
COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

Information system design can be influenced and ultimate performance
parameters accurately forecast through the coordinated use of five
performance analysis tools. The complementary methodology is used to first
predict and then validate system performance throughout its life cycle.

THE COORDINATED USE OF FIVE
PERFORMANCE EVALUATION
METHODOLOGIES

GORDON E. ANDERSON

During the past twelve years, there has been a rapid
evolution of performance evaluation from hit-and-miss
measurement to experimental computer science [4].
The progress in the development of algorithms for solv-
ing queueing network models, for example, has been
remarkable. However, the many recent papers dealing
with performance evaluation usually have either pre-
sented a new algorithm for solving queueing networks
or dealt with only one performance evaluation method-
ology. This paper describes the coordinated use of five
performance evaluation methodologies to determine
system performance feasibility, influence system de-
sign, predict the performance attributes of proposed
systems, identify performance bottlenecks, and provide
upward migration paths for a real-time point-of-sale
system. The methodologies applied are work-load char-
acterization, queueing network modeling, load simula-
tion, measurement with a hardware monitor, and simu-
lation modeling.

THE SYSTEM TO BE EVALUATED
The performance of a proposed retail store controller
and attached point-of-sale (POS) terminals was to be
evaluated. The architecture of this system, shown in
Figure 1, consists of a main CPU with 128K bytes of

©1984 ACMO001-0782/84/0200-0119 75¢

main memory, a sub-CPU with 4K bytes of memory for
communication processing, up to 512K bytes of bubble
memory, an 8-inch floppy disk unit, and up to 32 POS
terminals multidropped on a 4800-bps communication
line. Both the main CPU and the sub-CPU are Fujitsu
M6800 microprocessors that run at 768 kHZ.

The system must perform three functions. The first is
providing price data on merchandise items in real time.
A request for price data originates at a POS terminal
and is passed over the communication line to the con-
troller. The controller looks up the price data in bubble
memory and returns the data to the POS terminal over
the communication line. The second is maintaining a
transaction log of all sales activity. The POS terminals
send messages to the controller at the end of each sales
transaction and the controller records these data on a
floppy disk. The third is keeping sales totals by em-
ployee number, sales department, etc. Again, this is
accomplished by message interchanges between the
POS terminals and the store controller.

Identification of Performance Requirements and
Objectives
Performance requirements were a mean interactive re-
sponse time of less than 2 seconds and a mean end-of-
sale transaction response time (which involves the ex-

February 1984 Volume 27 Number 2 Communications of the ACM 119

http://crossmark.crossref.org/dialog/?doi=10.1145%2F69610.357984&domain=pdf&date_stamp=1984-02-01

Computin~ Practices

CONTROLLER

MAIN I SUB CPU CPU

BUBBLE MEMORY

FLOPPY DISK

MULTI-DROPPED 4800 BPS
COMMUNICATION LINE

MAXIMUM OF
32 TERMINALS

[I
FIGURE 1. System Hardware Configuration

change of multiple messages) of less than 8 seconds.
These response time requirements were based on a sur-
vey of potential users, experience, and response time
studies such as those by Miller [9].

Software Performance Engineering
Conducting performance analysis during (rather than
after) design and development is known as software
performance engineering, the advantages of which are
numerous, as pointed out by Smith [12]. Performance
analysis was concurrent with the design and develop-
ment of the controller software. This permitted us to
identify design trade-offs and roughly predict the num-
ber of POS terminals that could be connected to the
controller while maintaining the response time require-
ments.

One clear advantage of software performance engi-
neering is that the participation of performance ana-
lysts in system design usually results in an efficiently
designed and implemented system. Designing and im-
plementing a system before finding out that it does not
meet performance objectives often results in postdevel-
opment performance tuning that is difficult to achieve
while preserving the original design. Another advan-
tage is that the cost of achieving performance objectives
can be identified during the design phase. Putting a
price tag on performance and functional requirements
forces reevaluation of these requirements early in the
system development cycle and helps separate manda-
tory from optional requirements.

Development of a Performance Evaluation Plan
We developed a performance evaluation plan as fol-
lows. The first step in the analysis would be to charac-
terize the work load of the proposed system. Second
would be the creation of an approximate queueing net-
work model of the system. Third, special hardware
would be built to interface a hardware monitor with

the microprocessor-based system, permitting measure-
ment of the controller as soon as it was up and running.
Fourth, design and coding of a load simulator would
proceed concurrently with performance analysis and
the development of the actual system. This would al-
low measurement of the system under controlled load-
ing. Fifth, a detailed simulation model of the system
would be constructed, validated, and used to identify
bottlenecks and answer "what if" questions.

METHODOLOGY 1:
WORK-LOAD CHARACTERIZATION
A study of retail store work-load volumes showed that
peak loading occurs during the Christmas holiday sea-
son. Several days in that period, such as the Saturday
before Christmas, are peak volume days. Further work-
load studies from these busiest days showed that vol-
ume varied from hour to hour and that peak hour vol-
ume was approximately twice the mean peak day vol-
ume. This peak hour of peak day volume was used as
the design goal for the system. That is, the system's
performance under these conditions had to be rapid
enough to avoid congestion and customer dissatisfac-
tion in retail stores.

METHODOLOGY 2:
A QUEUEING NETWORK MODEL
While the actual system was still in the design stage,
we created an approximate queueing network model to
provide preliminary performance data. In the system,
there are six components of response time: communica-
tion buffer delay, read poll delay, output queueing de-
lay, line input time, line output time, and controller
processing time. Four different methodologies were
used to calculate the six components.

Communication buffer delay is a problem of simulta-
neous resource possession. Solutions to this type of
problem may be found by simulation, and several ana-
lytical techniques, such as those by Chandy, Herzog,
and Woo [2] and Jacobson and Lazowska [6], have been
developed. However, little was known of the software
processing profiles and device service times at the time
the queueing network model was created because the
software had not yet been written. We believed that
any resulting error would more likely be caused by
lack of knowledge of the system than by computational
or modeling technique. So, for the approximate model,
communication buffer delay was simply estimated to be
100 milliseconds. This estimate was based on experi-
ence with similar systems.

Read poll delay and output queueing delay were cal-
culated using queueing equations such as those pre-
sented in Kleinrock [7] and Martin [8]. Since communi-
cation line speed, protocol, and the number of bytes to
be transmitted were known, the calculations were
straightforward.

Line input and output times may be calculated easily
from knowledge of line speed, the communication pro-
tocol used, line turnaround times, etc. From the proto-

120 Communications of the ACM February 1984 Volume 27 Number 2

Computing Practices

col and data throughput requirements, the number of
characters to be transmitted can be derived. This num-
ber is then multiplied by line character time and added
to the sum of all line turnaround delays to get line
input and output times.

The remaining component of response time is con-
troller response time. Figure 2 shows a queueing net-
work model of the controller, consisting of a main CPU,
bubble memory unit, and floppy disk. Note that the
sub-CPU is not modeled here because it controls the
communication line and Direct Memory Access (DMA)
transfers data into 'the main CPU's memory. Conse-
quently, any delays caused by the sub-CPU are ac-
counted for in the line turnaround delays. In the
queueing network model of the controller, there were
three job classes, each of which had different branching
probabilities through the network of queues and differ-
ent service times at each server. Furthermore, the net-
work was an open one in which the number of jobs was
allowed to vary. Queueing for each resource was on a
first-come, first-served (FCFS) basis.

Currently, there is no tractable exact solution algo-
rithm for open networks of queues with FCFS queueing
and different service times by job class [1]. Some ap-
proximate solution algorithms for these networks, such
as those presented by Reiser and Lavenberg [11] and
Chandy and Neuse [3], have been proposed. However,
these solutions are limited to non-FCFS systems when
service times depend on job class or are computation-
ally expensive [10]. Furthermore, these approximate
techniques are limited to closed networks. Other than
simulation, there are two straightforward approaches to
the problem. The first is to use the processor-sharing
queueing discipline at each server. The second is to
average the several job classes into one. We chose the
second approach because the three job classes had sim-
ilar service times. Also, we believed that any resulting
error was more likely to be caused by errors in estimat-
ing service times than by analytical approach. Conse-
quently, the controller component of response time was
calculated using the method first described by Jackson
[5], which has the added advantage of computational
simplicity.

Queueing Network Model Results
The analytical model produced predicted interactive
response times that varied from 0.96 second for 16 con-
nected terminals to 2.18 seconds for 32 connected ter-
minals. At the time our subjective opinion, based on
experience, was that the analytical model results were
within +50 percent of the performance of the yet-to-be-
built system. Consequently, we concluded that per-
formance of the actual system would be acceptable for
its intended purpose.

Later measurement of the running system showed
that the queueing network model had produced re-
sponse time predictions that were 25-30 percent longer
than the measured times. We considered this accuracy
excellent for an unvalidated, predictive model. In fact,
the error was actually less than 30 percent when one

ENTRY FROM
COMMUNICATION
LINE

FIGURE 2.

CPU

BUBBLE MEMORY

FLOPPY DISK

Open Queueing Network Model of System

EXIT TO
COMMUNICATION
LINE

considers that the queueing network model added 100-
millisecond delay for communication buffer queueing,
whereas the actual system had no communication
buffer delay: there was enough memory to provide a
communication buffer for each of the POS terminals.
Queueing for communication buffers had been identi-
fied by performance analysts as a potential bottleneck
during design of the system. The accuracy of the unval-
idated analytical model was excellent because a great
deal of effort was spent analyzing potential processing
profiles and job branching probabilities in an attempt to
obtain very accurate model service time and job
branching parameters.

METHODOLOGIES 3 AND 4:
LOAD SIMULATION AND MEASUREMENT
Creating a validated model of the system under study
necessitated obtaining or creating measurement tools,
load simulation tools, and data analysis and reduction
tools. We chose a general-purpose hardware monitor
because measurement without the interference found
in software monitors was desired. This choice required
that special devices be built to interface an available
hardware monitor with the measured system. Most
hardware monitors have clip-on probes designed to in-
terface with large computer backplanes, but since the
system to be measured was based on microprocessors,
special interfaces were needed to physically access
measured data signals. The primary use of the hard-
ware monitor and interfaces was to directly measure
device utilizations.

A load simulation tool that could drive the actual
system under controlled load was required. To this end,
we developed a communication load simulator that
could simulate between 1 and 32 terminals multi-
dropped on the communication line that interfaced
with the real system. The load simulator was capable of
both creating Poisson or fixed-time interarrivals and
translating these interarrivals into the actual communi-

February 1984 Volume 27 Number 2 Communications of the ACM 121

Computing Practices

cation line message interchanges found in the real en-
vironment. In other words, the load simulator was able
to simulate a retail store with up to 32 POS terminals.
The load simulator could also time-stamp the response
messages (with lO-millisecond resolution) for later data
reduction.

The data reduction and analysis capability was satis-
fied by an existing program that analyzed magnetic
tapes containing time-tagged communication messages
and produced a wide variety of statistics such as means,
standard deviations, and histogram plots of response
times. This was achieved easily and cheaply by having
the load simulator write its data onto magnetic tape in
a format compatible with the data reduction and analy-
sis program.

The coordinated use of the above tools produced
measured response times over a wide range of work
loads and functionality. The work loads, obtained from
studies of actual systems, were recreated using the load
simulator, which was used to drive the system under
test in a controlled manner.

METHODOLOGY 5: SIMULATION MODELING
Model Requirements
We required a validated model of the system that could
produce accurate results over a wide range of work-
load volume, number of terminals attached to the sys-
tem, and system functionality. A wide range of system
functionality means that different functional processing
profiles would be modeled; for example, some sales
transactions required interactive price look-up and
credit authorization processing, whereas others did not.
The model would be used to simulate all these types of
processing.

In order to obtain a wide domain of validity for the
model, significant detail and fidelity were required. For
example, the actual system contained a network of
servers with multiple job classes in which service times
varied with job class. At most servers, the queueing
discipline was FCFS, but other service disciplines in-
cluded preemptive priority and polling. Furthermore,
parallel resource acquisition needed to be modeled. As
tractable analytic solutions to such models do not exist,
we decided that simulation modeling would be used.

A major disadvantage of simulation modeling is its
great cost in both time and effort. (There have been
simulation models that have required as much time
and effort to construct as the actual systems they mod-
eled.) In the search for a simulation tool that would
provide the greatest possible modeler productivity, we
studied available simulation languages and modeling
tools and chose the Performance Analysts Workbench
System (PAWS) as the most powerful for our particular
modeling requirements.

oped by Chandy and others [13] for the purpose of
viewing the performance attributes of a computer or
computer/communication system at a high level of ab-
straction. IPGs contain all the information found in
queueing network diagrams plus other crucial func-
tions such as memory management, parallel resource
acquisition, interrupt processing, and parallel process-
ing. IPGs are similar to directed graphs and consist of
nodes connected by edges. Transactions (information to
be processed, such as jobs or tasks) flow from node to
node along the edges. At each node the information is
processed in some way before the transaction leaves
that node.

Figure 3 shows an IPG of the real-time system mod-
eled. In the figure, a Poisson arrival process is modeled
at node ARRSOURCE where transactions are spawned.
The transactions then proceed to CLOSEGATE where
the number of transactions in the system is held to n,
where n is the number of terminals in the system. If n
or more transactions are already in the system, the new
transaction must queue at CLOSEGATE. As each trans-
action leaves the system, a new transaction, if one is
queued, is permitted to enter the system. This is done
in PAWS using tokens that are returned to CLOSE-
GATE from node OPENGATE, through which every
transaction passes upon leaving the system. From
CLOSEGATE, transactions travel to TERMINAL1
through TERMINALn with equal probability. A trans-
action's polling priority on the multidropped communi-
cation line is controlled by the terminal with which the
transaction is associated. From its respective terminal, a
transaction proceeds to PHSECOMP, where its phase is
incremented. In PAWS, the user can specify that a
transaction pass through several behavioral phases. The
behavior of a transaction at each node (e.g., the service
time at a service node} can be specified for each phase.
In this way, multiple job classes with different (and
even dynamically changing} service times by class are
modeled.

Other nodes in the IPG perform a number of func-
tions: PLUTIME permits the gathering of price lookup
response times; CREDTIME permits the gathering of
credit response times; RCVLINE, OPENTGAT, RCVDE-
LAY, RCVGATE, and CLOSEGATE model the behavior
of the receive side of a half-duplex multidropped com-
munication line with a polling queueing discipline. In
the actual system, transmissions have priority over re-
ceptions; however, once a read poll sequence begins, it
cannot be interrupted by a transmission. This behavior
is explicitly modeled by coordination with the transmit
side of the line (nodes XMTCOMP1, XMTGATE, SET-
CLOSE, XMTLINE, XMTCOMP2, XMTTIME, and SET-
NOPEN}. As can be seen, a great deal of fidelity with
the actual system is possible.

Information Processing Graphs
Modeling with PAWS begins with the creation of an
information processing graph (IPG). IPGs were devel-

Simulation Modeling With PAWS
IPGs are easily translatable into an executing simula-
tion model using PAWS. Each node in an IPG can be

122 Communications of the ACM February 1984 Volume 27 Number 2

Computing Practices

OPENGATE
ENDSINK ~

I
i
I
I
I
I
I
I
I
I
I

ARRSOURCE CLOSEGATE

• ~ TERMINL1 ~ '

- '~ TERMINL2 ~ '

"--~ TERMINL3 ~ '

I ENDWAKEUP ~~RR~LOBUF F

d : , I

DJOIN I I
i
I
i
I
I
I
I
I
I
I
I '

('--IxM WAKEU I'--t SE'NOPE I
x ,Jo,N¥ , ,

RCVFORK

I x,,T.ME J

ETLOBUFF

XMTFORK

FIGURE 3. Information Processing Graph

implemented in PAWS in from 2 to 15 or so lines of
PAWS source code. For example, the Poisson arrival
process modeled at ARRSOURCE is implemented in 4
lines of source code:

ARRSOURCE

TYPE SOURCE

REQUEST

(POSTRANS, INITPHASE)
EXPO (INTARTIME)

After coding, a PAWS program is compiled like any
other high-level language. If the compilation is success-
ful, the simulation model is executed for a user-
specified length of time and performance statistics are
generated. Typical performance statistics generated are
histograms, means, standard deviations, and variances
for data such as queue lengths, response times,
queueing times, and device utilizations.

Our PAWS simulation model of the real-time, POS
system was completed at about the same time the ac-
tual system became available for measurement. All that
was required to validate the model was adjustment of
service time parameters. By adjusting the service time
parameters, a model was created that produced re-
sponse time statistics and CPU utilization that agreed

with measured values over a wide range of work-load
volume, number of terminals, and processing function-
ality.

Model and Measurement Results
Figure 4 presents the response time statistics generated
by the preliminary queueing network model, the vali-
dated PAWS simulation model, and the actual meas-
ured response times. The figure shows agreement be-
tween the PAWS simulation model and measured val-
ues for three types of interactions: price lookup interac-
tivity, data log messages, and report messages. In all
cases, the modeled response times are within 11.5 per-
cent of measured response times, and the agreement
holds over a wide range of work-load volume. For the
preliminary queueing network model, modeled re-
sponse times are within 30 percent of measured values.
Recall that results of the queueing network model rep-
resent an average of the three types of response times,
whereas the PAWS simulation model and measured
values differentiate response times by job class.

Figure 5 shows main CPU utilization values for the
preliminary queueing network model, the PAWS simu-
lation model, and measured values. Agreement be-
tween the simulation model and measured values is
within 2 percent.

In addition to the values shown in Figures 4 and 5,

February 1984 Volume 27 Number 2 Communications of the ACM 123

Computing Practices

FIGURE 4.
Modeled and Measured
Response Times

2,5

2.0

1.5

1.0

0.5

I
16

/ "~ REPORT MESSAGE I
~ , ~ . j r RESPONSE TIMES

~ • • ~ ~DATALOGGING
f / • " _ ~ PMESSAGE

_ , ~ / ~ , ~ ' v J RESPONSE TIMES

t ~ / ~ PR,CE LOOK-U,
/ ~ " / - _ / ~ MESSAGE RESPONSE

• QUEUEING NETWORK MODEL
. . . . PAWS SIMULATION MODEL

MEASURED VALUES

I I I
20 24 28

NUMBER OF POS TERMINALS ATTACHED

I
32

FIGURE 5.
Main CPU Utilization

Z
O m i---
<C
N
.J t b-

O
Z
<C

40

3 0

20

10

• OUEUEING NETWORK MODEL

. . . . PAWS SIMULATION MODEL

MEASURED VALUES

I I

16 24

NUMBER OF POS TERMINALS ATTACHED

I
32

124 Communications of the ACM February 1984 Volume 27 Number 2

Computing Practices

several o the r s imula t ion mode l runs w e r e made using
different funct ional processing. S imula ted response
t imes r e m a i n e d wi th in 11.5 pe r cen t and CPU uti l iza-
t ion wi th in 2 pe rcen t of m e a s u r e d values.

USES OF THE VALIDATED MODEL
After the model was val idated, it was used to a n s w e r
several "wha t if" quest ions . For example , s ince 74 per-
cent of the response t ime delay was in the mul t i -
d ropped c o m m u n i c a t i o n line, the ques t ion arose as to
how m u c h p e r f o r m a n c e i m p r o v e m e n t could be gained
by increas ing l ine speed from 4800 to 9600 bps. We
used the mode l to s h o w that a 43 pe rcen t i m p r o v e m e n t
in response t ime could be gained for the 32- terminal
sys tem if line speed were inc reased from 4800 to 9600
bps and in terpol l delay were r e d u c e d from the meas-
u red 21.7 to 13.3 mil l iseconds. W h e n these changes
were made, pe r fo rmance i m p r o v e m e n t s agreed wi th
mode l predict ions .

Since CPU ut i l izat ion was low, the mode l was used
to assess the feasibil i ty of add ing a second mul t i -
d ropped c o m m u n i c a t i o n l ine w i th the idea that more
than 32 POS te rmina l s could be suppor ted . The model
s h o w e d that addi t ion of a l ine was feasible, wi th CPU
ut i l izat ion r ema in ing be low 65 percent .

In addi t ion to its value in e x t e n d i n g the pe r fo rmance
and appl icat ions of the control ler , the s imula t ion model
is now being used to evalua te potent ia l cu s tomer instal-
lations. If a potent ia l cu s tomer is cons ide r ing a s tore
control ler , sales pe r sonne l can comple te a ques t ion-
naire that cap tures work- load and func t iona l options.
This ques t ionna i r e is t hen t rans la ted into a PAWS sim-
ula t ion model run, and an accura te p e r f o r m a n c e assess-
m e n t can be r e t u r n e d to the sales office w i th in a few
work ing days.

CONCLUSIONS
The coord ina ted use of five pe r fo rmance eva lua t ion
methodolog ies as d e m o n s t r a t e d here i l lustrates how
they may be appl ied to c o m p l e m e n t each o the r and
ach ieve highly des i rable results. These resul ts inc lude
the de t e rmina t i on of p e r f o r m a n c e feasibil i ty pr ior to
sys tem deve lopmen t , the ident i f ica t ion of pe r fo rmance
trade-offs dur ing design and d e v e l o p m e n t accurate ly ,
the abili ty to assess the p e r f o r m a n c e of p roposed instal-
lat ions accurate ly , and the ident i f ica t ion of economica l
upward migra t ion paths w h i c h e x p a n d potent ia l uses of
the eva lua ted system.

A c k n o w l e d g m e n t s . The au thor wou ld like to t hank
Doug Neuse, K enne th Shumate , and John Hooper for
the i r he lpful suggestions.

REFERENCES
1. Baskett. F., Chandy, K.M., Muntz. R.R.. and Palacios, F.G. Open,

closed, and mixed networks of queues with different classes of cus-
tomers.]. ACM 22, 2 (Apr. 1975). 248-260. One of the first papers to
describe exact, product-form solutions for a wide class of multiple
job class queueing network problems.

2. Chandy, K.M., Herzog, U.. and Woo, L. Approximate analysis of
general queueing networks. IBM]. Res. Develop. 19, 1 (Jan. 1975). An

early milestone in the development of approximate, rather than
exact, solution methods for performance metrics of networks of
queues.

3. Chandy, K.M., and Neuse, D. Linearizer: A heuristic algorithm for
queueing network models of computing systems. Commun. ACM 25,
2 (Feb. 1982), 126-134. Cbandy and Neuse present an approximate
solution method for queueing networks that yields accurate results
in stress tests where other approximation techniques produce errors
of up to 35 percent.

4. Denning, P, Performance analysis: Experimental computer science
at its best. Commun. ACM 24, 11 (Nov. 1981), 725-727. Denning
summarizes progress made in solution methods for queueing net-
works and discusses the subsequent importance to experimental
computer science.

5. Jackson, J.R. Job shop-like queueing systems. Management Sci. 10, 1
(Jan. 1963). Jackson was the first to show that an open network of n
queues behaves as n independent queues.

6. Jacobson, P.A., and Lazowska, E.D. Analyzing queueing networks
with simultaneous resource possession. Commun. ACM 25, 2 (Feb.
1982}, 142-151. This paper gives an iterative solution method (called
the Method of Surrogate Delays) for solving problems with simulta-
neous resource possession.

7. Kleinrock, L. Queueing Systems. Vol. 2, Computer Applications.
Wiley, New York, 1976. Kleinrock's seminal work describes the ap-
plication of queueing theory to computer and communication sys-
tems.

8. Martin, J. Systems Analysis for Data Transmission. Prentice-Hall, En-
glewood Cliffs, N.J.. 1972. A classic work widely used by systems
analysts to calculate queueing delays, the number of channels re-
quired, and other performance metrics when designing or configur-
ing computer and communication systems.

9. Miller, R.B. Response time in man-computer conversational trans-
actions. In AFIPS Conference Proceedings for Joint Computer Conference
(San Francisco, Calif., Dec. 9-11), vol. 33, pt. 1. Thompson, Washing-
ton, D.C.. 1968. pp. 267-277. This paper discusses human productiv-
ity as a function of response time in interactive computer systems.

10. Neuse, D. Approximate analysis of large and general queueing net-
works. Ph.D. dissertation, Univ. of Texas, Dec., 1982. Neuse's thesis
discusses both exact and approximate solution methods for net-
works of queues and presents three new approximation algorithms
that give excellent results: SCAT. Linearizer, and HAM.

11. Reiser, M., and Lavenberg, S. Mean value analysis of closed multi-
chain queueing networks. J. ACM 27, 2 {Apr. 1980), 313-322. Reiser
and Lavenberg present a simple, intuitive, and widely used algo-
rithm for obtaining solutions for performance metrics of product-
form networks of queues.

12. Smith, C.U. Increasing productivity by software performance engi-
neering. In Proceedings of Computer Measurement Group XII (New
Orleans, Dec.). The Computer Measurement Group, Phoenix, Ari-
zona, 1981. Smith describes the integration of performance analysis
and software engineering to achieve well-designed, efficient com-
puter systems.

13. The Performance Analyst's Workbench System: Modeling Methodology
and User's Manual. Information Research Associates, Austin, Texas,
1981. A user's manual for PAWS: introduces information processing
graphs, a powerful and succinct way to view the performance attri-
butes of computer and communication systems.

CR Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Design Studies: C.4 [Performance of Systems]: Measurement
Techniques: C.4 [Performance of Systems]: Modeling Techniques: 1.6.2
[Simulation and Modeling]: Simulation Languages; 1.6.3 [Simulation
and Modeling]: Applications" 1.6.4 [Simulation and Modeling]: Model
Validation and Analysis

General Terms: Measurement. Performance
Additional Key Words and Phrases: hardware monitor, load simula-

tor, model validation, queueing network model, simulation model, soft-
ware performance engineering, work-load characterization

Received 4/83: revised 8/83; accepted 8/83

Author's Present Address: Gordon E. Anderson, 2125 Mountain Vista
Drive, Encinitas, CA 92024

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

February 1984 Volume 27 Number 2 Communications of the ACM 125

