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Information system design can be influenced and ultimate performance 
parameters accurately forecast through the coordinated use of five 
performance analysis tools. The complementary methodology is used to first 
predict and then validate system performance throughout its life cycle. 

THE COORDINATED USE OF FIVE 
PERFORMANCE EVALUATION 
METHODOLOGIES 

GORDON E. ANDERSON 

During the past twelve years, there has been a rapid 
evolution of performance evaluation from hit-and-miss 
measurement to experimental computer science [4]. 
The progress in the development of algorithms for solv- 
ing queueing network models, for example, has been 
remarkable. However, the many recent papers dealing 
with performance evaluation usually have either pre- 
sented a new algorithm for solving queueing networks 
or dealt with only one performance evaluation method- 
ology. This paper describes the coordinated use of five 
performance evaluation methodologies to determine 
system performance feasibility, influence system de- 
sign, predict the performance attributes of proposed 
systems, identify performance bottlenecks, and provide 
upward migration paths for a real-time point-of-sale 
system. The methodologies applied are work-load char- 
acterization, queueing network modeling, load simula- 
tion, measurement with a hardware monitor, and simu- 
lation modeling. 

THE SYSTEM TO BE EVALUATED 
The performance of a proposed retail store controller 
and attached point-of-sale (POS) terminals was to be 
evaluated. The architecture of this system, shown in 
Figure 1, consists of a main CPU with 128K bytes of 
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main memory, a sub-CPU with 4K bytes of memory for 
communication processing, up to 512K bytes of bubble 
memory, an 8-inch floppy disk unit, and up to 32 POS 
terminals multidropped on a 4800-bps communication 
line. Both the main CPU and the sub-CPU are Fujitsu 
M6800 microprocessors that run at 768 kHZ. 

The system must perform three functions. The first is 
providing price data on merchandise items in real time. 
A request for price data originates at a POS terminal 
and is passed over the communication line to the con- 
troller. The controller looks up the price data in bubble 
memory and returns the data to the POS terminal over 
the communication line. The second is maintaining a 
transaction log of all sales activity. The POS terminals 
send messages to the controller at the end of each sales 
transaction and the controller records these data on a 
floppy disk. The third is keeping sales totals by em- 
ployee number, sales department, etc. Again, this is 
accomplished by message interchanges between the 
POS terminals and the store controller. 

Identification of Performance Requirements and 
Objectives 
Performance requirements were a mean interactive re- 
sponse time of less than 2 seconds and a mean end-of- 
sale transaction response time (which involves the ex- 
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change of multiple messages) of less than 8 seconds. 
These response time requirements were based on a sur- 
vey of potential users, experience, and response time 
studies such as those by Miller [9]. 

Software Performance Engineering 
Conducting performance analysis during (rather than 
after) design and development is known as software 
performance engineering, the advantages of which are 
numerous, as pointed out by Smith [12]. Performance 
analysis was concurrent with the design and develop- 
ment of the controller software. This permitted us to 
identify design trade-offs and roughly predict the num- 
ber of POS terminals that could be connected to the 
controller while maintaining the response time require- 
ments. 

One clear advantage of software performance engi- 
neering is that the participation of performance ana- 
lysts in system design usually results in an efficiently 
designed and implemented system. Designing and im- 
plementing a system before finding out that it does not 
meet performance objectives often results in postdevel- 
opment performance tuning that is difficult to achieve 
while preserving the original design. Another advan- 
tage is that the cost of achieving performance objectives 
can be identified during the design phase. Putting a 
price tag on performance and functional requirements 
forces reevaluation of these requirements early in the 
system development cycle and helps separate manda- 
tory from optional requirements. 

Development of a Performance Evaluation Plan 
We developed a performance evaluation plan as fol- 
lows. The first step in the analysis would be to charac- 
terize the work load of the proposed system. Second 
would be the creation of an approximate queueing net- 
work model of the system. Third, special hardware 
would be built to interface a hardware monitor with 

the microprocessor-based system, permitting measure- 
ment of the controller as soon as it was up and running. 
Fourth, design and coding of a load simulator would 
proceed concurrently with performance analysis and 
the development of the actual system. This would al- 
low measurement of the system under controlled load- 
ing. Fifth, a detailed simulation model of the system 
would be constructed, validated, and used to identify 
bottlenecks and answer "what if" questions. 

METHODOLOGY 1: 
WORK-LOAD CHARACTERIZATION 
A study of retail store work-load volumes showed that 
peak loading occurs during the Christmas holiday sea- 
son. Several days in that period, such as the Saturday 
before Christmas, are peak volume days. Further work- 
load studies from these busiest days showed that vol- 
ume varied from hour to hour and that peak hour vol- 
ume was approximately twice the mean peak day vol- 
ume. This peak hour of peak day volume was used as 
the design goal for the system. That is, the system's 
performance under these conditions had to be rapid 
enough to avoid congestion and customer dissatisfac- 
tion in retail stores. 

METHODOLOGY 2: 
A QUEUEING NETWORK MODEL 
While the actual system was still in the design stage, 
we created an approximate queueing network model to 
provide preliminary performance data. In the system, 
there are six components of response time: communica- 
tion buffer delay, read poll delay, output queueing de- 
lay, line input time, line output time, and controller 
processing time. Four different methodologies were 
used to calculate the six components. 

Communication buffer delay is a problem of simulta- 
neous resource possession. Solutions to this type of 
problem may be found by simulation, and several ana- 
lytical techniques, such as those by Chandy, Herzog, 
and Woo [2] and Jacobson and Lazowska [6], have been 
developed. However, little was known of the software 
processing profiles and device service times at the time 
the queueing network model was created because the 
software had not yet been written. We believed that 
any resulting error would more likely be caused by 
lack of knowledge of the system than by computational 
or modeling technique. So, for the approximate model, 
communication buffer delay was simply estimated to be 
100 milliseconds. This estimate was based on experi- 
ence with similar systems. 

Read poll delay and output queueing delay were cal- 
culated using queueing equations such as those pre- 
sented in Kleinrock [7] and Martin [8]. Since communi- 
cation line speed, protocol, and the number of bytes to 
be transmitted were known, the calculations were 
straightforward. 

Line input and output times may be calculated easily 
from knowledge of line speed, the communication pro- 
tocol used, line turnaround times, etc. From the proto- 
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col and data throughput requirements, the number of 
characters to be transmitted can be derived. This num- 
ber is then multiplied by line character time and added 
to the sum of all line turnaround delays to get line 
input and output times. 

The remaining component of response time is con- 
troller response time. Figure 2 shows a queueing net- 
work model of the controller, consisting of a main CPU, 
bubble memory unit, and floppy disk. Note that the 
sub-CPU is not modeled here because it controls the 
communication line and Direct Memory Access (DMA) 
transfers data into 'the main CPU's memory. Conse- 
quently, any delays caused by the sub-CPU are ac- 
counted for in the line turnaround delays. In the 
queueing network model of the controller, there were 
three job classes, each of which had different branching 
probabilities through the network of queues and differ- 
ent service times at each server. Furthermore, the net- 
work was an open one in which the number of jobs was 
allowed to vary. Queueing for each resource was on a 
first-come, first-served (FCFS) basis. 

Currently, there is no tractable exact solution algo- 
rithm for open networks of queues with FCFS queueing 
and different service times by job class [1]. Some ap- 
proximate solution algorithms for these networks, such 
as those presented by Reiser and Lavenberg [11] and 
Chandy and Neuse [3], have been proposed. However, 
these solutions are limited to non-FCFS systems when 
service times depend on job class or are computation- 
ally expensive [10]. Furthermore, these approximate 
techniques are limited to closed networks. Other than 
simulation, there are two straightforward approaches to 
the problem. The first is to use the processor-sharing 
queueing discipline at each server. The second is to 
average the several job classes into one. We chose the 
second approach because the three job classes had sim- 
ilar service times. Also, we believed that any resulting 
error was more likely to be caused by errors in estimat- 
ing service times than by analytical approach. Conse- 
quently, the controller component of response time was 
calculated using the method first described by Jackson 
[5], which has the added advantage of computational 
simplicity. 

Queueing Network Model Results 
The analytical model produced predicted interactive 
response times that varied from 0.96 second for 16 con- 
nected terminals to 2.18 seconds for 32 connected ter- 
minals. At the time our subjective opinion, based on 
experience, was that the analytical model results were 
within +50 percent of the performance of the yet-to-be- 
built system. Consequently, we concluded that per- 
formance of the actual system would be acceptable for 
its intended purpose. 

Later measurement of the running system showed 
that the queueing network model had produced re- 
sponse time predictions that were 25-30 percent longer 
than the measured times. We considered this accuracy 
excellent for an unvalidated, predictive model. In fact, 
the error was actually less than 30 percent when one 
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considers that the queueing network model added 100- 
millisecond delay for communication buffer queueing, 
whereas the actual system had no communication 
buffer delay: there was enough memory to provide a 
communication buffer for each of the POS terminals. 
Queueing for communication buffers had been identi- 
fied by performance analysts as a potential bottleneck 
during design of the system. The accuracy of the unval- 
idated analytical model was excellent because a great 
deal of effort was spent analyzing potential processing 
profiles and job branching probabilities in an attempt to 
obtain very accurate model service time and job 
branching parameters. 

METHODOLOGIES 3 AND 4: 
LOAD SIMULATION AND MEASUREMENT 
Creating a validated model of the system under study 
necessitated obtaining or creating measurement tools, 
load simulation tools, and data analysis and reduction 
tools. We chose a general-purpose hardware monitor 
because measurement without the interference found 
in software monitors was desired. This choice required 
that special devices be built to interface an available 
hardware monitor with the measured system. Most 
hardware monitors have clip-on probes designed to in- 
terface with large computer backplanes, but since the 
system to be measured was based on microprocessors, 
special interfaces were needed to physically access 
measured data signals. The primary use of the hard- 
ware monitor and interfaces was to directly measure 
device utilizations. 

A load simulation tool that could drive the actual 
system under controlled load was required. To this end, 
we developed a communication load simulator that 
could simulate between 1 and 32 terminals multi- 
dropped on the communication line that interfaced 
with the real system. The load simulator was capable of 
both creating Poisson or fixed-time interarrivals and 
translating these interarrivals into the actual communi- 
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cation line message interchanges found in the real en- 
vironment. In other words, the load simulator was able 
to simulate a retail store with up to 32 POS terminals. 
The load simulator could also time-stamp the response 
messages (with lO-millisecond resolution) for later data 
reduction. 

The data reduction and analysis capability was satis- 
fied by an existing program that analyzed magnetic 
tapes containing time-tagged communication messages 
and produced a wide variety of statistics such as means, 
standard deviations, and histogram plots of response 
times. This was achieved easily and cheaply by having 
the load simulator write its data onto magnetic tape in 
a format compatible with the data reduction and analy- 
sis program. 

The coordinated use of the above tools produced 
measured response times over a wide range of work 
loads and functionality. The work loads, obtained from 
studies of actual systems, were recreated using the load 
simulator, which was used to drive the system under 
test in a controlled manner. 

METHODOLOGY 5: SIMULATION MODELING 
Model Requirements 
We required a validated model of the system that could 
produce accurate results over a wide range of work- 
load volume, number of terminals attached to the sys- 
tem, and system functionality. A wide range of system 
functionality means that different functional processing 
profiles would be modeled; for example, some sales 
transactions required interactive price look-up and 
credit authorization processing, whereas others did not. 
The model would be used to simulate all these types of 
processing. 

In order to obtain a wide domain of validity for the 
model, significant detail and fidelity were required. For 
example, the actual system contained a network of 
servers with multiple job classes in which service times 
varied with job class. At most servers, the queueing 
discipline was FCFS, but other service disciplines in- 
cluded preemptive priority and polling. Furthermore, 
parallel resource acquisition needed to be modeled. As 
tractable analytic solutions to such models do not exist, 
we decided that simulation modeling would be used. 

A major disadvantage of simulation modeling is its 
great cost in both time and effort. (There have been 
simulation models that have required as much time 
and effort to construct as the actual systems they mod- 
eled.) In the search for a simulation tool that would 
provide the greatest possible modeler productivity, we 
studied available simulation languages and modeling 
tools and chose the Performance Analysts Workbench 
System (PAWS) as the most powerful for our particular 
modeling requirements. 

oped by Chandy and others [13] for the purpose of 
viewing the performance attributes of a computer or 
computer/communication system at a high level of ab- 
straction. IPGs contain all the information found in 
queueing network diagrams plus other crucial func- 
tions such as memory management, parallel resource 
acquisition, interrupt processing, and parallel process- 
ing. IPGs are similar to directed graphs and consist of 
nodes connected by edges. Transactions (information to 
be processed, such as jobs or tasks) flow from node to 
node along the edges. At each node the information is 
processed in some way before the transaction leaves 
that node. 

Figure 3 shows an IPG of the real-time system mod- 
eled. In the figure, a Poisson arrival process is modeled 
at node ARRSOURCE where transactions are spawned. 
The transactions then proceed to CLOSEGATE where 
the number of transactions in the system is held to n, 
where n is the number of terminals in the system. If n 
or more transactions are already in the system, the new 
transaction must queue at CLOSEGATE. As each trans- 
action leaves the system, a new transaction, if one is 
queued, is permitted to enter the system. This is done 
in PAWS using tokens that are returned to CLOSE- 
GATE from node OPENGATE, through which every 
transaction passes upon leaving the system. From 
CLOSEGATE, transactions travel to TERMINAL1 
through TERMINALn with equal probability. A trans- 
action's polling priority on the multidropped communi- 
cation line is controlled by the terminal with which the 
transaction is associated. From its respective terminal, a 
transaction proceeds to PHSECOMP, where its phase is 
incremented. In PAWS, the user can specify that a 
transaction pass through several behavioral phases. The 
behavior of a transaction at each node (e.g., the service 
time at a service node} can be specified for each phase. 
In this way, multiple job classes with different (and 
even dynamically changing} service times by class are 
modeled. 

Other nodes in the IPG perform a number of func- 
tions: PLUTIME permits the gathering of price lookup 
response times; CREDTIME permits the gathering of 
credit response times; RCVLINE, OPENTGAT, RCVDE- 
LAY, RCVGATE, and CLOSEGATE model the behavior 
of the receive side of a half-duplex multidropped com- 
munication line with a polling queueing discipline. In 
the actual system, transmissions have priority over re- 
ceptions; however, once a read poll sequence begins, it 
cannot be interrupted by a transmission. This behavior 
is explicitly modeled by coordination with the transmit 
side of the line (nodes XMTCOMP1, XMTGATE, SET- 
CLOSE, XMTLINE, XMTCOMP2, XMTTIME, and SET- 
NOPEN}. As can be seen, a great deal of fidelity with 
the actual system is possible. 

Information Processing Graphs 
Modeling with PAWS begins with the creation of an 
information processing graph (IPG). IPGs were devel- 

Simulation Modeling With PAWS 
IPGs are easily translatable into an executing simula- 
tion model using PAWS. Each node in an IPG can be 
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FIGURE 3. Information Processing Graph 

implemented in PAWS in from 2 to 15 or so lines of 
PAWS source code. For example, the Poisson arrival 
process modeled at ARRSOURCE is implemented in 4 
lines of source code: 

ARRSOURCE 

TYPE SOURCE 

REQUEST 

(POSTRANS, INITPHASE) 
EXPO (INTARTIME) 

After coding, a PAWS program is compiled like any 
other high-level language. If the compilation is success- 
ful, the simulation model is executed for a user- 
specified length of time and performance statistics are 
generated. Typical performance statistics generated are 
histograms, means, standard deviations, and variances 
for data such as queue lengths, response times, 
queueing times, and device utilizations. 

Our PAWS simulation model of the real-time, POS 
system was completed at about the same time the ac- 
tual system became available for measurement. All that 
was required to validate the model was adjustment of 
service time parameters. By adjusting the service time 
parameters, a model was created that produced re- 
sponse time statistics and CPU utilization that agreed 

with measured values over a wide range of work-load 
volume, number of terminals, and processing function- 
ality. 

Model and Measurement Results 
Figure 4 presents the response time statistics generated 
by the preliminary queueing network model, the vali- 
dated PAWS simulation model, and the actual meas- 
ured response times. The figure shows agreement be- 
tween the PAWS simulation model and measured val- 
ues for three types of interactions: price lookup interac- 
tivity, data log messages, and report messages. In all 
cases, the modeled response times are within 11.5 per- 
cent of measured response times, and the agreement 
holds over a wide range of work-load volume. For the 
preliminary queueing network model, modeled re- 
sponse times are within 30 percent of measured values. 
Recall that results of the queueing network model rep- 
resent an average of the three types of response times, 
whereas the PAWS simulation model and measured 
values differentiate response times by job class. 

Figure 5 shows main CPU utilization values for the 
preliminary queueing network model, the PAWS simu- 
lation model, and measured values. Agreement be- 
tween the simulation model and measured values is 
within 2 percent. 

In addition to the values shown in Figures 4 and 5, 
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several  o the r  s imula t ion  mode l  runs  w e r e  made  using 
different  funct ional  processing.  S imula ted  response  
t imes r e m a i n e d  wi th in  11.5 pe r cen t  and  CPU uti l iza- 
t ion wi th in  2 pe rcen t  of m e a s u r e d  values.  

USES OF THE VALIDATED MODEL 
After  the  model  was val idated,  it was  used  to a n s w e r  
several  "wha t  if" quest ions .  For example ,  s ince 74 per- 
cent  of the  response  t ime delay was  in the  mul t i -  
d ropped  c o m m u n i c a t i o n  line, the  ques t ion  arose as to 
how m u c h  p e r f o r m a n c e  i m p r o v e m e n t  could  be gained 
by increas ing  l ine speed  from 4800 to 9600 bps. We 
used the mode l  to s h o w  that  a 43 pe rcen t  i m p r o v e m e n t  
in response  t ime could be gained for the  32- terminal  
sys tem if line speed  were  inc reased  from 4800 to 9600 
bps and  in terpol l  delay were  r e d u c e d  from the  meas-  
u red  21.7 to 13.3 mil l iseconds.  W h e n  these  changes  
were  made,  pe r fo rmance  i m p r o v e m e n t s  agreed wi th  
mode l  predict ions .  

Since CPU ut i l izat ion was  low, the  mode l  was  used  
to assess the feasibil i ty of add ing  a second  mul t i -  
d ropped  c o m m u n i c a t i o n  l ine w i th  the  idea that  more  
than  32 POS te rmina l s  could  be suppor ted .  The model  
s h o w e d  that  addi t ion  of a l ine was  feasible, wi th  CPU 
ut i l izat ion r ema in ing  be low 65 percent .  

In addi t ion  to its value in e x t e n d i n g  the  pe r fo rmance  
and appl icat ions  of the  control ler ,  the  s imula t ion  model  
is now being used  to evalua te  potent ia l  cu s tomer  instal-  
lations. If a potent ia l  cu s tomer  is cons ide r ing  a s tore 
control ler ,  sales pe r sonne l  can comple te  a ques t ion-  
naire  that  cap tures  work- load  and  func t iona l  options.  
This ques t ionna i r e  is t hen  t rans la ted  into a PAWS sim- 
ula t ion model  run,  and an accura te  p e r f o r m a n c e  assess- 
m e n t  can be r e t u r n e d  to the  sales office w i th in  a few 
work ing  days. 

CONCLUSIONS 
The coord ina ted  use of five pe r fo rmance  eva lua t ion  
methodolog ies  as d e m o n s t r a t e d  here  i l lustrates  how 
they  may  be appl ied  to c o m p l e m e n t  each o the r  and  
ach ieve  highly  des i rable  results.  These  resul ts  inc lude  
the  de t e rmina t i on  of p e r f o r m a n c e  feasibil i ty pr ior  to 
sys tem deve lopmen t ,  the  ident i f ica t ion  of pe r fo rmance  
trade-offs dur ing  design and  d e v e l o p m e n t  accurate ly ,  
the  abili ty to assess the  p e r f o r m a n c e  of p roposed  instal-  
lat ions accurate ly ,  and  the  ident i f ica t ion  of economica l  
upward  migra t ion  paths  w h i c h  e x p a n d  potent ia l  uses of 
the  eva lua ted  system.  

A c k n o w l e d g m e n t s .  The au thor  wou ld  like to t hank  
Doug Neuse,  K enne th  Shumate ,  and  John Hooper  for 
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