
PANCODE ASSESSED

Dan Jonsson

Dept. of Sociology, University of G6teborg
Brogatan 4, S.413 O1 G6teborg, Sweden

- Yet another collection o f control constructs?
- Yes, but this one is different. . .

In his assessment of Pancode control constructs,
Kovats [4] seems to argue that there is no need
to introduce radically new control constructs,
since the traditional constructs, if amended as
described by Kovats, have sufficient expressive
power.

I feel that Kovats' analysis is somewhat
biased in favor of traditional control constructs at
the expense of radical alternatives such as
Pancode, and to support that claim I shall briefly
review some important differences between
Pancode control constructs and the set of control
constructs proposed by Kovats.

P a n e o d e co n t r o l c o n s t r u c t s
Since it was first described [2], Pancode has
been augmented with so-called panstack labels.
It has also been refined in other respects. A
revised formal syntax is presented below.

The undefined symbols used in this specifi-
cation of Pancode syntax may be divided into
four goups.

0 Six basic control words: b r e a k , r epea t ,
when , unless , also, and else.

0 Six "statement brackets": (a) <inc> (inden-
tation increment) and <dec> (indentation
decrement), two implicit brackets enclosing
pans; (b) { and }, two explicit brackets sur-
rounding panstacks regarded as pan units;
and (c) do and done, two brackets enclosing
panstack units, optionally used to improve
Pancode readability. (The brackets <inc> and
<dec> are used to specify the pattern of
indentation of program lines used in Pancode
as illustrated in the listings below.)
A <panstack label>, i.e., an identifier used
as a panstack reference, and a <label
terminator>.
Finally, three "host language primitives":
<action statement>, <condition>, and <sep>
(a statement separator such as a semicolon or
a carriage return).

Note that in this revised Pancode syntax, if is
not a terminal symbol but a macro, separately
defined to represent break unless.

The Pancode examples presented below
should be fairly self-explanatory, so Pancode
semantics will not be discussed here.

P a n c o d e s y n t a x

la <statement list>

lb <statement unit>

2a <panstack unit>

2b <panstack>

3a <pan unit>

3b <pan>

4a <head>

4b <tail>

5 <condition clause>

::= <statement unit> I <statement list> <sep> <statement unit>

::= < action statement> I <panstack unit>

::= [do] [<panstack label> <label terminator>] <panstack> [<sep> done]

::= <pan unit> I <panstack> <sep> (also I else) <pan unit>

::= <pan>l{ <panstack> }

::= <inc> [<head>] [<sep> <statement list>] [<sep> <tail>] <dec>

::= break [<panstack label>] [<condition clause>]

::= repeat [<panstack label>] [<condition clause>]

::= (when I unless) <condition>

17 SIGPLAN Notices, Vol. 24, No. 12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F70931.70932&domain=pdf&date_stamp=1989-12-01

C o n t r o l s t r u c t u r e s
p r o p o s e d by Kova t s

The control constructs proposed by Kovats
include:

Conventional selection and iteration con-
structs such as i f . . . e l s i f . . . e l s e . . , end i f ,
w h i l e . . , e n d w h i l e , r e p e a t . . , un t i l , and
loop. . , end loop .
The control word exit (in Ada) or break (in
C) used to effectuate an exit from a loop. This
exit statement may be deeply embedded in
nested if-blocks inside the loop.
The innovative control construct skip or fail
(Kovats' term) proposed by Elliott [1].
Within a nest of if-blocks, an executed fail
command jumps to the lexically nearest
following elsif or else statement in the same
block or in an enclosing block (if such exists
- otherwise an error condition results).

Kovats' constructs provide great power of
expression in the sense that they make it possible
to represent quite complex control structures
without using goto-statements or resorting to
(other) goto-patches [3]. They do not neces-
sarily provide equally great power and economy
of expression in the sense that algorithms using
these constructs represent the logical structure of
the underlying problem as simply and clearly as
possible, however. I shall try to substantiate this
claim by considering a sample problem.

So lu t ions to R u b i n ' s p r o b l e m
A problem posed by Rubin [5] has attracted
considerable attention and may serve as a tenta-
tive benchmark for comparing different control
constructs. The problem reads:

"Let X be an N x N matrix of integers. Write a
program that will print the number of the first all-
zero row of X, if any".

A Pancode solution and a solution in terms of
Kovats' constructs are given in Listing 1.

The relationship between Pancode constructs
and Kovats' constructs may be clarified by
noting that (a) conventional selection and itera-
tion constructs can be represented by means of
Pancode constructs [2], and (b) a (labeled)
Pancode b reak can mimic both exit and fail.
Consequently, any routine employing Kovats'
constructs can be translated on a statement-by-
statement basis into an equivalent Pancode
routine. For example, the solution of Rubin's
problem in terms of Kovats' constructs has a
Pancode equivalent, shown in Listing 2.

Listing 2

i:=1
do checkrow: if true

if i<=N
j:=l
do check_number:

break check_row when j>N
/* skip to else matching label 'check_row' */
break check_number when X[i,j]~0
/* quit since no matching else */
j:=j+l
repeat

i:=i+l
repeat

e lse
print('Row ',i)

done

List ing 1

Pancode

i:=1
do check_row: if i<=N

j:=l
do check_number: if j<=N

if X[i,j]=0
j:=j+l
repeat check_number

i:=i+l
repeat check_row

print('Row ',i)

Kovats' constructs

i:=1 ;
if true then

while i<=N
j:=l;
loop

if j>N then fail endif;
if X[i,j]~0 then exit endif;
j:=j+l

end loop;
i:=i+l

endwhi le;
e lse

print('Row ',i)
endi f

18

Comparing the two Pancode solutions, it is easy
to see that the first one is superior. The second
may even be said to exemplify bad programming
style. This style is, however, forced upon the
programmer using Kovats' constructs in this
case.

From a Pancode perspective, what Kovats
proposes is that only a subset of Pancode control
structures should be used. This restriction seems
to lack a clear rationale, and in certain cases it
prevents solutions to programming problems
from being expressed as simply and clearly as
the problem would permit.

Ad hoe add i t i ons to
sets of con t ro l cons t ruc t s

One might be tempted to add some new construct
to those proposed by Kovats' in order to be able
to handle Rubin's problem better. There are also
other types of situations which seem to call for
additional constructs. Consider, for instance, the
example in Listing 3.

The representation in terms of Kovats'
constructs is not clean. For example, a redundant
'else nop' code segment has been added to pro-
vide a target for fail. A more natural represen-
tation would become possible if fail was re-
placed by a control word that transferred control
to the statement following the last endif.

I am not actually suggesting that Kovats'
constructs should be 'improved' as indicated
above. The point is that it is possible to suggest
additions to Kovats' set of constructs, and then
new additions, and there seems to be no way of
telling when such a set of constructs is
'complete', so that no additional constructs
should be allowed. (It is even possible that if I
had given other Pancode examples in the original
presentation [2], then Kovats would have come
up with some other set of constructs.) While

perhaps not a serious problem from a pragmatic
point of view, this apparent lack of definiteness
is unsatisfactory from a theoretical point of view.

S y m m e t r y and c o h e r e n c e
of P a n c o d e cons t ruc t s

As suggested by the formal syntax presented
above, Pancode constructs exhibit several
symmetries, including those shown below:

b r e a k (i f) ~ r e p e a t

a l s o ~ e l s e

<inc> ~ {

<dec> ~ }

B r e a k and r e p e a t represent forward and
backward jumps, respectively. Also and else
are essentially binary operators used to combine
two or more pan units into one panstack.
{ and } are brackets used to distinguish, say,
{x a lso y} e l se z from x a lso {y e l se z}.
(Left-to-right evaluation is assumed, so that
x also y else z is equal to {x also y} else z.)
Finally, <inc> and <dec> are brackets used to
combine panstacks and/or action statements into
one pan.

It should be evident from these observations
that Pancode constructs constitute a coherent
whole. Any additional constructs must preserve
or generalize the symmetries and maintain the
coherence of the Pancode scheme. It is not per-
missible to add new constructs in an ad hoc
manner. This situation contrasts with that
described above with respect to Kovats'
constructs.

Listing 3

Pancode

do
t:=O
read(x)

also if x>O /* else skip remainder */
t:=t+l
read(x)

also if x>l /* else skip remainder */
t:=t+l
read(x)

also if x>2 /* else skip remainder*/
t:=t+l

Kovats' constructs

t:=O;
read(x);
if x>O then

t:=t+l ;
read(x);
if x<=l then fail endif;
t:=t+l ;
read(x);
if x<=2 then fail endif;
t:=t+l

e l se
nop

endi f

1.9

The Boxchart representation
of Pancode

Goto-statements, to be fair, have one important
advantage: Programs employing such statements
possess natural visual representations in terms of
flowcharts. It is desirable to retain this capacity
of visual representation when introducing other
control structures. How to provide a two-
dimensional representation for Kovats ' con-
structs is not clear, however . Pancode, by
contrast, has a natural representation in terms of
Boxcharts [2]. Pancode and Boxcharts have
been developed together and may be regarded
almost as two sides of the same coin. As a con-
sequence, syntactical and semantical symmetries
present in Pancode are reflected in geometrical
symmetries found in Boxcharts, as illustrated
below:

b r e a k I I break (if)

(i f) ~ I L I xxxxxx

t
XXXXXXX

repeat ~-~ repeat

i ~ ! XXXXXXX
XXXXX a I s o also XXX
XXXXX

XXXXXXX
XXXXX e ! s e else xxx
XXXXX

XXXXXXX
XXXXX

also xx
XXXXX

else xx
×XXX

XXXXXXX
XXXXX

also { xx

XXXXX
else xx

xxxx }

Pancode and Boxcharts work together, and to
evaluate Pancode constructs without taking their
Boxchart representations into account (or vice
versa) is like evaluating the performance of one
member of a duet without relating it to what the
other member is doing. It makes some sense, but
does tend to miss the point.

Conclusions
Kovats' constructs probably represent the state
of the art in the area of conventional control
structures, so they provide a useful reference for
a comparative evaluation of Pancode. Kovats
argues, quite reasonably, that the introductory
examples of Pancode use presented in [2] do not
prove that Pancode constructs are superior to
Kovats ' constructs in terms o f power and
economy of express ion . However , other
examples can be given which strongly suggest
that Pancode is superior in these respects. In
addition, the set of Pancode constructs presented
here is more powerful (due to the introduction of
panstack labels) than that in [2]. Finally, Kovats
does not take certain significant Pancode features
into account, specifically the notable symmetry
and coherence characterizing its constructs, and
the convenient and congenial visual represen-
tation of Pancode text in terms of Boxcharts.

References
[1] Elliott I.B. The EPN and ESN Notations.

SIGPLAN Notices, 19, 7 (Jul. 1984), 9-17.
[2] Jonsson, D. Pancode and Boxcharts: Structured

Programming Revisited. SIGPLAN Notices, 22,
8 (Aug. 1987), 89-98.

[3] Jonsson, D. Next: The Elimination of Goto-
Patches? SIGPLAN Notices, 24, 3, (Mar. 1989),
85-92.

[4] Kovats, T.A. Comments on Innovative Control
Constructs in Pancode and EPN. SIGPLAN
Notices, 23, 12 (Dec. 1988), 151-157.

[5] Rubin, F. "GOTO Considered Harmful"
Considered Harmful. Comm. ACM, 30,
3 (Mar. 1988), 195-196.

20

