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This paper is a demonstration of a semantics-directed compiler generator. We focus on the part of a 
compiler between syntax analysis and code generation. A language is specified by adding semantic 
rules in a functional notation to the syntax of the language. Starting with a small sublanguage of 
while statements, statement constructs of the C programming language are added in stages. Using a 
small ad hoc code generator, a compiler is automatically constructed from the semantics. The 
semantic description is analogous to a syntax-directed construction of a flow diagram for a program. 
By analogy with grammars and parser generators, minimal knowledge of the underlying theory is 
required. 

For the control flow aspects of languages, efficient compilers can quickly be generated. 
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1. INTRODUCTION 

T h i s  p a p e r  focuses  on  t h e  p a r t  o f  a c o m p i l e r  b e t w e e n  s y n t a x  a.nalysis  a n d  code  
g e n e r a t i o n .  W e  d e m o n s t r a t e  t h a t  e f f ic ien t  c o m p i l e r s  c a n  q u i c k l y  b e  g e n e r a t e d  for  
t h e  c o n t r o l  f low a s p e c t s  o f  t y p i c a l  l anguages .  S t a r t i n g  in  S e c t i o n  3 w i t h  a l a n g u a g e  
c o n t a i n i n g  c o n d i t i o n a l  a n d  whi le  s t a t e m e n t s ,  we  g r a d u a l l y  add :  b r e a k  a n d  con-  
t i n u e  s t a t e m e n t s  ( S e c t i o n  5), r e s t r i c t e d  go tos  t h a t  do  n o t  j u m p  in to  t h e  b o d i e s  o f  
whi le  o r  c o n d i t i o n a l  s t a t e m e n t s  (Sec t ion  6), go tos  t h a t  can  go a n y w h e r e  ( S e c t i o n  
7), a n d  a s w i t c h  s t a t e m e n t  ( S e c t i o n  9). W i t h  t h e  a d d i t i o n  o f  two  v a r i a n t s  o f  t h e  
whi le  s t a t e m e n t  in  S e c t i o n  8, t h e  f ina l  l a n g u a g e  wil l  c o n t a i n  a l l  t h e  s t a t e m e n t  
c o n s t r u c t s  o f  t h e  C p r o g r a m m i n g  l a n g u a g e  [27]. (No  k n o w l e d g e  o f  C is a s s u m e d ;  
C is j u s t  a c o n v e n i e n t  veh ic l e  s ince  i t  h a s  s t a t e m e n t  t y p e s  f o u n d  in a n u m b e r  o f  
o t h e r  l anguages . )  T h e  a c t u a l  spec i f i c a t i on  f r o m  w h i c h  a c o m p i l e r  h a s  b e e n  
g e n e r a t e d  is shown,  a l o n g  w i t h  s o m e  i n d i c a t i o n  o f  h o w  t h e  g e n e r a t i o n  t a k e s  p lace .  
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By analogy with parsing, a specification can be constructed with minimal knowl- 
edge of the underlying theory. 

There is every indication that the approach used in this paper will extend to 
other aspects of compiling. Control flow is a convenient starting point since it is 
a common denominator for many languages. 

1.1. Structure of a Compiler 

Compilation starts with lexical and syntactic analysis, because source programs 
have to be read and understood, and ends with code generation, because object 
code has to be produced. It therefore comes as no surprise that  available compiler 
development tools are aimed largely at constructing lexical analyzers [25, 30], 
syntax analyzers (too numerous to enumerate), and code generators (e.g., [13, 
15, 20]). 1 

Speaking very generally, compilers have the following structure. The output of 
syntactic analysis is an internal representation of the syntax of the program in 
which issues such as precedence of operators have been sorted out. This internal 
representation will be called the abstract syntax of the program. 2 Various so- 
called "semantic routines" then walk up and down the abstract syntax, carrying 
out checks and collecting information that  is used to guide subsequent code 
generation. Much of the meaning of a programming language is embedded in 
these semantic routines. 

This paper explores an alternate approach to compiling. Instead of embedding 
the semantics of a language into routines we specify the semantics precisely and 
mechanically generate a compiler from the specification. The flexibility afforded 
by this approach is evident from the fact that a sequence of six sublanguages of 
increasing complexity will be compiled. Additions to a language are made by 
changing a specification and remaking the compiler, with no reprogramming 
being necessary. This approach is also efficient. 

1.2. Formalizing Control Flow 

The term "control flow" dates back at least to Goldstine and von Neumann who 
conjure up visions of flow: "[The computing instrument] will, in general, not scan 
the coded sequence of instructions linearly. It may jump occasionally forward or 
backward, omitting (for the time being, but probably not permanently) some 
parts of the sequence, and going repeatedly through others" [21]. Computing 
instruments perform basic operations; the flow of control through a program 
determines the sequence in which the basic operations of the program are 
performed. 

The meaning of a sequence of operations can be given by focusing not on the 
operations themselves, but on their effect on the state of a machine. Mathemat- 
ically, the meaning of control flow can be specified by composing the functions 
for the basic operations [42, 46, 44, 22]. If fl and f2 represent the state transfor- 

1 The extensive literature on compiler writing can be accessed either through the surveys tha t  have 
appeared from time to time [3, 8, 16, 28], or through books on the subjects [4, 9, 23, 31]. 

UNIX is a t rademark of Bell Laboratories. 
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Fig. 1. Logical organizat ion of a semant ics -d i rec ted  compiler  generator .  T h e  do t ted  box shows  the  
user  interface. For  a language L, t he  lexical and  syntac t ic  analyzers  are  cons t ruc ted  f rom the  
specifications Ltok.r and  Lsem.d, respectively.  Ltok.r conta ins  regular  express ions  and  the i r  t rans la-  
tions, while Lsem.d conta ins  denota t ional  semant ic  rules. T h e  combina t ion  of d2y and  Yacc cons t ruc t s  
a syntax-di rec ted  translator:  a p rogam prog.L is t rans la ted  into a directed g raph  represen t ing  i ts  
semant ics  ~prog.L~. T h e  reducer t r ans fo rms  t he  graph  represen ta t ion  of  ~prog.L] into an  equiva len t  
more  usable  g raph  representa t ion.  T h e  code generator l inearizes and  pr in ts  the  g raph  representa t ion .  
A similar  figure appears  in [43]. Chr i s t i ansen  and  Jones  [14] use  different  tools, bu t  the i r  logical 
organization ha s  m u c h  in c o m m o n  wi th  the  above. 

mations performed by stynl and stm2, then f2 ° fl represents the state transfor- 
mation function for stml; stm2. 

Goto statements disrupt the connection between syntax and control flow, so 
care is needed in composing functions. An intuitive understanding of the seman- 
tics of statements can be obtained by thinking of the flow diagram associated 
with a program. In an early paper, McCarthy [32] showed that  corresponding to 
each flow diagram is a set of recursively defined functions. The semantics of 
statements is presented in terms of similar functions; it is almost as if we were 
mentally visualizing the flow diagram for a statement construct and then writing 
down the corresponding function. McCarthy's construction is reviewed in 
Section 1.5. 

1.3. Semantics-Directed Compiling 

A denotational semantics is a syntax-directed definition of the meaning of a 
program. For syntax, we will use the notation of the parser generator Yacc [24]. 
Associated with each syntactic rule is a semantic rule that  specifies a function. 
The notation for building functions in Sections 1.4-1.5 has been given the name 
Plumb in order to distinguish it from other notations like DSL [36] and Meta-IV 
[11]. The name Plumb is inspired by "plumbing of functions" which itself comes 
from connecting functions with "pipes" (see Section 1.4). 

Figure I shows the logical organization of a simple semantics-directed compiler 
generator. For a language L, the lexical analyzer is constructed from the specifi- 
cation Ltok.r, which describes the lexical structure of L in terms of regular 
expressions. Lsem.d consists of semantic rules in Plumb embedded into a syntactic 
specification of L in a form acceptable to Yacc. 
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Jus t  as we deal with representa t ions  of number s  r a the r  t h a n  the  number s  
themselves  (3 + 5 is a represen ta t ion  of eight, for instance),  we will deal  not  wi th  
functions, bu t  wi th  representa t ions  of them.  For  example,  the  expression f2 ° fl is 
a concrete represen ta t ion  of the  s tate  t r ans format ion  funct ion for stml; stm2. We 
use the  t e r m  concrete semantics to refer  to an expression represent ing  the  
semant ics  of a construct.  

A p rog ram will be m a p p e d  into its concrete  semant ics  in a syntax-di rec ted  
manne r  by  the combinat ion  of d2y and Yacc. T h e  p rog ram d2y is a preprocessor  
for Yacc: it examines  the  semant ic  rules in Lsem.d and conver ts  t h e m  into a C 
[27] p rogram f ragment  t ha t  will cause a graph  to be built  for a p rog ram in L. T h e  
mapp ing  per formed by  d2y is such t ha t  its ou tpu t  Lsem.y becomes  the  input  of  
Yacc, so the  parser  cum graph builder in Figure 1 is const ructed au tomat ica l ly  
f rom Lsem.d. 

For  the languages in this paper,  the  ou tpu t  of  the  reducer is a directed g raph  
tha t  is very  close to a flow diagram for a given program.  T h e  code genera tor  is a 
simple, quite small, ad hoc p rogram for linearizing the  graph  and print ing it. 

I f  desired, a code opt imizat ion phase  can be inser ted before the  code generator .  

1.4 Pipes for Combining Functions 

Since meta languages  for specifying denota t ional  semant ics  deal  wi th  functions,  
mechan i sms  are needed for composing functions. One such mechanism,  inspired 
by  [37, 48] and pipes in the  UNIX a operat ing sys t em is reviewed here: fur ther  
details m a y  be found in [40]. T h e  mechan i sm is sui ted to expressing the  control  
flow aspects  of sequential  languages. 

In  its s implest  form, the pipe mechan i sm is a fo rm of funct ion composi t ion (the 
symbo l [ i s  called apipe): 

f l g = g o f  

For  example,  given suitable functions fetch and store, the  meaning  of the  
ass ignment  a := b can be wri t ten as 

fetch(b) [store(a). 

The  functions fetch and store will be used in Sect ion 2 to give the  semant ics  of  
expressions with embedded  assignments.  Given identifier a, fetch(a) will m a p  a 
s ta te  s to a value-s ta te  pair  (v, s) where  v is the value of a in s ta te  s. Since 
ass ignments  m a y  occur within expressions, store(a) also re turns  a value-s ta te  
pair: it m a p s  (v, s) to (v, s ' ) ,  where  s '  associates value v with a. 

Prol iferat ion of paren theses  will be avoided by  dropping the  pa ren theses  
around b in fetch(b) and writing fetch b. 4 In  the following equalit ies which define 

3 Some static properties that  are evident from looking at a p rogram-- for  instance, whether  a label 
decorates just  one s ta tement  in a block--are not par t  of the syntax. (Terminology has changed little 
since Feldman and Gries [16] observed that often "syntax is taken to be precisely those aspects of 
language describable in the syntactic metalanguage under discussion.") Attribute grammars [29] have 
been used to formalize static properties of programs [39]. The abstract syntax is more precisely 
formulated as an initial algebra [1]. 
4 The basic notation for representing the function application of expression E1 to E2 is to write E1 
followed by E2, as in EIE2, or El(E2), since parentheses are used only for grouping. Expressions can 
be parsed by consistently associating function application to the left; both f a b and f(a)b are 
equivalent to (f(a))(b). 
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operat ions f e tch  a and s tore  a, s is some state,  v is some value, and  s' = 
s[a := v] is the s ta te  tha t  differs f rom s only a t  a, with s'(a) = v. 

( fe tch a)(s) = (s(a), s) 

(store a)(v, s) = (v, s[a := v]) 

T h e  semant ic  rule for the ass ignment  id := exp is based  on the  above example.  
The  meaning  of expression exp, which we write as ~exp~, is a funct ion f rom s ta tes  
to value-s ta te  pairs; 5 ~id~ is the par t icular  identifier represen ted  by  an instance 
of the syntact ic  var iable  id. T h e  rule is: 

~exp~ I store~id~. 

T h e  next  example  mot iva tes  a more  general  definit ion for pipes. Consider  the  
expression b + c. We would like to make  sense out  of a t e r m  beginning with 

fetch b I f e t ch  c. 

T h e  operat ional  view is t ha t  each funct ion connected by  a pipe is handed  a 
sequence of values. Each  function takes  zero or more  a rguments  f rom the r ight  
end of the  sequence,  places zero or more  resul ts  a t  the  r ight  end of the  sequence,  
and passes the  sequence to the  next  function. In  the  case where  all the  resul ts  of  
one funct ion are a rguments  of  the next, pipes mere ly  compose  functions. 

F rom the definit ion of fe tch,  a given s ta te  s is m a p p e d  by  f e t ch  b to the  
sequence s(b), s. Since f e tch  c takes  only the  s ta te  as an argument ,  the  definit ion 
of pipes ~ is tha t  s(b) is left  untouched,  t ha t  is, s is m a p p e d  by  f e t ch  b I f e t ch  c to 
s(b), s(c), s. 

Note  t ha t  the  values to be added are s(b) and s(c), which are not  a t  the  r ight  
end of the  sequence. We therefore  need to allow + to skip over  the  r igh tmos t  
e lement  in the  sequence, which is denoted  by  I1 instead of I- T h e  expression 

fetch b l f e tch  c I, + 

maps  a s ta te  s to the  sequence s(b) + s(c), s. T h e  semant ic  rule for expl + exp2 is 
similar: 

~expl~ l ~exp2~ I1 + 

CONVENTION. In  order  for sequences of functions connected  by  pipes to be 
precisely defined, we assume tha t  pipes associated to the  left: 

f l g l  h = ( f i g ) I  h, 

with the  obvious extension allowing bo th  I and I1 in place of  I. 

5 In s t anda rd  denota t ional  seman t i c s  [33] it  is usua l  to have  a separa te  seman t i c  funct ion  for each  
kind of mean ing  associa ted wi th  a synta t ic  object. T h u s  the re  m igh t  be two separa te  seman t i c  
funct ions  ~ a n d  .~ for  expressions,  such  t ha t  "f~exp~ is a func t ion  f rom s ta tes  to va lues  and  . ~ e x p ~  
is a funct ion f rom initial s ta tes  to final s tates .  T h e  brackets  ~ and  ~ are t h e n  s imply  "an  aid to t he  
eye" [42]. For  ease of imp lemen ta t ion  we l u m p  all t he  mean ings  of a syntac t ic  object  t oge the r  so 
the re  is only one semant ic  function.  In  this  case, it  does no t  make  sense  to in t roduce  a separa te  n a m e  
for each kind of semant ic  function; we s imply  enclose a syntac t ic  object  be tween  t he  bracke ts  

and  ~ to denote  its meaning .  
T h e  formal  definit ion of pipes [40] keeps t rack  of the  n u m b e r  of  a r g u m e n t s  of  funct ions.  Hav ing  a 

fixed n u m b e r  of  a r g u m e n t s  for a cons t ruc ted  funct ion  facili tates type  checking.  
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C2 

I 

Fig. 2. T he  left and  r ight  exits of  tes t s  correspond to true 
and false, respectively. Cutpoin ts  co . . . . .  ca cu t  all loops in 
the  flow diagram. Since loops have  been cut, any  pa th  f rom 
a cutpoint  leads e i ther  to ano the r  cutpoint ,  or to the  out 
vertex. 

1.5 Semantics of Iteration 

The  basic idea behind the semantics of i terative programs can be i l lustrated by 
reviewing McCar thy ' s  construction of a set of recursive definitions for a flow 
diagram. Consider the flow diagram in Figure 2. Th e  functions f, g, h per form 
some transformations on the state. The  functions b~, b2, b3 are meanings "of 
expressions with side effects, tha t  is, they  map states to value-state pairs. Le t  o u t  
be a function tha t  maps a state to whatever  the result  of the program is. 

The  construction "cuts"  each loop by inserting a d u m m y  vertex called a 
outpoint along some of the edges. For example, there  are four cutpoints,  
Co . . . . .  ca in Figure 2. Associated with each cutpoint  is a function: since no 
confusion can arise, we will use ci to refer to bo th  the cutpoint  and the function 
associated with it. Start ing at  cutpoint  Co in state s, cutpoint  c1 is reached in state 
f (s). Therefore  Co(S) = c l ( f  (s)). Using pipes, 

co  = f l  c~ .  

Conditional branches will be handled using a function tonal, as in 

Cl = b~ I cond(co, c2). 

The  arguments  of cond  are functions for two of the cutpoints: cond(co, c2) is 
itself a function tha t  takes a value-state pair, and applies ei ther  Co or c2 to the 
state, depending on the value. 

The  relationships between the functions for the cutpoints  are 

Co = f l  c, 
c~ = b~ I c o n d ( c o ,  c2) 
C2 = g] b2 ] c o n d ( h  I ca, Cl) 

ca = ba I c o n d ( c 2 ,  o u t ) .  
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The functions ci at the cutpoints are called continuations. The semantics of 
statements will be given by associating a continuation with each program point. 

2. PARTS OF A LANGUAGE DESCRIPTION 

There are three parts to describing a language using Plumb and Yacc: declarations 
that help Yacc build a parser, declarations of basic semantic functions and 
domains, and the syntactic and semantic rules. 

2.1. Declarat ions to Help Yacc 

When Yacc builds a parser from a grammar, the terminal symbols of the grammar 
have to be distinguished from the nonterminals. A terminal is either a single 
character enclosed between a pair of apostrophes: for example, '(', or an identifier 
declared in a %token declaration: 

%token BREAK DO PLUS 

Associativity and precedence of operators (in expressions) can be declared using 
%left and %right, as in 

%right ASS 
%left TIMES MOD 

All identifiers on a %left or %right line have the same precedence and associate 
to the left or right, respectively. Successive %left and %right lines indicate 
increasing precedence; for instance, the assignment operator represented by ASS 
has lower precedence than TIMES and MOD in the above declarations. 

We follow the convention of using upper case letters in terminal names and 
lower case letters in nonterminal names. Each terminal in a %left or %right 
declaration is implicitly declared to be a terminal, so %token declarations will be 
omitted for such terminals. 

The terminals for the sublanguages L1-L6 are all declared by 

%token IF MAIN RETURN WHILE ! MAIN: only procedure in L1 
%token BREAK CONTINUE ! 1_2 has these keywords too 
%token GOTO ! L3: cant jump into ifs etc. 

! L4: can jump into whiles 
%token DO ELSE FOR ! L5 
%token CASE DEFAULT SWITCH ! L6 

%token ID NUM ! identifiers and integers 
%right ASS ! :=  
%left ORB ! I (bitwise or) 
%left ANDB ! & (bitwise and) 
%left EQ NE ! = ~= != 
%left L T G T L E G E  ! <  > < =  > =  
%left PLUS MINUS ! + - 
%left TIMES DIV MOD ! * / % 

%start prog 
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2.2. Basic Operations and Domain Declarations 

The metalanguage Plumb in which semantic rules will be written is a functional 
language in the tradition of ISWIM, with facilities for list manipulation, subsidiary 
expressions, function manipulation, and arithmetic. Except for the pipe construct 
(see Section 1.4), the constructs of Plumb have been borrowed from languages 
like DSL [36]. In this paper, very few of these constructs will be needed. 

Domain declarations in Plumb are very much like domain declarations in 
standard denotational semantics [33]: they can be used to introduce variables, 
literals, and names for unspecified abstract domains all at the same time. Plumb 
allows literal variables to appear free in expressions, as long as their types (i.e., 
domains) have been declared. (Types are not presently checked.) A number of 
such literals will now be introduced. Note that  none of the literals is built into 
Plumb. 

Let us use the symbol V for a domain of values. (For technical reasons we will 
talk of domains rather than sets, but the informal view that  a domain is a set will 
not mislead the reader.) 

The meaning of a language construct is built up from a small collection of basic 
semantic operations. For example, corresponding to the operator symbol + is a 
function plus that  maps pairs of values to a result value. The declaration of 
plus is 
"plus": [V,V]-> V; 

As in [V, V] - >  V, the operator - >  is used to build functions from one domain to 
another, and lists of domains can be grouped between [and]. The grouping for 
A - >  B - >  C is A - >  [B - >  C]. 

The quotes in "p lus"  ident i fy plus as being a l i teral  (i.e., a part icular) member 
of the domain following the colon in the above declaration. (The quotes are 
needed only in declarations.) In contrast, a declaration like 

NUM:  V; 

says that  NUM is a variable representing an element of V. A given instance of 
NUM might represent the value 83, or 571 for that  matter. 

The declarations of arithmetic functions common to the sublanguages in this 
paper are shown below. Note that the domain V of values equals Int, the 
predeclared domain of integers. 

: V = Int; ! values are integers 

"plus","minus","times","div","mod", 

"eq","ne","lt","gt","le","ge", 

"orb","andb": 
[ v , v ] - >  v; 

! basic arithmetic functions 
! 0 is false, nonzero true 
f so relational operators 
T return value 0 or 1, as do 
! bitwise or, and 

NUM: V; 

The simplest expressions are identifers from the domain Ide. States in S 
associate a value with each identifier. Expressions in C have side effects since 
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assignments may occur within expressions. Given a state s, an expression exp will 
yield a value and a modified state. Following Yacc, the symbol $ is used for 
"meaning of." Thus $exp is written instead of the non-ASCII ~exp~ that  is more 
usual in denotational semantics. 

ID: Ide; !identifiers and labels 
s: S = Ide - >  V; ! states 
$exp: S - >  [V,S]; ! side effects may occur 

The meaning of an identifier in an expression will be given using the basic 
function fetch. Since expressions return value-state pairs, as in Section 1.4, fetch 
will take a state, determine the value of the identifier in question, and return the 
value and the unchanged state, load plays a similar role for integer constants. 
The semantics of assignments will be specified using store and popv. 

"fetch": I d e - >  S - >  [V,S]; 
"load": V - >  S - >  [V,S]; 

"store": I d e - >  [ V , S ] - >  [V,S]; 

"popv": V - >  [ ]; 

! returns value+unchanged state 
! load constant 
! assignments occur in exp's so 
! store changes state but does 
! not throw away value 
! throws away value 

Programs in this paper will consist of a single parameterless procedure called 
main. Statements in the C programming language must occur within the body of 
a procedure. A goto may jump anywhere within a procedure, but may not jump 
out of the procedure. A natural unit for specifying semantics is the sequence of 
statements that  constitute a procedure body. 

Like expressions, procedures return values and change the state. For book- 
keeping reasons, we define an abstract domain A of procedure answers, and an 
explicit conversion function return that  converts a value-state pair to an answer. 
The meaning of a procedure is now an element of S - >  A, abbreviated by C, and 
called the domain of continuations. Control leaves a procedure in the C language 
either on execution of a return statement, or an "falling of the end" of the 
procedure. In the latter case, the basic function fall will be used. 

! procedures return values + 
! modified states, as do exp's 

: A; ! abstract domain of answers 

"return": [ V , S ] - >  A; 
c0,cl ,c2, $prog: C = S - >  A; 
"fall": C; 

! eases checks and code gen. 
! continuations 
! fall is the continuation for 
7 an empty program; from fall 
! off the end 

"cond": [C,C] - >  [V,S] - >  A; ! [C,C] are true and 
7 false continuations 

As in Section 1.5, the literal cond is told the program points for the true and 
false exits by being given a pair of continuations; then a value and a state are 
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provided; if the value corresponds to true, then the answer yielded 
by branching to the true exit is returned, otherwise the answer from the false 
exit is returned. 

2.3 Syntactic and Semantic Rules 

In the following rules for expressions, if the code enclosed between { and } is 
deleted, a syntactic specification of expressions will remain. Since the precedence 
of operators has already been specified in the declarations in Section 2.1, prece- 
dence considerations do not enter into the syntactic rules. The semantic rules are 
as discussed in Section 1.4. All operators are treated in the same manner. 

exp :ID 

{ fetch $1D } 
NUM 

{ load $NUM } 
ID ASS exp 

{ $exp ]store $1D } 
'(' exp ')' 

{ $exp } 
exp ORB exp 

{ $exp.1 I $exp.2 I1 orb } 
exp ANDB exp 

{ $exp.1 
exp EQ exp 

{ $exp.1 
exp NE exp 

{ $exp.1 
exp LT exp 

{ $exp.1 
exp GT exp 

{ $exp. 1 
exp LE exp 

{ $exp. 1 
exp GE exp 

{ $exp.1 
exp PLUS exp 

{ $exp. 1 
exp MINUS exp 

{ $exp.1 
exp TIMES exp 

{ $exp.1 
exp DIV exp 

{ $exp.t 
exp MOD exp 

{ $exp.1 

$exp.2 ]1 andb } 

$exp.2 [1 eq } 

$exp.2 [1 ne } 

$exp.2 I1 it } 

$exp.2 I1 gt } 

$exp.2 I1 le } 

$exp.2 I1 ge } 

$exp.2 I1 plus } 

$exp.2 ]1 minus } 

$exp.2 I1 times } 

$exp.2 I1 div } 

$exp.2 I1 mod } 
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3. SEMANTICS OF THE CORE LANGUAGE 

The  semantic rules for s ta tements  can be visualized in te rms of flow diagrams. 
T he  textual  position of a s ta tement  in a program determines  an ent ry  and exit 
point  for it. The  par t  of a flow diagram corresponding to a single s t a tement  can 
be pictured as follows: 

Here  Co and cl are cutpoints  corresponding to the single en t ry  and exit of a 
s ta tement  stm. As in Sect ion 1.5, Co and Cl will also be used for the continuat ions 
associated with the cutpoints; they  are re la ted by  an equat ion of the form 

Co -- $stm(cl).  (3.1) 

tha t  is, $strn, maps  continuations to continuations,  and s ta tements  are contin- 
uation transformers. 

At first, the  expression of co in te rms of Cl as in eq. (3.1) m ay  seem backward,  
but  it allows the semantics of re turn  s ta tements  to be specified. T h e  flow diagram 
for a re turn  s ta tement  by itself is 

return 

e x p  

OC 1 

Since control  never reaches Cl, the cont inuat ion Co does not  depend on cl (i.e., 
$stm in eq. (3.1) is a funct ion that  is independent of  i ts argument cl. To sum up: 
textual  position correct ly identifies the  ent ry  point  of a s ta tement ,  bu t  does not  
always identify the exit point, so it makes  sense to de termine  the cont inuat ion for 
the ent ry  point  in te rms of the  propert ies  of the rest  of the flow diagram. 

3.1 Rules 

The  rules in this subsection will be interspersed with explanatory  text.  
Recall  f rom eq. (3.1) tha t  the meaning $stm of a s t a tement  will be a cont inuat ion 

transformer.  Following Yacc, $$ represents  the meaning of the  nonterminal  on 
the left hand  side of a given syntactic rule. For  example, in a rule like 

stm : IF '(' exp ')' stm 
{ $ $  c l  = ... $s tm ... } 

$$ represents the meaning of the instance of stm on the left-hand side, while 
$stm represents  the meaning of the instance of stm on the r ight-hand side of the 
syntactic rule. The  semantic rules are related to eq. (3.1) as follows: 

cO = $$ cl  
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Return Statement. A procedure returns the value of an expression to its caller 
by means of the return statement: 

stm : RETURN exp ';' 
{ $$ cl  = $exp I return } 

The basic function return, (see Section 2.1), converts the value-state pair 
yielded by the expression into an answer. Note that  the continuation cl  is 
ignored, thereby indicating that, on reaching a return statement, the expression 
is evaluated and the resulting value-state pair becomes the answer of the proce- 
dure. 

Null Statement. For a null statement, $stm in eq. (3.1) will be the identity 
function. The syntax and semantics of null statements are given by 

I,;, 
{ $$ cl  = cl  } 

Expression Statement. As in Section 1.5, the continuations in the following 
diagram are related by c0 = fl c l .  

In an expression statement, the expression is evaluated for its side effect; the 
value of the expression is discarded. The function f in the above diagram 
corresponds to $exp I 1 popv where popv throws away the rule of the expression. 
Note that I1 is needed'since popv must skip over the state to find the value to be 
thrown away. 

I exp ';' 
{ $$ cl = $exp tl popv I cl } 

Conditional Statement. The conditional statement has the syntax 

I IF '(' exp ')' stm 

The expression in a conditional statement is evaluated, and if it is nonzero, the 
substatement is executed. 
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The  semantic rule for conditionals can be read off the diagram. 

{ $$ cl = $exp I cond( $stm cl , cl ) } 

While Statement. The  while s ta tement  has the syntax 

I WHILE '(' exp ')' stm 

The  subs ta tement  strn is executed repeatedly  so long as the value of the expression 
remains nonzero. The  test  takes place before each execution of the s ta tement .  

~ . c0  

cl 

The  relationship between cO and c l  is given by 

cO = $exp I cond( $stm cO, cl  ) 

Equalities like the above in which the identifier on the left  hand  side is defined 
in terms of itself must  be prefixed with ei ther  of the synonymous  keywords cyclic 
and rec. The  semantic rule for while s ta tements  is 

{ $$ cl = 

cyclic cO = $exp I cond( $stm cO, c l  ) 
} 

Compound Statement. A sequence of s ta tements  enclosed between ( and ) can 
be used wherever  a s ta tement  is expected. Th e  rules for a sequence of s ta tements  
s tm_s are given below. 

I'{' stm_s '}' 
{ $stm_s } 

An empty  sequence of s ta tements  is just  like a null s ta tement .  

stm_s : ! empty 
{ $$ c l  = c l  } 

The diagram for a sequence stm_s fo l lowed by strn is as fol lows. 

~cO 

cl 

c2 
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Working backward from the continuation c2, the following rule is obtained. 

I stm_s stm 
{ $$ c2 = $stm_s ( $stm c2 ) } 

3.2 Summary  of Rules 

For completeness, the specification of the core language L1 is shown below. Lines 
beginning with #include cause the contents of a file to be substituted for the line. 
The files ydecs, basics, and exp contain the parts of the specification discussed 
in Sections 2.1-2.3, respectively. The %% lines separate the three parts of a 
language description: declarations to help Yacc; domain declarations; and, the 
syntactic and semantic rules. 

#include "ydecs" 
%% 

#include "basics" 

$stm, $strn_s: C - >  C; 

%% 

#include "exp" 
prog : MAIN '(' ')' stm 

{ $stm fall } 

stm : RETURN exp ';' 

! continuation transformers 

{ $$ c l  = $exp I return } 

{ $$ c l  = c l  } 
exp ';' 

{ $$ c l  = $exp I1 popv I c l  } 
IF '(' exp ')' stm 

{ $$ c l  = $exp I cond( $stm c l  , c l  ) } 
WHILE '(' exp ')' stm 

{ $$ ct = 
cyclic cO = $exp I cond( $stm cO, c l  ) 

} 
'{' stm_s '}' 

{ $stm_s } 

stm_s : ! empty 
{ $$ c l  = c l  } 

I stm_s stm 
{ $$ c2 = $stm_s ( $stm c2 ) } 

4. T R A N S L A T I O N  INTO PLUMB TERMS 

The examples in this section explore the Plumb terms that  arise for the semantics 
of expressions and statements, that  is, for $exp and $stm. We show that  there is 
a close connection between the Plumb terms for $stm and flow diagrams. This 
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close connection allows the code generator to be a simple routine for printing out  
the internal representat ion of these terms in a suitable linearized form. Details of 
the printing routine are given in Appendix A. 

The  examples are based on the following program for comput ing the greatest  
common divisor of two integers. 

main() 
{ 

w h i l e ( m > =  O & n > =  O) 
{ 

r := m; 

w h i l e ( r >  n ) r : =  r - n ;  

if( r = = 0 ) return(n); 
m : =  n ; n : =  r; 

4.1 E x p r e s s i o n s  

The translation of a simple expression like m > = 0 can be read from the semantic  
rules in Section 2.3 to be 

fetch m t load 0 Jl go 

Sequences of pipes associate to the left (see Section 1.4), so the term is paren- 
thesized as 

( fetch m I load 0 ) 11 ge 

When possible, the r e d u c e r  (see Section 1.3) constructs  such a le f t  l i n e a r  form, 
in which the right operand of each pipe operator  is simple. There  is an immediate  
analogy between the left linear form and a sequence of operations, so code 
generation is easier from such a form. For example, the expression 

m > = O & n > = O  

ranslates into the left linear term 

fetch m I load 0 I1 go I fetch n ]load 0 I1 ge I1 andb 

For completeness, the remainder  of this subsection describes how terms are 
converted into left linear form using the associative rule 

f l ( g ] l h )  = ( f ] g ) ] l h .  

A more general associative rule exists, 7 but  is not  needed for the language here. 
A direct translation of m > = 0 & n > = 0 yields the term 

fetch m I load 0 I1 go I( fetch n I load 0 I1 go ) I1 andb 

7 f[i (g ]1 h) = f]~g li+j h, where i, j are integers and Io is just I [40]. Recall that pipes associate to the left, 
so the parentheses around f l lg have been dropped. 
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which can be drawn as 

I1 

/ \  
I andb 

fetch n I load 0 11 ge 

The subdiagram at which the associative rule is applicable shows up more 
clearly in 

I1 

I andb 

/ ' , , ,  
/ ' , , ,  

fetch n I load 0 ge 

The first application of the associative rule ]inea~zes 11 ge; the next application 
linea_H_zes I load 0 leading to the left ]inear form 

f l fetch n IIoad 011 gel 1 andb 

Substituting for f, we get 

fetch m I load 0 I1 go I fetch n I load 0 I1 go I1 andb 

The above example generalizes to show that  all instances of $exp will be put 
into left linear form. In rules containing $exp.1 I $exp.2, the parentheses around 
the left linear form for $exp.2 can be dropped, thereby yielding a left linear form 
for the entire expression. 

4.2 Basic Blocks 

Left linear terms for expressions lead immediately to left linear terms for expres- 
sion statements. For example, if the computation following m := n; has contin- 
uation c, then the term for the assignment is 

fetch n I store m I1 popv I c 

By analogy with the use of basic block in [7] for straight line sequences of 
code, let a left linear sequence of pipes for a statement be called a basic block. 
The entry of a basic block is the root, which will be the last pipe operator in the 
block since the block is in left linear form. 
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root 

/ fetch r , fetch n ,I gt p//~P/~ '~x,~ 
I con. i ¢" 

~rlfetchnllminuslstorer ~I~pop ~ 

\ 
/ \  

cl nil 

Fig. 3. Internal graph representation of the meaning of the statement 

while (r > n) r := r - n. 
Vertices marked with • represent cons vertices that construct a list; nil represents the empty list. 
apply is a Plumb operator that applies the function represented by its left argument to its right 
argument. 

Sometimes basic blocks can be combined to form a single larger one. For 
example, the direct translation of m := n; n :-- r; is formed by substituting an 
appropriate continuation for c in the above translation of m := n;. If cl  is the 
continuation for the computation following the pair of assignments, the following 
is obtained. 

fetch n I store m I1 popv I ( fetch r I store n I1 popv Ic l  ) 
The reducer will automatically linearize this term into a basic block. 

4.3 Edges Between Basic Blocks 

Since Plumb is a functional language, any common subterms can be shared in a 
graph representation. For example, the semantic rule for conditional statements 
requires both the true and the false exits to use the same continuation: in 
operational terms, control flows to the same point from both the true and false 
parts; in the internal graph representation there will be edges to the same vertex. 
This vertex will be the entry point of some basic block. 

In order to share subterms, the reducer applies the associative rule only to 
tree-like subterms, that  is, the rule is not applied if application leads to copying 
of subterms because of multiple edges into subterms. These multiple edges 
become edges between basic blocks. 

Consider for example the statement 

w h i l e ( r >  n ) r : =  r - n ;  

Assuming that  c l  is the continuation for the exit of this while statement, a direct 
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translation yields 

cyclic cO = 

fetch r I fetch n I1 gt I 
cond( fetch r I fetch n I1 minus I store r I1 popv IcO, cl ) 

The internal graph representation of this term is suggested by Figure 3. 

4.4 Conclusion 

The semantics of expressions and statements is such that  the internal graph 
representation of $stm corresponds closely to a flow diagram. Left linear se- 
quences of pipes correspond to boxes in a flow diagram with edges between 
sequences becoming the edges of the diagram, as in Figure 3. 

The process of code generation consists of taking graphs like the one in Figure 
3 and printing them in a suitable linearized form. For the program in the beginning 
of this section, a routine in Appendix A prints the following code (integer labels 
correspond to the start of basic blocks, and are generated from node numbers in 
the internal representation). The lines between labels 81 and 102 are generated 
from the subgraph in Figure 3. Label 81 corresponds to the root of the figure, 
while label 102 corresponds to the continuation cl in the figure. 

140: 

81: 

fetch m store r 
load 0 popv 
ge goto 81 
fetch n 102: fetch r 
load 0 load 0 
ge eq 
andb onfalse goto 128 
onfalse goto 23 fetch n 
fetch m return 
store r 128: fetch n 
popv store m 
fetch r popv 
fetch n fetch r 
gt store n 
onfalse goto 102 popv 
fetch r goto 140 
fetch n 23: fall off the end 
minus 

5. BREAK AND CONTINUE STATEMENTS 

The meaning of break and continue statements can be suggested by the following 
program fragment: a break within the while statement is equivalent to a branch 
to hbrk; a continue to a branch to hcon. 
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while (...) 
{ 

. . ,  

; hcon: 
} 

hbrk: 

The semantics of break and continue statements will be given using implicit 
labels hbrk and hcon that are hidden from the programmer. 

In order to determine where control flows to from a break statement, some sort 
of symbol table is needed to keep track of the continuation for hbrk. Symbol 
tables are formalized by functions called environments that  map labels to contin- 
uations. Labels and identifiers will be lumped into the domain Ide, to avoid 
arbitrary restrictions on the form of labels and identifiers. Environments map 
identifiers to continuations: 

! new declarations to handle break and continue 

"hbrk","hcon": Ide; 

e: Env = I d e - >  C; 
"mte": Env; 

! implicit labels set by 
! break and continue 
! label environments 
! (mt= =empty) environment 

$stm, $stm._s; Env - >  C - >  C; r continuation transformers 

Note that  the meaning of a statement takes an environment as an additional 
parameter so that  the meanings of embedded breaks and continues can be 
determined. Otherwise, few changes to the semantic rules in Section 3 are needed. 
The following rules carry over immediately: 

prog : MAIN '(' ')' stm 
{ $stm mte fall } 

stm : RETURN exp ';' 
{ $$ e cl  = $exp I return } 

I '; '  

{ $ $ e c l  = c l }  
l exp ';' 

{ $$ e c l  = $exp I1 popv I c l  } 
J IF '(' exp ')' stm 

{ $$ e cl = $exp I cond( $stm e cl , cl ) } 

When a break is encountered, a branch to the hidden label hbrk is formalized 
by using the continuation entered into the environment at hbrk: given environ- 
ment e, this continuation is just e(hbrk). 

I BREAK ';' 
{ $$ e cl  = e(hbrk) } 

I CONTINUE ';' 
{ $$ e c l  = e(hcon) } 
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The rule for while statements must now set up environments appropriately: 
the environment e', given by e[bbrk := cl  ][bcon :-- cO], agrees with e everywhere 
except at hbrk and hcon, which it maps to cl  and cO, respectively. This new 
environment e' is used for the body of the while and does not affect any other 
statements. 

[WHILE '(' exp ')' stm 
{ $$ e cl = 

cyclic cO = 
let e ' =  e[hbrk:= c l ] [hcon:= c0]; 
in $exp I cond( $stm e' cO, c l  ) 

} 

The printing routine in Appendix A is used without change while constructing 
a compiler for L2 from the above specification. 

The test program of Section 4 has been modified below to show that  the 
meaning of continue statements is specified correctly. A continue statement has 
been added inside the inner while loop to illustrate that  the environments handle 
nested while statements. If, as expected, the continue statement sends control to 
the beginning of the while loop, then the statement 

junk := garbage; 

should be skipped. The generated compiler for L2 does indeed map the following 
program to the code given at the end of Section 4, (modulo changes in label 
numbers). 

main() 
{ 

while(m>= 0 & n > =  0)  
{ 

r := m; 
while( r > n ) 
{ 

r := r -  n; 
continue; 
junk := garbage; 

} 
if( r = = 0 ) return(n); 
m := n; n := r; 

6. RESTRICTED GOTO STATEMENTS 

There is little difference between the handling of break and goto statements--in 
each case an environment is consulted to determine where control should flow to. 
Explicit labels result in changes to the semantic rules from Section 5. Consider 
for example the semantic rule for while statements in that  section. Since break 
and continue statements must be enclosed within a while statement, the environ- 
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ment needed to determine the meanings of embedded breaks and continues was 
set up as part of the semantics of the while. Explicit labels on the other hand may 
occur anywhere, so something special has to be done to set up the environment 
for goto statements. Clearly, it is necessary to determine the labels that  actually 
occur. The continuations associated with these labels must also be determined. 
The treatment in this section is similar to that  in [22]. 

6.1 Encapsulat ing Labels 

It will simplify the semantic rules if we restrict goto statements from jumping 
into the bodies of conditional or while statements. Let  us introduce the concept 
of a block which is a statement into which gotos cannot jump. The bodies of 
whiles and conditionals will then be blocks. Statements which might contain 
visible labels will be generated by a new nonterminal i_stm, leaving stm to 
generate statements without visible labels. More precisely, 

$stm, $block: E n v - >  C - >  C; ! labels inside stm and block 
! are not visible outside 

The semantic rules for stm are just as in Section 5, so let us include them here. 

stm : RETURN exp ';' 
{ $$ e cl = $exp J return } 

J';' 
{ $ $ e c l  = c l }  

l exp ';' 
{ $$ e c l  = $exp I1 popv Icl  } 

J BREAK ';' 
{ $$ e cl  = e(hbrk) } 

I CONTINUE ';' 
{ $$ e c l  = e(hcon) } 

I GOTO tD ';' 

{ $$ e cl = e($1D) } 
J IF '(' exp ')' block 

{ $$ e c l  = $exp I cond( $block e c l  , c l  ) } 
J WHILE '(' exp ')' block 

{ $$ e cl  = 
cyclic cO = 

let e ' =  e[hbrk:= c l ] [hcon:= c0]; 
in $exp I cond( $block e' cO, c l  ) 

} 

Note that  the rule for goto statements is similar to that  for break and continue 
statements, and that  the bodies of while and conditional statements are blocks. 

6.2 Labeled Sta tements  

It is at the level of a block that  the environment containing continuations for 
labels is set up. Labels visible in the block must therefore be known along with 
their associated continuations {which formalize program points). The meaning of 
I_stm will be twofold: just like $stm, $1 _stm will be a continuation transformer; 
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in addition, $1 _stm will yield a list of visible labels and their  associated contin- 
uations: 

$1_stm, $1_stm_s: ! possibly labeled statements 

E n v - >  C - >  [C,LC*]; ! C in [C,LC*] is as in $stm; 
! LC* contains visible labels 
! in I_stm +their continuations 

: LC = [Ide,C]; f label-continuation pairs 
list: LC*; 

The  semantic rules for I_stm are as might  be expected. T h e  list of label- 
continuation pairs f rom an unlabeled s ta tement  is empty.  When  a label is 
encountered,  a new label-continuation pair is added to the existing list using the 
Plumb operator  cons.  In a sequence of s ta tements  the lists of the elements  of the 
sequence are concatenated  using the P lumb opera tor  cat. 

I_stm : stm 
{ $$ e cl  = 

let 

I_stm_s 

in 
} 

l ID  ':' I_stm 
{ $$ e c l  = 

let 

in 
} 

I ' { '  I._stm_s 'y 
{ $1_stm_s } 

: ! empty 
{ $$ e c l  = 

let 

in 
} 

I I_stm_s Lstm 
{ $$ e c2 = 

let 

in 
} 

cO = $stm e c l  ; 
list = O; 
( cO, list ) 

p = $1_stm e c l ;  
cO = p.1; 
list = ($1D,cO) cons p.2; 
( cO, list ) 

cO = c l ;  
list = O; 
( cO, list ) 

q = $1._stm e c2; 
c l  = q.1; 
p = $1_.stm_s e c l  ; 
cO = p.1; 
list = p.2 cat q.2; 
( cO, list ) 
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Fig. 4. The dashed line indicates that list is the same as the 
list of label-continuation pairs at the top of the figure, updl 
is a Plumb operator for updating a function with a list of 
pairs. Vertices marked with • represent cons vertices that 
construct a list; nil represents the empty list. Vertices labeled 
b~, b2, and b3 abbreviate subgraphs with edges entering and 
leaving as shown. 

6.3 Example 

T h e  fo l lowing  p r o g r a m  f r a g m e n t  wil l  b e  u s e d  to  s h o w  h o w  t h e  e n v i r o n m e n t  is s e t  

u p  for  go to  s t a t e m e n t s .  

main() 
{ 
LI: 
L2: 

U := V; 
W := X; 
if (p) goto L1; 
y : = z ;  
if (q) goto L2; 

} 
S u p p o s e  t h a t  a n  e n v i r o n m e n t  e '  c o n t a i n i n g  a p p r o p r i a t e  c o n t i n u a t i o n s  for  l a b e l s  

h a s  a l r e a d y  b e e n  d e t e r m i n e d .  T h e n  t h e  c o n t i n u a t i o n  for  t h e  e n t i r e  p r o g r a m  is 
g iven  b y  t h e  n o d e  l a b e l e d  bl in  t h e  fo l lowing  d i a g r a m .  T h e  s y m b o l s  bl, b2, a n d  b3 
a re  p l a c e h o l d e r s  for  t h e  t h r e e  bas i c  b l o c k s  t h a t  t h e  t e r m  for  t h e  p r o g r a m  wil l  
have .  N o t e  t h a t  t h e  m e a n i n g s  o f  t h e  go to  s t a t e m e n t s  a r e  d e t e r m i n e d  b y  a p p l y i n g  
t h e  e n v i r o n m e n t  e '  to  t h e  l a b e l  gone  to.  

bl 
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The suitable environment is determined as shown in Figure 4. At the top of the 
figure is a list of label-continuation pairs. This list will be called a mini-environ- 
ment because it contains label bindings for the current block. At the bottom left 
hand corner is the environment e containing label bindings from outer blocks. 
Labels bindings from the current block have to be entered into e in order to 
determine e'. 

The construction of the environment in Figure 4 takes a little getting used to. 
Perhaps it will help if we show how the environment is used. The updl operator 
is such that  Figure 4 is equivalent to the following diagram in which the 
environment e is updated directly with continuations for the two labels: 
update(e, L1, c) is the same as e[L1 := c]. 

p ~ ~ a l l  

I t  is a simple observation that  the indirect ion through the environment to 
determine the continuations for L1 and L2 can be eliminated; the reducer, (see 
Section 1.3) ends up wi th  the fol lowing diagram. 

b3"X~all 
Once the compiler is constructed from the specification in this section, the 

output for the above program will be 

44: fetch v 
store u 
popv 

164: fetch x 
store w 
popv 
fetch p 
onfalse goto 256 
goto 44 
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256: fetch z 
store y 
popv 
fetch q 
onfalse goto 23 
goto 164 

23: fall off the end 

6 . 4  Setting up the Environment 

The semantic rule for blocks can be abstracted out of Figure 4. The vertex labeled 
bl represents the continuation for the ]_stm that  constitutes the block. This 
continuation and the list of label-continuation pairs is determined when $i_stm 
is applied to the environment e[list] and the continuation c l ,  which happens to 
be fall in Figure 4. The dotted line indicates that  the definition of list is circular, 
which is to say 

c0,1ist = $1_stm (e[list]) cl 

At present Plumb requires identifiers on the left hand side of a circular 
definition, so the above definition can be rewritten as 

p = $1__stm (e[p.2]) cl  

The following rule for blocks sets up the environment to be used for the block 
body and then yields the continuation for the statements in the block body. 

block : I_stm 
{ $$ e cl = ! setup environment for 

! enclosed labels 
let cyclic p = $1_stm (e[p.2]) c l ;  

cO = p.t; 
in cO 

} 

7. UNRESTRICTED GOTO STATEMENTS 

In a freewheeling atmosphere in which goto statements can jump into the middle 
of while statements there are enough statements with visible labels that  we will 
drop the distinction of the last section between unlabeled and labeled statements: 
once again, stm is the only nonterminal for statements. A goto will be allowed to 
jump anywhere within the main procedure, so the environment for goto state- 
ments will be set up at the level of a program instead of at the block level. $stm 
is declared by 

: LC = [Ide,C]; ! label-continuation pairs 
$stm, $stm_s: Env - >  C - >  [C,LC*]; f like $1_stm in Section 6 

The semantic rule for a program differs slightly from that  of blocks (presented 
in the last section) because the inherited environment and continuation are 
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known to be mte and fall. Rules for statements without visible labels are also 
given here: such statements yield an empty label-continuation pair list. 

prog : MAIN '(' ')' stm 

stm 
} 

: RETURN 
{ 

I ' ; '  
{ 

l exp ';' 

! setup environment for enclosed labels 
let cyclic p = $stm (mte[p.2]) fall; 

cO = p.1; 
in cO 

exp ';' 
$$ e cl  = ( $ e x p l r e t u m ,  0 )  } 

$ $ e c l  = (c l ,  0 ) }  

{ $$ e c l  = ( $exp I1 popv Ic l ,  0 ) } 
I BREAK ';' 

{ $ $ e c l  = ( e ( h b r k ) , 0 ) }  
I CONTINUE ';' 

{ $ $ e c l  = ( e ( h c o n ) , 0 ) }  
I GOTO ID ';' 

{ $ $ e c l  = ( e ( $ 1 D ) , 0 ) }  

A conditional statement is not labeled, but there may be labels within the body 
of the conditional that  have to be propagated. 

I IF '(' exp ')' stm 
{ $$ e c l  = 

let 

in 

p =  $ s t m e c l ;  
cO = $exp I cond( p.1 , c l  ); 
list = p.2; 
( cO, list +) 

A jump into a while loop bypasses the loop test, but otherwise follows the test- 
execute structure of the loop. 

I WHILE '(' exp ')' stm 
{ $$ e c l  = 

cyclic p = 
let 

in 
} 

e ' =  e[hbrk:= cl ] [hcon:= p.1]; 
q = $stm e' p.1; 
cO = $exp I cond( q.1 , c l  ); 
list = q.2; 
( cO, list ) 

Since control flows from the body of a while loop to its beginning, the continua- 
tions for the labels in the body depend on the continuation for the entire whole 

ACM Transact ions  on Programming  Languages  and  Systems, Vol. 5, No. 4, October  1983. 



580 Ravi Sethi 

loop. For this reason, the list of label-continuation pairs is determined along with 
the continuation for the while loop. 

The remainder of the specification is essentially like that  of the language in 
Section 6. 

I ' { '  stm_s '}' 
{ $stm_s } 

l iD  ':' stm 
{ $ $ e  cl  = 

stm_s : ! empty 

let p = $stm e c l ;  
c O =  p.1; 
list = ($1D,cO) cons p.2; 

in ( cO, list ) 

in 
} 

I stm_s stm 
{ $$ e C2 = 

let .q = $stm e c2; 
c l  = q.1; 
p = $stm_s e c l ;  
cO = p.1; 
list = p.2 cat q.2; 
( cO, list ) 

The discussion of environments and the elimination of indirection through the 
environment (see Section 6.3) carries over to unrestricted goto statements. 

8. VARIANTS OF THE WHILE STATEMENT 

One advantage of generating a compiler from a specification is that  it is fairly 
easy to add variants of constructs that  are already in the language. We illustrate 
by adding do and for statements. 

8.1 Do Statements 

The basic difference between do and while statements is that  while statements 
have a test-execute cycle, but do statements have an execute-test cycle. The 
meaning of a do can be explained in terms of the following diagram: 

cl 
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Any breaks within stm transfer  control  to the point  for cont inuat ion c l ,  tha t  is, 
to a point  just  after  the do. Any continues within stm transfer  control  to the point  
for continuation c, tha t  is, to just  before the test. Th e  following relat ionships 
exist between the continuations 

c = $exp ] cond( cO, c l  ) 

cO = 8 ( e [hbrk :=c l ] [hcon:=c]  ) c 

where ~ is the continuation t ransformer  par t  of $stm. T h e  rule is 

I DO stm WHILE '(' exp ')' ';' 

{ $ $ e c l  = 
cyclic p = 

let c = $exp I cond( p.1 , c l  ); 
e ' =  e[hbrk:= c l ] [hcon:= c]; 
$stm e' c in  

} 

8.2 For S ta temen ts  

The  first expression in a for s ta tement  specifies initialization tha t  is per formed 
once on ent ry  to the for; the second specifies a test, as in a while loop; the third 
is executed at  the end of each i terat ion generally to perform incrementat ion.  T h e  
following diagram applies. 

. . . .  ~/ C 

cl 

As usual, a break within stm sends control  to the loop exit, so continuat ion c ,  
is used. A continue on the other  hand  causes the third expression to be evaluated 
before starting the next  iteration, more  precisely, c '  is to be used. 

The  semantic rule first determines the continuat ion c and the list of label- 
continuation pairs; cO is then  determined from c and (cO, list) is re turned.  

I FON '(' exp ';' exp ';' exp ')' stm 
{ $$ e c l  = 

let cyclic p = 
let c' = $exp.3 I1 popv I p.1; 

e ' =  e[hbrk:= c l ] [hcon:= c']; 
q = $stm e' c'; 
c = $exp.2 I cond( q.1 , c l  ); 
list = q.2; 
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in ( c, list ); 
cO = $exp.1 I1 popv I P.1; 
list = p.2; 

in ( c0, list ) 
} 

8.3  Else C lauses  

For completeness, we add else clauses to conditionals. In the following rule, the 
lists of label-continuation pairs from the true and false parts are concatenated to 
take labels from both arms into account. It is assumed that  a label is declared 
only once, so the order in which the lists are concatenated does not matter. The  
question of checks like those for multiply defined labels will be taken up in a 
separate paper. 

I IF '(' exp ')' stm ELSE stm 
{ $$ e c l  = 

let p = $stm.1 e c l ;  
q = $stm.2 e cl ; 
cO = $exp I cond( p.1 , q.1 ); 
list = p.2 cat q.2; 

in ( cO, list ) 
} 

9. SWITCH S T A T E M E N T S  

Switch statements have been saved until the end for a purpose. The compilers 
for C are very careful about the code generated for switches, and the question of 
integrating a special purpose code generator with the approach in this paper 
arises. Appendix B gives a simple-minded routine for generating code for switches. 
The routine fits into the printing routine of Appendix A and can easily be replaced 
by a fancier one. The details are in Appendix B. 

9.1 Informal  Descr ip t ion  of Sw i t ches  

A switch in C is a multiway branch depending on the value of an expression. The 
syntax is 

i SWITCH '(' exp ')' stm 

Substatements within stm may be of the form 

I C A S E  N U M  ':' stm 
I D E F A U L T  ':' stm 

The C reference manual has the following description: 

W h e n  the  switch s t a t e m e n t  is executed,  i ts express ion is eva lua ted  and  compared  wi th  each  
case constant .  If  one of the  case cons tan t s  is equal  to the  value  of the  expression,  control  is 
passed  to the  s t a t e m e n t  following the  m a t c h e d  case prefix. If  no case cons t an t  m a t c h e s  the  
expression,  and  if the re  is a default  prefix, control  passes  to the  prefLxed s t a t emen t .  If no case 
m a t c h e s  and  if the re  is no default  t h e n  none  of the  s t a t e m e n t s  in the  swi tch  is executed.  

c a s e  and  default  prefixes in themse lves  do no t  a l ter  t he  flow of control,  which  con t inues  
un impeded  across  such  prefixes. 

A break in a switch causes  control  to pass  to the  s t a t e m e n t  following the  switch.  [27, p. 203; 
copyright  © 1978, Bell  Te l ephone  Laboratories ,  Inc., r epr in ted  by  permission.]  
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9.2 Case Numbers Are Like Labels 

Case numbers have to be extracted out of a statement in the same manner that  
labels were extracted in Sections 6 and 7. After all, in order to determine if the 
expression value matches one of the case numbers, we have to know what the 
case numbers are. A new domain VC containing case number-continuation pairs 
is therefore introduced. 

: v c  = [v ,c ] ;  
$stm,$stm_s: Env - >  C - >  [C,LC*,VC*]; ! VC* added here 

The only change to the existing rules in Section 8 is that  lists of case number- 
continuation pairs have to be propagated just as lists of label-continuation pairs 
are propagated. We avoid listing the rules here since the final specification is 
given in Appendix C. 

The new rule for case prefixes is similar to that for label prefixes: 

I CASE NUM ':' stm 
{ $$ e cl  = 

let 

in 

p = $stm e cl ;  
c O =  p.1; 
Ic = p.2; 
vc = ($NUM,c0) cons p.3; 
( c0,  Ic, vc ) 

Default prefixes will be handled just like case prefixes: a special-value vdef 
distinct from all other values will be introduced for the purpose. 

"vdef": V; 

I DEFAULT ':' stm 
{ $$ e c l  = 

let 

in 
} 

p =  $ s t m e c l ;  
c O =  p.1; 
Ic = p.2; 
vc = (vdef,c0) cons p.3; 
( cO, Ic, vc ) 

The last rule that  will be discussed here is that for switch statements them- 
selves. Once the list in the domain VG* is constructed, a mechanism is needed for 
finding the case number matching the value of the expression in the switch. We 
abstract the details of this mechanism by defining a basic function switch. In 
addition to the list in V C * ,  swi tch  has to be supplied with the continuation on 
exit from the switch statement since this continuation is used if there is no default 
in the switch body. 

"switch": [VC*,C] - >  [V,S] - >  A; ! VC*: cases + continuations 
! C: used if no default 
! [V,S]: value of exp 
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I SWITCH '(' exp ')' stm 
{ $ $ e c l  = 

let 

in 
} 

e ' =  e[hbrk:=cl]; 
p = $stm e' cl;  
cO = $exp I switch( p.3, cl ); 
Ic = p.2; 
vc = O; 
( cO, Ic, vc ) 

10. DISCUSSION 

10.1 Summary 

Within the limitations of the medium, this paper is a demonstration of a 
semantics-directed compiler generator. All the details of the input specification 
and much of the background information have been shown. Notes on running 
times are given below. 

A language specification consists of: lexical information (not discussed); a 
syntactic specification for the parser generator Yacc [24]; and semantic rules in 
a functional metalanguage called Plumb. In a syntax-directed manner, a program 
in the language being defined can be translated into an expression in Plumb. The 
expression in Plumb is a concrete representation of the semantics of the program 
and is referred to as the concrete semant ics  of the program. 

Compilation is based on the concrete semantics. Informally, the semantics of 
control flow is in terms of a flow diagram--the diagram is actually a functional 
counterpart of the usual flow diagrams. Plumb contains a "pipe" construct for 
combining functions [40] that  permits diagrams to be constructed easily. Central 
to the construction of the diagram is the representation of recursive definitions 
by cycles as in [47, 43] and the static elimination of environments that  associate 
program points with labels. 

A code generator has to be supplied by the compiler writer. A trivial one is 
used in this paper. Specialized code can be inserted if desired (see the handling 
of switch statements in Section 9, for example). Since the concrete semantics of 
a program is essentially a flow diagram, it should be easier to base code optimi- 
zation on the concrete semantics than on the abstract syntax. 

There are two reasons for incrementally specifying the semantics of the 
statement constructs of C. The first is that  it is easier to introduce the concepts 
one by one. The second is to show that  semantics-directed compiler generation 
provides flexibility to a language designer. Consider for example the problem of 
restricting the scope of labels so that  goto statements are more disciplined. In a 
hand-crafted compiler it may not be easy to make the change. The difficulty of 
making the change with a compiler generator can be assessed by comparing the 
specifications in Sections 6 and 7, where restricted and unrestricted goto state- 
ments are considered. 

10.2 Running Times 

Execution times (in seconds on a PDP 11/70) are given relative to the logical 
organization in Figure 1. The times were obtained for the specification in Appen- 
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dix C of all the control flow constructs of C: Lex 8.8; d2y 3.4; Yacc 7.0; C compiler 
(on the outputs of Lex and Yacc, the reducer, and the code generator) 84.1. The 
generated compiler (41,318 bytes long) took less than 0.5 seconds on each of the 
examples in this paper. 

10.3 Influences on the Implementation 

Scott and Strachey closed their seminal paper [42] with the claim that  a 
mathematical semantics will provide a "standard against which to judge an 
implementation." The Semantics Implementation System (sis) of Mosses [36] 
goes further since it translates programs into a concrete semantics and then 
interprets that  concrete semantics. The $EMANOL system [5, 6] is an interpreter 
generator based on operational semantics. 

sis stimulated a lot of work on compiler generation: see for example the papers 
in [26] and the survey [19]. The prospect of generating an implementation from 
any denotational semantics is exciting. Unfortunately, sis is inefficient: "a large 
portion of the inefficiency of sis derives from its method for parsing" [12]. 
Paulson's compiler generator avoids some of these difficulties: a Pascal compiler 
generated by Paulson "is twenty-five times slower than the regular Pascal 
compiler" [38]. Efficient and practical implementations are claimed to have been 
obtained by Raskovsky [41] by starting with a denotational semantics, hand- 
transforming it into an implementation-oriented semantic description, and then 
automatically generating a compiler. For the transformations to apply, the 
starting semantics must follow certain conventions, so the method sacrifices some 
generality. A more modular use of manual assistance occurs in the implementa- 
tions of Gaudel [18] and Christiansen and Jones [14], that  are based on abstract 
data types. See also [10, 17]. 

For some time Mosses [37] has argued that  an algebraic approach would make 
denotational semantics easier to understand and process. In fact, a lot of advice 
has been given on structuring compilers and proving them correct using an 
algebraic approach [35, 2, 37, 48, 14]. This advice has had an indirect influence on 
the present work: Figure 1 is closest to Wand's proposed structure [48]. In 
addition to the overall structure, the metalanguages of Mosses [37] and Wand 
[48] were studied. In [48] clever representations of continuation-style operators 
are used to construct concrete semantics that  looks like machine code. The 
formalization of pipes in [40] allows direct operators to be used in clever repre- 
sentations of continuation semantics. There is also an easy way of translating 
terms involving pipes into more standard continuation-style terms [40]. 

The connection between control flow and continuations dates back to Mc- 
Carthy [32], who constructed recursive equations from flow diagrams as discussed 
in Section 1.5. Although continuations have been rediscovered a number of times, 
Morris [34] and Wadsworth [45] are given the credit for constructing syntax- 
directed rules for determining the continuation for a program. The reverse process 
of doing code generation by translating continuations into control flow is done in 
a fairly ad hoc way in [41]. 

The use of an ad hoc code generator in this paper allows the programs in the 
dotted box in Figure 1 to be used as compiler construction tools. One of the first 
questions that  was asked about this work was, "How are you going to compile 
switches?" As mentioned in Section 9, the compilers for C very carefully generate 
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good code for switches. Rather than compete with each compiler writer's favorite 
compiling technique, the decision was made to provide an opportunity for a 
compiler writer to do the actual code generation. 

A final question raised by the referees concerns code generation for other 
machines. It should be clear from the examples that  the code generated in this 
paper is actually pseudocode for a stack-oriented machine. Similar code is 
produced at an intermediate stage by a number of compilers, so it should not be 
difficult to send the pseudocode in the examples to a "real" code generator that  
worries about the idiosyncrasies of "real" machines. 

1 1. CONCLUSION 

Gaudel's survey of compiler generation [19] ends with: "Finally a last, pragmatic 
and decisive reason is that  even a slow, memory-consuming compiler generator, 
producing correct and reasonably efficient compilers, would be better than several 
man-years of coding a possibly incorrect compiler, provided that  the specification 
method is not too difficult to use." I believe that  the results in this paper show 
that the adjectives "slow" and "memory consuming" can be dropped for the 
control flow aspects of programming languages. 

APPENDIX A. CODE GENERATION 

A routine to print the internal representation of graphs like the one in Figure 3 
must have some knowledge of the internal representation. At the moment no 
attempt has been made to encapsulate the details of the internal representation. 
Experience with writing code generators will be used to guide the design of a 
suitable interface at some future date. 

A1 Nodes 

The  fo l lowing C declarat ion shows the st ructure of  a graph node. 

struct gnode 
{ 

int 

}; 

lab; 
int knd; 
int mark; 
struct gnode *1, *r; 
. . ,  

/* label e.g. PIPE, LIST .... */ 
/* 0-1 for PIPE; id. number .... */ 
/* keep track of visits */ 
/* left and right sOns */ 

Pointers to graph nodes can be declared using gnodep,  itseff declared by 

typedef struct gnode *9nodep; 

There are two useful functions: gp2n(p) converts a pointer p into a unique 
integer; mfathers(p) returns true ff the node pointed to by p has multiple fathers, 
and false otherwise. In the output an instruction label will be generated using 
gp2n(p) ff mfathers(p) returns true. 

While there are node labels corresponding to each construct in Plumb, only a 
few of the label types are needed here. Ugly as the prefix d2 may seem on some 
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of the identifiers below, it keeps the identifiers distinct from the ones a compiler 
writer might want to use. 

d2ELEM. 

d2PIPE. 
d2APP. 
d2LIST. 

The ELEM comes from "element" of a domain. There will be a 
d2ELEM node for each basic function like plus. An identifier is 
generated by adding the prefix d2 to the name of a basic function; 
this identifier has an integer value that  is entered in the knd field of 
the node for the basic function. The C routine putid applied to, say, 
d2plus, puts the characters plus into the standard output. 
The knd field will be 0 or I depending on whether I or 11 is intended. 
For the application of the left son to the right. 
Lists are in right linear form. In cond(c, d), the pair (c, d) will be 
represented as a list containing two d2LIST nodes, with a special node 
pointed to by gnil being the right son of the second list node. 

A2 Printing Routine 

The compiler writer supplies a file d2main.c containing a main routine, and any 
other desired routines, main must first call yyparse, for the parser and reducer to 
place a pointer to the root of the internal graph in the global variable rootp. On 
return from yyparse, the mark field of each node is initialized to d2NO, a negative 
integer. The routine yyerror prints a string in the error output and returns control 
to the caller. 

The routine d2main.c for the languages in Sections 3 and 5-8 is shown below. 
Nodes corresponding to continuations will have their mark field set to d2YES, a 
predefined positive value. An integer label will be printed for a continuation node 
if there is more than one father for the node. Subsequent visits to the marked 
node generate a goto to the integer label. 

main() 
{ 

yyparse0; 
gnprint(rootp); prinff(%n"); 

} 

void gnprint(p) 
gnodep p; 
{ 

if( p->mark != d2NO ) /* happens only for continuations */ 
{ 

printf('Mgoto %d",gp2n(p)); 
return; 

} 
switch(p->lab) 
{ 
default: 

yyerror("unexpected label"); 
break; 
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case d2ELEM: 
if( p ->knd  = = d2fall ) 
{ 

p->mark  = d2YES; 
if(mfathers(p) ) printf("%d:",gp2n(p)); 
printf('~ffall off the end"); 

} 
else 
{ 

} 
break; 

case d2PIPE: 

printf('~t"); putid(p->knd); 

p ->mark  = d2YES; 
if(mfathers(p) ) pdnff("°/od:",gp2n(p)); 
gnprint(p->l);  printf('~n"); gnprint(p->r); 

break; 
case d2APP: 

if( p - > l - > l a b  != d2ELEM) yyerror("misapplication"); 

else if( p - > l - > k n d  = = d2fetch ) 
{ 

prinff('~tfetch "); put id(p->r->knd) ;  
} 
else if( p - > l - > k n d  = = d2store ) 
{ 

prinff('~tstore "); put id(p->r->knd) ;  
} 
else if( p - > l - > k n d  = = d21oad ) 
{ pdnff('~tload %d" ,p ->  r ->knd);  
} 
else if( p - > l - > k n d  = = d2cond ) 
{ 

gnodep truep, falsep; 
truep = p- ->r -> l ;  falsep = p - > r - > r - > l ;  
prinff('~,tonfalse goto %d~n",gp2n(falsep)); 
gnprint(truep); 
if( fa lsep->mark = = d2NO ) 
{ 

if(mfathers(falsep) ) prinff('~n"); 
else printf('~n%d:",gp2n(falsep)); 
gnprint(falsep); 

} 
} 
break; 
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APPENDIX B. CODE FOR SWITCHES 

The list of case number-continuation pairs from the body of a switch has to be 
converted into code for locating the appropriate case. The arguments of the 
switch basic function are the list and the exit continuation to be used if there is 
no default prefix. The following routine makes two passes over the list. If a list 
entry is for the default prefix, then the corresponding continuation is overwritten 
for the exit continuation in def in the routine. Otherwise, a simple test for equality 
of the case number with the expression value is generated. Since an equality test 
pops the values of its arguments, the expression value has to be explicitly copied 
using copyv. The second pass ensures that  the vertices for all continuations are 
visited so that code for them can be generated. 

else if( p-> l ->knd  = = d2switch ) 
{ 

gnodep def, q, t; 
d e f =  p - > r - > r - > l ;  
for( q = p - > r - > l ;  q != gnil; q = q -> r )  
{ 

if( q-> l -> l - -> lab != d2ELEM ); 
else if( q-> l -> l - ->knd != d2vdef ); 
else 
{ def = q - > l - > r - > l ;  

continue; 
} 
pdntf(%tcopyv\n"); 
printf('Mload %~n\teq\n",q-> I -> I -> knd); 
prinff('Montrue goto %~n",gp2n(q-> l ->r-> l ) ) ;  

} 
prinff('~tpopvkn"); 
prinff(%tgoto %d",gp2n(def)); 
for( q = p -> r -> l ;  q l= gnil; q = q -> r  ) 
{ 

t = q - - > l - > r - > l ;  
if( t ->mark  I= d2NO ) continue; 
if(mfathers(t) ) prinff(%n"); 
else printf('~n%d:",gp2n(t)); 
gnprint(t); 

The above routine has to be inserted into d2main.c in Appendix A, right after 
the part for d2cond. A sample program and its output follow. 

main() 
{ 

switch(p) 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983. 



590 • Ravi Sethi 

{ 
case 3: case 1 : 
case 5: 
default: 
case 12: 
} 

a:=b; 
c:=d; break; 
e:=f; 
g:=h; 

295: fetch p popv 
copyv goto 196 
load 3 55: fetch b 
eq store a 
ontrue goto 55 popv 
copyv 120: fetch d 
load 1 store c 
eq popv 
ontrue goto 55 23: fall off the end 
copyv 196: fetch f 
load 5 store e 
eq popv 
ontrue goto 120 244: fetch h 
copyv store g 
load 12 popv 
eq goto 23 
ontrue goto 244 

Clearly a more sophisticated routine can be used instead of the above simple- 
minded routine. 

APPENDIX C. FINAL SPECIFICATION 

#include "ydecs" 
%% 

#include "basics" 

"hbrk","hcon": Ide; 

e: Env = I d e - >  C; 
"mte": Env; 

! implicit labels set by 
i break and continue 
! label environments 
I (mt= =empty) environment 

: LC = [Ide,C]; ! label-continuation pairs 

: VC = [V,C];  ! case number-cont, pairs 
I for switches 

"vdef": V; T special default value 
"switch": [VC*,C] - >  [V,S] - >  A; i VC*: cases + continuations 

! C:  used if no default 
! [V,S]: value of exp 
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$stm, $stm_s: 

%% 

#,include "exp" 
Prog 

stm 

E n v - >  C - >  [C,LC*,VC*]; t Env: used by embedded gotos 
! C: normal exit continuation 
! [C: entry continuation 
! LC*:  visible labels+contin. 
! VC* :  visible cases+cont in.  

: MAIN '(' ')' stm 
{ 

} 

: RETURN exp ';' 

! setup environment for enclosed labels 
let cyclic p = $stm (mte[p.2]) fall; 

cO = p.1; 
in cO 

{ $ $ e c l  = ( $ e x p l r e t u r n , 0 , 0 ) }  
t;, 

{ $$ e cl  = ( c l ,  0, 0 ) } 
exp ';' 

{ $$ e c l  = ( $exp I1 popv Icl, 0, 0 ) } 
BREAK ';' 

{ $ $ e c l  = ( e ( h b r k ) , 0 , 0 ) }  
CONTINUE ';' 

{ $ $ e c l  -- ( e ( h c o n ) , 0 , 0 ) }  
GOTO ID ';' 

{ $$ e c l  = (e($1D), (), 0 ) } 
IF '(' exp ')' stm 

{ $$ e c l  = 
let 

in 
} 

I IF '(' exp ')' stm ELSE stm 
{ $$ e c l  = 

let 

in 
} 

I WHILE '(' exp ')' stm 
{ $$ e c l  = 

cyclic p = 
let 

p =  $ s t m e c l ;  
cO = $exp I cond( p.1 , c l  ); 
Ic = p.2; 
vc = p.3; 
( cO, Ic,  vc ) 

p = $stm.1 e c l ;  
q = $stm.2 e c l ;  
cO = $exp I cond( p.1 , q.1 ); 
Ic = p.2 cat q.2; 
vc = p.3 cat q.3; 
( cO, Ic, vc ) 

e ' =  e[hbrk:= c l ] [hcon:= p.1]; 
q = $stm e' p.1; 
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in 
} 

DO stm WHILE '(' exp ')' ';' 
{ $$ e c l  = 

cyclic p = 
let 

in 
} 

FOR '(' exp ';' exp ';, exp ')' stm 
{ $$ e c l  = 

let cyclic p = 
let 

in 
} 

ID ':' stm 
{ $$ e c l  = 

let 

in 
} 

CASE NUM ':' stm 
{ $ $ e c l  = 

let 

in 
} 

DEFAULT ':' stm 
{ $$ e c l  = 

let 

CO = $exp I cond( q.1 , c l  ); 
Ic = q.2; 
vc = q.3; 
( CO, Ic ,  vc ) 

c = $exp I cond( p.1 , c l  ); 
e ' =  e[hbrk:= c l ] [ hcon :=  c]; 
$stm e' c 

c' = $exp.3 I1 popv I p.1; 
e ' - -  e [hbrk:= c l ] [ hcon :=  c']; 
q = $stm e' c'; 
c = $exp.2 I cond( q.1 , c l  ); 
Ic = q.2; 
vc = q.3; 

in ( c, I c ,  vc ); 
CO = $exp.1 I1 popv I P.1; 
Ic = p.2; 
vc = p.3; 
( CO, I c ,  vc ) 

p = $stm e c l  ; 
CO = p.1; 
Ic = ($1D,c0) cons p.2; 
vc = p.3; 
( cO, Ic ,  vc ) 

p = $stm o c l ;  
CO = p.1; 
Ic = p.2; 
vc = ($NUM,CO) cons p.3; 
( CO, Ic, vc ) 

p =  $ s t m e c l ;  
cO = p.1; 
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strn_$ 

in 
} 

I S W I T C H  '(' exp ')' stm 
{ $$ e c l  = 

lot 

in 
} 

I'{' strn_s 'y 
{ $stm_s } 

: ! empty 

Ic = p.2; 
vc = (vdef,cO) cons p.3; 
( cO, Ic, vc ) 

e ' =  e[hbrk:=cl ] ;  
p = $stm e' c l ;  

cO = $exp I switch( p.3, cl  ); 
Ic = p.2; 

vc = 0; 
( cO, Ic, vc ) 

{ $ $ e c l  = ( c l , 0 , 0 ) }  
[ stm_s stm 

{ $$ e c2 = 
let 

in 
} 

q = $stm e c2; 
c l  = q.1; 
p = $stm_s e c l  ; 
cO = p.1; 
Ic = p.2 cat q.2; 
vc = p.3 cat q.3; 
( cO, Ic ,  vc ) 
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