
Control Flow Aspects of Semantics-Directed
Compiling

RAVI SETHI

Bell Laboratories

This paper is a demonstration of a semantics-directed compiler generator. We focus on the part of a
compiler between syntax analysis and code generation. A language is specified by adding semantic
rules in a functional notation to the syntax of the language. Starting with a small sublanguage of
while statements, statement constructs of the C programming language are added in stages. Using a
small ad hoc code generator, a compiler is automatically constructed from the semantics. The
semantic description is analogous to a syntax-directed construction of a flow diagram for a program.
By analogy with grammars and parser generators, minimal knowledge of the underlying theory is
required.

For the control flow aspects of languages, efficient compilers can quickly be generated.

Categories and Subject Descriptors: D.3.1 [Programmiug Languages]: Formal Definitions and
Theory--semantics; D.3.4 [Programming Languages]: Processors--compilers; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages--denotational semantics

General Terms: Languages

Additional Key Words and Phrases: Compiler generation, mathematical semantics, flow diagrams,
continuations

1. INTRODUCTION

T h i s p a p e r focuses on t h e p a r t o f a c o m p i l e r b e t w e e n s y n t a x a.nalysis a n d code
g e n e r a t i o n . W e d e m o n s t r a t e t h a t e f f ic ien t c o m p i l e r s c a n q u i c k l y b e g e n e r a t e d for
t h e c o n t r o l f low a s p e c t s o f t y p i c a l l anguages . S t a r t i n g in S e c t i o n 3 w i t h a l a n g u a g e
c o n t a i n i n g c o n d i t i o n a l a n d whi le s t a t e m e n t s , we g r a d u a l l y add : b r e a k a n d con-
t i n u e s t a t e m e n t s (S e c t i o n 5), r e s t r i c t e d go tos t h a t do n o t j u m p in to t h e b o d i e s o f
whi le o r c o n d i t i o n a l s t a t e m e n t s (Sec t ion 6), go tos t h a t can go a n y w h e r e (S e c t i o n
7), a n d a s w i t c h s t a t e m e n t (S e c t i o n 9). W i t h t h e a d d i t i o n o f two v a r i a n t s o f t h e
whi le s t a t e m e n t in S e c t i o n 8, t h e f ina l l a n g u a g e wil l c o n t a i n a l l t h e s t a t e m e n t
c o n s t r u c t s o f t h e C p r o g r a m m i n g l a n g u a g e [27]. (No k n o w l e d g e o f C is a s s u m e d ;
C is j u s t a c o n v e n i e n t veh ic l e s ince i t h a s s t a t e m e n t t y p e s f o u n d in a n u m b e r o f
o t h e r l anguages .) T h e a c t u a l spec i f i c a t i on f r o m w h i c h a c o m p i l e r h a s b e e n
g e n e r a t e d is shown, a l o n g w i t h s o m e i n d i c a t i o n o f h o w t h e g e n e r a t i o n t a k e s p lace .

A condensed version of this paper was presented at the SIGPLAN 1982 Symposium on Compiler
Construction, Boston, June 1982.
Author's address: Bell Laboratories, Murray Hill, NJ 07974
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/1000-0554 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983, Pages 554-595.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F69575.357227&domain=pdf&date_stamp=1983-10-01

Control Flow Aspects of Semantics-Directed Compiling 555

By analogy with parsing, a specification can be constructed with minimal knowl-
edge of the underlying theory.

There is every indication that the approach used in this paper will extend to
other aspects of compiling. Control flow is a convenient starting point since it is
a common denominator for many languages.

1.1. Structure of a Compiler

Compilation starts with lexical and syntactic analysis, because source programs
have to be read and understood, and ends with code generation, because object
code has to be produced. It therefore comes as no surprise that available compiler
development tools are aimed largely at constructing lexical analyzers [25, 30],
syntax analyzers (too numerous to enumerate), and code generators (e.g., [13,
15, 20]). 1

Speaking very generally, compilers have the following structure. The output of
syntactic analysis is an internal representation of the syntax of the program in
which issues such as precedence of operators have been sorted out. This internal
representation will be called the abstract syntax of the program. 2 Various so-
called "semantic routines" then walk up and down the abstract syntax, carrying
out checks and collecting information that is used to guide subsequent code
generation. Much of the meaning of a programming language is embedded in
these semantic routines.

This paper explores an alternate approach to compiling. Instead of embedding
the semantics of a language into routines we specify the semantics precisely and
mechanically generate a compiler from the specification. The flexibility afforded
by this approach is evident from the fact that a sequence of six sublanguages of
increasing complexity will be compiled. Additions to a language are made by
changing a specification and remaking the compiler, with no reprogramming
being necessary. This approach is also efficient.

1.2. Formalizing Control Flow

The term "control flow" dates back at least to Goldstine and von Neumann who
conjure up visions of flow: "[The computing instrument] will, in general, not scan
the coded sequence of instructions linearly. It may jump occasionally forward or
backward, omitting (for the time being, but probably not permanently) some
parts of the sequence, and going repeatedly through others" [21]. Computing
instruments perform basic operations; the flow of control through a program
determines the sequence in which the basic operations of the program are
performed.

The meaning of a sequence of operations can be given by focusing not on the
operations themselves, but on their effect on the state of a machine. Mathemat-
ically, the meaning of control flow can be specified by composing the functions
for the basic operations [42, 46, 44, 22]. If fl and f2 represent the state transfor-

1 The extensive literature on compiler writing can be accessed either through the surveys tha t have
appeared from time to time [3, 8, 16, 28], or through books on the subjects [4, 9, 23, 31].

UNIX is a t rademark of Bell Laboratories.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

556 • Ravi Sethi

L]

lea
ana~

xI
cal graph code
, z er builder generator

: :

Fig. 1. Logical organizat ion of a semant ics -d i rec ted compiler generator . T h e do t ted box shows the
user interface. For a language L, t he lexical and syntac t ic analyzers are cons t ruc ted f rom the
specifications Ltok.r and Lsem.d, respectively. Ltok.r conta ins regular express ions and the i r t rans la-
tions, while Lsem.d conta ins denota t ional semant ic rules. T h e combina t ion of d2y and Yacc cons t ruc t s
a syntax-di rec ted translator: a p rogam prog.L is t rans la ted into a directed g raph represen t ing i ts
semant ics ~prog.L~. T h e reducer t r ans fo rms t he graph represen ta t ion of ~prog.L] into an equiva len t
more usable g raph representa t ion. T h e code generator l inearizes and pr in ts the g raph representa t ion .
A similar figure appears in [43]. Chr i s t i ansen and Jones [14] use different tools, bu t the i r logical
organization ha s m u c h in c o m m o n wi th the above.

mations performed by stynl and stm2, then f2 ° fl represents the state transfor-
mation function for stml; stm2.

Goto statements disrupt the connection between syntax and control flow, so
care is needed in composing functions. An intuitive understanding of the seman-
tics of statements can be obtained by thinking of the flow diagram associated
with a program. In an early paper, McCarthy [32] showed that corresponding to
each flow diagram is a set of recursively defined functions. The semantics of
statements is presented in terms of similar functions; it is almost as if we were
mentally visualizing the flow diagram for a statement construct and then writing
down the corresponding function. McCarthy's construction is reviewed in
Section 1.5.

1.3. Semantics-Directed Compiling

A denotational semantics is a syntax-directed definition of the meaning of a
program. For syntax, we will use the notation of the parser generator Yacc [24].
Associated with each syntactic rule is a semantic rule that specifies a function.
The notation for building functions in Sections 1.4-1.5 has been given the name
Plumb in order to distinguish it from other notations like DSL [36] and Meta-IV
[11]. The name Plumb is inspired by "plumbing of functions" which itself comes
from connecting functions with "pipes" (see Section 1.4).

Figure I shows the logical organization of a simple semantics-directed compiler
generator. For a language L, the lexical analyzer is constructed from the specifi-
cation Ltok.r, which describes the lexical structure of L in terms of regular
expressions. Lsem.d consists of semantic rules in Plumb embedded into a syntactic
specification of L in a form acceptable to Yacc.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling • 557

Jus t as we deal with representa t ions of number s r a the r t h a n the number s
themselves (3 + 5 is a represen ta t ion of eight, for instance), we will deal not wi th
functions, bu t wi th representa t ions of them. For example, the expression f2 ° fl is
a concrete represen ta t ion of the s tate t r ans format ion funct ion for stml; stm2. We
use the t e r m concrete semantics to refer to an expression represent ing the
semant ics of a construct.

A p rog ram will be m a p p e d into its concrete semant ics in a syntax-di rec ted
manne r by the combinat ion of d2y and Yacc. T h e p rog ram d2y is a preprocessor
for Yacc: it examines the semant ic rules in Lsem.d and conver ts t h e m into a C
[27] p rogram f ragment t ha t will cause a graph to be built for a p rog ram in L. T h e
mapp ing per formed by d2y is such t ha t its ou tpu t Lsem.y becomes the input of
Yacc, so the parser cum graph builder in Figure 1 is const ructed au tomat ica l ly
f rom Lsem.d.

For the languages in this paper, the ou tpu t of the reducer is a directed g raph
tha t is very close to a flow diagram for a given program. T h e code genera tor is a
simple, quite small, ad hoc p rogram for linearizing the graph and print ing it.

I f desired, a code opt imizat ion phase can be inser ted before the code generator .

1.4 Pipes for Combining Functions

Since meta languages for specifying denota t ional semant ics deal wi th functions,
mechan i sms are needed for composing functions. One such mechanism, inspired
by [37, 48] and pipes in the UNIX a operat ing sys t em is reviewed here: fur ther
details m a y be found in [40]. T h e mechan i sm is sui ted to expressing the control
flow aspects of sequential languages.

In its s implest form, the pipe mechan i sm is a fo rm of funct ion composi t ion (the
symbo l [i s called apipe):

f l g = g o f

For example, given suitable functions fetch and store, the meaning of the
ass ignment a := b can be wri t ten as

fetch(b) [store(a).

The functions fetch and store will be used in Sect ion 2 to give the semant ics of
expressions with embedded assignments. Given identifier a, fetch(a) will m a p a
s ta te s to a value-s ta te pair (v, s) where v is the value of a in s ta te s. Since
ass ignments m a y occur within expressions, store(a) also re turns a value-s ta te
pair: it m a p s (v, s) to (v, s ') , where s ' associates value v with a.

Prol iferat ion of paren theses will be avoided by dropping the pa ren theses
around b in fetch(b) and writing fetch b. 4 In the following equalit ies which define

3 Some static properties that are evident from looking at a p rogram-- for instance, whether a label
decorates just one s ta tement in a block--are not par t of the syntax. (Terminology has changed little
since Feldman and Gries [16] observed that often "syntax is taken to be precisely those aspects of
language describable in the syntactic metalanguage under discussion.") Attribute grammars [29] have
been used to formalize static properties of programs [39]. The abstract syntax is more precisely
formulated as an initial algebra [1].
4 The basic notation for representing the function application of expression E1 to E2 is to write E1
followed by E2, as in EIE2, or El(E2), since parentheses are used only for grouping. Expressions can
be parsed by consistently associating function application to the left; both f a b and f(a)b are
equivalent to (f(a))(b).

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

558 Ravi Sethi

operat ions f e tch a and s tore a, s is some state, v is some value, and s' =
s[a := v] is the s ta te tha t differs f rom s only a t a, with s'(a) = v.

(fe tch a)(s) = (s(a), s)

(store a)(v, s) = (v, s[a := v])

T h e semant ic rule for the ass ignment id := exp is based on the above example.
The meaning of expression exp, which we write as ~exp~, is a funct ion f rom s ta tes
to value-s ta te pairs; 5 ~id~ is the par t icular identifier represen ted by an instance
of the syntact ic var iable id. T h e rule is:

~exp~ I store~id~.

T h e next example mot iva tes a more general definit ion for pipes. Consider the
expression b + c. We would like to make sense out of a t e r m beginning with

fetch b I f e t ch c.

T h e operat ional view is t ha t each funct ion connected by a pipe is handed a
sequence of values. Each function takes zero or more a rguments f rom the r ight
end of the sequence, places zero or more resul ts a t the r ight end of the sequence,
and passes the sequence to the next function. In the case where all the resul ts of
one funct ion are a rguments of the next, pipes mere ly compose functions.

F rom the definit ion of fe tch, a given s ta te s is m a p p e d by f e t ch b to the
sequence s(b), s. Since f e tch c takes only the s ta te as an argument , the definit ion
of pipes ~ is tha t s(b) is left untouched, t ha t is, s is m a p p e d by f e t ch b I f e t ch c to
s(b), s(c), s.

Note t ha t the values to be added are s(b) and s(c), which are not a t the r ight
end of the sequence. We therefore need to allow + to skip over the r igh tmos t
e lement in the sequence, which is denoted by I1 instead of I- T h e expression

fetch b l f e tch c I, +

maps a s ta te s to the sequence s(b) + s(c), s. T h e semant ic rule for expl + exp2 is
similar:

~expl~ l ~exp2~ I1 +

CONVENTION. In order for sequences of functions connected by pipes to be
precisely defined, we assume tha t pipes associated to the left:

f l g l h = (f i g) I h,

with the obvious extension allowing bo th I and I1 in place of I.

5 In s t anda rd denota t ional seman t i c s [33] it is usua l to have a separa te seman t i c funct ion for each
kind of mean ing associa ted wi th a synta t ic object. T h u s the re m igh t be two separa te seman t i c
funct ions ~ a n d .~ for expressions, such t ha t "f~exp~ is a func t ion f rom s ta tes to va lues and . ~ e x p ~
is a funct ion f rom initial s ta tes to final s tates . T h e brackets ~ and ~ are t h e n s imply "an aid to t he
eye" [42]. For ease of imp lemen ta t ion we l u m p all t he mean ings of a syntac t ic object t oge the r so
the re is only one semant ic function. In this case, it does no t make sense to in t roduce a separa te n a m e
for each kind of semant ic function; we s imply enclose a syntac t ic object be tween t he bracke ts

and ~ to denote its meaning .
T h e formal definit ion of pipes [40] keeps t rack of the n u m b e r of a r g u m e n t s of funct ions. Hav ing a

fixed n u m b e r of a r g u m e n t s for a cons t ruc ted funct ion facili tates type checking.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 559

C2

I

Fig. 2. T he left and r ight exits of tes t s correspond to true
and false, respectively. Cutpoin ts co ca cu t all loops in
the flow diagram. Since loops have been cut, any pa th f rom
a cutpoint leads e i ther to ano the r cutpoint , or to the out
vertex.

1.5 Semantics of Iteration

The basic idea behind the semantics of i terative programs can be i l lustrated by
reviewing McCar thy ' s construction of a set of recursive definitions for a flow
diagram. Consider the flow diagram in Figure 2. Th e functions f, g, h per form
some transformations on the state. The functions b~, b2, b3 are meanings "of
expressions with side effects, tha t is, they map states to value-state pairs. Le t o u t
be a function tha t maps a state to whatever the result of the program is.

The construction "cuts" each loop by inserting a d u m m y vertex called a
outpoint along some of the edges. For example, there are four cutpoints,
Co ca in Figure 2. Associated with each cutpoint is a function: since no
confusion can arise, we will use ci to refer to bo th the cutpoint and the function
associated with it. Start ing at cutpoint Co in state s, cutpoint c1 is reached in state
f (s). Therefore Co(S) = c l (f (s)). Using pipes,

co = f l c~ .

Conditional branches will be handled using a function tonal, as in

Cl = b~ I cond(co, c2).

The arguments of cond are functions for two of the cutpoints: cond(co, c2) is
itself a function tha t takes a value-state pair, and applies ei ther Co or c2 to the
state, depending on the value.

The relationships between the functions for the cutpoints are

Co = f l c,
c~ = b~ I c o n d (c o , c2)
C2 = g] b2] c o n d (h I ca, Cl)

ca = ba I c o n d (c 2 , o u t) .

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

560 • Ravi Sethi

The functions ci at the cutpoints are called continuations. The semantics of
statements will be given by associating a continuation with each program point.

2. PARTS OF A LANGUAGE DESCRIPTION

There are three parts to describing a language using Plumb and Yacc: declarations
that help Yacc build a parser, declarations of basic semantic functions and
domains, and the syntactic and semantic rules.

2.1. Declarat ions to Help Yacc

When Yacc builds a parser from a grammar, the terminal symbols of the grammar
have to be distinguished from the nonterminals. A terminal is either a single
character enclosed between a pair of apostrophes: for example, '(', or an identifier
declared in a %token declaration:

%token BREAK DO PLUS

Associativity and precedence of operators (in expressions) can be declared using
%left and %right, as in

%right ASS
%left TIMES MOD

All identifiers on a %left or %right line have the same precedence and associate
to the left or right, respectively. Successive %left and %right lines indicate
increasing precedence; for instance, the assignment operator represented by ASS
has lower precedence than TIMES and MOD in the above declarations.

We follow the convention of using upper case letters in terminal names and
lower case letters in nonterminal names. Each terminal in a %left or %right
declaration is implicitly declared to be a terminal, so %token declarations will be
omitted for such terminals.

The terminals for the sublanguages L1-L6 are all declared by

%token IF MAIN RETURN WHILE ! MAIN: only procedure in L1
%token BREAK CONTINUE ! 1_2 has these keywords too
%token GOTO ! L3: cant jump into ifs etc.

! L4: can jump into whiles
%token DO ELSE FOR ! L5
%token CASE DEFAULT SWITCH ! L6

%token ID NUM ! identifiers and integers
%right ASS ! :=
%left ORB ! I (bitwise or)
%left ANDB ! & (bitwise and)
%left EQ NE ! = ~= !=
%left L T G T L E G E ! < > < = > =
%left PLUS MINUS ! + -
%left TIMES DIV MOD ! * / %

%start prog

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling • 561

2.2. Basic Operations and Domain Declarations

The metalanguage Plumb in which semantic rules will be written is a functional
language in the tradition of ISWIM, with facilities for list manipulation, subsidiary
expressions, function manipulation, and arithmetic. Except for the pipe construct
(see Section 1.4), the constructs of Plumb have been borrowed from languages
like DSL [36]. In this paper, very few of these constructs will be needed.

Domain declarations in Plumb are very much like domain declarations in
standard denotational semantics [33]: they can be used to introduce variables,
literals, and names for unspecified abstract domains all at the same time. Plumb
allows literal variables to appear free in expressions, as long as their types (i.e.,
domains) have been declared. (Types are not presently checked.) A number of
such literals will now be introduced. Note that none of the literals is built into
Plumb.

Let us use the symbol V for a domain of values. (For technical reasons we will
talk of domains rather than sets, but the informal view that a domain is a set will
not mislead the reader.)

The meaning of a language construct is built up from a small collection of basic
semantic operations. For example, corresponding to the operator symbol + is a
function plus that maps pairs of values to a result value. The declaration of
plus is
"plus": [V,V]-> V;

As in [V, V] - > V, the operator - > is used to build functions from one domain to
another, and lists of domains can be grouped between [and]. The grouping for
A - > B - > C is A - > [B - > C].

The quotes in "p lus" ident i fy plus as being a l i teral (i.e., a part icular) member
of the domain following the colon in the above declaration. (The quotes are
needed only in declarations.) In contrast, a declaration like

NUM: V;

says that NUM is a variable representing an element of V. A given instance of
NUM might represent the value 83, or 571 for that matter.

The declarations of arithmetic functions common to the sublanguages in this
paper are shown below. Note that the domain V of values equals Int, the
predeclared domain of integers.

: V = Int; ! values are integers

"plus","minus","times","div","mod",

"eq","ne","lt","gt","le","ge",

"orb","andb":
[v , v] - > v;

! basic arithmetic functions
! 0 is false, nonzero true
f so relational operators
T return value 0 or 1, as do
! bitwise or, and

NUM: V;

The simplest expressions are identifers from the domain Ide. States in S
associate a value with each identifier. Expressions in C have side effects since

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

562 Ravi Sethi

assignments may occur within expressions. Given a state s, an expression exp will
yield a value and a modified state. Following Yacc, the symbol $ is used for
"meaning of." Thus $exp is written instead of the non-ASCII ~exp~ that is more
usual in denotational semantics.

ID: Ide; !identifiers and labels
s: S = Ide - > V; ! states
$exp: S - > [V,S]; ! side effects may occur

The meaning of an identifier in an expression will be given using the basic
function fetch. Since expressions return value-state pairs, as in Section 1.4, fetch
will take a state, determine the value of the identifier in question, and return the
value and the unchanged state, load plays a similar role for integer constants.
The semantics of assignments will be specified using store and popv.

"fetch": I d e - > S - > [V,S];
"load": V - > S - > [V,S];

"store": I d e - > [V , S] - > [V,S];

"popv": V - > [];

! returns value+unchanged state
! load constant
! assignments occur in exp's so
! store changes state but does
! not throw away value
! throws away value

Programs in this paper will consist of a single parameterless procedure called
main. Statements in the C programming language must occur within the body of
a procedure. A goto may jump anywhere within a procedure, but may not jump
out of the procedure. A natural unit for specifying semantics is the sequence of
statements that constitute a procedure body.

Like expressions, procedures return values and change the state. For book-
keeping reasons, we define an abstract domain A of procedure answers, and an
explicit conversion function return that converts a value-state pair to an answer.
The meaning of a procedure is now an element of S - > A, abbreviated by C, and
called the domain of continuations. Control leaves a procedure in the C language
either on execution of a return statement, or an "falling of the end" of the
procedure. In the latter case, the basic function fall will be used.

! procedures return values +
! modified states, as do exp's

: A; ! abstract domain of answers

"return": [V , S] - > A;
c0,cl ,c2, $prog: C = S - > A;
"fall": C;

! eases checks and code gen.
! continuations
! fall is the continuation for
7 an empty program; from fall
! off the end

"cond": [C,C] - > [V,S] - > A; ! [C,C] are true and
7 false continuations

As in Section 1.5, the literal cond is told the program points for the true and
false exits by being given a pair of continuations; then a value and a state are

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 563

provided; if the value corresponds to true, then the answer yielded
by branching to the true exit is returned, otherwise the answer from the false
exit is returned.

2.3 Syntactic and Semantic Rules

In the following rules for expressions, if the code enclosed between { and } is
deleted, a syntactic specification of expressions will remain. Since the precedence
of operators has already been specified in the declarations in Section 2.1, prece-
dence considerations do not enter into the syntactic rules. The semantic rules are
as discussed in Section 1.4. All operators are treated in the same manner.

exp :ID

{ fetch $1D }
NUM

{ load $NUM }
ID ASS exp

{ $exp]store $1D }
'(' exp ')'

{ $exp }
exp ORB exp

{ $exp.1 I $exp.2 I1 orb }
exp ANDB exp

{ $exp.1
exp EQ exp

{ $exp.1
exp NE exp

{ $exp.1
exp LT exp

{ $exp.1
exp GT exp

{ $exp. 1
exp LE exp

{ $exp. 1
exp GE exp

{ $exp.1
exp PLUS exp

{ $exp. 1
exp MINUS exp

{ $exp.1
exp TIMES exp

{ $exp.1
exp DIV exp

{ $exp.t
exp MOD exp

{ $exp.1

$exp.2]1 andb }

$exp.2 [1 eq }

$exp.2 [1 ne }

$exp.2 I1 it }

$exp.2 I1 gt }

$exp.2 I1 le }

$exp.2 I1 ge }

$exp.2 I1 plus }

$exp.2]1 minus }

$exp.2 I1 times }

$exp.2 I1 div }

$exp.2 I1 mod }

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

564 Ravi Sethi

3. SEMANTICS OF THE CORE LANGUAGE

The semantic rules for s ta tements can be visualized in te rms of flow diagrams.
T he textual position of a s ta tement in a program determines an ent ry and exit
point for it. The par t of a flow diagram corresponding to a single s t a tement can
be pictured as follows:

Here Co and cl are cutpoints corresponding to the single en t ry and exit of a
s ta tement stm. As in Sect ion 1.5, Co and Cl will also be used for the continuat ions
associated with the cutpoints; they are re la ted by an equat ion of the form

Co -- $stm(cl). (3.1)

tha t is, $strn, maps continuations to continuations, and s ta tements are contin-
uation transformers.

At first, the expression of co in te rms of Cl as in eq. (3.1) m ay seem backward,
but it allows the semantics of re turn s ta tements to be specified. T h e flow diagram
for a re turn s ta tement by itself is

return

e x p

OC 1

Since control never reaches Cl, the cont inuat ion Co does not depend on cl (i.e.,
$stm in eq. (3.1) is a funct ion that is independent of i ts argument cl. To sum up:
textual position correct ly identifies the ent ry point of a s ta tement , bu t does not
always identify the exit point, so it makes sense to de termine the cont inuat ion for
the ent ry point in te rms of the propert ies of the rest of the flow diagram.

3.1 Rules

The rules in this subsection will be interspersed with explanatory text.
Recall f rom eq. (3.1) tha t the meaning $stm of a s t a tement will be a cont inuat ion

transformer. Following Yacc, $$ represents the meaning of the nonterminal on
the left hand side of a given syntactic rule. For example, in a rule like

stm : IF '(' exp ')' stm
{ $ $ c l = ... $s tm ... }

$$ represents the meaning of the instance of stm on the left-hand side, while
$stm represents the meaning of the instance of stm on the r ight-hand side of the
syntactic rule. The semantic rules are related to eq. (3.1) as follows:

cO = $$ cl

ACM Transact ions on P rogramming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 565

Return Statement. A procedure returns the value of an expression to its caller
by means of the return statement:

stm : RETURN exp ';'
{ $$ cl = $exp I return }

The basic function return, (see Section 2.1), converts the value-state pair
yielded by the expression into an answer. Note that the continuation cl is
ignored, thereby indicating that, on reaching a return statement, the expression
is evaluated and the resulting value-state pair becomes the answer of the proce-
dure.

Null Statement. For a null statement, $stm in eq. (3.1) will be the identity
function. The syntax and semantics of null statements are given by

I,;,
{ $$ cl = cl }

Expression Statement. As in Section 1.5, the continuations in the following
diagram are related by c0 = fl c l .

In an expression statement, the expression is evaluated for its side effect; the
value of the expression is discarded. The function f in the above diagram
corresponds to $exp I 1 popv where popv throws away the rule of the expression.
Note that I1 is needed'since popv must skip over the state to find the value to be
thrown away.

I exp ';'
{ $$ cl = $exp tl popv I cl }

Conditional Statement. The conditional statement has the syntax

I IF '(' exp ')' stm

The expression in a conditional statement is evaluated, and if it is nonzero, the
substatement is executed.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

566 Ravi Sethi

The semantic rule for conditionals can be read off the diagram.

{ $$ cl = $exp I cond($stm cl , cl) }

While Statement. The while s ta tement has the syntax

I WHILE '(' exp ')' stm

The subs ta tement strn is executed repeatedly so long as the value of the expression
remains nonzero. The test takes place before each execution of the s ta tement .

~ . c0

cl

The relationship between cO and c l is given by

cO = $exp I cond($stm cO, cl)

Equalities like the above in which the identifier on the left hand side is defined
in terms of itself must be prefixed with ei ther of the synonymous keywords cyclic
and rec. The semantic rule for while s ta tements is

{ $$ cl =

cyclic cO = $exp I cond($stm cO, c l)
}

Compound Statement. A sequence of s ta tements enclosed between (and) can
be used wherever a s ta tement is expected. Th e rules for a sequence of s ta tements
s tm_s are given below.

I'{' stm_s '}'
{ $stm_s }

An empty sequence of s ta tements is just like a null s ta tement .

stm_s : ! empty
{ $$ c l = c l }

The diagram for a sequence stm_s fo l lowed by strn is as fol lows.

~cO

cl

c2

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compil ing • 567

Working backward from the continuation c2, the following rule is obtained.

I stm_s stm
{ $$ c2 = $stm_s ($stm c2) }

3.2 Summary of Rules

For completeness, the specification of the core language L1 is shown below. Lines
beginning with #include cause the contents of a file to be substituted for the line.
The files ydecs, basics, and exp contain the parts of the specification discussed
in Sections 2.1-2.3, respectively. The %% lines separate the three parts of a
language description: declarations to help Yacc; domain declarations; and, the
syntactic and semantic rules.

#include "ydecs"
%%

#include "basics"

$stm, $strn_s: C - > C;

%%

#include "exp"
prog : MAIN '(' ')' stm

{ $stm fall }

stm : RETURN exp ';'

! continuation transformers

{ $$ c l = $exp I return }

{ $$ c l = c l }
exp ';'

{ $$ c l = $exp I1 popv I c l }
IF '(' exp ')' stm

{ $$ c l = $exp I cond($stm c l , c l) }
WHILE '(' exp ')' stm

{ $$ ct =
cyclic cO = $exp I cond($stm cO, c l)

}
'{' stm_s '}'

{ $stm_s }

stm_s : ! empty
{ $$ c l = c l }

I stm_s stm
{ $$ c2 = $stm_s ($stm c2) }

4. T R A N S L A T I O N INTO PLUMB TERMS

The examples in this section explore the Plumb terms that arise for the semantics
of expressions and statements, that is, for $exp and $stm. We show that there is
a close connection between the Plumb terms for $stm and flow diagrams. This

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

568 Ravi Sethi

close connection allows the code generator to be a simple routine for printing out
the internal representat ion of these terms in a suitable linearized form. Details of
the printing routine are given in Appendix A.

The examples are based on the following program for comput ing the greatest
common divisor of two integers.

main()
{

w h i l e (m > = O & n > = O)
{

r := m;

w h i l e (r > n) r : = r - n ;

if(r = = 0) return(n);
m : = n ; n : = r;

4.1 E x p r e s s i o n s

The translation of a simple expression like m > = 0 can be read from the semantic
rules in Section 2.3 to be

fetch m t load 0 Jl go

Sequences of pipes associate to the left (see Section 1.4), so the term is paren-
thesized as

(fetch m I load 0) 11 ge

When possible, the r e d u c e r (see Section 1.3) constructs such a le f t l i n e a r form,
in which the right operand of each pipe operator is simple. There is an immediate
analogy between the left linear form and a sequence of operations, so code
generation is easier from such a form. For example, the expression

m > = O & n > = O

ranslates into the left linear term

fetch m I load 0 I1 go I fetch n]load 0 I1 ge I1 andb

For completeness, the remainder of this subsection describes how terms are
converted into left linear form using the associative rule

f l (g] l h) = (f] g)] l h .

A more general associative rule exists, 7 but is not needed for the language here.
A direct translation of m > = 0 & n > = 0 yields the term

fetch m I load 0 I1 go I(fetch n I load 0 I1 go) I1 andb

7 f[i (g]1 h) = f]~g li+j h, where i, j are integers and Io is just I [40]. Recall that pipes associate to the left,
so the parentheses around f l lg have been dropped.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 569

which can be drawn as

I1

/ \
I andb

fetch n I load 0 11 ge

The subdiagram at which the associative rule is applicable shows up more
clearly in

I1

I andb

/ ' , , ,
/ ' , , ,

fetch n I load 0 ge

The first application of the associative rule]inea~zes 11 ge; the next application
linea_H_zes I load 0 leading to the left]inear form

f l fetch n IIoad 011 gel 1 andb

Substituting for f, we get

fetch m I load 0 I1 go I fetch n I load 0 I1 go I1 andb

The above example generalizes to show that all instances of $exp will be put
into left linear form. In rules containing $exp.1 I $exp.2, the parentheses around
the left linear form for $exp.2 can be dropped, thereby yielding a left linear form
for the entire expression.

4.2 Basic Blocks

Left linear terms for expressions lead immediately to left linear terms for expres-
sion statements. For example, if the computation following m := n; has contin-
uation c, then the term for the assignment is

fetch n I store m I1 popv I c

By analogy with the use of basic block in [7] for straight line sequences of
code, let a left linear sequence of pipes for a statement be called a basic block.
The entry of a basic block is the root, which will be the last pipe operator in the
block since the block is in left linear form.

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

570 • Ravi Sethi

root

/ fetch r , fetch n ,I gt p//~P/~ '~x,~
I con. i ¢"

~rlfetchnllminuslstorer ~I~pop ~

\
/ \

cl nil

Fig. 3. Internal graph representation of the meaning of the statement

while (r > n) r := r - n.
Vertices marked with • represent cons vertices that construct a list; nil represents the empty list.
apply is a Plumb operator that applies the function represented by its left argument to its right
argument.

Sometimes basic blocks can be combined to form a single larger one. For
example, the direct translation of m := n; n :-- r; is formed by substituting an
appropriate continuation for c in the above translation of m := n;. If cl is the
continuation for the computation following the pair of assignments, the following
is obtained.

fetch n I store m I1 popv I (fetch r I store n I1 popv Ic l)
The reducer will automatically linearize this term into a basic block.

4.3 Edges Between Basic Blocks

Since Plumb is a functional language, any common subterms can be shared in a
graph representation. For example, the semantic rule for conditional statements
requires both the true and the false exits to use the same continuation: in
operational terms, control flows to the same point from both the true and false
parts; in the internal graph representation there will be edges to the same vertex.
This vertex will be the entry point of some basic block.

In order to share subterms, the reducer applies the associative rule only to
tree-like subterms, that is, the rule is not applied if application leads to copying
of subterms because of multiple edges into subterms. These multiple edges
become edges between basic blocks.

Consider for example the statement

w h i l e (r > n) r : = r - n ;

Assuming that c l is the continuation for the exit of this while statement, a direct

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 571

translation yields

cyclic cO =

fetch r I fetch n I1 gt I
cond(fetch r I fetch n I1 minus I store r I1 popv IcO, cl)

The internal graph representation of this term is suggested by Figure 3.

4.4 Conclusion

The semantics of expressions and statements is such that the internal graph
representation of $stm corresponds closely to a flow diagram. Left linear se-
quences of pipes correspond to boxes in a flow diagram with edges between
sequences becoming the edges of the diagram, as in Figure 3.

The process of code generation consists of taking graphs like the one in Figure
3 and printing them in a suitable linearized form. For the program in the beginning
of this section, a routine in Appendix A prints the following code (integer labels
correspond to the start of basic blocks, and are generated from node numbers in
the internal representation). The lines between labels 81 and 102 are generated
from the subgraph in Figure 3. Label 81 corresponds to the root of the figure,
while label 102 corresponds to the continuation cl in the figure.

140:

81:

fetch m store r
load 0 popv
ge goto 81
fetch n 102: fetch r
load 0 load 0
ge eq
andb onfalse goto 128
onfalse goto 23 fetch n
fetch m return
store r 128: fetch n
popv store m
fetch r popv
fetch n fetch r
gt store n
onfalse goto 102 popv
fetch r goto 140
fetch n 23: fall off the end
minus

5. BREAK AND CONTINUE STATEMENTS

The meaning of break and continue statements can be suggested by the following
program fragment: a break within the while statement is equivalent to a branch
to hbrk; a continue to a branch to hcon.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

572 Ravi Sethi

while (...)
{

. . ,

; hcon:
}

hbrk:

The semantics of break and continue statements will be given using implicit
labels hbrk and hcon that are hidden from the programmer.

In order to determine where control flows to from a break statement, some sort
of symbol table is needed to keep track of the continuation for hbrk. Symbol
tables are formalized by functions called environments that map labels to contin-
uations. Labels and identifiers will be lumped into the domain Ide, to avoid
arbitrary restrictions on the form of labels and identifiers. Environments map
identifiers to continuations:

! new declarations to handle break and continue

"hbrk","hcon": Ide;

e: Env = I d e - > C;
"mte": Env;

! implicit labels set by
! break and continue
! label environments
! (mt= =empty) environment

$stm, $stm._s; Env - > C - > C; r continuation transformers

Note that the meaning of a statement takes an environment as an additional
parameter so that the meanings of embedded breaks and continues can be
determined. Otherwise, few changes to the semantic rules in Section 3 are needed.
The following rules carry over immediately:

prog : MAIN '(' ')' stm
{ $stm mte fall }

stm : RETURN exp ';'
{ $$ e cl = $exp I return }

I '; '

{ $ $ e c l = c l }
l exp ';'

{ $$ e c l = $exp I1 popv I c l }
J IF '(' exp ')' stm

{ $$ e cl = $exp I cond($stm e cl , cl) }

When a break is encountered, a branch to the hidden label hbrk is formalized
by using the continuation entered into the environment at hbrk: given environ-
ment e, this continuation is just e(hbrk).

I BREAK ';'
{ $$ e cl = e(hbrk) }

I CONTINUE ';'
{ $$ e c l = e(hcon) }

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 573

The rule for while statements must now set up environments appropriately:
the environment e', given by e[bbrk := cl][bcon :-- cO], agrees with e everywhere
except at hbrk and hcon, which it maps to cl and cO, respectively. This new
environment e' is used for the body of the while and does not affect any other
statements.

[WHILE '(' exp ')' stm
{ $$ e cl =

cyclic cO =
let e ' = e[hbrk:= c l] [hcon:= c0];
in $exp I cond($stm e' cO, c l)

}

The printing routine in Appendix A is used without change while constructing
a compiler for L2 from the above specification.

The test program of Section 4 has been modified below to show that the
meaning of continue statements is specified correctly. A continue statement has
been added inside the inner while loop to illustrate that the environments handle
nested while statements. If, as expected, the continue statement sends control to
the beginning of the while loop, then the statement

junk := garbage;

should be skipped. The generated compiler for L2 does indeed map the following
program to the code given at the end of Section 4, (modulo changes in label
numbers).

main()
{

while(m>= 0 & n > = 0)
{

r := m;
while(r > n)
{

r := r - n;
continue;
junk := garbage;

}
if(r = = 0) return(n);
m := n; n := r;

6. RESTRICTED GOTO STATEMENTS

There is little difference between the handling of break and goto statements--in
each case an environment is consulted to determine where control should flow to.
Explicit labels result in changes to the semantic rules from Section 5. Consider
for example the semantic rule for while statements in that section. Since break
and continue statements must be enclosed within a while statement, the environ-

ACM Transactions on Programming Languages and Systerm% Vol. 5, No. 4, October 1983.

574 • Ravi Sethi

ment needed to determine the meanings of embedded breaks and continues was
set up as part of the semantics of the while. Explicit labels on the other hand may
occur anywhere, so something special has to be done to set up the environment
for goto statements. Clearly, it is necessary to determine the labels that actually
occur. The continuations associated with these labels must also be determined.
The treatment in this section is similar to that in [22].

6.1 Encapsulat ing Labels

It will simplify the semantic rules if we restrict goto statements from jumping
into the bodies of conditional or while statements. Let us introduce the concept
of a block which is a statement into which gotos cannot jump. The bodies of
whiles and conditionals will then be blocks. Statements which might contain
visible labels will be generated by a new nonterminal i_stm, leaving stm to
generate statements without visible labels. More precisely,

$stm, $block: E n v - > C - > C; ! labels inside stm and block
! are not visible outside

The semantic rules for stm are just as in Section 5, so let us include them here.

stm : RETURN exp ';'
{ $$ e cl = $exp J return }

J';'
{ $ $ e c l = c l }

l exp ';'
{ $$ e c l = $exp I1 popv Icl }

J BREAK ';'
{ $$ e cl = e(hbrk) }

I CONTINUE ';'
{ $$ e c l = e(hcon) }

I GOTO tD ';'

{ $$ e cl = e($1D) }
J IF '(' exp ')' block

{ $$ e c l = $exp I cond($block e c l , c l) }
J WHILE '(' exp ')' block

{ $$ e cl =
cyclic cO =

let e ' = e[hbrk:= c l] [hcon:= c0];
in $exp I cond($block e' cO, c l)

}

Note that the rule for goto statements is similar to that for break and continue
statements, and that the bodies of while and conditional statements are blocks.

6.2 Labeled Sta tements

It is at the level of a block that the environment containing continuations for
labels is set up. Labels visible in the block must therefore be known along with
their associated continuations {which formalize program points). The meaning of
I_stm will be twofold: just like $stm, $1 _stm will be a continuation transformer;

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 575

in addition, $1 _stm will yield a list of visible labels and their associated contin-
uations:

$1_stm, $1_stm_s: ! possibly labeled statements

E n v - > C - > [C,LC*]; ! C in [C,LC*] is as in $stm;
! LC* contains visible labels
! in I_stm +their continuations

: LC = [Ide,C]; f label-continuation pairs
list: LC*;

The semantic rules for I_stm are as might be expected. T h e list of label-
continuation pairs f rom an unlabeled s ta tement is empty. When a label is
encountered, a new label-continuation pair is added to the existing list using the
Plumb operator cons. In a sequence of s ta tements the lists of the elements of the
sequence are concatenated using the P lumb opera tor cat.

I_stm : stm
{ $$ e cl =

let

I_stm_s

in
}

l ID ':' I_stm
{ $$ e c l =

let

in
}

I ' { ' I._stm_s 'y
{ $1_stm_s }

: ! empty
{ $$ e c l =

let

in
}

I I_stm_s Lstm
{ $$ e c2 =

let

in
}

cO = $stm e c l ;
list = O;
(cO, list)

p = $1_stm e c l ;
cO = p.1;
list = ($1D,cO) cons p.2;
(cO, list)

cO = c l ;
list = O;
(cO, list)

q = $1._stm e c2;
c l = q.1;
p = $1_.stm_s e c l ;
cO = p.1;
list = p.2 cat q.2;
(cO, list)

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

576 Ravi Sethi

Fig. 4. The dashed line indicates that list is the same as the
list of label-continuation pairs at the top of the figure, updl
is a Plumb operator for updating a function with a list of
pairs. Vertices marked with • represent cons vertices that
construct a list; nil represents the empty list. Vertices labeled
b~, b2, and b3 abbreviate subgraphs with edges entering and
leaving as shown.

6.3 Example

T h e fo l lowing p r o g r a m f r a g m e n t wil l b e u s e d to s h o w h o w t h e e n v i r o n m e n t is s e t

u p for go to s t a t e m e n t s .

main()
{
LI:
L2:

U := V;
W := X;
if (p) goto L1;
y : = z ;
if (q) goto L2;

}
S u p p o s e t h a t a n e n v i r o n m e n t e ' c o n t a i n i n g a p p r o p r i a t e c o n t i n u a t i o n s for l a b e l s

h a s a l r e a d y b e e n d e t e r m i n e d . T h e n t h e c o n t i n u a t i o n for t h e e n t i r e p r o g r a m is
g iven b y t h e n o d e l a b e l e d bl in t h e fo l lowing d i a g r a m . T h e s y m b o l s bl, b2, a n d b3
a re p l a c e h o l d e r s for t h e t h r e e bas i c b l o c k s t h a t t h e t e r m for t h e p r o g r a m wil l
have . N o t e t h a t t h e m e a n i n g s o f t h e go to s t a t e m e n t s a r e d e t e r m i n e d b y a p p l y i n g
t h e e n v i r o n m e n t e ' to t h e l a b e l gone to.

bl

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling • 577

The suitable environment is determined as shown in Figure 4. At the top of the
figure is a list of label-continuation pairs. This list will be called a mini-environ-
ment because it contains label bindings for the current block. At the bottom left
hand corner is the environment e containing label bindings from outer blocks.
Labels bindings from the current block have to be entered into e in order to
determine e'.

The construction of the environment in Figure 4 takes a little getting used to.
Perhaps it will help if we show how the environment is used. The updl operator
is such that Figure 4 is equivalent to the following diagram in which the
environment e is updated directly with continuations for the two labels:
update(e, L1, c) is the same as e[L1 := c].

p ~ ~ a l l

I t is a simple observation that the indirect ion through the environment to
determine the continuations for L1 and L2 can be eliminated; the reducer, (see
Section 1.3) ends up wi th the fol lowing diagram.

b3"X~all
Once the compiler is constructed from the specification in this section, the

output for the above program will be

44: fetch v
store u
popv

164: fetch x
store w
popv
fetch p
onfalse goto 256
goto 44

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

578 Ravi Sethi

256: fetch z
store y
popv
fetch q
onfalse goto 23
goto 164

23: fall off the end

6 . 4 Setting up the Environment

The semantic rule for blocks can be abstracted out of Figure 4. The vertex labeled
bl represents the continuation for the]_stm that constitutes the block. This
continuation and the list of label-continuation pairs is determined when $i_stm
is applied to the environment e[list] and the continuation c l , which happens to
be fall in Figure 4. The dotted line indicates that the definition of list is circular,
which is to say

c0,1ist = $1_stm (e[list]) cl

At present Plumb requires identifiers on the left hand side of a circular
definition, so the above definition can be rewritten as

p = $1__stm (e[p.2]) cl

The following rule for blocks sets up the environment to be used for the block
body and then yields the continuation for the statements in the block body.

block : I_stm
{ $$ e cl = ! setup environment for

! enclosed labels
let cyclic p = $1_stm (e[p.2]) c l ;

cO = p.t;
in cO

}

7. UNRESTRICTED GOTO STATEMENTS

In a freewheeling atmosphere in which goto statements can jump into the middle
of while statements there are enough statements with visible labels that we will
drop the distinction of the last section between unlabeled and labeled statements:
once again, stm is the only nonterminal for statements. A goto will be allowed to
jump anywhere within the main procedure, so the environment for goto state-
ments will be set up at the level of a program instead of at the block level. $stm
is declared by

: LC = [Ide,C]; ! label-continuation pairs
$stm, $stm_s: Env - > C - > [C,LC*]; f like $1_stm in Section 6

The semantic rule for a program differs slightly from that of blocks (presented
in the last section) because the inherited environment and continuation are

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 579

known to be mte and fall. Rules for statements without visible labels are also
given here: such statements yield an empty label-continuation pair list.

prog : MAIN '(' ')' stm

stm
}

: RETURN
{

I ' ; '
{

l exp ';'

! setup environment for enclosed labels
let cyclic p = $stm (mte[p.2]) fall;

cO = p.1;
in cO

exp ';'
$$ e cl = ($ e x p l r e t u m , 0) }

$ $ e c l = (c l , 0) }

{ $$ e c l = ($exp I1 popv Ic l , 0) }
I BREAK ';'

{ $ $ e c l = (e (h b r k) , 0) }
I CONTINUE ';'

{ $ $ e c l = (e (h c o n) , 0) }
I GOTO ID ';'

{ $ $ e c l = (e ($ 1 D) , 0) }

A conditional statement is not labeled, but there may be labels within the body
of the conditional that have to be propagated.

I IF '(' exp ')' stm
{ $$ e c l =

let

in

p = $ s t m e c l ;
cO = $exp I cond(p.1 , c l);
list = p.2;
(cO, list +)

A jump into a while loop bypasses the loop test, but otherwise follows the test-
execute structure of the loop.

I WHILE '(' exp ')' stm
{ $$ e c l =

cyclic p =
let

in
}

e ' = e[hbrk:= cl] [hcon:= p.1];
q = $stm e' p.1;
cO = $exp I cond(q.1 , c l);
list = q.2;
(cO, list)

Since control flows from the body of a while loop to its beginning, the continua-
tions for the labels in the body depend on the continuation for the entire whole

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

580 Ravi Sethi

loop. For this reason, the list of label-continuation pairs is determined along with
the continuation for the while loop.

The remainder of the specification is essentially like that of the language in
Section 6.

I ' { ' stm_s '}'
{ $stm_s }

l iD ':' stm
{ $ $ e cl =

stm_s : ! empty

let p = $stm e c l ;
c O = p.1;
list = ($1D,cO) cons p.2;

in (cO, list)

in
}

I stm_s stm
{ $$ e C2 =

let .q = $stm e c2;
c l = q.1;
p = $stm_s e c l ;
cO = p.1;
list = p.2 cat q.2;
(cO, list)

The discussion of environments and the elimination of indirection through the
environment (see Section 6.3) carries over to unrestricted goto statements.

8. VARIANTS OF THE WHILE STATEMENT

One advantage of generating a compiler from a specification is that it is fairly
easy to add variants of constructs that are already in the language. We illustrate
by adding do and for statements.

8.1 Do Statements

The basic difference between do and while statements is that while statements
have a test-execute cycle, but do statements have an execute-test cycle. The
meaning of a do can be explained in terms of the following diagram:

cl

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4 October 1983.

{ $ $ e c l = (c 1 , 0) }

Control Flow Aspects of Semantics-Directed Compiling • 581

Any breaks within stm transfer control to the point for cont inuat ion c l , tha t is,
to a point just after the do. Any continues within stm transfer control to the point
for continuation c, tha t is, to just before the test. Th e following relat ionships
exist between the continuations

c = $exp] cond(cO, c l)

cO = 8 (e [hbrk :=c l] [hcon:=c]) c

where ~ is the continuation t ransformer par t of $stm. T h e rule is

I DO stm WHILE '(' exp ')' ';'

{ $ $ e c l =
cyclic p =

let c = $exp I cond(p.1 , c l);
e ' = e[hbrk:= c l] [hcon:= c];
$stm e' c in

}

8.2 For S ta temen ts

The first expression in a for s ta tement specifies initialization tha t is per formed
once on ent ry to the for; the second specifies a test, as in a while loop; the third
is executed at the end of each i terat ion generally to perform incrementat ion. T h e
following diagram applies.

. . . . ~/ C

cl

As usual, a break within stm sends control to the loop exit, so continuat ion c ,
is used. A continue on the other hand causes the third expression to be evaluated
before starting the next iteration, more precisely, c ' is to be used.

The semantic rule first determines the continuat ion c and the list of label-
continuation pairs; cO is then determined from c and (cO, list) is re turned.

I FON '(' exp ';' exp ';' exp ')' stm
{ $$ e c l =

let cyclic p =
let c' = $exp.3 I1 popv I p.1;

e ' = e[hbrk:= c l] [hcon:= c'];
q = $stm e' c';
c = $exp.2 I cond(q.1 , c l);
list = q.2;

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

582 • Ravi Sethi

in (c, list);
cO = $exp.1 I1 popv I P.1;
list = p.2;

in (c0, list)
}

8.3 Else C lauses

For completeness, we add else clauses to conditionals. In the following rule, the
lists of label-continuation pairs from the true and false parts are concatenated to
take labels from both arms into account. It is assumed that a label is declared
only once, so the order in which the lists are concatenated does not matter. The
question of checks like those for multiply defined labels will be taken up in a
separate paper.

I IF '(' exp ')' stm ELSE stm
{ $$ e c l =

let p = $stm.1 e c l ;
q = $stm.2 e cl ;
cO = $exp I cond(p.1 , q.1);
list = p.2 cat q.2;

in (cO, list)
}

9. SWITCH S T A T E M E N T S

Switch statements have been saved until the end for a purpose. The compilers
for C are very careful about the code generated for switches, and the question of
integrating a special purpose code generator with the approach in this paper
arises. Appendix B gives a simple-minded routine for generating code for switches.
The routine fits into the printing routine of Appendix A and can easily be replaced
by a fancier one. The details are in Appendix B.

9.1 Informal Descr ip t ion of Sw i t ches

A switch in C is a multiway branch depending on the value of an expression. The
syntax is

i SWITCH '(' exp ')' stm

Substatements within stm may be of the form

I C A S E N U M ':' stm
I D E F A U L T ':' stm

The C reference manual has the following description:

W h e n the switch s t a t e m e n t is executed, i ts express ion is eva lua ted and compared wi th each
case constant . If one of the case cons tan t s is equal to the value of the expression, control is
passed to the s t a t e m e n t following the m a t c h e d case prefix. If no case cons t an t m a t c h e s the
expression, and if the re is a default prefix, control passes to the prefLxed s t a t emen t . If no case
m a t c h e s and if the re is no default t h e n none of the s t a t e m e n t s in the swi tch is executed.

c a s e and default prefixes in themse lves do no t a l ter t he flow of control, which con t inues
un impeded across such prefixes.

A break in a switch causes control to pass to the s t a t e m e n t following the switch. [27, p. 203;
copyright © 1978, Bell Te l ephone Laboratories , Inc., r epr in ted by permission.]

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 583

9.2 Case Numbers Are Like Labels

Case numbers have to be extracted out of a statement in the same manner that
labels were extracted in Sections 6 and 7. After all, in order to determine if the
expression value matches one of the case numbers, we have to know what the
case numbers are. A new domain VC containing case number-continuation pairs
is therefore introduced.

: v c = [v ,c] ;
$stm,$stm_s: Env - > C - > [C,LC*,VC*]; ! VC* added here

The only change to the existing rules in Section 8 is that lists of case number-
continuation pairs have to be propagated just as lists of label-continuation pairs
are propagated. We avoid listing the rules here since the final specification is
given in Appendix C.

The new rule for case prefixes is similar to that for label prefixes:

I CASE NUM ':' stm
{ $$ e cl =

let

in

p = $stm e cl ;
c O = p.1;
Ic = p.2;
vc = ($NUM,c0) cons p.3;
(c0, Ic, vc)

Default prefixes will be handled just like case prefixes: a special-value vdef
distinct from all other values will be introduced for the purpose.

"vdef": V;

I DEFAULT ':' stm
{ $$ e c l =

let

in
}

p = $ s t m e c l ;
c O = p.1;
Ic = p.2;
vc = (vdef,c0) cons p.3;
(cO, Ic, vc)

The last rule that will be discussed here is that for switch statements them-
selves. Once the list in the domain VG* is constructed, a mechanism is needed for
finding the case number matching the value of the expression in the switch. We
abstract the details of this mechanism by defining a basic function switch. In
addition to the list in V C * , swi tch has to be supplied with the continuation on
exit from the switch statement since this continuation is used if there is no default
in the switch body.

"switch": [VC*,C] - > [V,S] - > A; ! VC*: cases + continuations
! C: used if no default
! [V,S]: value of exp

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

584 • Ravi Sethi

I SWITCH '(' exp ')' stm
{ $ $ e c l =

let

in
}

e ' = e[hbrk:=cl];
p = $stm e' cl;
cO = $exp I switch(p.3, cl);
Ic = p.2;
vc = O;
(cO, Ic, vc)

10. DISCUSSION

10.1 Summary

Within the limitations of the medium, this paper is a demonstration of a
semantics-directed compiler generator. All the details of the input specification
and much of the background information have been shown. Notes on running
times are given below.

A language specification consists of: lexical information (not discussed); a
syntactic specification for the parser generator Yacc [24]; and semantic rules in
a functional metalanguage called Plumb. In a syntax-directed manner, a program
in the language being defined can be translated into an expression in Plumb. The
expression in Plumb is a concrete representation of the semantics of the program
and is referred to as the concrete semant ics of the program.

Compilation is based on the concrete semantics. Informally, the semantics of
control flow is in terms of a flow diagram--the diagram is actually a functional
counterpart of the usual flow diagrams. Plumb contains a "pipe" construct for
combining functions [40] that permits diagrams to be constructed easily. Central
to the construction of the diagram is the representation of recursive definitions
by cycles as in [47, 43] and the static elimination of environments that associate
program points with labels.

A code generator has to be supplied by the compiler writer. A trivial one is
used in this paper. Specialized code can be inserted if desired (see the handling
of switch statements in Section 9, for example). Since the concrete semantics of
a program is essentially a flow diagram, it should be easier to base code optimi-
zation on the concrete semantics than on the abstract syntax.

There are two reasons for incrementally specifying the semantics of the
statement constructs of C. The first is that it is easier to introduce the concepts
one by one. The second is to show that semantics-directed compiler generation
provides flexibility to a language designer. Consider for example the problem of
restricting the scope of labels so that goto statements are more disciplined. In a
hand-crafted compiler it may not be easy to make the change. The difficulty of
making the change with a compiler generator can be assessed by comparing the
specifications in Sections 6 and 7, where restricted and unrestricted goto state-
ments are considered.

10.2 Running Times

Execution times (in seconds on a PDP 11/70) are given relative to the logical
organization in Figure 1. The times were obtained for the specification in Appen-

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 585

dix C of all the control flow constructs of C: Lex 8.8; d2y 3.4; Yacc 7.0; C compiler
(on the outputs of Lex and Yacc, the reducer, and the code generator) 84.1. The
generated compiler (41,318 bytes long) took less than 0.5 seconds on each of the
examples in this paper.

10.3 Influences on the Implementation

Scott and Strachey closed their seminal paper [42] with the claim that a
mathematical semantics will provide a "standard against which to judge an
implementation." The Semantics Implementation System (sis) of Mosses [36]
goes further since it translates programs into a concrete semantics and then
interprets that concrete semantics. The $EMANOL system [5, 6] is an interpreter
generator based on operational semantics.

sis stimulated a lot of work on compiler generation: see for example the papers
in [26] and the survey [19]. The prospect of generating an implementation from
any denotational semantics is exciting. Unfortunately, sis is inefficient: "a large
portion of the inefficiency of sis derives from its method for parsing" [12].
Paulson's compiler generator avoids some of these difficulties: a Pascal compiler
generated by Paulson "is twenty-five times slower than the regular Pascal
compiler" [38]. Efficient and practical implementations are claimed to have been
obtained by Raskovsky [41] by starting with a denotational semantics, hand-
transforming it into an implementation-oriented semantic description, and then
automatically generating a compiler. For the transformations to apply, the
starting semantics must follow certain conventions, so the method sacrifices some
generality. A more modular use of manual assistance occurs in the implementa-
tions of Gaudel [18] and Christiansen and Jones [14], that are based on abstract
data types. See also [10, 17].

For some time Mosses [37] has argued that an algebraic approach would make
denotational semantics easier to understand and process. In fact, a lot of advice
has been given on structuring compilers and proving them correct using an
algebraic approach [35, 2, 37, 48, 14]. This advice has had an indirect influence on
the present work: Figure 1 is closest to Wand's proposed structure [48]. In
addition to the overall structure, the metalanguages of Mosses [37] and Wand
[48] were studied. In [48] clever representations of continuation-style operators
are used to construct concrete semantics that looks like machine code. The
formalization of pipes in [40] allows direct operators to be used in clever repre-
sentations of continuation semantics. There is also an easy way of translating
terms involving pipes into more standard continuation-style terms [40].

The connection between control flow and continuations dates back to Mc-
Carthy [32], who constructed recursive equations from flow diagrams as discussed
in Section 1.5. Although continuations have been rediscovered a number of times,
Morris [34] and Wadsworth [45] are given the credit for constructing syntax-
directed rules for determining the continuation for a program. The reverse process
of doing code generation by translating continuations into control flow is done in
a fairly ad hoc way in [41].

The use of an ad hoc code generator in this paper allows the programs in the
dotted box in Figure 1 to be used as compiler construction tools. One of the first
questions that was asked about this work was, "How are you going to compile
switches?" As mentioned in Section 9, the compilers for C very carefully generate

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

586 Ravi Sethi

good code for switches. Rather than compete with each compiler writer's favorite
compiling technique, the decision was made to provide an opportunity for a
compiler writer to do the actual code generation.

A final question raised by the referees concerns code generation for other
machines. It should be clear from the examples that the code generated in this
paper is actually pseudocode for a stack-oriented machine. Similar code is
produced at an intermediate stage by a number of compilers, so it should not be
difficult to send the pseudocode in the examples to a "real" code generator that
worries about the idiosyncrasies of "real" machines.

1 1. CONCLUSION

Gaudel's survey of compiler generation [19] ends with: "Finally a last, pragmatic
and decisive reason is that even a slow, memory-consuming compiler generator,
producing correct and reasonably efficient compilers, would be better than several
man-years of coding a possibly incorrect compiler, provided that the specification
method is not too difficult to use." I believe that the results in this paper show
that the adjectives "slow" and "memory consuming" can be dropped for the
control flow aspects of programming languages.

APPENDIX A. CODE GENERATION

A routine to print the internal representation of graphs like the one in Figure 3
must have some knowledge of the internal representation. At the moment no
attempt has been made to encapsulate the details of the internal representation.
Experience with writing code generators will be used to guide the design of a
suitable interface at some future date.

A1 Nodes

The fo l lowing C declarat ion shows the st ructure of a graph node.

struct gnode
{

int

};

lab;
int knd;
int mark;
struct gnode *1, *r;
. . ,

/* label e.g. PIPE, LIST */
/* 0-1 for PIPE; id. number */
/* keep track of visits */
/* left and right sOns */

Pointers to graph nodes can be declared using gnodep, itseff declared by

typedef struct gnode *9nodep;

There are two useful functions: gp2n(p) converts a pointer p into a unique
integer; mfathers(p) returns true ff the node pointed to by p has multiple fathers,
and false otherwise. In the output an instruction label will be generated using
gp2n(p) ff mfathers(p) returns true.

While there are node labels corresponding to each construct in Plumb, only a
few of the label types are needed here. Ugly as the prefix d2 may seem on some
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 587

of the identifiers below, it keeps the identifiers distinct from the ones a compiler
writer might want to use.

d2ELEM.

d2PIPE.
d2APP.
d2LIST.

The ELEM comes from "element" of a domain. There will be a
d2ELEM node for each basic function like plus. An identifier is
generated by adding the prefix d2 to the name of a basic function;
this identifier has an integer value that is entered in the knd field of
the node for the basic function. The C routine putid applied to, say,
d2plus, puts the characters plus into the standard output.
The knd field will be 0 or I depending on whether I or 11 is intended.
For the application of the left son to the right.
Lists are in right linear form. In cond(c, d), the pair (c, d) will be
represented as a list containing two d2LIST nodes, with a special node
pointed to by gnil being the right son of the second list node.

A2 Printing Routine

The compiler writer supplies a file d2main.c containing a main routine, and any
other desired routines, main must first call yyparse, for the parser and reducer to
place a pointer to the root of the internal graph in the global variable rootp. On
return from yyparse, the mark field of each node is initialized to d2NO, a negative
integer. The routine yyerror prints a string in the error output and returns control
to the caller.

The routine d2main.c for the languages in Sections 3 and 5-8 is shown below.
Nodes corresponding to continuations will have their mark field set to d2YES, a
predefined positive value. An integer label will be printed for a continuation node
if there is more than one father for the node. Subsequent visits to the marked
node generate a goto to the integer label.

main()
{

yyparse0;
gnprint(rootp); prinff(%n");

}

void gnprint(p)
gnodep p;
{

if(p->mark != d2NO) /* happens only for continuations */
{

printf('Mgoto %d",gp2n(p));
return;

}
switch(p->lab)
{
default:

yyerror("unexpected label");
break;

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

588 • Ravi Sethi

case d2ELEM:
if(p ->knd = = d2fall)
{

p->mark = d2YES;
if(mfathers(p)) printf("%d:",gp2n(p));
printf('~ffall off the end");

}
else
{

}
break;

case d2PIPE:

printf('~t"); putid(p->knd);

p ->mark = d2YES;
if(mfathers(p)) pdnff("°/od:",gp2n(p));
gnprint(p->l); printf('~n"); gnprint(p->r);

break;
case d2APP:

if(p - > l - > l a b != d2ELEM) yyerror("misapplication");

else if(p - > l - > k n d = = d2fetch)
{

prinff('~tfetch "); put id(p->r->knd) ;
}
else if(p - > l - > k n d = = d2store)
{

prinff('~tstore "); put id(p->r->knd) ;
}
else if(p - > l - > k n d = = d21oad)
{ pdnff('~tload %d" ,p -> r ->knd);
}
else if(p - > l - > k n d = = d2cond)
{

gnodep truep, falsep;
truep = p- ->r -> l ; falsep = p - > r - > r - > l ;
prinff('~,tonfalse goto %d~n",gp2n(falsep));
gnprint(truep);
if(fa lsep->mark = = d2NO)
{

if(mfathers(falsep)) prinff('~n");
else printf('~n%d:",gp2n(falsep));
gnprint(falsep);

}
}
break;

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling • 589

APPENDIX B. CODE FOR SWITCHES

The list of case number-continuation pairs from the body of a switch has to be
converted into code for locating the appropriate case. The arguments of the
switch basic function are the list and the exit continuation to be used if there is
no default prefix. The following routine makes two passes over the list. If a list
entry is for the default prefix, then the corresponding continuation is overwritten
for the exit continuation in def in the routine. Otherwise, a simple test for equality
of the case number with the expression value is generated. Since an equality test
pops the values of its arguments, the expression value has to be explicitly copied
using copyv. The second pass ensures that the vertices for all continuations are
visited so that code for them can be generated.

else if(p-> l ->knd = = d2switch)
{

gnodep def, q, t;
d e f = p - > r - > r - > l ;
for(q = p - > r - > l ; q != gnil; q = q -> r)
{

if(q-> l -> l - -> lab != d2ELEM);
else if(q-> l -> l - ->knd != d2vdef);
else
{ def = q - > l - > r - > l ;

continue;
}
pdntf(%tcopyv\n");
printf('Mload %~n\teq\n",q-> I -> I -> knd);
prinff('Montrue goto %~n",gp2n(q-> l ->r-> l)) ;

}
prinff('~tpopvkn");
prinff(%tgoto %d",gp2n(def));
for(q = p -> r -> l ; q l= gnil; q = q -> r)
{

t = q - - > l - > r - > l ;
if(t ->mark I= d2NO) continue;
if(mfathers(t)) prinff(%n");
else printf('~n%d:",gp2n(t));
gnprint(t);

The above routine has to be inserted into d2main.c in Appendix A, right after
the part for d2cond. A sample program and its output follow.

main()
{

switch(p)

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

590 • Ravi Sethi

{
case 3: case 1 :
case 5:
default:
case 12:
}

a:=b;
c:=d; break;
e:=f;
g:=h;

295: fetch p popv
copyv goto 196
load 3 55: fetch b
eq store a
ontrue goto 55 popv
copyv 120: fetch d
load 1 store c
eq popv
ontrue goto 55 23: fall off the end
copyv 196: fetch f
load 5 store e
eq popv
ontrue goto 120 244: fetch h
copyv store g
load 12 popv
eq goto 23
ontrue goto 244

Clearly a more sophisticated routine can be used instead of the above simple-
minded routine.

APPENDIX C. FINAL SPECIFICATION

#include "ydecs"
%%

#include "basics"

"hbrk","hcon": Ide;

e: Env = I d e - > C;
"mte": Env;

! implicit labels set by
i break and continue
! label environments
I (mt= =empty) environment

: LC = [Ide,C]; ! label-continuation pairs

: VC = [V,C]; ! case number-cont, pairs
I for switches

"vdef": V; T special default value
"switch": [VC*,C] - > [V,S] - > A; i VC*: cases + continuations

! C: used if no default
! [V,S]: value of exp

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 591

$stm, $stm_s:

%%

#,include "exp"
Prog

stm

E n v - > C - > [C,LC*,VC*]; t Env: used by embedded gotos
! C: normal exit continuation
! [C: entry continuation
! LC*: visible labels+contin.
! VC* : visible cases+cont in.

: MAIN '(' ')' stm
{

}

: RETURN exp ';'

! setup environment for enclosed labels
let cyclic p = $stm (mte[p.2]) fall;

cO = p.1;
in cO

{ $ $ e c l = ($ e x p l r e t u r n , 0 , 0) }
t;,

{ $$ e cl = (c l , 0, 0) }
exp ';'

{ $$ e c l = ($exp I1 popv Icl, 0, 0) }
BREAK ';'

{ $ $ e c l = (e (h b r k) , 0 , 0) }
CONTINUE ';'

{ $ $ e c l -- (e (h c o n) , 0 , 0) }
GOTO ID ';'

{ $$ e c l = (e($1D), (), 0) }
IF '(' exp ')' stm

{ $$ e c l =
let

in
}

I IF '(' exp ')' stm ELSE stm
{ $$ e c l =

let

in
}

I WHILE '(' exp ')' stm
{ $$ e c l =

cyclic p =
let

p = $ s t m e c l ;
cO = $exp I cond(p.1 , c l);
Ic = p.2;
vc = p.3;
(cO, Ic, vc)

p = $stm.1 e c l ;
q = $stm.2 e c l ;
cO = $exp I cond(p.1 , q.1);
Ic = p.2 cat q.2;
vc = p.3 cat q.3;
(cO, Ic, vc)

e ' = e[hbrk:= c l] [hcon:= p.1];
q = $stm e' p.1;

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

592 Ravi Sethi

in
}

DO stm WHILE '(' exp ')' ';'
{ $$ e c l =

cyclic p =
let

in
}

FOR '(' exp ';' exp ';, exp ')' stm
{ $$ e c l =

let cyclic p =
let

in
}

ID ':' stm
{ $$ e c l =

let

in
}

CASE NUM ':' stm
{ $ $ e c l =

let

in
}

DEFAULT ':' stm
{ $$ e c l =

let

CO = $exp I cond(q.1 , c l);
Ic = q.2;
vc = q.3;
(CO, Ic , vc)

c = $exp I cond(p.1 , c l);
e ' = e[hbrk:= c l] [hcon := c];
$stm e' c

c' = $exp.3 I1 popv I p.1;
e ' - - e [hbrk:= c l] [hcon := c'];
q = $stm e' c';
c = $exp.2 I cond(q.1 , c l);
Ic = q.2;
vc = q.3;

in (c, I c , vc);
CO = $exp.1 I1 popv I P.1;
Ic = p.2;
vc = p.3;
(CO, I c , vc)

p = $stm e c l ;
CO = p.1;
Ic = ($1D,c0) cons p.2;
vc = p.3;
(cO, Ic , vc)

p = $stm o c l ;
CO = p.1;
Ic = p.2;
vc = ($NUM,CO) cons p.3;
(CO, Ic, vc)

p = $ s t m e c l ;
cO = p.1;

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling 593

strn_$

in
}

I S W I T C H '(' exp ')' stm
{ $$ e c l =

lot

in
}

I'{' strn_s 'y
{ $stm_s }

: ! empty

Ic = p.2;
vc = (vdef,cO) cons p.3;
(cO, Ic, vc)

e ' = e[hbrk:=cl] ;
p = $stm e' c l ;

cO = $exp I switch(p.3, cl);
Ic = p.2;

vc = 0;
(cO, Ic, vc)

{ $ $ e c l = (c l , 0 , 0) }
[stm_s stm

{ $$ e c2 =
let

in
}

q = $stm e c2;
c l = q.1;
p = $stm_s e c l ;
cO = p.1;
Ic = p.2 cat q.2;
vc = p.3 cat q.3;
(cO, Ic , vc)

ACKNOWLEDGMENTS

Comments by A1 Aho and Bjarne Stroustrup on the presentation are appreciated.
The referees were very thorough in their reading of this paper and made numerous
suggestions for its improvement. Discussions with Neff Jones, Peter Mosses, and
Mitchell Wand have been most profitable; it is hard to be more specific.

REFERENCES

1. ADJ: GOGUEN, J.A., THATCHER, J.W., WAGNER, E.G., AND WRIGHT, J.B. Initial algebra seman-
tics and continuous algebras. J. ACM 24, 1 (Jan. 1977), 68-95.

2. ADJ: THATCHER, J.W., WAGNER, E.G., AND WRIGHT, J.B. More on advice on structuring
compilers and proving them correct. Theor. Comput. Sci. 15, (1981), 223-249.

3. AHO, A.V. Translator writing systems: Where do they now stand? Computer 13, 8 (Aug. 1980),
9-14. This paper is a guest editor's introduction and overview of a special issue on Translator
Writing Systems.

4. AHO, A.V., AND ULLMAN, J.D. Principles of Compiler Design. Addison-Wesley, Reading, Mass.
(1977).

5. ANDERSON, E.R., BELZ, F.C., AND BLUM, E.K. SEMANOL (73): A metalanguage for program-

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

594 • Ravi Sethi

ming the semantics of programming languages." Acta Inf. 6 (1976}, 109-131.
6. ANDERSON, E.R., BELZ, F.C., AND BLUM, E.K. Issues in the formal specification of programming

languages. In Formal Description of Programrning Concepts, E. J. Neuhold, Ed., Elsevier North-
Holland, New York (1978), pp. 1-30.

7. BACKUS, J.W., BEEBER, R.J., BEST, S., GOLDBERG, R., HAIBT, L.M., HERRICK, H.L., NELSON,
R.A., SAYRE, D., SHERIDAN, P.B., STERN, H., ZILLER, I., HUGHES, R.A., AND NUTT, R. The
Fortran automatic coding system. Western Joint Computer Conference, pp. 188-198 (1957).

8. BAUER, F. L. Historical remarks on compiler construction, In Compiler Construction: An
Advanced Course, 2nd ed, F.L. Bauer and J. Eickel, Eds., Lecture Notes in Computer Science 21,
Springer-Verlag, New York (1976), pp. 603-621.

9. BAUER, F.L. AND EICKEL, J. Eds. Compiler Construction: An Advanced Course, 2nd ed, Lecture
Notes in Computer Science 21, Springer-Verlag, Berlin (1976).

10. BJ¢RNER, D. Programming languages: Formal development of interpreters and compilers. In
International Computing Symposium 1977, E. Morlet and D. Ribbens, Eds., Elsevier North-
Holland, New York (1977), pp. 1-21.

11. BJ~RNER, D. AND JONES, C.B. The Vienna Development Method: The Meta-Language. Lecture
Notes in Computer Science 61, Springer-Verlag, New York (1978).

12. BODWIN, J., BRADLEY, L., KANDA, K., LITLE, D., AND PLEBAN, U. Experience with an experi-
mental compiler generator based on denotational semantics. In Proc. SIGPLAN "82 Symp.
Compiler Construction, SIGPLAN Notices 17(6), pp. 216-229 (June 1982).

13. CATTELL, R.G.G. Automatic derivation of code generators from machine descriptions. ACM
Trans. Program. Lang. Syst. 2, 2 (Apr. 1980) 173-190.

14. CHRISTIANSEN, H. AND JONES, N.D. Control flow treatment in a simple compiler generator. In
Formal Description of Programming Concepts II, D. Bjcruer, Ed., Elsevier North-Holland, New
York (1982), pp. 38-62. The page numbers refer to the preliminary proceedings of the IFIP TC-2
Working Conference, Garmisch, West Germany, June 1982.

15. DAVIDSON, d.W., AND FRASER, C.W. The design and application of a retargetable peephole
optimizer, ACM Trans. Program. Lang. Syst. 2, 2 (Apr. 1980), 191-202.

16. FELDMAN, J. AND GRIES, D. Translator writing systems. Commun. ACM 11, 2 (Feb. 1968), 77-
113.

17. GANZINGER, H. Transforming denotational semantics into practical attribute grammars. In
Semantics Directed Compiler Generation, N.D. Jones, Ed., Lecture Notes in Computer Science
94, Springer-Verlag, New York (1980), pp. 1-69.

18. GAUDEL, M.C. Specification of compilers as abstract data type representations. In Semantics
Directed Compiler Generation, N. D. Jones, Ed., Lecture Notes in Computer Science 94, Springer-
Verlag, New York (1980), pp. 140-164.

19. GAUDEL M.C. Compiler generation from formal defmition of programming languages: a survey.
In Formalization of Programming Concepts, Intl. Colloquium, Peniscola, Spain, Lecture Notes
in Computer Science 107, Springer-Verlag, New York (Apr. 1981), pp. 96-114.

20. GLANVILLE, R.S. AND GRAHAM, S.L. A new method for compiler code generation (extended
abstract}. In Proc. Fifth Annual Syrnp. Principles of Programming Languages. (Jan. 1978}, pp.
231-240, ACM, New York.

21. GOLDSTINE, H.H., AND VON NEUMANN, J. Planning and coding problems for an electronic
computing instrument, Part II, Vol. 1. In John yon Neumann: Collected Works, Vol. V,
Macmillan, New York (1963} pp. 80-151. The report was prepared for the U.S. Army Ordnance
Department in April 1947.

22. GORDON, M.J.C. The Denotational Description of Programming Languages. Springer-Verlag,
New York (1979).

23. GRIES, D. Compiler Construction forDigital Computers. Wiley, New York (1971).
24. JOHNSON, S.C. Yacc--yet another compiler compiler. Computer Science Tech. Rep. 32, Bell

Laboratories, Murray Hill, N.J. (July 1975}. See the UNIX Programmer's Manual 2, Section 19
(January 1979}, Bell Laboratories, Murray Hill, N.J.

25. JOHNSON, W.L., PORTER, J.H., ACELEY, S.I., AND ROSS, D.T. Automatic generation of efficient
lexical processors using finite state techniques, Commun. ACM 11, 12 (Dec. 1968}, 805-813.

26. JONES, N.D. Ed. Semantics-Directed Compiler Generation, Lecture Notes in Computer Science
94, Springer-Verlag, New York (1980}.

27. KERSIGHAN, B.W., AND RITCHIE, D.M. The C Programming Language, Prentice-Hall, Engle-
wood Cliffs N.J. (1978).

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Control Flow Aspects of Semantics-Directed Compiling • 595

28. KNUTH D.E. History of writing compilers. In Proc. 1962 ACM National Conference, (Syracuse,
N.Y., September 4-7), ACM, New York, pp. 43.

29. KNUTH, D.E. Semantics of context-free languages. Math. Syst. Theory 2, 2 (June 1968) 127-145
Correction in Vol. 5, no. 1 (1971} pp. 95-96.

30. LESK, M.E. Lex--a lexical analyzer generator. Computer Science Tech. Rep. 39, Bell Laborato-
ries, Murray Hill NJ (October 1975). See the version by M.E. Lesk and E. Schmidt in the UNIX
Programmer's Manual 2, Section 20 (Jan. 1979), Bell Laboratories, Murray Hill, N.J.

31. LEWIS, P.M., ROSENKRANTZ, D.J. AND STEARNS, R.E. Compiler Design Theory. Addison-
Wesley, Reading, Mass (1976).

32. MCCARTHY, J. Towards a mathematical science of computation. In Information Processing
1962, C. M. Popplewell, Ed., Elsevier North-Holland, New York (1963), pp. 21-28.

33. MILNE, R.E. AND STRACHEY, C. A Theory of Programming Language Semantics. Chapman
and Hall, London, and J. Wiley, New York (1976).

34. MORRIS, F.L. The next 700 programming language descriptions. Unpublished manuscript (Nov.
1970).

35. MORRIS, F.L. Advice on structuring compilers and proving them correct. In Proc. ACM Symp.
Principles of Programming Languages, (Boston, Mass., Oct. 1-3, 1973), ACM, New York, pp.
144-152.

36. MossEs, P.D. SIS--semantics implementation system: Reference manual and user guide.
DAIMI MD-30, Dept. Computer Science, University of Aarhus, Denmark (Aug. 1979).

37. MOSSES, P.D. Abstract semantic algebras! In Formal Description of Programming Concepts II,
D. Bjcrner, Ed., Elsevier North-Holland (1982) pp. 63-88. The page numbers refer to the
preliminary proceedings of the IFIP TC-2 Working Conference, Garmisch, West Germany, June
1982.

38. PAULSOI~ L. A semantics-directed compiler generator. In Proc. Ninth Annual ACM Symposium
on Principles of Programming Languages (Albuquerque N.M., Jan. 25-27, 1982), ACM, New
York, pp. 224-233.

39. RAIHA, K.-J. Bibliography on attribute grammars, SIGPLAN Notices 15, 3 (Mar. 1980), pp. 35-
44.

40. RAOULT, J.-C., AND SETHI, R. Properties of a notation for combining functions. In Automata,
Languages and Programming, 9th Colloquium, Aarhus, Denmark, Lecture Notes in Computer
Science 140, Springer-Veriag, New York (July 1982). Revised version in J. ACM. 30, 3 (July 1983)
595-611.

41. RASKOVSKY, M. Denotational semantics as a specification of code generators. In Proc. SIG-
PLAN "82 Symposium on Compiler Construction, SIGPLAN Notices 17, 6 (June 1982), pp. 230-
244.

42. SCOTT, D.S. AND STRACHEY, C. Towards a mathematical semantics for computer languages,
In Proc. Symp. Computers and Automata, Polytechnic Press, Brooklyn, New York (April 1971),
pp. 19-46.

43. SETHI, R. Circular expressions: elimination of static environments. Science of Computer Pro-
gramming 1, 3 (May 1982), pp. 203-222.

44. STOY, J.E. Denotational Semantics, MIT Press, Cambridge, Mass. (1977).
45. STRACHEY, C. AND WADSWORTH, C. Continuations: a mathematical semantics which can deal

with full jumps. Technical Monograph PRG-11, Programming Research Group, Oxford University
(1974).

46. TENSENT, R.D. The denotational semantics of programming languages. Commun. ACM 19, 8
(Aug. 1976), 437-453.

47. TURNER, D.A. A new implementation technique for applicative languages. Softw. Prac. Exper.
9, 1 (Jan. 1979), 31-49.

48. WASD, M. Deriving target code as a representation of continuation semantics. ACM Trans.
Program. Lang. Syst. 4, 3 (July 1982), 496-517.

Received October 1981; revised December 1982; accepted January 1983

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

