
ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 83

Application Development Project Support
(ADPS)

an Environment for Industrial Application Development

Gerhard Chroust
I B M Vienna S o f t w a r e Deve lopment Labora to l T

Cobdeng. 2

A-IOIO Wien

Aus t r ia

ABSTRACT

ADPS (Application Development l'rojeet Support), developed in the IBM I/ienna Software Developnzent
Laboratory, is an environment for the industrial development of app6cation software. CtT~cial prerequisite for
Slink an environment is the definition of a detailed proeess of how to proceed (a Proeess Model) and an
appropriate instrumentation via computer support (a Process Mechanism) which not only helps the users to
follow the established process but aZro provides the users with various support functions.

This paper puts the Process Model (AI)PS/M) and the Process Mechanism (ADPS/P) into the broader
context of current software engineering concepts. It explains principles and reasons for the architecture of
A DPS.

1.0 Basic Overview

1.1 Industrial Software Development

The observation that software development is an engineering process was made some 20 years ago at the
famous conference at Garmisch [Naur_691 where actually lhe term 'software engineering" was made widely
known. The term was intended to emphasize the shift from the artistic world of genius-programmers to the
mundane world of industrially produced software. At that time the hope prevailed that applying solid
engineering principles would soon overcome the "software crisis'. At the IFIP Congress 1986 F.Brooks
[Brooks_86], however, shattered these hopes by claiming that no magic and no human toil will permanently
eliminate the "werewolf software. He cited four major reason for this state of affair:

• The eomplexity of software systems exceeds that of any other system devised by man so far.
• The requirement of conforming to and interfacing with already existing systems is much stronger than

elsewhere.
• The changeability of software undermines the stability of existing systems causing interface problems.
• The invisibility of software products prevents an intuitive, 'common sense' handling and differentiation of

the various components of a system.

Accepting Brook's analysis shifts our attention from the search for an ideal uniform solution to the much
less glamorous path of trying to attack the software crisis on all possible levels hoping for a synergetic effect
in our attempts [Jackson 821 [Lehman_851.

Contents |

http://crossmark.crossref.org/dialog/?doi=10.1145%2F71633.71642&domain=pdf&date_stamp=1989-07-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 191;9 Page 84

The following theses can be used as a starting point:

1. The quality of an industrial product cannot be established after the facts but only by establishing and
adhering to an appropriate development process [Kraft_771.

2. In order to establish a meaningful control, the process must be specified to a sufficient level of detail and
must encompass all necessary activities.

3. The defined process must be applicable to a wide variety of individual projects. The process must be
describable, verifiable and subject for validation IWileden_86]. This implies a certain formality !in its
description [Neuhold_85a].

4. Due to the fallibility of human nature a rigorous observation of the process can only be ensured by
computer controlled stepwise execution of the process.

5. The process must accommodate change in order to function as a repository of a company's software
development culture and experience.

6. The software development engineer is still by far the most expensive and scarce resource in application
development [Kraft_77]. Improving his/her productivity promises tim highest pay-off [Boehm_84b].

7. Productivity can only be achieved by software tools. A prerequisite is that the attachment and use of
these tools does not require extensive effort from the user. This implies that the system offers a
consistcnt tool interface [Akstaller_86] [Dolotta_76].

8. The complexity of the software process [Brooks_86] requires adcquale guidance and instruction to be
provided by the system• A basic requirement is that help information be available with undue effort at
the point of need.

t4
Pe
r c
oh
C a

e n

S 1

S S

rn

P R O J E C T .

. 2 Pl_ J

. . . .

L-3- Lt -- 2 1 : :

1 1 1 1 1 1
[2-_3 I--1 ITZ-]

AP Pk 1 C A I I 0N
(set of work items)

Inten~ediate results (Specification', 'Design', . . .)
and final results ('Code')

Figure 1. Product, Project, Process and Computer Support

Software, like any other industrial product, has to be produced by an industrial process. One of the
yardsticks for the maturity of ml industry [Crosby_80] [Zemanek_80] is the amount of abstraction in the
description of the processes to be performed and subsequently the amount of automation resulting from the
abstraction [Abbott_87]. Abstractions allow the separation of the common kernel in each project :From the
individualistic properties and peculiarities of any one project. The major abstraction is the separation of the
properties of the product (the 'application') to be created from the process by which it is created (F'igure 1).
Once this separation is achieved, the Software Devclopnlcnt ProcEss can be described and discussed

Basic Overview 2

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 85

separately [Wileden_86], An abstract description of a process usually lends itself to a fortnal description
[Neuhold_85a] which in turn can be submitted to an appropriate interpretation mechanism (a Process
Mechanism) which can control and partially automate the steps of the process. Once a computer supported
Process Mechanism is in place further support can be given by the computer. Supplying these additional
computer services creates an Integrated Project Suplmrt Environment (IPSE) [McDermid_85], also called
Software Engineering Environment [Brereton_881 [llausen 87] [Sommerville_86].

1.2 The Notion of a Software Development Process

One of the properties of industrial processes is that they are essentially repeatable with different people for
different end-products. Essentially the process is an abstraction of many different processes containing all the
relevant common actions and ignoring local differences [I ~hman_85]. It is important to recognize that a
Process Model just describes the types of activities to be performed and the types of results to be produced
(Figure 2).

PROCESS HODEL ('types')

- i t 2

A ... Activity (Instance)
AT ... Activity Type
W ... Work Item (Instance)
WT ... Work Item Type

INSTANCES

rW111
44121]

WI3- J----
~V ---A21 ~--W31]

L]

W23] -W22 I:!21
L_ I11

I 1 r---A31] At

Figure 2. Activity types, work item types and their instances

The Software Development Process represents a large anaount of far-reaching theoretical and practical
considerations about the way software should be built and it is thus an expression of a company's "software
development culture'. Existing process models [llausen_871 [llausen_87b] [Peters_78] show considerable
differences both with respect to the suggested methods and to the means of description. Some of the more
important considerations when designing a Software Development Process are:

Basic Components: According to common understanding we currently see a Software Process (Figure 2) as
the description of a set of aclMty types to be performed, a set of work item types to be produced
and a description of their relation (input/output).

Basic Overview 3

ACM S I G S O F T S O F T W A R E E N G I N E E R I N G N O TES vol 14 no 5 ,]ul 1989 Page 86

Gra,ularily: It is important to choose the appropriate granularity: a coarse granularity makes a process
model applicable to most actual processes but includes the danger of not specifying the desirable
process to a sufficient detail. Too fine a granularity might subdue the developer teo much,
forcing an undesirable straight-jacket on him.

Breadth of Model: The development process can be seen very narrow, just describing those ac'Livities whic]h
are essential for creating the application. It may, on the other hand, also describe supporting
activities like quality control, project management, product marketing etc.

Type of tnrget environment: The more diverse the anticipated target environments are the mote complicated
and/or non-committing a model has to be. Differences between batch and on-line systems,
between conventional implementation languages and fourth generation languages, between
imbedded systems [Chroust_88c] and user-oriented transaction systems etc. should reflect
themselves in the model.

Prescription of Principles and Melhods: The model designer has to decide to what extent principles and
methods arc pre-defined in the model, whether one or several methods are availab'.[e at each step.

Sequentizlization: The model has to specify to what extent the sequence of activities is prescribed and what
freedom of choice the developer still has in choosing an order of exccution.

Tool description: Rigorously defined methods can be translated into tools. A process model can also identify
the tools to be used for the various activities, reflecting the use of this tool in the terminology
and/or in the structure of the model.

Slrueturing and Numbering Scheme: Both activity types and result types, beyond a certain level of
complexity, need a logical structure. Major (to some extent contradictory) criteria for structuring
are: the logical connection of result types, the time sequence in which results are created, the
sequential order of activity types, etc. An important structuring criterion can be established by an
adequate numbering scheme. Usually it is desirable to reflect several ordering criteria in the
numbering scheme, making it necessary to weight them. The restrictcd set of available digit
positions and the restricted value range for digits make compromises necessary.

1.3 Instrumenting a Software Process

User
a s

Navigator

Navigation

Interface

Processor
in ter face

PROCESS "Tool
MECHANISII

PROCESS
MODEL

Process Maintenance

driver")
User I/f[
"work [bencI~

Figure 3. Interfaces of a Process Mechanism

Describing a Software Development Process is not sufficient to ensure adherence. Such descriptions have
been prescribed in books and project manuals [Bender_83] [End_86] for many years but they are

• remote from the point of actual usage,
• cumbersome to be looked up,
; difficult to be maintained.

The obvious solution is to make them better accessible via on-line support, especially since the actual
software development is also done via a computer. This leads to an arrangement where the description of

Basic Overview 4

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 87

the development process is accessible to the software engineer on-line and where the computer is able to
provide guidance and advice (Figure 3). The Process Mechanism has two essential interfaces: one to the
software engineer in the function of navigator ('manager of lhe process'), deciding on the next actions to be
performed, the other to the actors, be it tools or a software engineer, to create the intermediate or final
results ('actor in the process').

1.4 Integrated Project Support Environments

The computer support ('instrun~entation') of the development process generates the desire to improve and
increase the computer support. Some of these additional requirements are:

Support of the Development of the Application
(This includes programming in the narrower sense, i.e. the provision of compilers, editors etc.)

Support of Education and Professionalism
(The user may request help texts, information about standards, may be supplied with skeletons to
be filled in)

Support of Product Quali|y
(Especially the mechanical side of verification can be handed over to the computer)

Support of Re.suit Administration
(It is necessary to administer a tremendous amount of individual items, and this usually in several
versions, incarnations etc.)

for Navigation
(The user needs information about what actkms can be performed next and in what order)

of Proicct Analysis, Planning and Control
(Since all results are stored in the computer and all activities are performed in cooperation with the
computer also the necessary management information is available and can be used for project
management).

Support

Support

Providing these support functions to a reasonable extent establishes a so-called Integrated Project Support
Environment (' IPSE') [Dolotta_76] [IBM 87 l. The major components (Figure 4) are:

A formal de.scription of [he developnmnt procc.ss (the Software Process Model): The description must be
sufficiently formal in order to be input to the Process Mechanisms and it must be sufficiently
detailed to provide an appropriate guidance in following the process.

Navigation: It keeps track of activities ready for exccution, helps in deciding on the next steps and allows
triggering selected activities.

Tool Attachment: It allows the access and use of tools in a fairly standardized way, providing a standardized
calling interface to individual tools and a uniform user interface.

Work Item Library: It takes care of the storage/retrieval of the work items created/handled during the
project.

Relationship Store: It records the relation between tile individual work items, i.e. how they depend on one
another.

On-line l l dp and Explanations: These can be called upon any lime explaining to the user possible actions
etc.

User-luterface: It presents relevant views of the Process Model to the user of the IPSE allowing to interact
with the system (Figure 3).

Process modificatlon: The description of the development process reflects a considerable amount of
individual user and company experience and is thus a valuable asset of a company. Since the
Software Process is an abstraction of a large set of processes both small, local adaptations for an
individual project and long-term changes to incorporate new methods and views are necessary.

Basic Overview 5

A C M SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 88

Software
Process
Hodel

Navigation

On-line
Help

Explanation

[Att1:t~lrnent l [{~'/~°rkLibraryItem]

User
Interface Store]

Process
IIodi fication

Figure 4. C.cmslituenk~ of an IPSE

I III

2.0 The Structure of the ADPS Development Process

The reader should bear in mind that ADPS as delivered lChroust_88g] [113M_871 can only be the basis for an
individual model adapted to the actual requirements of a specific enterprise (see also 3.5, "Adapting ADPS").

2.1 General considerations

Based upon experience with predecessor products like OPSS [Akstaller_86], VIDOC [IBM 86e1, and
C O M M A ND [IBM_86] the following major objectives and requirements for ADPS were identified:

Independence of specific methods and languages: ADPS should describe and model the development process
in such a way that it is applicable to a large sector of the user population. This implies that the
description should refrain from postulating specific methods or description language, s. Typically
project management should be general enough to fit many existing project management tools.

Adherence to e.stablished principles: Established principles of good software development shoukl reflect
themselves in the structure of the model. Some of these principles are

• separation of user view and tectmical solution,
• development by stepwise refinement,
• quality assurance in parallel with development,
• documentation as part of development,
• interleaving of project management and development.

The aetMties should be broken down to the smallest meaningful steps: "Fhe granularity was chosen (and this
admittedly is a somewhat subjective decision) such that activity types and work item types
represent relative detailed but still meaningful units.

Inclusion of documentation, project management and quality assurance: Based on the experience of its
predecessor products it was found necessary to present an integrated model which not only
describes the creation of the machine-executable code but also activities which concern
themselves with producing the necessary documentation of the product, which model quality
assurance and project management.

Numbering: Following the predecessor products one character and 4 essential digits were used to identify all
work item types and activity types (When modifying the model the user may use 5 and 6 digits,
respectively). The character was used to designate the path (sce 2.2, "Basic structure - the
paths"), the 4 digits were predominately used as a hierarchical classification scheme (Figure 5).

Basiic Overview 6

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 89

The numbering scheme for work item types was based on a logical order. Work item types of
the same semantics received numbers close together even if their creation time was widely apart.
Activity types were primarily numbered according to their sequential order of execution.

Comprehensiveness of the Model: The shipped model is intended to be a 'maximal' model in the sense that
most relevant development activities are included in the model. The user rather has to delete
certain parts of the model than to add new parts.

WORK ITEH TYPES

work item group
(Report Design)

division (Data View)

level (Design)

path (D)

ACTIVITY TYPES

activity group
(Refine File
and Format Design

class (Application)

stage (Refine Design)

path(D)

Figure 5. Numbering Scheme for Work item types and activity types

2.2 Basic structure - the paths

Modern software development is characterized by a cooperative team work of many specialists with different
responsibilities. A major division, usually also reflected in the organizational structure of an enterprise, can
be found between development proper, project management and quality assurance. These activities are
usually handled by different people with different authorization and organizational position. ADPS reflects
this in defining three different paths:

D(evelopment)-path: The set of those activities in the development model which are concerned with the
actual development of the application and its associated documentation.

Q(uality Control)-path: The set of those activities which are concerned with the validation/verification of the
application.

P(rojec/Plamfing and Control)-path: The set of those activities which arc concerned with the management of
the project.

Figure 7 shows the interplay between the different
paths: based on planning in the P-paih, certain
activities of the D-path take place, the work items
resulting from it being subjected to a Q-path
activity. The information generated in the Q-path
is feed back to the P-path whence further
D-activities are planned etc. The statistical
distribution of activity types and work item types
over the paths is shown in Figure 6.

Path

D

P

Q

SUH

Activity Work Item
type type

88 122

38 43

63 15

180 181
_ _ I V

Figure 6. Count of activity lypes and work item types

The Structure of the A DPS Development Process '7

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 J~al 1989 Page 90

Project Planning
and Control
(P-path)

Development

(D--path)

Quality
Assurance
(Q--path)

r Activity P1 r
(planning)

I
Activity Di I "[(developing) I

l l

lactivity P2]
(planning)

new
l

- - - b . .

etc.

Activity 02
(developing)

Activity QI ~ - - I (ve,-i,yiog)
I J

etc. I

°°~_l

Figure 7. Different paths in SW-Development

2.3 The Development Path (D-path)

2.3.1 Work item types of the D-path

A software application cannot be conceived in one step as one solid piece of code because the gap between
the problem to be solved and the final implementation is too wide [Lehman_801 [Lehman_85]. It is therefore
necessary to describe the intended application at different levels, with different distance to the actual
computer implementation. The concept of levels allows to develop the application in a stepwise fashion,
concentrating on one set of issues at one time. Successive transformations finally yield the application in an
executable form:

The Structure of the ADPS Development Process 8

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 91

Req,irements describe the overall expectations against tile system, the boundaries of the anticipated
application and the interfaces to the current system.

Model describes the business processes used by an enterprise as seen by the user.
Design defines bow the application will automate selected business processes of the Model
Code is the transformation of the Design into a machine executable form.
Integrated System collects all parts of the application, ready to be used
lnslalled system represents the application put into work on a user machine.

divisionl

NODEL

DESIGN

CODE

i

eve]

DATA
PROCESS

DATA VIEW

Function Information
Definition Definition

Program Format
Design Design

Programs Fo~nats

DATA
ORGANISATION

Data
Model

DATA FLOW

Data Flow/
Model

File
Design

Files

Data Flow/
Design

Figure 8. ADPS Kernel Work Items Classes and their Structure

.Another way to classify, the work items of an application is by identifying their different functions. In this
respect we distinguish eight divisions of an application:

Processes describe the business transactions which are to be automated by lhe application. On the level of
Model these are the transactions as seen or intended by the customer, e.g the handling of an order.
On the level of Design tile technical solution is described which has been chosen, e.g. the chosen
algorithm. On the level of Code it represents the computer-executable representation of the
lransaction.

Data Views describe the form and the external appearance of the dala which are processed by the Processes.
On the level of Model it is the view of data (forms, panels, reports) as seen by the customer. On
tile level of Design the data are assigned to different media (screens, data bases, etc.). On the level
of Code it comprises all necessary data definitions, control blocks etc.

Dala Organization describes how permanent data are to be stored in the system. On the level of Model
entities and their relations are defined, on the level of Design the form and type of data bases, file
systems, etc. are described, while the Code level comprises all data base and file specifications and
theiJ" associated access code.

Data Flow describes explicitly the association between Processes and Data Views or Data Organization.
Me.ssages and ltelp defines all information offered by the machine executable application. It comprises error

messages, help panels etc. Providing a separate division for it was to stress its growing importance
for tim man/machine interface.

Product Documentation is to be delivered together with the machine-executable application. It is an
important, but independent part of the deliverables of a software project. The inclusion of this
intends to cater for an integrated development of code and documentation, avoiding the
post-shipment documentation-writing syndrome.

Application Environment collects all information about the interface between the appfication to be developed
and its environment, recognizing the fact that practically all applications are part of a greater
enterprise system. Both influences from the surrounding systems on the application and impacts of
the application on its enviromnent are recorded.

The Structure o f the ADPS Development Process 9

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 ,lul 1989 Page 92

Development Support comprises mainly data and code for tests, but also generator code to generate the
actual application etc.

Beyond structuring by level and division, work item types are collected into groups usually reflecting a logical
alternative (e.g. flat file versus data base etc.). The type represents either
the amount of refinement (over-all, unit, detail)

1)22110 Function
D22120 Function Group
D22130 Sub function

or a logical affinity

I)32150 Access Module Specification
D32160 Process Module Specification
D32170 Presentation Module Spec:ification
e(e.

The names of the most important classes of work items (resulting form combining level with division) are
shown in Figure 8. Figure 9 shows a small section of the list of all work item types as they appear on the
screen.

Individually created work items carry with them also a set of attributes with auxiliary informatkm (owner,
applicable tools, associated library, creation date etc.).

2.3.2 Activity Types of the D-path

P H A S E Hanagement question S T A G E

Define
l,lodel/Design

Refine
}Iodel/Oesign

Is the application feasible
and profitable?

Is the application technically
sound?

Produce Code Is the application implemented?

Integrate and
Install System Does the application run?

Honitor System Is the application successful?

Figure 10. The ADPS phase and stage structure

Define Requirements

Define Hodel

Define Design

Ref ine I.Iode 1

Refine Design

Produce Code

Integrate Code

Install System

Honitor System

The development process" basic philosophy is reflected in the logical structure of the work items. The
suggested order of their creation is a second major aspect of a development model. Here ADPS follows well
established paradi~'ns by introducing phases, stages and groups.

Phases provide the basis for management control of the development process. At the end of each phase a
major question can be answered and associated decisions made (see Figure 10).

Stages are subdivisions of phases, accomplishing one important technical milestone. They correspond
closely to the levels of work item types. It can be seen that Model and Design each are created in two
steps: in stages 2 and 4, and in stages 3 and 5 respectively. The reason is that an evaluation of the
fea:sibility and profitability can only be based on both Model and Design. On the other hand one
should not invest too much effort into a Model before being certain about the feasibility of the project
and about the stability of the requirements, and both may depend on the outcome of phase 1.

"llle Structure of the AI)PS Development Process l O

A C M SIGSOFT S O F T W A R E E N G I N E E R I N G N O T E S vol 14 no 5 Jul 1989 Page 93

r

Select Project Book Work items ROW 12 OF 323
==~ Scroll ==~- PAGE

Profile is OFF for work items

Work item
Entry t y p e Description

.

D2 Model
021 hfformation 0efiniti0n
0211 Information 0efini ti0n
021110 021110 hff0rmati0n Unit
021120 D21128 Information Group
021130 021130 Information Item
D21g Information Definition of Enterprise
D21990 021990 information Definition of Enterprise
D22 Function Definitlon
0221 Ftmction Definition
D22110 D22110 Function
022120 022120 Function Group
D22130 D22130 Subfunction
D22190 022190 Function Structure
0229 Ftmction Definition of Enterprise
D22990 D22990 Function Definition of Enterprise
D23 Data Model
D231 Data H0del
023110 023110 Entity
023140 0231.10 Element
023180 D231B0 ttormalized Relation

Figure 9. Work item types of Level 2 ("Model ~)

Groups arc sets of activity types which produce a coherent set of associated work items (e.g. the group D5 t2
Refine Program Design contains the activity types (Figure 14):
D051210 Specify Access Module.
D051220 Specify Presentation Module
D051230 Specify Ptwcess Module
D051240 Specify Module Control Flow).

Activity types create one or a small number of closely related work item types.

In detail the following work is done in the individual stages:

Stage I, Phase I (Define Requirements): The technical and organizational premises as established by the
project contract are analyzed. Their useability, understandability and acceptability are
investigated. Together with those pieces of information which already exist in the enterprise (e.g.
the Global Data Model) the technical requircmcnts for the project are derived (Figure 1 I).

Stage 2, Phase I (Define Model):]'he user view (the Model) is specificd without working out all the details
(this is reserved for stage 4). Starting with the the Information Units and Information Groups (i.e.
the data view), the EntitiEs in the Data Model (i.e. the data organization) are established. The
Function Definition is specified by defining Function Groups and Functions. Thus they are
viewed as transformations of data and are defined only aftcr having defined the data. The Data
Flow of the application (which is implicitly contained in the definition of the Function Definition)
is explicitly shown. At the end of this stage the external view of the application (the Model) is
established in its general form (Figure 11).

Stage 3, Phase 1 (Define Design): In this stage the basic decisions about the technical solution of the
application are made. Based upon the Model, as far at it has been estabUshed in stage 2,
Information Definitions, Function Definition, and the Data Model are mapped onto their
computer realizations, i.e. on Format Design, Program Design, and File Design. The choice of
a technical solution (the Design) includes choosing to perform certain activities manually' or by
direct interaction with the end user (e.g. spread sheets operations). If a designer creates
temporarily more than one Design for the application, the decision between these alternatives is

The Structure o f l h e AI)PS Development Process 1 I

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 94

explicitly made at the end of this stage. At the end of stage 3, and thus of phase 1, both Model
and l)~sign are established down to a certain levcl of detail. This allows a rational management
decision as to whether to continue with the project or not (Figure 11).

Project Contract
W[Initiate
Project

o.,Gr. I
e | - T - - i

Ilnfo Unit / + i, ities/ llnfo Grp.| [- - -] Ent I L___ __l iDefin e [_~
lpitio 1 - q] - ,

unction
. Grou?__

Design Format File

]Panel]DataBase
|Report ... lFile ...
~ Design ~ Design

Requirements

Functions i '

L------J / llodel

ogram T
dule IDFDI
DesicIn ~Design

Evaluate Design Alternatives] 4 1 - -

lessages l
L"e/L...J
Message Design
Help Panel
Layout

Figure I I. Overview of the ADPS development, path, phase I

Stage 4, Plmse 2 (Refine Model): The Model is completed in all its details. The activities are an~dogue to
stage 2 (Figure 12).

Stage 5, Phase 2 (Refine Design): The technical Design is finalized based on the Design existing :3o far and
on the details of the Model. All technical details are established as far as they are not directly
associated with Code. Appropriate modules are designed for accessing files and data bases and
for presenting panels. The hierarchical structure of the modulcs is converted into a F'rogram
llierarehy which defines the calling structure of tile individual modules. At the end of this stage
all technical decisions have been made. Tiffs allows verification whether the dcsigned, application.
is consistent and fulfills the Requirements (Figure 12 and (Figurc 14).

Singe 6, Phase 3 (Produce Code): The detailed Design is converted to machine-executable Code (compilable
or interpretable), including Control Blocks and Formals for file and database access. Sections of
the application which are to bc pcrformed manually or via end user processing are separated: their
'implementation' corresponds to a (more or less) detailed descriptions of the necessary steps and
the specification of the necessary files and archives (Figurc 13).

Stage 7, Phase 4 (Integrate Code): The complexity of software applications requires considerable; test effort.
Therefore Integration Tests by independent test teams are performed on the integrated system.

The St.ruclure of the ADPS Development Process 12

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 95

Info.

t22_J
Info Units,
Info Items

Refine
File+Format
Design

Format +
IFile
• Design

Units,Gri__.ups]Entities I---iIFuncti°ns :~---iOFD/M°del

[D~f i n~-- Prepare
IElements+ User Doc.

Out I i ne Noma I i ze

Data Hodel User
Documentation
Outl ine

Define
Subfunction

Subfunctions

)FDI]
,._odel _J

DFO,,,odel f - ; ; f - ; ; ; - -1

- ~pare] / .an. Comp I
~---:1 "res __s_i/Oefine I Test Cases

L~U~ I

Procesd(|llodul e
dole I I c°ntr°' ~l°~l

_ _ _]--
- - L T Z Z -

SA•cPcecif•-y-] Specify -]
ess | lPresentation I

I"°d"le I I "°~ule I

l.lodul e]Spec i f i ca t i on Hanual
Comp.1

EUP ... End User Processing

Figure] 2. Overview of file ADPS development path, phase 2

EUP
Comp.

Panels +
File CCI
Stmts

Format +
(File

I Design

anels + I (Code l

Program
Modules

tModule [Manual IEUP Message Design
Specific. iComp. Comp. Help Layout~ Panel I

 0,e
Manual IEUP Proc. I Msg Text +i
Co,npone_~_nts L+Fonns __ J HelpP_a_~J

Manual IEUP -~issage
Procedures, |Formats+ ITexts,
Forms,Files |Procedur,.sIHel p

{_ . I Panels

User
IDocument.

l Outline

:om--pl et---e]
Jser {
)ocument~l

User

l
(ocuInent.

I IPerform Pgn]Test data
Test Preparespec + --Test environment ~[Module Test ~
Develop. Env.|Test Programs, data

i

EUP ... End User Processing

Figure 13. Overview of the ADPS development path, phase 3

Stage 8, Phase 4 (Instal[System): Beyond a certain complexity of an application its System Installation
needs complex procedures and extra verification and tests. This includes conversion/migration of
data sets and the like.

Stage 9, Phase 5 (Monitor System): After installation certain tuning and adaptations may be necessary,
together with some counselling and support for the end-users. User requirements and complaints
are collected in order to be routed to the creation of the next version of the application.

The Struclure of'the ADPS Development Process 13

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 96

= = _

Activity
type

Select Activity Type ROW 1 OF 24
Scroll ===~ DATA

Description

Figure

005 Refine Design
DO511 Refine File and Format Design
D051110 Define Element from Technical View
D051120 Refine File Design
D051130 Refine Panel Design
D051140 Refine Report Design
DO5115D Design Temporary Data
D051160 Prepare and Execute Prototype
00512 Refine Program Design
D051210 Specl fy Access Module
D051220 Specify Presentation Mo(lule
D051230 Specify Process Hodule
DO512tlB Specify Hodule Control Flow
D0513 Refine Design of Manual Components
D051310 Refine Design of Manual Components
D0514 Define End User Processing
DO5141G Define End User Processing
D0551 Prepare User Documentati on
0055110 Prepare Task-oriented Documentation
D055120 Prepare Cross-task Documentation
D0552 Prepare User IrahHng Haterial
D055210 Prepare User Training 14aterlal
D058] Estimate Data Volumes and Operation Times

14. Aclivii.ies o f Stage 5 ("Refine Design")

2.4 The Structure of the Q-path

The Q-path contains all activities and results which ensure an adequate quality of the application. The
structure of the Q-path is systematically derived fiom the D-path. Quality assurance is performed in parallel
with actual development (Figure 7). Therefore in ADPS no stage is explicitly devoted to testing (in contrast
to many other models, e.g. [BoehIn_80] [Boehm_84] [Peters_78]).

D-activity type with Q-activity

I - _ _ _

L_0u ivity I
I Quality

IControl

• Report

Act ivi ty Group
(has always a Q-activity)

Quality Control
Report

Q-activity J

I
Quality Control

Report

Figure 15. Systematics of Q-Activities

Analyzing the D-path in ADPS one finds that for some activity types it is good practice to subject their
outcome to quality assurance while for others this seems too low level a verification. This implies that the
Q-path looks like a selectively pruned D-path: For selected D-path activity types (35 of 88) there exists a
Q-activity type which has all the output work items of the respective D-aclivity type as input. The output of
the Q-activity is a Quality Control Report (Figure 15). In order to achieve a uniform quaUty assurance for

l 'he Structure of lhe AI)PS Development Process] 4

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 97

the complete D-path it was decided to additionally include a Q-path activity types for each D-path activity
group (Figure 15). This allows to collectively validate results created in tile activity types of this group.

2.5 The Structure of the P-path

An integral ingredient for a successful soft.ware project is adequate planning and control [McClure_811
[Metzger_81]. Therefore the P-path was integrated into the development model of ADPS. The multitude of
existing project management tools togefl~er with the wish 1o keep ADPS comparatively free from specific
methods or tools induced a rather symmetric, combinatorial view of tile P-path. Thus most project
management tools would find appropriate work item types and activity types which are consistent with their
view.

2.5.1 The work item types of the P-path

The data relevant for project management are classified according to 3 criteria (which reflect themselves also
in the numbering scheme):

standards 1
Establish]
[Standards antl
Strategy

- - Itandards I >

task 1 , s t s 1

{ Effort [Current[Project!
,] L] L . plans and reports]plans

>

I I I t l I e0o,,s
t__ quality

1 / /problem 1 -~ l,'eports
[status] [reports I I I

>

Division characterizes how far or near from reality
the respective data are:
Proiect Base is a collection of data

necessary for project initiation,
typically the Project Contract
containing technical and
project-guiding data.

F~sfimale.s specify quantitative statements
about resource usage without
concern of their distribution
over time.

Plans and Schedules correlate Estimates
with a time scale.

Status Information record actual values of
resource utilization as
observed in the project.

l)evialions describe the difference between
Plans/Schedules and actual
resource consumption.

Evahmtions and Recommendations are
concerned with the impact and
relevance of Deviations for the
project progress. They
contain proposed actions etc.

Decisions and Completion (reports),
including Protocols record
decisions made and milestones
achieved. Certain activities
cad by creating a protocol.

Figure 16. The Project Management Path of ADPS

The Structure of the ADPS Development Process 15

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1.989 Page 98

Group The second criterion is the planning horizon to which the work item type belongs, spanning a range
from inter-project background to individual activities:

• Project Background ('overall level')
• Project level
• Phase level
• Activity level

Resource Type The third classification dimension is the type of resource to be controlled:
• Time and Tasks
• Personnel
• Materials (hardware and software)
• Budget
• Dcvdopment Process Information

2.5.2 Tlhe activity types of the P-path

Planning/control activities are essentially done in repetitive cycles. For ADPS the planning interval was
chosen to be tile phase. For each phase the same set of P-path activities is performed (Figure 16):

Establish Standards and Strategy:
Standard and rules, local to the project or the phase are established, e.g. naming conventions,
special sequencing of actions. Note that global standards and procedures are actually provided by
the Process Model.

Prepare Task List:
This is a key to project management. All tasks which should be included in tile plarming process
are identified. Many of these tasks will be activities (or activity types) as described in the process
model, but further tasks (e.g. education) have Io be added and the proper granularity of planning
d.ecided upon.

Project and Phase Planning:
After estimating the effort needed for every task (time, manpower etc.) detailed plans for the current
phase and - as far as the project schedule is affected - t~)r the whole project are produced.

Phase Control:
The progress of the project is observed. Actual data about resource usage is collected, problem
reports are analyzed and quality reports are scrutinized tbr potential problems which impact project
progress.

Phase Termination:
The results of the phase are evaluated, the transition to the next phase is prepared. A decision
about continuation is made.

3.0 The Process Mechanism

The purpose of tile Process Mechanism is the instrumentation of the software development process, i.e.
providing the services requested in 1.4, "Integrated Project Support Environments". The structure of ADPS
reflects the basic components of an IPSE (Figure 17). One of tile crucial components of an IPSE is the
style of user interface. In ADPS a standard panel form, the so-called work bench (Figure 19) is the major
interface [br application developers. Different interfaces are provided for persons modifying and tuning the
development process itself.

The SIructure of Ihe AI)PS Development Process |

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 99

NODEL:

IDPS/M

User Interface

Model
modification

PROCESS HECllAttISN

ADPS/P

Tool Interface

~ - - ~ Library

A d m i n i s t r a t i o n

L_L__{ __

Libraries

_I L

Figure 17. T h e s t , ' uc ture o f A P D S

3.1 The Workbench, the prime user interface
The workbench (Figure 19) presents to the user
one activity type for doing some project work, its
abstraction is shown in Figure 18. It shows the
activity type together with those work item types
which are either needed to perform that work or
which are to be created. Attached tools are
indicated. For each activity type and work item
type the user can request help information. For
each work item type the user can, in a subsequent
panel, see all existing work items. One can
interrogate various attributes of the work item (e.g.
owner, date of last update, associated tools etc.).
From this panel the user will select specific work
items to work on them by calling either an editor
or a specialized tool.

"--- '~'~ [. . . . I F - - - 1 { - -

I " Needed Information
('Prerequisites')

.--J L l L _ _ _ _ I I

I+I l r - I

Activity
(%4ork Bench)

I I
L r 7 r I

Created Results {
('Deliverables')
__l t l l J

Explanations:
]Help Texts

f---{Standards
IRt!! es

Figu re

Tool Interface]

18. A h s l r a c t view o f the A D P S w o r k b e n c h

T h e P roces s M e c h a n i s m 1 7

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 100

Operate on Activity Type ROW 1 OF 16
==~- Scroll ===~ PAGE

DDVHOI GCEAPP GCEPRO
Panel Cmds: LISTALL rEFINE PROFILE DEFAULTS SEARCII INFO
Line Cmds: A S H
Activity Type: D061110 Generate Panel
Profile is OFF for activities and OFF for work items

Work item Output from
type/Tool Description activity

.
I n p u t

D31110 Panel Layout D051130

0 u t p u t

D4nlO Data Structure
D41410 ISPF Panel
D41510 IMS Format Set
041610 CICS Map Set
D4191B CSP Panel
D52610 CICS Control Table/Object

G e n e r a t i n g Tools

SDF2G SDFII generate

Figure 19. Panel form of ADPS'workbench .

3.2 Tool and Library Attachment

Generally one of the difficulties of software development is the use of heterogeneous tool interfaces and
library interfaces. ADPS standardizes the access to all work items by allowing to s(ate at project definition
time in Which libraries the various work items are to be stored. From then on it is sufficient to identify a
work item by its ADPS-name - the link to the appropriate library is automatically established. In a similar
vein access to tools is defined once, the actual call of the tool and the association with the appropriate work
items can then be done by the system. Each tool attachment consists of two parts (Figure 20) the Tool
Driver establishing the link to the ADPS environment and the Tool Caller providing the individual calling
sequences, for the specific tool.

I

Pa rame t e rs

Hodel Interpreter

_ _ _ _ . [- - . _ _
Tool Driver

Tool Caller

[Libraries 1

4

4 ~-]-
ISPF

I
Tables

• [.

wl'-------

Parameters

1

Figure 20. "l'he A I) P S tool a t l achmen t

T h e Process M e c h a n i s m 1 8

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 14 no 5 Jul 1989 Page 101

3.3 Skeletons and Models

A low level but highly important flavor of re-use is copying standardized pieces of text. ADPS keeps for
every work item type a skeleton which is presented to the user whenever a work item is initially created.
Such skeletons not only ease the work of the software developer they also provide a important way to
standardize work item appearance and contents. Similarly when writing code a programmer can call upon
models of code constructs which act as templates for the code to be written.

3.4 Help Panels

Explanations, standards and rules are of little help, when they are stacked away in a shell Only easy
immediate retrieval - via a ' I tELP-Key" during work - induces a developer to frequently consult them. This
allows to make standards, rules etc. available to the developers, and what is equally important, to keep the
information up-to-date centrally. At the same4hne it increases the adherence to pre-established standards
and procedures, common usage etc. Even to well-experiences professionals this provides valuable reminders
and help.

3.5 Adapting ADPS
Only in few cases will the Process Model be 100%
acceptable as delivered. For local, project specific
changes AI)PS provides two levels of hiding (i.e.
suppression) of parts of the Base Model
(Figure 21). For example a project which does not
need manual operations can hide the respective
activity types and work item types. Additionally
several Base Models can be established (Figure 21)
to accommodate major differing development
strategies. It is expected that such variants of the
Base Models gradually evolve as more and more
know-how about with the development process in
incorporated in them. Such long-term changes are
done via the model modification component of
ADPS. Thus in an actual implementation we see 3
levels of process models:

The Base Model contains the basic development
model of the enterprise or division.

The Application Model is valid for a relevant area
of business.

The Project Model finally controls development of
a single project.

[
I Base Hodel of

................. l pri se
Base Hodel of J-T

Enterprise]]

Ilod~l

Base Hodel of J
prise _

Appl teat io I lapp1 icat ion I

. I

Figure 21. A llierarchy of Process Models

The Process Mechanism 19

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S v o l 14 no 5 Jui 1989 P a g e 102

4.0 Summary

ADPS is available as two separate products, each of which is available for VM/SP and MVS: (Application
Devdopmcnt Proicet Support/Application Development Model and Application Devdopment Project
Support/Process Mechanism). ADPS is implemented as a set of application programs using ISPF as dialog
manager, all data owned by ADPS being held in ISI'F tables. AI)PS is available in English, German and
Japanese.

4.1 Developer's Views

For tile dew:loper the workbench (Figure 18) provides the necessary working aid in an appropriate,
easy-to-understand, and structured way.

• The workbench shows the necessary input work item types of an activity type, the output work item
types to be created, and the defined tools. It provides access to already existing work items for a work
item type. Using associated tools, these work items can be processed, viewed and printed. New ones
can be created.

• By using a suitable profile the developer can select only those activily types that are significant to lfim.
• Within one activity type, the application of a specific tool to specific work items can be defined explicitly

by the developer. This is the basis for automating this activity by appropriate tools.
• Ilelp in['ormation can be requested for activity types, work item types, and tools.
• Ilidden from the user the system stores, keeps track and retrieves all necessary work items without undue

effort b'.¢ the developer. ADPS remembers and displays the stalus and many properties of any work
ilems.

When one tries to install an IPSEs some problems may arise:

• Acceptance problems by developers may arise, because they
- feat a loss of creative freedom,
- feat excessive control ('Big Brother'),
- shy away from novel approaches,
- have to apply a higher level of formality and
- have to exercise more discipline.

• A higher level of sophistication might be required by some lead programmers,
• Training is needed to understand the new system and method,
• Adaption/change of the existing organization, of existb~g methods and tools, of existing project planning

methods will be come necessary.
• The cost of introduction of an IPSE should not be underestimated, because of the need for training and

consulting, the cost of the initial learning curve cost etc.

4.2 Advantages of ADPS
An industrial process consists of many components and has to fulfill a wide range of sometimes contradicting
requirements while maintaining appropriate priorities. ADPS emphasizes the framework-function of a
process, i.e. it emphasizes the complete description of the Software Process without prescribing a specific
method of software development. ADPS provides, among other things, an adequate administrative
framework for an appropriate project management support.

The main advantages of ADPS are:

Meihodieall description of the Software Process: The Process Model covers the whole development process,
inct'ading project managenaent and quality control. The network character of tile activities and results
as described by the Process Model facilitates a systematic c×ecution of the application development

Summary 20

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 103

and contributes to higher reliability in planning, processing, and controlling of software development.
The model has been kept free from specific methods. This methodological independence allows to
satisfy a wide range of users.

Adaptability: The development process, methodically set up by the Process Model, enables an adaptation to
specific needs of a company, and to temporary requircments of a single project. The ADPS model
encourages its augmentation by specific methods and tools. Experience with the Software
Development Process carl be incorporated into the Process Model in order to aid later projects and to
build up an enterprL~e software development culture.

Uniform work eovironment: The Process Model, interpreted by the Process Mechanism, provides a uniform
work environment through tire uniform representation of activity types. The uniform dialog
environment provides a consistent access to activities and results as well as to help information. By
comlecting the appropriate software tools an ADPS installation can guide its users to the best
solution of their tasks. Tools can be standard IBM products, as well as self-developed or acquired
programs.

Wide applicability: The open, extendable tool interface permits a user to include tools and methods of his
own into the model.

Project eontroh ADPS' structured development process and the unambiguous status information, facilitates
project planning, project controlling, and project surveillance. The respective status of all activities
and work items is accessible to all users.

Reduced education expenditure: The support of detailed help information and work item skeletons facilitates
training of new employees, and thus contributes to the reduction of education effort, allowing
newcomers to become productive earlier.

lligher pr(~luctivity: ADPS guides tile developer by its methodically designed process, which avoids
unnecessary work or the omission of planned work. Through integration of tile right tools at the
right position of tile process and through automatic access to work items via the library
administration the basic effort for performing individual activities is reduced and the best possible
support is provided. This suggests that with the same amount of human work force, considerably
more development work can be achieved.

Higher quality: The verifications modelled by the Quality Control Path defines a timely examination of the
output work items. By installing work item skeletons, the observance of project standards is
facilitated. The developer is guided through all raecessary process steps; this reduces the danger that
necessary activities are circumvented. Through avoidance of incorrect operations, omitting of or
deviating from company standards, tire application can be completed wilh a significantly higher level
of quality and transparency.

Financial gain: The introduction of an ADPS-supported development process presents, from the start, an
efficient planning basis for each project. The higher productivity to be gained by using ADPS reduces
the overall development expenditures. Due to the high quality slandard, the expenditure for
maintenance is reduced.

In summary, ADPS proposes a total system approach to application dcvclopment by defining a detailed
Software Development Process and making this process interpretatively accessible to the software developer,
project manager and other personnel involved. The use of ADPS results in a more systematic, professional
and transparent application development.

5.0 Literature

[Abbott 87] Abbott R.J.: Knowledge Abstraction.- Comm. ACM vol 30 (1987) no. 8, pp.664-671
[Akstaller 86] Akstaller U., Biendarra T., Graegl B., Noth T., Mertens P.: Automatisiertes

OPSS-Praktikum.- IBM Nachrichten vol. 36 (1986) No. 284, pp. 31-35
[Bender_83] Bender H., Fuhrmann R., Kitte] H.U., Menze B., Muetler .I.E., Nadolny D.: Software

Engineering in der Praxis (das Berlelsmann-Model]).- CW-Publikation, Mucnchen 1983

Summary 2|

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 5 Jul 1989 Page 104

[Boehm_80] Boehm B.W.: Characteristics of Software Quality.- TRW Series of Software Technology, North
Holland 1980.

[Boehm 84] Boehm B.W.: Software Life Cycle Factors.- in Vick C.R., Ramamoorthy C.C.(eds.):
Handbook of Software Engineering, Van Nostrand 1984 pp. 494- 518

[Boehm_84b] Boehm B. et al.: A Software Development Environment for Improving Productivity.-
Computer June 1984, pp. 30-44

[Brereton_88] Brereton P. (ed.): Software Engineering Environments.- Ellis Itorwood Ltd., J.Wiley 1988
[Brooks 86] Brooks F.P.Jr.: No Silver Bullet - Essence and Accidents of Software Engineering..- Kugler

It.J.(ed.): Information Processing 86, IFIP Congress 1986 pp.1069-1076
[Chroust_88c] Chroust G.: Softwareentwicklung fuer maschinennahe Systemarchitekturen.-

Softwaretechnik-Trends Heft 8-1 (1988), pp. 9-12
[Chroust_88g] Chroust G., Gschwandtncr O., Mutschmann-Sanchez D.: l)as Entwicklungssystem ADPS

der IBM.- Oesterle H. (ed.): Anleitung zu einer praxisorientierten Software-Entwicklungsumgebung.-
Gutzwiller T., Oeslerle H. (eds.): Anleitung zu einer praxisorientierten
Soflware-Entwicklungsumgebung, Band 2.- AIT Verlag Schweiz 1988, pp. 123-148

[Crosby_80] Crobsy P.B.: Quality is Free.- Mentor Books / New American Library 1980
[Dolotta_76] Dolotta T.A., Mashey J.R.: An Introduction to the Programmer's Workbench.- 2nd Int.

Conference on Software Engineering, 1976, p. 182-186
[End 86] End W., Gotthardt tI., Winkelmann R.: Softwareentwicklung - Leitfaden fuer Planung,

Realisierung und Einfuchrung yon DV-Verfahren.- Siemens AG., 5. ueberarb, u. erw. Auflage, 1986
[tlausen_87] Hausen It.L.: Zur Einschaetzung moderner Software F, ngineering Environments.- ADV (ed.)

Quo Vadis EDV - Realitaet und Vision 1987 - ADV Tagung Maerz 1987, pp. 64-81
[Hausen_87b] Ilausen tt.L.: Effectively lnstrumenlablc Life Cycle Model.- Schumny H., Molgaard J.(ed.):

Proc.EUROMICRO 87, Microprocessing and Microprogramming vol. 21 (1987) no. 1-5, pp.
361-370.

[IBM_86] IBM Corp.: COMMAND - Vorgehensmodell fuer professionelte Entwicklung und Wartung yon
Anwendungen.- IBM Corp.,Form GT 12-3255-1, Feb. 1986

[IBM_86e] IBM Corp.: VIDOC - Werkzeuganschluss Personal Computer (VII)OC Benutzerhandbuch).-
IBM Corp., IBM Deutschland, Aug 1986

[IBM_87] IBM Corp.: Application Development Project Support/Application Development Model and
Process Mechanism- General Information.- IBM Corp.,Form No. GH 19-8109-0, 1987

[Jackson_82] .lackson M.A.: Software Development as an Engineering Problem- Angewandte lnformatik
No. 2 (1982), pp. 96-103

[Kraft 771 Kraft P.: Programmers and Managers.- Iteidelberg Science Lib, Springer 1977.
[Lehman 80] Lehman M.M.: Programs, Life Cycles, and Laws of Software Evolution.- Proc. IEEE vol. 68

(1980) No. 9, pp. 1060-1076.
[Lehman_85] Lehman M.M., Belady L.A.: Program Ew)lution - Processes of Software Change.- APIC

Studies in Data Proc. No. 27, Academic Press 1985
[McClure 81] McClure C.L.: Managing the Software Development and Maintenance.- Van Nostrand

Reinhold Data Proc. Series, Van Nostrand 1981.
[McDermid_85] McDermid J.(ed.): Integrated project support environments.- Peter Peregrinus Ltd. 1985
[Metzger_S1] Metzger P.W.: Managing a Programming Project.- - 2nd Edition. - Prentice-Ilall, 1981
[Naur 69] Naur P., Randell B.(eds.): Software Engineering.- Proc. Nato Working Conference Oct. 1968
[Neuhold 85a] Neuhold E.J., Chroust G.: Formal Models in Programming.- North ltolland Publ. Comp.

1985
[Peters_781 Peters L.J., Tripp L.L.: A Model of Software Engineering.- Proc. 3rd Int. Conf. on Software

Engineering, May 1978, pp. 63-70.
ISommerville_86] Sommerville I.(ed.): Software Engincering Environments.- P.Pereginus Ltd., London 1986
[Wileden 86] Wileden J.C., Dowson M.(eds.): lnternat. Workshop on the Software Process and Software

Environments.- Software Eng. Notes vol. II (1986) No. 4, pp. 1-74
[Zemanek_80] Zemanek It.: Entwuff und Verantwortung.- IBM Nachrichten No. 241 (I 978) pp. 173-182.

Literature 22

