Id with I-structures. This operational semantics is defined
by a confluent set of rewrite rules and a reduction strategy which may be loosely described
as “Parallel Call-by-Value” or the dataflow rule of computation. It provides a basis against
which to evaluate the efficiency and parallelism of I-structures.

The rewrite rules and the associated reduction strategy of Id are unusual compared to
what experts in functional language may be familiar with. To begin with, they describe
exactly what computations are shared, an issue that can (and usually is) left unspecified
for other functional languages. This allows us then, even for the functional subset of Id, to
describe the dataflow rule of computation, which is a parallel normalizing rule. Further,
this specification of sharing (or exactly how many times an expression is evaluated) is
necessary to preserve confluency in a language with I-structures.

Because of these subtleties, we invite the reader to study Sections 5.2 and 5.3 carefully,
even though they may be skipped at a first reading.

16

5.1 I-structure operations

One can think of an I-structure as a special kind of array, each of whose components may
be written no more than once. To augment a language with I-structures, we introduce
three new constructs.

An I-structure is allocated by the expression
array (1,u)

which allocates and returns an “empty” array whose index bounds are (1,u). I-structures
are first-class values, and they can contain other I-structures, functions, efc. We can sim- .
ulate multi-dimensional arrays by nesting I-structures, but for efficiency reasons Id also
provides primitives for directly constructing multi-dimensional I-structures: |

matrix ((1i,ui),(1j,uj))

and so on.

A given component of an I-structure A may be assigned (written) no more than once,
using a “constraint statement”:

Ali] = v

Operationally, one thinks of this as assigning, or storing the value v into the i’th location
of array A. It is a run-time error to write more than once into any I-structure location—
the entire program is considered to be in error.

Syntactically, the assignment statement appears intermixed with the bindings in a

block.

A component of an I-structure A may be selected (read) using the expression
A[i]

This expression returns a value only after the location becomes non-empty, t.e., after some
other part of the program has assigned the value.

There is no test for “emptiness” of an array location. These restrictions— write-once,
deferred reads, and no test for emptiness— ensure that the language remains determsnate;
there are no read-write races. Thus the programmer need not be concerned with the timing
of a read relative to a write. All reads of a location return a single, consistent value, albeit
after an arbitrary delay.

Semantically, one can think of each location in an I-structure as containing a logical
term. Initially, the term is just a logic variable— it is completely unconstrained. As-
signment to that location can be viewed as a refinement of, or constraint on the term
at that location. This is what motivates our calling it a “constraint statement”. The
single-assignment rule is sufficient to preclude inconsistent instantiations of the initial
logic variable. Of course, the single-assignment rule is not a necessary condition to avoid

17

inconsistent instantiations. We could take the view that assignment is really unification,
and then multiple writes would be safe so long as the values unify. Id does not currently
take this view, for efficiency reasons.

Some machine-level intuition: Conceptually, I-structures reside in an “I-structure mem-
ory” unit. When an allocation request arrives, an array is allocated in free space, and a
pointer to this array is returned. Every location in the array has an extra bit that desig-
nates it as being “empty”.

Every request to read a location of an I-structure (i.e., a selection) is accompanied by
a “tag”, which can be viewed as the name of the continuation that expects the result. The
I-structure controller checks the “empty” bit at that location. If it is not empty, the value
is read and sent to the continuation. If the location is still empty, the controller simply
queues the tag at that location.

When a request to store a value in a location of an I-structure arrives (i.e., an assign-
ment), The I-structure controller checks the “empty” bit at that location. If it is empty,
the value is stored there, the bit is toggled to “non-empty”, and if any tags are queued at
that location, the value is also sent to all those continuations. If the location is not empty,
the controller generates a run-time error.

5.2 Id and its Operational Semantics: the Functional Subset

In this section we give the reader a feel for the parallelism in dataflow execution of Id.
Previously, this has only been described in terms of dataflow graphs, the “machine lan-
guage” of the dataflow machine. Here we describe it in terms of a confluent set of rewrite
rules that capture precisely the behaviour of dataflow graphs. We consider this description
more abstract and probably easier to understand for those already familiar with rewrite
rules. Our description here is necessarily brief— the reader is referred to [13,12,15] for
more comprehensive treatments.

The reader is invited to read this section carefully, as the rewrite rules incorporate
many subtle differences from other execution models for functional languages that we are
aware of.

5.2.1 Syntax

Here is an abbreviated syntax for Id:

PROGRAN ::

FUN-DEF ";" ... ";" FUN-DEF ";" EXPRESSION

FUN-DEF ::= "Def" IDENTIFIER ARG ... ARG "=" EXPRESSION

ARG IDENTIFIER

EXPRESSION ::=
CONSTANT | IDENTIFIER

18

"If" EXPRESSION "Then" EXPRESSION "Else" EXPRESSION
EXPRESSION EXPRESSION

BLOCK
BLOCK = "{" BINDING ";" ... ";" BINDING "In" EXPRESSION "}"
BINDING ::= IDENTIFIER "=" EXPRESSION

i.e., a program is a list of function definitions, and a main expression. The arguments
in function definitions are curried, and the definitions may be recursive and mutually
recursive. Blocks are analogous to the “letrec” construct in other functional languages;
the bindings may be recursive and mutually recursive, they follow the usual static scoping
rules, and the order of bindings in a block is not significant.

For simplicity of exposition here, the bindings in blocks do not include syntactic func-
tion definitions (there are no arguments), so we do not have to worry about dynamically
handling free variables. This is not a serious restriction— we use the technique of lambda-
lifting [9] to “compile out” internal function definitions, leaving programs in the above
standard form.

Since all function definitions occur only at the top (program) level, one can think of
the set of function definitions as a set of combinator definitions, or rewrite rules.

We define the “arity” of a function identifier as the number of arguments in its defini-
tion. This is a syntactic, not semantic attribute. Thus the following two definitions

plus (sqr a) ;
plus (sqr a) b ;

Def £ a
Def g a b

define semantically equivalent functions of two arguments, but have arities 1 and 2 respec-
tively, by virtue of their different syntactic definitions.

Though arity is a syntactic attribute, it determines which expressions are redexes
(rewritable), which in turn affects the definition of “normal forms”, or answers. Thus
(£ 5) is a redex, and so is not in normal form, whereas (g 5) is not a redex, and s in
normal form. This “pattern matching” based on the syntactic definition is fairly standard
in rewrite-rule systems.

We have the usual conventions that

e Applications associate to the left

e Infix expressions “x op y” are syntactic sugar for “opfn x y”, for some known set
of infix operators such as +.

e Parentheses are used for grouping

19

5.2.2 Values
The purpose of a program is to produce a value for the main expression. A value is an
expression in “normal form”. We will use the generic symbol “Vv” to denote a value.

Values include all constants, such as numbers, and the booleans true and false. Values
also include partial applications of the form

f£x1...1xj

where the xi’s are identifiers or values (not general expressions), and the arity of £ is
greater than j. Thus, for example, if g is function of arity 2, then g and (g x) are values,
but (g x y) is not. Similarly, if there is a binding

a = EXPRESSION

then the expression “a” is not a value— its arity (0) is satisfied, and so it is not a partial
application.

These technical definitions of values may seem an over-specification for a functional
language; but they are necessary in a language with I-structures, where we must specify,
for each expression, things like its sharing behavior, how many times it is evaluated, etc.

These values have a one-to-one correspondence with “tokens” in the dataflow machine.

5.2.3 Machine States and Termination
A machine state is described as follows:
E;B; ... ; B

where E is an expression and B’s are bindings. E is called the “main” expression. There
may be zero or more bindings, and their order is not significant.

The initial state of the machine is just

E

i.e., an expression and no bindings, where E is the main expression of the program.

The machine is in its final state when no rewrite rules can be applied anywhere in the
machine, i.e., it is of the form

V ; IDENTIFIER =V ; ... ; IDENTIFIER =V

(all the B’s are quiescent). Note that the main expression may reduce to a value before all
the bindings become quiescent.”

7On our dataflow machine this phenomenon is reflected in the sometimes unnerving behavior that an
answer may by printed long before termination is reported!

20

5.2.4 Rewrite Rules

Each rewrite rule identifies a sub-expression somewhere in the machine state and shows
what that sub-expression reduces to. The sub-expression may occur in E, or in the right-
hand sides of any of the B’s; thus one should imagine all the components of the machine
state executing in parallel.

We use the notation

(e)
E;B; ... ; B

to focus our attention on a sub-expression “e” that occurs somewhere in E or somewhere in
one of the right-hand sides of the B’s, but not within the Then or E1se arms of a condstional
ezpression. Such an “e” is called a redez.

The dataflow rule requires all such redexes to be reduced ultimately. Of course, in a
rea]l implementation only a subset of redexes can be rewritten at any step, and so some
form of fair scheduling is required in order to produce answers.

1) Identifiers may be substituted by values (not expressions!) that they are bound to:

(x)
E;B; ... ;x=V; ; B
4'))
E; B ; s x =V ; ; B

The fact that substitution must wait for the expressions to reduce to values motivates our
characterizing it as a “call-by-value” semantics.

2) Conditionals:

(If true Then E1 Else E2)
E;B; ... ; B

(E1)
E;B; ... ; B

and similarly for the false case.
3) Partial Applications (arity not satisfied):

Suppose the program has a definition
Def £ x1 ... xn = Ebody ;

Then

21

(£ Eargl ... Eargj)
E;B; ... ; B

(£ x1’ ... xj?)
E;B,; ... ; B; x1’” = Eargl ; ... ; xj’ = Eargj

where j < n, and x1’ through xj’ are new identifiers.

As a result of this transformation, the partial application now conforms to the definition
of a value, and so may be passed around and shared (for example, applied to different
remaining arguments). However, by Rule 1, the shared arguments x1 through xj are
evaluated exactly once.

4) Full Applications (arity satisfied):

Suppose the program has a definition
Def £ x1 ... xn = Ebody ;
Then

(f Eargl ... Eargn)
E;B; ... ;B

(Ebody’)
E;B; ... ;B; x1’> =Eargl ; ... ; xn’ = Eargn

where x1’ through xn’ are new identifiers and Ebody’ is an appropriately alpha-renamed
version of Ebody. Note the parallel behavior: the body of the function is evaluated in
parallel with the arguments, but by Rule 1, the arguments are not substituted in the
body until they have reduced to values. This is what motivates the name “Parallel Call-
By-Value”, and demonstrates how non-strict functions can return values before receiving
argument values.

5) Blocks:
({B1 ; ... ; Bn IN EO })
E;B; ... ; B

(E0?)
E;B; ... ;B; B1” ; ... ; Bn’

where EO’ and B1’ through Bn’ use new identifiers for the identifiers bound in the block.

5.2.5 An Example

Consider the following program:

22

Def twice £ x = £ (£ x) ;
twice (plus 5) (2 * 3)

Here is a possible rewrite sequence (in each step we have underlined redex(es) that we have
chosen to rewrite):

twice (plus 5) (2 * 3)

AnAamMA~AAAAAAAAAAAAAAA~AA

f£f1 (f1 x1) ; f1 = plus 6 ; x1 =2 * 3

~a ~a annnan

plus 5 (plus 5 x1) ; f1 = plus 6 ; x1 = 6

plus 5 (plus 5 6) ; f1 = plus 6 ; x1 = 6

AnAanaaan

plus 5 11 ; f1 = plus 5 ; x1 = 6

aaaaaaaaa

16 ; f1 = plus 5 ; x1 = 6

5.2.6 Discussion

It is important to note that Id, with these operational semantics, supports non-strict
functions, but it is eager, not lazy. Given an application (£ x), the body of £ is invoked in
parallel with the evaluation of x. If £ does not need x, it may return a result immediately.
However, x is still computed; it is not left up to £ to “demand” x. Unfortunately, in the
literature, non-strictness is often equated with laziness.

The effect of eager evaluation in producing answers becomes an issue only when an
argument to a function is not used, because resources are used in evaluating it. An extreme
case of this occurs when such an argument computation diverges. Consider the following
program:

Def diverge x = diverge x ;
Def £ y =5 ;
£ (diverge 1)
A correct implementation of Id should print the value 5 even though the program does not

terminate. This issue does not arise in any of the other examples discussed in this paper.

23

Two aspects of the rewrite rules deserve close scrutiny: A) the rewrite rules have been
carefully constructed to ensure that arguments are evaluated exactly once, and B) there is
a qualification that the redex not be within the arms of an I£-Then-Else. In the functional
subset of Id, these affect only the efficiency of the reduction— they avoid wasting machine
resources— and do not affect the outcome of the program. When Id is augmented with
I-structures, these restrictions become semantically necessary.

5.3 Operational Semantics of Id with I-Structures
5.3.1 I-structure Values
We first introduce a notation for I-structure values.
<X1, ..., Xuw>
denotes an I-structure, where the Xi’s are identifiers. One can think of an I-structure value

as a pointer to an array in I-structure memory, with X1...Xu the names of the locations
in the array.

5.3.2 Rewrite Rules for I-structure Operations
There are two new rewrite rules for L-structures:
array (vi,v2)
<Xvi, ..., Xv2>
where v1 and v2 are integer values, and Xv1, ..., Xv2 are new identifiers. Note that this

rewrite rule has a characteristic never found in functional languages, but common in logic
programming languages— new variables are introduced on the right-hand side. ‘

The rule
<x1, ..., Xu>[v]
XV
specifies the selection of one of the locations of the I-structure value. For a minor technical

reason having to do with termination, the identifiers inside an I-structure value are never
substituted by their values.

24

5.3.3 An Example

Consider the following program:

Def pair x y = { a = array (0,1) ;

alo] = x ;

al1] = y
In

al;

pair 5 (pair 6 7)

Here is a possible rewrite sequence (some of the machine state descriptions take two
lines, and we have omitted introducing identifiers for function arguments that are already

values):

pair 5 (pair 6 7) °

aaaaaaaaaaaaaaaaa

{a=array(0,1); a[0]=5 ; a[1l=y1 IN a} ; yi1 = pair 6 7

————————

{a=array(0,1); al0]=5 ; a[1]l=y1 IN a} ;

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

——————————

aaaaaaaaaa

al ; a1=<X0,X1> ; ai[0]=56 ; ai[1]l=y1 ;

~a ~an ~an

yil=a2; a2=<Y0,Y1> ; a2[0]=6 ; a2[1]=7

~a ~a aan

<X0,X1> ; a1=<X0,X1> ; <X0, X1>[0]=5 ; <X0,X1>[1]=y1 ;

aaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaa

<X0,X1> ; a1=<X0,X1> ; X0=5 ; X1=<Y0,Y1> ;
y1=<Y0,Y1>; a2=<Y0,Y1> ; Y0=6 ; Yi=7

Note that the resulting I-structure value <X0,X1> appears before termination. On the

dataflow machine, an I-structure descriptor (pointer) is printed before termination. If the -

25

user subsequently queries the zero’th element (say) of the I-structure, the component value
will be fetched (corresponding to dereferencing X0 to the value 5).

The astute reader may ask: since computation may go on after a value is printed, what is
to be made of a run-time error that then occurs? There is no problem of determinacy here—
a program with a run-time error is considered to have the value “T”, the “inconsistent”
element at the top of the semantic domain. A value printed out before termination is to
be considered as an approximation to the final value; a run-time error only refines this
approximation to T.

5.4 The Programming Examples

The assignment statement is the simplest form of a constraint statement, and this can be
generalized into compound constraint statements.

By embedding assignments in loops, we can now also have loops that behave purely as
constraint statements, by omitting the “Finally e” clause.

A function “€” may not return any value of interest— it may contain only constraint
statements. A call to such a function is itself a constraint statement, using the syntax

Call £ x

Constraint statements— assignments, constraint loops, constraint calls— appear inter-
mixed with the bindings in a block or loop-body.

Let us now see how our programming examples would be expressed using Id with
I-structures.

5.4.1 Example A

The first example is straightforward:

{ A = matrix ((1,m),(1,n)) ;
{For i From 1 To m Do
{For j From 1 To n Do
Ali,jl =i +j 3}
In
A}

Recall that the loop is a parallel construct, so in the above program, the loop bodies
can be executed in any order— sequentially forwards, as in FORTRAN, or all in parallel,
or even sequentially backwards! :

The matrix A may be returned as the value of the block as soon as it is allocated.
Meanwhile, m x n loop bodies execute in parallel, each filling in one location in A. Any
consumer that tries to read A[i,j] will get its value as soon as the corresponding loop
body completes.

26

5.4.2 Example B (Wavefront)

{ A = matrix ((1,m),(1,n)) ; N
{For i From 1 To m Do
Ali, 1] =11} ;
{For j From 2 To n Do
Al1,51 =11} ;
{For i From 2 To m Do
{For j From 2 To n Do
Afi,j] = Ali-1,j] + Ali-1,j-1] + A[i,j-1] }}
It
i}

The matrix A may be returned as the value of the expression as soon as it is allocated.
Meanwhile, all the loop bodies are initiated in parallel, but some will be delayed until
the loop bodies to their left and top complete. Thus a “wavefront” of processes fills the
matrix.

Note that we do not pay the overhead of executing an If-Then-Else expression at
each index, as in the functional solution.

It is worth emphasizing again that loops are parallel constructs. In the above example,
it makes no difference if we reverse the index sequences:

{For i From m Downto 2 Do
{For i From n Downto 2 Do ...}}

The data dependencies being the same, the order of execution would be the same. This is
certainly not the case in imperative languages such as FORTRAN.

5.4.3 Example C (Inverse Permutation)

{ A = array (1,n) ;
{For i From 1 To n Do
A[B[il]]l =i }
In
A}

The array A may be returned as the value of the expression as soon as it is allocated.
Meanwhile, all the loop bodies execute in parallel, each filling in one location. If B does
not contain a permutation of 1..n, then a run-time error will arise, either because two
processes tried to assign to the same location or because some process tried to write out
of bounds.

27

5.4.4 Example D (Shared Computation)

{ A = array (1,n) ;
B = array (1,n) ;

{For i From 1 To n Do
z=hi; '

Ali]

B[i]

T z;
gzl
In

A,B}

The arrays A and B may be returned as the value of the expression as soon as they are
allocated. Meanwhile, all the loop bodies execute in parallel, each filling in two locations,
one in A and the other in B. In each loop body, the computation of (h i) is performed
only once.

6 Using I-structures to Implement Array Abstrac-
tions

From the point of view of programming methodology, it is usually desirable for the pro-
grammer first to implement higher-level array abstractions and subsequently to use those
abstractions.

6.1 Functional Array Abstractions

As a first example, we can implement the functional make-array primitive:

Def make-array (l,u) £ = { A = array (1,u) ;
{For i From 1 To u Do
A[i]l = £ i }
In
Al ;

Note that there is all the parallelism we need in this implementation. The array A can
be returned as soon as it is allocated. Meanwhile, all the loop bodies execute in parallel,
each filling in one component. Any consumer that attempts to read a component will
get the value as soon as it is filled. It is likely that even if we stick to a purely functional
language and supply make-array as a primitive, some such I-structure-like implementation
mechanism will be necessary to achieve this parallelism.

Similarly, here is an efficient, parallel implementation for make-matrix:

Def make-matrix ((1i,ui),(1j,uj)) £ =
{ A = matrix ((Qi,ui),(1j,uj)) ;

28

{For i From 1i To ui Do
{For j From 1j To uj Do
Ali,jl = £ (i,5) }}
In
A} ;

A functional vector sum:

Def vector_sum A B = { 1l,u = bounds A ;
C = array (1,u) ;
{For i From 1 To u Do
c[i] = a[i] + B[i] }
In
c1l};

Again, the solution has all the parallelism we need. The array C is returned as soon as it is
allocated. Meanwhile, independent processes execute in parallel, each computing one sum
and storing it in one location in C.

The functional make-array-1 primitive:

Def make-array-1 (1,u) £ =
{ A = array (1,u) ;
{For i From 1 To u Do
j,v=1=1i;
Aljl = v }
In
A} ;

A primitive to make two arrays in parallel:

Def make-two-arrays (1,u) £ =
{ A = array (1,u) ;
B = array (1,u) ;
{For i From 1 To u Do
va,vb = £ i ;

A[i] = va ;
B[i] = vb }
In
A,B} ;

We leave it as an exercise for the reader to use make-two-arrays to produce an elegant
solution to the shared computation problem (Example D).

It is clear that, with I-structures in ihe language, it is straightforward for the program-
mer to implement any desired functional array abstractions— the solutions are persplcuous
efficient, and there is no loss of parallelism.

29

6.2 Non-Functional Array Abstractions

It has been our experience that functional abstractions are not the only ones that lead
to compact, elegant programs. Consider the following (non-functional) “array-filling” ab-

straction:

Def £ill A ((1i,ui),(1j,uj)) £ =
{For i From 1li To ui Do
{For j From 1j To uj Do
Ali,j]l = £ (i,)}} ;

which fills a rectangular region of the given matrix A. Our wavefront program can then be
written as follows: '

{ A = matrix ((1,m),(1,n)) ;
border (i,j) =1 ;
interior (i,j) = Ali-1,j] + A[i-1,j-1] + A[i,j-1] ;
Call £ill A ((1,m),(1,1)) border ;
Call f£il1l1 A ((1,1),(2,n)) border ;
Call £ill A ((2,m),(2,n)) interior
In
A}

Of course, for more efficiency, we could define special abstractions for filling in horizontal
or vertical regions:

Def £ill_col A ((li,ui),j) £ = {For i From 1i To ui Do
Ali,jl1 = £ (4,70} ;

Def £ill_row A (i,(1j,uj)) £ = {For j From 1j To uj Do
Ali,j1 = ¢ (1,7)} ;

and use them to fill the borders of our matrix.

7 Limitations of I-structures

While we believe that I-structures solve some of the problems that arise with functional
data structures, we have frequently encountered another class of problems for which they
still do not lead to efficient solutions.

Consider the following problem: we are given a very large collection of generators (say a
million of them), each producing a number. We wish to compute a frequency distribution
(histogram) of these values in, say, 10 intervals. An efficient parallel solution should
allocate an array of 10 “accumulators” initialized to 0, and execute as many generators
as it can in parallel. As each generator completes, its result should be classified into an

30

interval j, and the j’th accumulator should be incremented. It does not matter in what
order the accumulations are performed, so there are no serious determinacy issues, except
the following synchronization requirement: there is a single instant when the resulting

histogram is ready (i.e., available to consumers)— it is ready when all the generators have

completed. To avoid indeterminacy, no consumer should be allowed to read any location
of the histcgram until this instant.

A second example: In a system that performs symbolic algebra computations, consider
the part that multiplies polynomials. A possible representation for the polynomial

ao+ a1z + axz? + asz>... + a,z"

would be an array of size n + 1 containing the coefficients ao, ..., a,. To multiply two
polynomials A and B of degree n together, we need first to allocate an array of size 2n,
with each location containing an “accumulator” initialized to 0; then, for each j, initiate
(j+1) processes to compute agx b;, @; Xbj_1, ..., a; xbo; as each of these processes completes, .
its result should be added into the j’th accumulator. The order of the accumulation at
any index does not matter.

The synchronization requirement here is more complex. A consumer for a location in
the result array may read it as soon as the j + 1 processes attached to it have completed;
this may occur before other locations are ready. Contrast this with the histogram example
where the entire array became available to consumers at a single instant.

These problems cannot be solved efficiently either with any of the functional data
structures that we have seen so far, or with I-structures. There are two fundamental

problems to be addressed:

1. How to model the accumulators. With I-structures and functional data structures,
once a location in an array has a value, it cannot be updated at all, even though the
update occurs in a safe, structured manner.

2. How to express the termination of the accumulation. In the histogram example, the
termination was a global condition. In the polynomial example, termination is tied
to each location.

We are currently studying some proposed solutions to this problem.®

8 Conclusion

In this paper, we have studied the issue of data structures for parallel computing. We
saw that with functional data structures, it can be difficult simultaneously to achieve
efficiency, parallelism, and program clarity. We showed that I-structures go a long way
towards solving this problem.

8In [17], Wadler has proposed yet another functional array operation to handle such “accamulation”
problems. This construct combines an association-list of index-and-value pairs, together with a reduction
operator to specify the array. We do not yet know what are the implementation issues for this construct.

31

Further, it is clear that whether or not I-structures are available in the programming
language, something like I-structures are needed at the machine level to implement func-
tional primitives such as make-array, in order that they have maximum parallelism— the
read/write synchronization mechanism seems fundamental.

The introduction of any non-functional feature (such as I-structures) into a functional

language is not without cost— the language loses referential transparency, with all the
attendant implications on the ability to reason about programs, do program transforma- -
tions for optimization, efc. In the case of I-structures, the loss of referential transparency

is evident— this program

{ a = array (1,10)
In
a, al}

is not semantically equivalent to this program

array (1,10), array (1,10)

t

Even so, it is still much easier to reason about programs with I-structures than it is to
reason about programs in unconstrained imperative languages, because of the absence of
timing issues.

A functional language with I-structures can be made referentially transparent by adopt-
ing a “relational” syntax (like logic programming languages) rather than a functional one.
Referential transparency is lost in Id because the “array” construct allocates an array with-
out naming it. To fix this, we first replace it with a new construct called “array_bounds”.
Array allocation is then achieved by the constraint statement:

array_bounds (x) = (1,u)

which instantiates “x” to be an array with bounds “(1,u)”. The array is thus not allocated
anonymously.

But this is not enough; functional abstraction still allows us to produce anonymous
arrays:

Def alloc (1,u) = { array_bounds (x) = (1,u)
Inx } ;

To prevent this, abstraction (indeed all constructs) must be converted to a relational form.
For example, a procedure cannot return a value explicitly; rather, it must take an additional
argument which it instantiates to the returned value. The alloc procedure would be thus
be written as follows:

Def rel_alloc (1,u) x = { array_bounds (a) = 1,u ;
x=al}

32

For example, the invocation “rel_alloc (1,10) a” will instantiate “a” to an array of

size 10. Further, to specify that “a” is a “place-holder” argument rather than a value -

passed to rel_alloc, we must annotate it appropriately, say with “=”. The invocation
must therefore be written as “rel_alloc (1,10) “a”. ' '

By adopting this annotated relational syntax, we believe that we could achieve referen-
tial transparency, at the cost of complicating the syntax considerably. We are unconvinced
that this is a useful thing to do.

Because I-structure operations compromise referential transparency, as a matter of pro-
gramming style we strongly encourage the programmer to use only functional abstractions
wherever possible. A good Id programmer will separate the program into two parts— a
part that defines convenient functional data-structure abstractions in terms of I-structures,
and the rest of the program that uses only those abstractions and does not explicitly use
I-structures. The latter part of the program is then purely functional, and amenable to all
the tools available to manipulate functional languages.

However, to permit efficient parallel implementation of those functional data structure
abstractions, I-structures are indispensible, and must be available in the language. As we
have argued above, it does not seem possible to define new abstractions entirely in terms
of functional primitives without loss of efficiency and parallelism; but as shown in Section
6, I-structures make this absolutely straightforward.

Acknowledgements: Vinod Kathail, who wrote the first Id compiler, brought to light
many of the subtle issues on copying and parallelism, and was instrumental in clarifying our
understanding of rewrite rules. The current Id compiler, written by Ken Traub, has been
invaluable in testing our ideas. K. Ekanadham of IBM first explored the use of I-structures
to program high-level abstractions.

References

[1] William B. Ackerman. A Structure Memory for Data Flow Computers. Master’s
thesis, Technical Report TR-186, MIT Lab. for Computer Science, Cambridge, MA
02139, 1978.

[2] J.R. Allen and K. Kennedy. PFC: A Program to convert FORTRAN to Parallel Form.
Technical Report MASC-TR82-6, Rice University, Houston, TX, March 1982.

[3] Arvind and David Ethan Culler. Dataflow architectures. In Annual Reviews in Com-
puler Science, pages 225-253, Annual Reviews Inc., Palo Alto, CA, 1986.

[4] Arvind and Robert E. Thomas. I-structures: An Efficient Data Type for Parallel
Machines. Technical Report TM 178, Computation Structures Group, MIT Lab. for
Computer Science, Cambridge, MA 02139, September 1980.

[5] Henk Barendregt and Marc van Leeuwen. Functional Programming and the Language
TALE. Technical Report TR 412, Mathematical Institute, Budapestlaan 6, 3508 TA
Utrecht, The Netherlands, 1985.

33

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Driscoll, N. Samak; D. Sleator, and R. Tarjan. Making data structures persis-.
tent. In Proc. 18th Annual ACM Symposium on Theory of Computing, Berkeley, CA,
pages 109-121, May 1986.

Kim P. Gostelow and Robert E. Thomas. A view of dataflow. AFIPS Conference
Proceedings, 48:629-636, June 1979.

Paul Hudak. A semantic model of reference counting and its abstraction. In Proc.
1986 ACM Conf. on Lisp and Functional Programming, MIT, Cambridge, MA,
pages 351-363, August 1986.

Thomas Johnsson. Lambda lifting: transforming programs to recursive equations. In
Springer-Verlag LNCS 201 (Proc. Functional Programming Languages and Computer
Archstecture, Nancy, France), September 1985.

Robert M. Keller. FEL (Function Equation Language) Programmer’s Guide. Techni-
cal Report AMPS Technical Memorandum No. 7, University of Utah, Department of
Computer Science, April 1983.

David J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence
graphs and compiler optimizations. In Proc. 8th ACM Symp. on Principles of Pro-
gramming Languages, pages 207-218, January 1981.

Rishiyur S. Nikhil. Id Nouveau Reference Manual Technical Report (Forthcoming),
Computation Structures Group, MIT Lab. for Computer Science, Cambridge, MA
02139, 1987.

Rishiyur S. Nikhil, Keshav Pingali, and Arvind. Id Nouveas. Technical Report CSG
Memo 265, Computation Structures Group, MIT Lab. for Computer Science, Cam-
bridge, MA 02139, July 1986. '

David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for super-
computers. Commaunications of the ACM, 29(12), December 1986.

Kenneth R. Traub. A Compiler for the MIT Tagged Token Dataflow Architecture. -
Master’s thesis, Technical Report TR-370, MIT Lab. for Computer Science, Cam-
bridge, MA 02139, August 1986. -

Philip Wadler. Listlessness is better than laziness: lazy evaluation and garbage collec-
tion at compile time. In Proc. 1984 ACM Conf. on Lisp and Functional Programming,
Austin, TX, pages 45-52, August 1984.

Philip Wadler. A new array operation for functional languages. In Proceedings of the
Graph Reduction Workshop, Santa Fe, New Mezico, October 1986, 1987.

34

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif

