
Are Fi le N a m e s E n o u g h ?

W a l t e r G. P i o t r o w s k i
D e p a r t m e n t o f C o m p u t e r S c i e n c e

Sta te U n i v e r s i t y o f N e w Y o r k
B i n g h a m t o n , N Y 13901

(w a l t p @ b i n g v a x u . c c . b i n g h a m t o n . e d u)

Software systems are probably the only complex
system structures in which locally assigned
names serve as the sole identifiers for system
components.

Take, as an example, the hardware in a computer
system. First, unlike software components,
hardware items have distinctive shapes which
give an indication of their function but, more
importantly, all (or almost all) have markings
indicating the manufacturer and the
manufacturer's part number. These markings
globally and unambiguously define the
components characteristics. Someone who has a
general familiarity with computer systems can
locate items of importance and perform useful
operations on the system (perhaps maintenance
or repair) without understanding the total system
structure.

By contrast, when a software component (a
program or data file) becomes part of a system, it
acquires a name that is locally determined, partly
from its position in the local file tree and partly
from the impulse of the person adding it to the
system. Once named, only the person who
named it knows, with any degree of certainty,
what the file "really" is. A visitor 1 to the system
can never be sure.

Historically, this has not been a major problem,
Our systems have served user communities that
have been essentially static with few visitors. In
this situation, a locally assigned name is
analogous to a globally unique identifier. Our
world, however, is changing and a machine's
user community is not apt to be either closed or
static.

1 A visitor m a y be a person or a p rogram.

From a human user's point of view, moving from
one system 2 to another usually requires some
adaptation. The basic system commands are
usually invoked the same way and have the same
effect but additional software, which he may be
actively using, will be different. The same
software object may have different names or a
familiar name may invoke a different object.

Most human users make the required adaptation
through experimentation, combined with
assistance from outside sources. Making this
adaptation has its cost, heaviest at the time of
first use of the "foreign" system and recurring,
with lower cost, with each revisit to the system.

Non-human users can not be expected to have
the same adaptive skills. Consider a networked
system in which lightly loaded machines in the
system act as computation servers for other,
more heavily loaded machines. In a system in
which every machine's file naming structure is
administered independently, the only reasonable
choice is that a remotely executing process will
access all of its required files from its home,
over the network. Unfortunately, a large volume
of data transfer over the network, along with the
burden placed on the home computer system,
will make remote execution a less viable
alternative.

Globally Unique Names?

A solution which seems technically simple but is
politically difficult is to force a set of uniform
naming rules on all of the machines within an
"administrative domain". The political
difficulties seem obvious and will not be

2 W e are assuming that the same opera t ing sys tem is in use.

26

http://crossmark.crossref.org/dialog/?doi=10.1145%2F70730.70734&domain=pdf&date_stamp=1989-10-01

belabored here. Note that, even technically, the
solution has its drawbacks since it ignores the
user who crosses domain boundaries and also
would prevent the interconnection of existing
systems in separate administrative domains.

Local Names and Universal Identifiers?

The naming problem discussed here comes about
because we do not follow the lead of other
"manufacturers" of components. We do not
provide component identifiers that are
independent of the system in which the
components are installed.

The purpose of this discussion has been to
sensitize the reader to the problem and not to
solve it. A modest starter suggestion, however,
is the inclusion of a file, in the root directory of
every system, which would list universally
assigned identifiers for the file components 3 of
the system along with the locally assigned names
for these components. This file could be viewed
as the equivalent of a parts list. Visitors (human
or otherwise) to the system could then ask if a
particular standard product was available.
Human visitors might also simply browse the
list.

Not all files need be included in the list. Files of
purely local value or those not intended to be
shared could be omitted. Files intended to be
shared might have prefix sections which
contained their universal identifiers and system
utility programs (copy, delete..) could
automatically update the system's parts list as the
system configuration changed.

There are many possibilities for the assignment
and adminislxation of these universal component
identifiers. One is to follow the example of the
Universal Product Code that is found on nearly
every product in grocery stores as well as an
increasing number of non-grocery products.
With care, it might be possible to construct our
universal identifiers so that portions would have
generic meaning. That is, a few characters

3 Not all files need be included in this list. Files of purely
local value could be omitted.

identifying the manufacturer, a few others the
manufacturer (C compiler, Pascal compiler, etc.),
others the specific version, etc. Visiting humans
or programs could determine, with an
appropriate degree of precision, if a needed
component was available for their use.

Software components are expensive to produce.
Aren't they worth the same degree of care as the
components in other endeavors (integrated
circuits, tires, machine screws...)?

27

