Check for
Updates

CC-MODULA: A MODULA--2 TOOL
TO TEACH CONCURRENT PROGRAMMING

Rafael Morales—-Ferndndez
Juan José Moreno-—Navarro

Departamento de

Lenguajes v

Sistemas

Informaticos e Ingenieria de Software
Facultad de Informatica
Universidad Politécnica de Madrid
Campus de Montegancedo — Boadilla del Monte

286460 Madrid

ABSTRACT

The present work shows an educational
experience at University level in the field
of concurrent programming. CC-Modula, a
tool to teach concurrent programming using
a single language; is presented. It could
also be considered as a contribution ta the

development af methods to implement
concurrent mechanisms, in the frame of
centralized and distributed operating
systems.

CC-Modula is a Modula-2 package that allows

the use of the best known abstract
mechanisms of concurrency. CC-Modula
handles parallelism between processes and

contains mechanisms to synchronize them.
Mechanisms based on shared storage as well
as mechanisms based on message passing that
implement the CSP schema are included.

INTRODUCT ION

Concurrent programming has been usually
taught in operating systems courses. But
this idea does not correspond with the

actual development of applications in the
industry. Most of the current applications
include real time features.

For this reason we mantain that concurrent
programming is a discipline that should be
included in all the undergraduate computer

science curricula. This could be achieved
as an independent course and its aim must
be the introduction of the best known
abstract mechanisms of concurrency,
avoiding details about how concurrency is
implemented. Only after this course; a
student should learn about this

implementation. Recently a panel in the
19th SIGCSE Technical Symposium on Computer
Science Education [15) was a focus for a
further discussion on the subject.

Historically, abstractions for concurrency
have been developed as follows:

Concurrent
cooperating
comunicating and

programming, defined as
processes, impose the need of
synchronizing them. A

SIGCSE

BULLETIN Vol. 21 No. 3

Sept. 1989

19

~ SPAIN

first approach to this problem was to use
mechanisms based on the availability of
shared memory. The best known of these are
Semaphores, Critical Regionss; Conditional
Critical Regions and Monitors. A complete
description of these mechanisms can be
found in [11 and C 21. These mechanisms
are used in some languages, and Concurrent
Pascal [31 is, perhaps, the most
interesting one.

The solution of using shared memory is not
applicable when dealing with a distributed

and decentralized system. This problem
brings about the idea af treating
communication between processes through
message exchanges., The most celebrated

proposal in this field, usually used as a
reference; is the Hoare’s CS8P schema ([71
and [83), in which the sending and the
reception of messages are the basic
communication and synchronization
operations.

Another interesting feature of CSP is the
possibility of programming selective
receptions in a nondeterministic way by
using the guarded command construction
introduced by Dijkstra. Modern languages,
like Dccam [21 and, in a certain sense,
Ada [61, take advantage of this idea.

Modula-2 is a high level programming
language developed by Wirth [131, It is a
descendant of Pascal and has modularity as
its main feature. Even though it does not
provide real concurrencys it allows
programming with coroutines,; thus obtaining
a quasi-concurrency.

The fact that Modula-2 does not include
concurrent programming operations has been
considered by some authors as an advantage.
They claim that Modula-2 provides the
facilities to work with concurrency by
giving the programmer the possibility to
design his own mechanisms as he needs them.

There are some experiences in the use aof
Modula—-2 to develop concurrent mechanisms.
Wirth in [£131 describes a module for signal
handling that allows concurrent execution

http://crossmark.crossref.org/dialog/?doi=10.1145%2F70593.70598&domain=pdf&date_stamp=1989-09-01

of a number of processes at the same time.
However, parallel command nesting is not
possible in this implementation. Sewry [111]
improves Wirth’s module by adding the
possibility of terminating processes,; and
including a COBEGIN..COEND structure for

executing processes in parallel. As before,
this structure cannot be nested. Sewry [121]
again develops some ideas to implement
monitors. Wirth [14] implements some
aspects of CSP, like a parallel command
(that can be nested,; but restricted to two
processes) and the reception and the

sending of messages.

Brumfield € 41 talks about the previous
idea that teaching concurrent programming
is not only a task of operating systems
instructors. He also proposes Modula-2 as a
language to practice with concurrent
programming., He has developed a Modula- 2
Process Manager that provides the user with
types and procedures to write concurrent
programs. The mechanisms allowed are
process handling, semaphores, events and
message links. It seems that a process can
create another process but making explicit
the suspension of the current process. The
work of Brumfield supposes a good advance
in the development of mechanisms to work in
concurrency in Modula-2, but we believe
that the syntax he proposes is samething
different of the most known concurrent
languages. Moreover, it already does not
implement some mechanisms and some of them

are incomplete.

Al thaugh these proposals are very
interesting, they are not complete and
contain several restrictians.

Our tool, CC-Modula, implements all the

classic mechanisms of concurrency based on
shared storage (semaphores, critical
regionss conditional critical regions and
monitors). It also includes a complete

implementation of +the CSP schema (message

exchange via channels and selective
reception by using guarded commands). These
mechanisms can be used 1in a4 program as

extensions of the Modula-2 language.

The advantages of CC-Modula with respect to

other languages are its own generality (it
includes a large set of mechanisms) without
the need of using different languages, and

the possibility of working within the frame
of Modula-2. During aour previous experience
in teaching concurrent programming; we had
to use several different compilers
(Concurrent Pascal, Ada, Bccam) instead of
a single tool. Furthermore these languages

are not available for many of the computer
systems., CC~Modula proves to be the
adequate solution to these problems.
CC—MODULA

CC—-Modula includes several Modula-2
extensions. All of them can be used in
SIGCSE Vol. 21 No. 3 Sept. 1989

BULLETIN

20

Modula-2 programs. A Modula-2 user only
needs same additional syntax. Every new
construction has been designed by trying to

adapt it to the most useful proposals for
each structure and in the Modula-2 syntax
style. The next sections describe these

extensions.
Process_Declaration.

in a concurrent program must

Every process

be declared like a parameterless pracedure,
using the keyward TASK instead of
PROCEDURE.

TASK name;
. .procedure body..
END name;

A COBEGIN..COEND structure denotes parallel
execution of a set of processes.

COBEGIN
Processli;
ProcessN

COEND

its name. A
other

Each process 1is invoked
process body can

COBEGIN. .COEND statements.

by
centain

Semaphores.

A semaphore must be declared as:
VAR sem : (BSEMAPHORE | SEMAPHORE)

LINIT initial valuel

be the

A semaphore accessed

procedures:

can by

Wait (sem)
Signal (sem)
the

that implement and V

respectively.

operations P

Critical
declaring:

are introduced

by

VAR name : SHARED type

Shared variables can only be used inside a
REGION statement.

REGION name DO
..statements. .
END

A critical region can be accessed
conditionally by means of the AWAIT
statement in the form

REGION name DO
..statements..

AWAIT (boolean conditian)gy
..otatements..
END
The condition to wait for can be any
boaolean expression, usually referring to

the shared variables.

Monitors.,

A monitor must be declared like a module

in

the form:

MONITOR list of instance names;

PUBLIC procedure names listj

VAR ..local variables declaration..;

PROCEDURE Procl (parameters);

PROCEDURE ProcN (parameters)

BEGIN

..initialization statements..

END MONITOR
This declaration generates a set of
distinct monitor instances, each one with
its own name. Public procedures are called
by qualifying its name in the form:
MonitorName.ProcMame (arguments).
Operations inside a monitor can be
explicity delayed, if necessarys using
"CONDITIONS" that work in the same way of
"queues" in Concurrent Pascal.

VAR cond CONDITION;
The operations to work with them are

Delay (cond)

Continue (cond)
Message Exchange.
If there is no shared storage (for
instance; in a distributed system) we can
not have shared variables. The
synchronization and cooperation between

processes can be done

message exchanges.

only by means of

This communication is made through
channels. There 1s a predefined CHANNEL
types from which variables of this type can

be declared.

VAR chann CHANNEL ;
ANy process can send messages over a given
channel, but only one can receive from it,.
Some auxiliary operations for handling
channels are provided.
Communication primitives are introduced as

procedures:

SIGCSE

BULLETIN YOl-

21 No. 3 Sept. 1989

21

Send (message,; channel)

Receive (message; channel)

Messages sent over a channel may be of any
type. The agreement upon the format of
messages in the reception 1s a
respansibility of the programmer using the

Send and Receive procedures in a consistent

way .

In the original CSP proposal, process names
are used to specify communication source
and destination. By wusing channel names
instead of process names, CC-Modula makes
it easier to implement remote
calls via message exchange.

procedure

Guarded commands, originally proposed by
Dijkstra, are 1included in CSP to allow
selective message reception. Using an
Ada—-like notation this construction can be
written as:
SELECT
WHEN conditionl,
Receive (messagel; Channell)
DO actionl
WHEN conditioniN,
Receive (messagelN, ChannelN)
DO actionN
[ELSE default action ..]1
END

where each action ig a sequence of
statements.
EXAMPLES
In order to show how CC—-Modula can be used
to write concurrent programs; we present
here a detailed example developing
different alternative solutions to it. The
example is the well known bounded buffer
prablem. The programs can be found as an

appendix of the text.

The following solutions are presented: the
classic solutions using semaphores:
conditional critical regions and monitors;
a solution using CSP; and a version of the
problem in Ada 1is also included. It 1is
possible to make a comparison between all
the abstract mechanisms for concurrency oy
studying the different version.

The Ada version has been included in aorder
to compare it with the CS5P one. There are
no big differences between both versions,
so concurrent features of the Ada language
can he transcribed into CC-Modula 1in a
rather straightforward manner.

FUTURE VERSIONS

As a future work we are going to develop

some improvements of CC~ Modula:

- A timeout system for the communication
between processes. This timeout will

also be available for the receptions in
a SELECT statement.
- A PAUSE statement to delay a process

for a certain amount of time, specified
as an argument of the PAUSE procedure.

using
see

- Fault~-Tolerance mechanisms
FT-Actions (like atomic actions,

£101) and operations to use them.

-~ More detailed and useful error messages
during compilation and execution.

Trace Facility to allow the user to

the process
message every
CC-Modula
is

- A
have a complete vision of
life (i. e. writting a
time a process executes a
operation if the Trace Facility
activated).

~ Debug facilities in order to know which
is the cause of a DEADLOCK during the
execution of a program. The system can
show a table with all the processes and
the reasons; and the number of the line,
they are waiting for.

All of them will configure a future version

of CC-Modula that is being developed now.
Specially the last three features (which
deals with the developping of concurrent

are very interesting. One of the
ma jor problems in writting parallel
programs are the detection of deadlocks,
livelocks, etc. The tool gives the hints to
solve the problem and the user learns the
appropiate methodology to develop such this
programs.

programs)

Furthermore, the accomplish of CC-Modula
with a window system supposes a very nice
and useful way to test concurrent programs.

CONCLUSIONS

CC-Modula is a concurrent programming
laboratory. In a single package we provide
the user the main types and basic
primitives far process caomunications
synchronization and parallelism based on

shared storage or message passing.

mechanisms are
A partial

The basis of all these
provided in the Kerrnel Module.
description of this module can be found in
L 51, that shows how to implement CSP
primitives. It also contains a longer
example that illustrates how Ada concurrent
features can be transcribed inte CC-Maodula
in a rather straighforward manner.

The Kernel Module is written in standard
Modula-2. Our implementation works under
the VAX-11 Modula-2 compiler developed at
the Fachbereich Informatik, Hamburg
Universitdt or wunder a PC computer using
BULESE,y Vol. 21 No. 3 Sept. 1989

22

the Logitech Baoth

versions are available

Modula-2 compiler.
in our address.

the technical point of view; the main
is the implementation of:

From
contribution

- a COBEGIN..COEND structure that can be
nested

- the critical regions and the
conditional access to them

- the CSP primitives including the

selective reception by means of guarded

commands.
All the mechanisms are allowed as Modula-2
extensions with the help of a
pre—processor. Programs written in
CC-Modula are compiled by a standard
compiler after a pre—-processing step and
then linked with the Kernel Module.
Moreover, CC-Modula syntax is quite similar

to the more celebrated concurrent languages
(like Concurrent Pascal ar Ada).

for
it

It is possible ta use this
several tasks. Currently,
to:

laboratory
we are using

concurrent
We

- Teach
University.
examples and
solutions by

programming at the

have collected several

developed alternative
using different mechanisms
(if possible) in order to compare them.
One of these examples has been shown
here. The collection of applications
includes from introductory exercises to
more elaborated examples.

- Clarify the interest, limitations and
practical use of the different concurrent
mnechanisms. Their wuse in distributed

systems is specially interesting to us.
- Test parallel computing algorithms. The
debug facilities will help to find and

solve the errors.

ACKNOWLEDGEMENTS

The authors would like to thank professor
M. Collado for their helpful comments and
contributions to this paper.

REFERENCES

[13 Andrews,; R., F, B.
and Notations for Concurrent

Schneider: Concepts
Programming.

ACM Computing Surveys V. 15 N. 1, March
1983, pp 3-43.

L 231 Brinch Hansen, P.: Operating System
Principles. Prentice Hall, 1973.

[3] Brinch Hansen, P.: The Programming
Language Concurrent Pascal. IEEE Trans.
Softw. Eng. V. 1, N. 2, February 1975,
pp 199-207.

e

avo

s a2jiingpapunog gN3
aN303
42wnsuo]
faannpolag
NIS3H03
o D junod

(+ 13jingpapunog =

faawnsuo] an3
(2, = [1] =bessaw 11NN
f(2aay) Teubtg
{(was) Teubtg

£1 — 3uno> =: 3unod
$1 + 2215 (QDW 3N =: 3na
{f3nojg =: abDessaw
f(was) atem
SCIINE) 3tem
193439
NI1938
{adA)abessay abessaw HYA

{13WNSUO] MSYL

faaonpoadg gN3
anz
(1T1n3) Teubrs
{(was) [eubig

£17 + 3uncD =: 3uno>
£ + 2TTS QOW Ul =: Ut
fabesssw =: fuilg

f(was) atem
f(aaay) z1eM

(.9) QE0 + (42) QH¥0) d¥HD =: (21 =besssuw
fuys =: (1] Sbessaw
0a .zZ. DL .®. =! U2 u=04
NIZ3g
f¥YHD T Y3

‘tadA)abessalw : abessaw won
fa80Npold NSYL

£9393LNI ¢ 3unod
fYIA9ILNT = 3no fur
fadAiebessa 40 [(@21S°°T11 AQMEY * g
£3215 LINI 3HOHJYW3S : 3312
10 LINI THOHLUWES : 11N+
£3MN¥L LINI JHOHJUWISE @ waS dyn

fuPHD 40 [2°°11 AvMMY = 3dArabessal 3dal

<< "t >>» = 82I3 LSNOD

faayingpapunog INAOW
SIAHOHIYWIES 9INISN NOILNTI0S

SIIAWNUXT *XIAN3ddY

-2np dd ¢ggs1 Alenuqgag
‘1 NOf02 A urialing 357915 fuoiieonp3
27uatIg 433ndwo] uc wnIisodwAg [EDTUYDa]
359918 Uit TWNTNDT AANg arenpeabaspun
ays urt AJus1ansuo] R R=188 81 IS11

“H86T T TIBWAOLUT AN 3n3Tasu]
Udtunz Hi3 &S 14003y [PDTUyD3] "2-2(NPOoW U1
uolarjuawaTdwy 419yy pue DBurwweaboadiziny
404 sSawayog fTN LUl TM {211

2861 “bBeiaapn-u2buradg -g-2Inpow
abenbuen Butwweaboay ays uoc 1acday
pue Z-eInNpol ul butwweubouag - fy3zUIM [ET11]

“ih—EE dd f$8471 J2QWIAON
1T "N ¢461 "n S3d130N ueldbis W3y -3dasuon]
103 TUOK 243 PpuU®R 2Z-INPpOl :°9 "d ‘Aumag {211

-2e-gz dd 4861 a2gwsAoN TIT N
‘41 A s@draon ueidbig WOy sa813tlioed
SE2201d o-21NpOol ity a tAamag C113

"89-6G dd ‘9gs1 Aaenuer T TN ‘21 °A
‘Hutaeauibuly 2.aem3 105 LD SUOT3DIRPSURJA) 333]
“dsn bBuispy souea2io)l -3 1ned 401 SUOT3DY
Jtwoly li@qwe]l *H Y ‘"4 f231071L [01]

“LB861 "11'H @D13uaag -leEnuey
Sutwweaboag Z-we2DQ PBITWIT SOWNI [6 1

861 *11BH &D13ud.g *"Sas5s3dold [eTlzusanbag
ButgedTUNWWEY 1y Y -9 3B 0H rs 1

*£49-99%9 dd fgrel asnbng
tg "N I2 A WOY twwo] -sa2ssa830xd [2tiuanbag
Butzediunwwoln HABS| "y he] iAo e 1

TE861
‘Yci8l AlS-IIW/ISNY "=3benbue butwweabouy
epg ays 101 [enuel 223u3.8lioY 1aoeg [1

“gg-cz dd
48461 BUNL 9 N @22 -n "Sa>1jon weldbig
W3Y¥ "dS53 40 uoijejuawaidw]l 2-e1NPol 7]
I0usdol L "L ¢S3T(PJOW "™ ‘"W ‘OPERI19D (S]

"002-161 dd f1Bs1 fAaenugad ‘T TN
6T "A UT3FITINEG 2SIHIS “LUOIFeINPI 22U31T35
as3ndworn uo wnisodwAg [e2I1uyds)l 3STVIS
4y3igi sbuipoasolyg "g-eInNpol Ut Butwweaboag
FAVENEY [S{alg] Ty rC fpratjwnag [+% 1

23

21 No. 3 Sept. 1989

Vol.

SIGCSE
BULLETIN

-

qdo

(

td3jlingpapunog (gN3
GN30D
Adawnsuo]
{asonpodg
NI93800
(» J83iingpapunog %) NI93g

¢ aiawnsuon g3

«Z. = [1] abessaw 11NN
t(obessaw) axe)aayiyng
193439
NI93g

¢{adAiobessay : sbessaw mua
fadwNsuUa] MWoYL

fa@onpouag QN3

anzg
(abessaw) pusddy-asiing
(P) QYO + (UD) QH0) ¥H] =: [2]1 3bessauw
‘Yys =: (71 Sbessaw
0Q .Z. 0L .®. =% 42 yod
NI93g
fygHD : uo
tadAiabessay @ abessaw gup
faaanNpoy %SHy
TYOLINOW aN3
O =2 3uno2 {7 =: 3n0 {7 =: ut
(% AD33aNg *) NI9O3Ig
faxer anz
(TTNJIUOU) aBnutauo]
f1 + 8215 QW aro =: ano
$1 - 3unE3 = 3unc> f[r3nolg =: abesssw
CANT (Azduwsuou) Aeiag N3HL © = 3junod 41
NISQ3g
f{(adAabessay : abessaw Yyn) L FIHAAIIONS
¢puaddy an3g
(Azdwauou) snuTiuo)
L1+ 3Z1g (QOW Wil =@ ul
£1 + 2unoD =: 3junod
tabessaw =: fut] g9
faNZ (11nsuou) ARlaQ@ N3ML 29215 = qunod 4]
NIg38

f(adAlabessan @ sbBessew) pusddy IPNAIIONJ

ENDILIANO3 ® I1Miuou tAzdwauou
£H3OQIILNI ¢ aN0 ful fjuno3
tedAjabesssy 40 (22157 "T3AUNYY ¢ 9 dua

tane) <puaddy 2317gNg
8215 (YOI
221418 ¥OLINOW

fYUHD 40 L[2° 711 AVMNY = 2dAlabesssu 3dAl

f<< Tt »» = 2215 1SNOJ

{13 ingpapunog 31NAOW

SHOLINOW 9NISN NOILNTOS

© 43 r4ngpapuncg (N3
aN302
J3wnsuo]
¢ 1@onpoad
NI93§03

(% $933indpapunog) NIg3g

fadwnsuao]) N3
z, = [1] abessaw N"IINN
an3d
anz
£1 - 3UNO0D =% 3uNOd

<

$1 + 3215 dOW 3Ne =: 3no

¢

ISEREER DS
ta0A1abessan 30 (8215711 AvEyyY * 9

£

‘{ranolgq =: sbHessaw
F(0 < 3unod) LIuMe
00 43243408 HLIM
Gd 22i4ng NOIS3EY
L¥3d3d
NI938
tadA) abessay : abessaw HYA
mLmEJMCOUMmQF

fa3dNpoad dang

anNz
fan3
aN3
£1 + 3UNO0D =: 3FUNO>D
£1 4+ 2215 QAOW UT =32 U1
tabessaw =: [UT1]q

SZTG > 3UNOI) 1IgMY
04 24333718 HLIM
0Q 22iiNg NOIQ3Y

(Y.) QuHO + (U2) Qup) ¥HD =: [2] Sbessauw

mcuu"mﬂumGMMmms
0d Z. Q1L B, =% 42 d0=z
NIS938
tadAjabessal = abessaw
fHPHD T uD N¥ua
f13DNP0Ld AWSYL

fanz
3UN0D f3no ‘urt

stSlala o]
AIHPHS = 43833iNg d9A

fUYHD 20 £2° 711 APy = adAjabessapn 3dAL

£<¢ *° >>» = 2215 1SNOJ

faayangpapunog 3NAOW

SNOISZ3Y WIILI¥D TYNOILIANDD 9NISN NOILNI0S

24

21 No. 3 Sept. 1989

Vol.

SIGCSE
BULLETIN

¢ (abueya +

£(.®,)80d.H¥3LIVdUH]

L1 4+ junod =:

ga (edAisbessal NI : x) puaddy 143233V
<= (9IS > 3uUNOD 3 (aNY 310w NIHM J0
mHl AUNOD = Juno md + @219 JOW 23n0 =: 23no
41 N3 f3ASTWA =: 240w N3HL (0. = (T *23n0) g) I
taxel gN3
f(23noyqg =: A
Da (adAiasbessaw LNO * A) @3el 14330y od
<= (0 < 3uUnc3) ({dNY S40W N3HM
133713s
40071
NIS3E
MMDEP =1 ue=2joog : al0ow
0 = SZIS° -0 JONVY HIDILNI :3uncd
£1 =: 2215°°1 3ONYH H393INI :23NO0 35Ut
¢ adA13a6essal 40 (2ZTST 1) Abxye : g
<< Tt >> =:1d393IAINI INYLISNOD :8Z1S

faazngTpapunog dN3

LTNN
NI9=H
{aawnsuo) N3
‘40D an3
1.0, = (1)80®sSsS3w) NIHM LIX3
{(abessaw) aje)-.iajiing
4007
NI93g
tadAtabessay : abessaw
SI 43wnsuo] AQOE XHSVYL

fiasdnpoad ON3

£(.00.) Puaddy-.diing

£d007T ANz
¢ (abessaw)y pusddy-aaling
(U42)SOd . HILIPHYHD) YA MILIYHYHD =: (2)abessauw
fys =: (1)=abessaw

4007 2.7 7.F®. NI W2 H04

N1S3d
tadA | abessay) : abessauw
f£¥3109YHPHI T Y2

HI9ZLNI LNYLSNGD : 2bueyd
SI 432Npodd AQDE MSwL

(9.150d.593L39HYHT =3

fa214ng aN3
4007 ANz
f123373s an3
SLYNIWE3L H0
2215 (OW Dut =: >ul
fpusddy an3
fx =: (2ur)gq

aunod (1 o+

SI 4233ng AQOg MSVL

{13wnsuo] JNSYl
£ 130NPpodd M8Y L
fa23308 ON3

f£(adAjabessaw 1IN0 @ A) TL AMLINI
¢ adAabessal NI : %) puaddy AYINT
S1 48314Ng HSYL
£(2°°1) ONINLS SI adA)1abessaw 3IdAL

S1 42i4ng pspuncd IHNGII0YL

way 9NISN NOILNT0S

(LUt

0oa

G-

1d
1

fgN3 3SW2 =t

(D2

‘uriing)

hE IO FFRLCD]

s a3 ingpspunog aN3
aN302
a214ng
¢ aawnsuo]
{a1@0npoad
NI93H02
(% 493iNgPaPUNOg %) NIQIE

faawnsuo] N3
11 2bessaw TILNN
fuan3ay) 9ATalay
¢3nQ44ng) puUas
193438
{(uan3ay) [auueygiag
NI93g
: abessaw yun
mLmEJMCDUMmGP

Q. =
¢ (2bessaw
$(uanzay

tadA)abessal

‘aaocnpoad N3
(abessaw ‘uiljing) puag
(2] abessaw ¢{,0. =: [1]1 =bessauw
fan3
fUTE4Ng) PUlg
{21 =5essaw
11 =bessaw
43 ¥ad
NI193"
tadAjabessa : =20essaw
EHPHD T U2 ¥un
¢ 2aonpodd MSYL

3 —_
£.0. ==

(abessaw
qyo) ¥HI =3
fys ==

0og .zZ. 0L 2. =:

qyo - (.9Y.) qd0 + (42)

faatang NI
(% 4007 %) ON3
(% LJ373S %) aN3
(% 240w 3ON *) LIX3 3873
T + 3unod =3 junc3d mﬂ + 9ZTIS oW vt ==: ur
SATED3Y ¢ ((BZIGZ > 3unN0I) JNY 3-40W) NIHM
2unoo> ma + 2ZTIS JOW hRglel = 3No
2a0w NIHL 0. = [T1 [3INO1Q 41
f(ranolg <34)puss
JURNCD) Ny S40W) NIHM
123738
4007
f(UTHINE) [BULRYIR 3T
£1 =: ut {9 =: 3unod
NIO38
HE= S wlii]

— 3unod =:

aATasay ‘(0 <

£(3N0I4Ng) [3UNEYTIS9
£yl =: 24dow {1 =:I 3mno

INE3008

SENNYHD 124

fYWI9IINT I FUNED fgno Ul
tadA | abessal 40 [3Z15°° 11 AQdEyY 4
fa2i4ng

gvn
HSYL

89N
3dAL
1LSNQD

anpisng ‘WI4ing
adAjabessan
>> = 8218

CI3NNYHD ¢ wanaay
fYUHD 40 [3° 11 ADYYY =
R

fas4ingpapunog 3TNA0W

453 9NISN NOILNTI0S

25

21 No. 3 Sept. 1989

Vol.

SIGCSE
BULLETIN

