
A Bidirectional Data Driven l. isp Engine for

the Direct Execution of I,i.~p in Parallel

C K Yuen and W F Wong

D e p t of I n f o r m a t i o n S y s t e m s a n d C o m p u t e r S c i e n c e
N a t i o n a l U n i v e r s i t y of S i n g a p o r e

K e n t Ridge, S i n g a p o r e 0 5 1 1
(emai l : w o n g w f @ n u s d i s c s . b i t n e t)

I. Introduction

The Bidirectional Data Driven Lisp Engine (BIDDLE) project is an attempt to
design an direct execution architecture that will execute Lisp while exploiting its
inherent parallelism. Although no particular dialect of Lisp which chosen, BIDDLE is
designed with the general features of conventional Lisp in mind. We have also chose
not to tackle parallel Lisp dialects. Firstly, it would be more challenging. The second,
and the more important, reason was that we felt that there was already a large amount of
software written in conventional Lisp that just cannot be ignored. Besides parallelism,
BIDDLE also attempts to address the issue of side effects, an area we think is neglected
(or not handled well) by most demand and data driven architectures. In this article, we
hope to provide the reader with a flavour of the way in which BIDDLE works. This
exposure is by no means complete. Due to space constraints detailed discussions about
these issues will have to be postponed to elsewhere.

The design of BIDDLE arises from the fundamental observation that a typical
statement of a functional program may be recursively compiled into a set of dataflow
instructions. Take for example the following statement:

{Fi {F2 { F 3 D I D2) D3) { F 4 D 4 D 5))

Assuming that the functions F1 to F4 all correspond to primitive instructions of the
computer, then execution should proceed.in the following way:

Operands D 1 and D2 are given to instruction F3;
Operands D4 and D5 are given to instruction F4;
Output of F3 and Operand D3 are given to F2;
Output of F2 and F4 are given to F1.

1 1 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F71317.71326&domain=pdf&date_stamp=1989-06-02

In short, the program corresponds to a dataflow program of four instructions,
each being "fired" into execution by the arrival of data. The program is compiled into an
execution tree of instructions, with lower nodes (child instructions) sending data to
higher ones (parent instructions).

Furthermore, there need not be any separation between two distinct phases of
compile and execute, because execution of instructions in one branch can start while a
more deeply nested branch is still undergoing compilation. Thus, suppose the machine
has an Evaluate instruction EVAL, to which we send the earlier shown program, then
the first step of compilation produces:

F1 - waiting for two operands
EVAL(F2 (F3 D1 D2) D3)
EVAL(F4 D4 D5)

The two new EVAL instructions are the child instructions of F1, to which they will
send their output. They may be recursively compiled. However, in actual fact, the
evaluation of (F4 D4 D5} amounts to the execution of F 4 on data D 4 and D5, and
this can take place while the first EVAL is producing:

F2 D3
EVAL(F3 D1 D2)

waiting for one operand

That is, the program structure permits the execution of multiple instructions and
concurrent compilation and execution, assuming the absence of data dependence, using
a data driven execution mechanism in which an instruction becomes executable upon the
arrival of its source data.

Research on data driven architectures has produced two main architecture types:
Dataflow and Reduction. The former implements the "eager" execution mechanism, in
which all executable instructions are put into execution; the "lazy" mechanism of the
latter, in contrast, will only execute those instructions whose data are called for by other
instructions. For the example shown above there is no difference between the two, as
there are no conditional statements. However, consider another example, of a Lisp
COND statement with n Boolean statements guarding n functions:

(COND {bl) (fl)
(b2} (f2)

{bn} fin}}

In "eager" execution, all the 2n child statements b i to b n and f l to fn will be
put into execution, even though at most one f output will be selected. (None will be
selected if all the Boolean guards evaluate to False.) This can obviously be very
wasteful. However, the "lazy" mechanism is not ideal either. The strict application of
the "lazy" principle to the COND statement would mean that b 2 will be evaluated only
after b 1 evaluates to False, and b 3 only after both b 1 and b 2 produce False, and so
on. Execution in this case is strictly sequential. Yet, if the system happens to be lightly
loaded at the time and free processors are available, they could have been used to
evaluate some of the functions in advance and thus reduce overall execution time.

To overcome this eager/lazy dilemma, BIDDLE adopts the technique of
attaching a priority level to each object instruction, according to the likelihood that its

1 2 0

result will be needed, but priorities are changed dynamically with the results of earlier
execution. An instruction becomes executable upon the availability of data; however,
the execution dispatcher will queue executable instructions and only send those of the
highest priorities to processing elements. If the load is light, then eager execution
results since even low priority instructions are put into execution, but when the machine
is heavily loaded, lazy execution is enforced as only the very highest priority
instructions in a program are executed.

It is necessary to formulate a set of rules to assign and adjust priority levels.
Normally, a child instruction inherits the priority of its parent. However, in a COND
statement only the Boolean guard b 1, which has to be executed first before one knows
whether f l or b2 will be needed, inherits the full parental priority, while f l and b 2
should get a lower level, and f2 and b 3 get a lower level still, and so on. Further, if
b 1 evaluates to True, then the priority of f l should increase, while that of all other
functions in the COND statement should go to 0 (i.e., the results are not needed and
they should not be executed). If b 1 evaluates to False, the priority of f l should go to
0, while b2 should inherit the higher priority. And so on.

Now the Boolean guards b and functions f may themselves be non-primitive
functions that compile into a tree of instructions. When their priorities change, the
change needs to be transmitted forward to all the descendant instructions. It is this
observation which led to the idea of bidirectional links between instructions: while the
child instructions must send computed data to their parents, parents must send priority
change signals to their children. Thus, a BIDDLE instruction would typically carry
three pointers: one to its parent and two to its left and right children. This may seem to
be very complicated, but then another observation arises: When a parent instruction
receives a data token from a child, the child has already executed, and can therefore be
erased from the instruction store. It ceases to be necessary to carry the child instruction
address, and the space previously used for the address may now be used to store the
received data. Thus, in BIDDLE there is no need for a separate data token store: a data
item is directly sent to the instruction waiting for it, and if the instruction already has
one data item attached to it, the arrival of the second data token makes it executable.
Hence, it is removed from the instruction store and sent to the dispatch queue. The
location it previously occupied in the instruction store may be released (but not always
immediately) to contain new instructions being produced by the concurrent compilation
which, as we remember from earlier discussion, can still be occurring in other branches
of the execution tree.

Yet another observation follows: In BIDDLE, instructions are generally not
reusable. After an execution takes place, the instruction will be purged from the
instruction store. Similarly, as soon as earlier execution shows that a result is not
needed, such as a function guarded by a Boolean expression that evaluates to False,
then instructions for producing that result may be purged also. Whereas in conventional
computers recursive calls on the same function causes repeated jumps to the same object
code, and in most dataflow machines tokens for different iterations, recursions and
reentrant calls may be sent to the same instructions, in BIDDLE each recursive call
produces a new set of object instructions. This greatly simplifies compilation since it is
unnecessary to refer to any context information about whether reusable code exists and
where it is.

It might seem that the use of instruction storage space in BIDDLE would be
very inefficient. We argue however that this is not necessarily true. First, as
instructions are erased after execution, space can be reused for new instructions being
compiled. Second, if an object program is meant to be reused, it must be able to cater
for all possible cases, even though during each call only some of the execution paths
will be invoked, whereas by compiling anew each time, only code needed for the
particular case will be generated. Third, the compilation of any EVAL instruction

1 2 1

frequently produces a number of other EVAL instructions guarded by Booleans. Many
of these are not actually executed, but get purged when the guards on them or on their
ancestors evaluate to False. In other words, the execution tree may be "pruned" while it
is still being produced, and the full memory requirement may never be incuiTed.

What about the cost of compilation? As will be seen in later sections, the
process of compiling functional statements into BIDDLE instructions is extremely
simple. Further, because the execution tree is being pruned even when parts of it are
still being produced, each call on a function does not necessarily mean that al l the
constructs contained in the function definition will need to be compiled. So again we
argue that the wastage caused by the non-reuse of object code may be acceptable.

Further, the non-reuse of object code produces a number of simplifications.
There is no need to tag data tokens with loop counts or activation identifiers, which is a
considerable overhead in tagged token machines. Compilation is "context independent"
in the sense that one need not know whether an earlier compiled copy exists. An
instruction is linked to its parent and children, but need not be stored together with other
object code from the same source module. Hence, allocating space to object code is
extremely simple. With a small number of exceptions, instructions may be individually
relocated as long as the pointers in the parent and children linking back to the instruction
are updated.

But what about iterations and loops? BIDDLE does not support loops as such.
There is no program counter or branch instructions, and no instruction can send data to
itself directly or indirectly since each is purged after execution. In general, iteration is
achieved by recursion. However, a number of common iterative operations are taken
care of within the BIDDLE architecture as follows:

a. Associative multi-operand operations like summation may be evaluated by
constructing an execution tree of binary operations, e.g.: (+ a b c d ...) s imply
compiles into

1: (+ a b) 3
2: (+ c d) 3
3: (+ - -) 7
4: (+ . .) 6
5: {+ . .) 6
6: (+ - -) 7
7: (+ - -) 1 5
P . o

waiting for two operands

waiting for two operands
waiting for two operands

b. Function application to elements of lists, e.g.: (MAPCAR F (a b c ...) is
processed by producing a set of EVAL instructions which all send output to an
Assemble instruction, which then collects received elements into a result list:

1: ASSEM
2: EVAL(F a) I
3: EVAL(F b) I
4: EVAL(F c) 1

c. Element by element operations on iterative data structures, e.g., adding two arrays,
are processed as a single instruction. The data structures are stored in an object store,
and their identifiers are placed into data tokens and sent to the instructions manipulating
them. The arrival of the tokens causes the instruction to be removed from the instruction

1 2 2

store into the dispatch queue. If its priority is sufficiently high, it will get sent to a
processing element, which then operates on the data structures in the object store. The
ID of the result data structure is then placed in an output token and sent to the parent
instruction.

The object store also contains Lisp source programs and the lists which the
programs process. An EVAL instruction, for example, may be put into execution by the
arrival a list address. As mentioned earlier, this execution may result in additional
EVAL instructions but perhaps at different priority levels so that they are only taken for
execution at a later time. These EVAL instructions will eventually send data for the
parent instruction produced by the first EVAL, e.g.,

EVAL(Fi (F2 D2 D3) (F3 (F4 D4 D5) D6)

produces

1 F1 - -
2 EVAL(F2 D2 D3) I
3 EVAL(F3 (F4 D 4 D5) D6) 1

While the first child EVAL simply requires executing F2 on D2 and D3 and sending
the result back to 1, the other EVAL must itself be compiled into

3 F 3 - D 6 1
4 EVAL{F4 D4 D5) 3

The whole sequence of events would be the following:

a. The Lisp program (F1 {F2 ...) D6} is placed into the object store;

b. The address of the object is attached to an EVAL instruction and the
instruction packet sent to the instruction store; note that an instruction would
have a parent address (but in this case the address is null as this is the root
instruction of the Lisp program), two child/data addresses (in this case only one
as EVAL works on only one object, a Lisp program), and an instruction
location address (for the moment undefined).

c. A location address is assigned to the instruction by the instruction store
manager, but because the instruction is already complete (a one-object
instruction EVAL with a given object address), it is not placed into the
instruction store; instead, the allocated address is attached to it and the packet is
forwarded to the execution dispatch unit;

d. Assuming that its priority is high enough, the EVAL instruction is sent to a
processing element for execution;

e. The processing element detaches the location address of the EVAL, re-
attaches this to a new instruction (F1 - -) as its location address, and sends this
packet to the instruction store. This non-executable instruction is stored at the
given address;

f. The processing element establishes two new objects, namely Lisp programs
IF2 D2 D3) and (F3 (F4 D 4 D5) D6), and attaches their object IDs to two
new EVAL instructions. It also attaches the instruction location originally
assigned to the first EVAL instruction to the new EVAL instructions as their
parent address. These EVAL instructions are then sent to the instruction store,

1 2 3

which assigns them two location addresses. These location addresses may then
be inserted into their parent instruction as its child addresses;

g. Both child EVAL instructions are executable, and are sent to the dispatch
unit; the first one executes and produces an output data token for the parent
instruction F1 ; the second leads to one instruction {F3 - D6) for the
insmaction store, and one further EVAL, which will subsequently produce data
for F3, which becomes executable upon receipt of the token. F3 produces the
second data for F1, which executes to complete the processing required.

Fig. 1 outlines the structure of BIDDLE. Note in particular that the processing
elements may output both data tokens and instruction packets on the token bus, and
both go directly to the instruction store. There is no data token matching unit. A data
token causes the child address of an instruction to be overwfitten by a data value or an
object ID, and if the matching data value/object address is already present, fires up the
instruction. Later we shall see that other effect of data tokens need also be dealt with.

. Processing Conditional Expressions

Given a conditional expression evaluation

EVAL(COND (bl} (fl)
(b2) (f2}

(bn) (fn))

What kind of object code would a BIDDLE processing element produce? A
simple method would be the following:

1: B O R 2 -
2: CG - - 1

EVAL (b 1) 2
EVAL(f l) 2
EVAL(COND (b2) (f2) . . . (fn)) 1

Here CG is the Conditional Guard instruction with the following properties: If
the left child evaluates to True, then forward fight child output to parent, else discard
right child result and send No Result to parent. The BOR is the Biased OR instruction
defined as: If left child sends result, forward to parent; if left child sends No Result,

1 2 4

,~ Figure 1. A rch i tec tu re o f BIDDLE

@

©

©

©

1 2 5

forward right child result to parent. (For the moment we leave from consideration such
issues as priorities and purging.)

In short, the processing element would send two instructions into the instruction
store, together with three child EVAL instructions which would not be stored because
they are already executable. The instruction store manager would merely assign three
location addresses to them and send them to the dispatch unit. However, under this
method, a long COND statements would cause repeated generations of new EVAL
instructions, only for them to travel to the instruction store, get assigned an address,
and return for execution. It is obviously more efficient if the original COND gets
allocated a whole set of addresses, say from 1 to 2n, and a single EVAL is executed to
produce:

1: B O R 2 5 ?
2 : C G 3 4 1
3: (b l) 2
4: (fl) 2
5: B O R 6 9 1
6: CG 7 8 5
7: (b2) 6
8: (f2) 6
9: B O R . . .

(Note that the last number attached to each instruction is the parent address, preceded by
two child addresses if known.)

In an execution tree containing BOR and CG, if at the time a CG instruction
receives a True result from its left child, the fight child has not yet executed, then the
priority of the fight child and its descendants must be increased. At the same time, the
parent of CG, which is BOR, is asked to purge its right branch. When a CG receives a
False result from its left child, and if the right child has not yet executed, then the fight
child and its descendants must be purged. Further, the parent BOR is asked to increase
the priority of its fight child instruction.

3. Predefined functions

When an EVAL is executed on (F O p r l Opr2) and F is a primitive
operation, a simple object instruction {F - -) results. If however F is itself a function
defined elsewhere in the program,

D E F F(x,y) (Fi ...x...y...)

then a new EVAL must be executed on a copy of the definition of F(x,y}, with x
everywhere replaced by O p r l and y by Opr2 . As mentioned earlier, the Lisp source
program is simply an object within the BIDDLE object store, and the definition of F just
a component of this object. Similarly, the source statement (F O p r l Opr2) is a
component of the source program object, while O p r 1 and O p r 2 are even smaller
components. EVAL(F O p r 1 Opt2) is most easily compiled if the definition of F is
preprocessed and represented in the object store as:

1 2 6

(FI . . .^L1.. .^L2.. .) {Li,L2)

where a denotes a pointer, and L is just a memory location in the object store. The two
locations L 1 / 2 attached to the function body constitute the argument link area, through
which the function body can reach the arguments passed in the function call. Then
EVAL(F O p r l Opr2) is compiled by copying the values of O p r l / 2 into L 1 / 2 , or
placing their addresses there:

EVAL{(Fi . . . ^ O p r l . . . a O p r 2 . . .) (Opr l ,Opr2) , or

EVAL((FI . . . ^ a O p r l . . . ^ a O p r 2 . . .) (^ O p r l , ^ O p r 2)) .

The alternative of searching through the text of F and replacing all occurrences x and y
by ^ O p r l and ^Opr 2 is more complex and less satisfactory.

If Oprl is itself a Lisp expression, then the current standard requires it to be
evaluated when the function is called. To do that, it is necessary to execute EVAL on
the expression and then load its value into the argument link area, i.e., EVAL(F O p r l
Opt2) should copy pointers to O p r l / 2 into the link area and produce:

EVAL(L1)
EVAL(L2}
EVAL(F ^L1 ^L2)

To ensure that the instructions would be executed in sequence, they must be linked
together in the following way:

i : F o r w a r d - -
2: EVAL{LI } I
3: F o r w a r d - - I
4: EVAL(L2) 3
5: EVAL(F ALl ^L2) 3

As we shall see later, the data dependence control mechanism of BIDDLE will
ensure that any instruction on the left branch would execute before one on the fight.

One might ask why we do not adopt the simpler object code

1: EVAL(- }
2: M A K E L I S T (F - -) 1
3: EVAL(Opr I) 2
4: EVAL(Opr2) 2

There are two problems. One is that the compilation of F is delayed until after the
evaluation of the arguments, whereas in the first arrangement only the execution will
be. Second, the evaluated arguments in the first case are linked to the source code of F
and will be deleted when the function evaluation completes, but in case two they
become "free floating" objects accessed by a number of instructions in function F
through the object table but there is no instruction responsible for deleting them.

For functions that define internal variables using the LET statement, e.g.,

D E F F{x,y} LET ((a OprA}{b OprB}...) (. . .x. . .y. . .a. . .b. . .) ,

1 2 7

the convenient way to store the code is to have AOprA, ^ O p r B , etc. replacing
a,b,etc, inside the LET statement, which acts both as the argument link area and the
expression source code, while everywhere else in the function body references to
a,b,etc are replaced by pointers to the O p t pointers, e.g., a is replaced by ^AOprA.
Executing EVAL on the function causes a set of EVALs to be executed on the LET
expressions and one on the function body itself, which gets compiled but will not be
executed until after all LET arguments are available.

Note that all the variables x,y,a,b,etc, are statically scoped: they are bound once
only, and will not be re-bound to any variables with the same names defined in inner
functions.

If the function body and argument expressions only contain primitive
operations, then further compilation into BIDDLE object instructions is quite
straightforward as shown in Section 1. If however further function definitions need to
be invoked to evaluate F 1, Opr , etc., then more layers will be added to the pointer
structure, with instructions going through several link areas before reaching the object
they execute on. Hence the BIDDLE object store need to provide a tagged memory
structure so that data values and lists may be distinguished from pointers and pointers to
pointers. The processing element will only receive instructions each containing an
opcode and two operands, which may be constants, variable data values, object
addresses, or starting addresses of pointer chains. The hardware is able to recognize
which type of operands it has received, and given a pointer chain, it will follow the
chain until a memory location with a non-pointer tag is reached. It will then process the
objects.

Further, some pointers only point to components within another object, and
since each object may be regarded as its own subset, a second pointer on an object may
also be regarded as a component pointer. When the only pointer on an object is erased,
the object is also erased, but the erasure of any component pointer will not erase the
object itself. Thus, when an object function is executed, the source code for the
function should be erased if it is a copy specifically created for this invocation, but if we
are merely reusing a previous copy, then the execution only releases the argument link
area used by this call.

A number of elaborations are possible:

a. Functional expressions: The function being called may itself be defined by an
expression

EVAL((F O p r l Opr2) O p r 3 0 p r 4) ,

which is compiled into

EVAL(MAKELIST(EVAL(F O p r l Opr2) O p r 3 0 p r 4)) ,

that is, the first EVAL is deferred until the expression has been evaluated and the result
re-assembled into a list with the original operands. The list is then given to the original
EVAL function to execute on. Here compilation is deferred by necessity, and even the
arguments Opr3/4 are not evaluated because we do not know which source code body
to link them to.

b. Functional parameters: A function may be passed as a parameter in a call on
another function

EVAL(F2 F Opr)

1 2 8

so that, with F2 defined as (F1 ...x...y...), one would need to execute

EVAL(F 1 ...A^F...AAOpr...).

C. Lambda definitions: A function, including one being passed as a call
parameter, may not have a separate definition in the source program; instead, the
definition appears as part of the statement being executed, e.g.,

EVAL(Lambda(x,y) (FI. . .x. . .y. . .) O p r l Opr2)

is supposed to have the same effect as if FI is a separately defined function. EVAL{F2
Lambda{x,y)(F1 ...x...y...) Opt) is similarly possible.

The simple way to process this is to store the original Lambda codeas

(F1...AA 1.. .^^2.. .)(a 1,A2)

and redirect the EVAL to execute

EVAL((F1... ̂ ^ O p r 1... ̂ ^Opr2) (AOpr l , ^Opr2)) .

In each case, arguments defined by expressions need to be given earlier evaluations as
discussed before.

4. Global access

Two instructions can be executed in parallel if they do not supply information to
each other, directly or indirectly. If in a BIDDLE program, each instruction only
receives information from its children, then there can be no data dependence between
instructions in different branches, and all branches can be executed in parallel.
Unfortunately this is in general not the case because Lisp statements may refer to
environmental variables and objects, both global and local. Since instructions in one
branch of the execution tree can change the environmental values used by those in
another branch, the latter can execute only after the former have already executed.

BIDDLE considers the whole set of named variables used in a Lisp task as a
collection of Environment Objects, which are "sent" from instruction to instruction in
the precedence sequence specified in the source program. In any execution tree, the left
branch has precedence over the right, which gets the entitlement to access the
Environment only if the left branch has no need to access it or has already done so. If
both branches have no need for access or has already obtained access, the parent
instruction will receive the fight to access. A single access permission, thus, traverse
the execution tree (via the parent/child pointers) in pre-order manner so as to allow
instructions to access global and local variables. Due to the many complications, the
complete scheme is too lengthy to describe here. The interested reader is referred to our
technical report.

5. Conclusion

This article has given a brief introduction to BIDDLE. Our aim here is to argue
that the basic principles of BIDDLE are quite straightforward and that we can, indeed,

1 2 9

design an architecture to directly execute Lisp in parallel. As mentioned in the
introduction, important and interesting issues like side effect handling, object storage,
environment maintenance etc. are not dealt with in great enough details. The interested
reader is invited to obtain a copy of the technical report, that is now in preparation, from
our department. We also welcome comments and criticisms on these ideas.

References

[1] M. Amamiya, M. Takesue, R. Hasegawa and H. Mikami, "Implementation and
Evaluation of A List-Processing-Oriented Data Flow Machine", Proc. of 13th
Int'l Symp. on Comp. Arch. pp. 10-19. 1986.

[21 D. Hemmendinger, "Lazy Evaluation and Cancellation of Computations", Proc.
of 1985 lnt'l Conf. on Parallel Processing. pp. 840-842. t985.

[31 J.A. Solworth, "Programming Language Constructs for Highly Parallel
Operations on Lists", J. of Supercomputing, vol. 2, no. 3, pp. 331-347. Nov
1988

[4] P. C. Treleaven, D.R. Brownbridge and R.P. Hopkins, "Data-driven and
Demand-driven Computer Architectures", ACM Computing Survey. vol. 14,
no. 1, pp. 93-143. Mar 1982.

[5] I. Watson,. V. Woods, P. Watson, R. Banach, M. Greenberg and J. Sargeant,
"Flagship : A Parallel Architecture for Declarative Programming", Proc. ofl5th
Int'l Symp. on Comp. Arch. pp.124-130. 1988.

[6] C.K. Yuen and W.F. Wong, "BIDDLE : Preliminary Design of a Bidirectional
Data Driven Lisp Engine", National Univ. of Store, Depart. of lnfo. Sys. and
Comp. Sc. Technical Report TRA5/89. In print.

1 3 0

