
ACM SIGS OFT

	

SOFTWARE ENGINEERING NOTES vol 14 no 2

	

Apr 1989 Page 32

A COMPARISON OF THE RADICAL AND CONSERVATIVE METHODS OF
TOP-DOWN SOFTWARE DEVELOPMEN T

Greg Hil l

IBM Corporation, General Products Division, Tucson, Arizona 8574 4

Abstract

This paper describes the conservative and radical approaches to top-down
software development and makes a comparison of the two methods . This
comparison discusses the advantages and disadvantages of each method and show s
how they differ in affecting the development costs, efficiency, reliability ,
and maintainability of the resulting software . This paper also describes a
hybrid approach to software development, which has successfully been used t o
obtain many of the benefits from both the conservative and radical methods o f
top-down software development .

Introductio n

The term top-down software development means different things to differen t
people . This paper discusses two divergent methods of software developmen t
which, although very different, are both categorized as top-down .

The top-down software development philosophy emerged many years ago as a
technique for avoiding problems by placing controls over the ordering of step s
in the software-development process . Since then, much has been written abou t
the success of top-down design, top-down coding, top-down testing, and s o
forth, for example, see [refs . 1 - 7] . Although there is seldom any mentio n
in the literature as to whether the conservative approach or the radica l
approach has been used to derive the successes in applying the top-down
software development philosophy, Yourdon [ref . 8] does provide an assessmen t
of the circumstances as to when each method should be used .

Following this introduction is a description of the conservative approach t o
the top-down software development philosophy . Then comes a description of th e
radical approach, followed by a comparison of the two approaches, and a
description of a hybrid approach which has been used in actual practice t o
achieve quite favorable results .

To simplify the later discussions in this paper, assume that a software progra m
or system is to be developed which, when completed, will have the structur e
shown in Figure 1 below :

Methods of Top-Down Software Development

	

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F71647.71649&domain=pdf&date_stamp=1989-04-01


ACM SIGSOFT

	

SOFTWARE ENGINEERING NOTES vol 14 no 2

	

Apr 1989 Page 33

Description of the Conservative Method

The conservative method requires that the design be done in a top-down fashion ,
and that it be completed prior to the start of any coding . The coding phas e
is then done in a top-down fashion, and it is completed prior to the start o f
any testing . Finally, the testing phase is completed in a top-down fashion .

This conservative approach to top-down software development can be shown i n
Figure 2 below ,

Methods of Top-Down Software Development

	

2



ACM SIGSOFT

	

SOFTWARE ENGINEERING NOTES vol 14 no 2

	

Apr 1989 Page 34

where the numbers represent the sequence in which development activities ar e
performed on the individual components, regardless of whether the component s
are subroutines of a larger program or modules in a larger system .

Description of the Radical Method

The radical method requires that designing, coding, and testing all be don e
in a top-down fashion, but each component be completely designed, coded, an d
tested prior to starting the design of the next component .

The radical approach to top-down development can be shown in Figure 3 which
is similar to that for the conservative method, but with a different numeri c
ordering of activities .

Note that the numbers represent a radically different sequence for performin g
the development activities on the program or system components .

Both the conservative and radical approaches represent the top-down philosoph y
of software development, yet they have a different impact on the resultin g
software . We will now take a closer look at the effects of each approach on
the software-development activities and on the resulting software itself .

Effects on Desig n

The conservative approach results in the overall design being completed at a n
earlier time than with the radical approach . This is advantageous in that i t
allows designers to document a complete design in preparation for formal desig n
reviews, prior to coding . It is also advantageous in that it provides th e
information needed to construct coding and testing schedules, resourc e
estimates, and budgets .

Methods of Top-Down Software Development

	

3



ACM SIGSOFT

	

SOFTWARE ENGINEERING NOTES vol 14 no 2

	

Apr 1989 Page 35

The radical approach has the advantage of detecting minute design flaws tha t
may be easily overlooked in a formal design review process . The reason for
this is that the subsequent coding and testing activities, that is, compiling ,
linking, and exercising the code which is representative of a portion of th e
program or system designed thus far, are likely to uncover any remaining desig n
flaws . The radical approach has this advantage because a computer is faste r
than a person at compiling, linking, and exercising code, and because thes e
activities take place at an earlier time with the radical approach than wit h
the conservative approach .

A disadvantage of the radical approach is that because the overall design i s
not completed until a much later time than with the conservative approach, i t
can be difficult to put together an accurate set of schedules, budgets, an d
resource requirements early enough to be useful .

Effects on Coding

In the conservative approach, the complete design is available to programmer s
before coding starts . This allows programmers to gain a better understandin g
of the big picture of what the program or system will do before they star t
coding . It also allows the users to gain a better understanding of what they
have asked for . In case they wish to make changes at this point, there is n o
code to throw away ; however, the design will have to be adjusted accordingly ,
and should also be reviewed again .

With the radical approach, high-level components will be implemented and teste d
at an earlier time than with the conservative approach . This allows
programmers to have something to show for their design efforts, and give s
managers something more tangible than design to measure . In case users wis h
to make changes at this point, there may be some code thrown away if the cod e
represents a high-level component that has already been designed and coded .
However, if the changes are to components that have not yet been designed, th e
changes can be designed into the program or system on the first pass .

Effects on Testin g

Because the conservative approach results in- the entire program or system bein g
completely coded prior to any testing, it greatly extends the necessary testin g
effort by requiring that the top-down testing operate on a complete progra m
or system, or that the lower-level components be temporarily exchanged fo r
component stubs . The first choice increases the amount of code that will nee d
to be analyzed as the potential cause of any bugs found in testing, while th e
second choice will increase the amount of code-editing activity needed to swa p
components in and out with their associated stubs .

On the other hand, the radical approach to top-down software development
results in the testing of each component prior to the existence of the
lower-level components . This means that the lower-level components will hav e
to have stubs inserted into the code to do top-down testing . These stubs wil l
then be replaced with the real components when the coding stage is reached fo r
the lower levels in the program or system .

As far as top-down testing is concerned, the conservative approach results in
either an all-at-once testing effort or a high-code-movement testing effort ,

Methods of Top-Down Software Development

	

4



ACM SIGSOFT

	

SOFTWARE ENGINEERING NOTES vol 14 no 2

	

Apr 1989 Page 3 6

while the radical approach results in a piecemeal testing effort that mor e
easily identifies the component containing the bug .

Yourdon [ref . 8] notes many advantages of top-down testing in a comparison wit h
bottom-up testing . Based on the conservative versus radical discussion above ,
it appears that Yourdo n ` s top-down testing discussion relates to the radica l
rather than the conservative approach . The advantages that he mentions fo r
top-down testing, which happen to be the advantages of the radical top-dow n
approach, are listed below :

• Major interfaces are exercised at the beginning of the project

• Users can see a working demonstration of the system at an early stag e

• Deadline problems can be dealt with more easil y

• Debugging is easie r

• Requirements for machine test time are distributed more evenly throughou t
the project developmen t

• Programmer morale is improve d

• The need for test harnesses or scaffolding is eliminated

Effects on Efficiency, Reliability, and Maintainabilit y

Because the radical approach provides a working subset of the program or syste m
at an earlier time than the conservative approach, any significant performanc e
problems can potentially be recognized and corrected at an earlier stage i n
the development . In the conservative approach, it is much more difficult to
recognize where efficiency problems will occur in a program or system by
looking only at its design .

Because top-down testing is essentially system-integration testing for tha t
portion of the program or system that is already designed and coded, th e
higher-level components will be repeatedly exercised in both the conservativ e
and radical approaches, thus improving the overall reliability of the software .
However, the conservative approach does not allow the system integration
testing to start as early as in the radical approach . Because of this, th e
radical approach can lead to improved reliability over that resulting from th e
conservative approach .

Maintainability of the resulting program or system can be greatly influence d
by the number and size of changes requested by users during the coding an d
testing stages of development . In the conservative approach, these change s
can be worked into the existing design and the new design recoded, or they ca n
be applied to the code like bandaids or patches . The first method results i n
a more maintainable program or system at the expense of significantly delayin g
the completion of the project . The second method results in a faste r
adaptation of the program or system to changing user needs, however it doe s
this at the expense of significantly reducing the future maintainability o f
the code .

Methods of Top-Down Software Development

	

5



ACM SIGSOFT

	

SOFTWARE ENGINEERING NOTES vol 14 no 2

	

Apr 1989 Page 37

In the radical approach, the changes are likely to be requested at an earlie r
time, particularly if they are based on the users involvement or experienc e
with an early working subset of the program or system . The earlier that th e
changes are requested, the more likely it will be that the changes can be
incorporated into the existing design without the degree of effort needed b y
the conservative approach .

A Hybrid of the Two Approache s

It appears so far that the conservative approach has more advantages in the
design stage of top-down software development and the radical approach has mor e
advantages in the later stages of top-down software development .

To gain the benefits of both approaches, we can divide the design stage int o
a coarse design and a detailed design stage . We can then perform th e
conservative top-down approach on the coarse design, followed by the radica l
top-down approach on the detailed design, code, and test stages .

Note that we have not eliminated steps, that is, steps 9 through 16 in Figur e
4 each contain three steps in the earlier figures . We have simply partitioned
the development work a little differently by doubling the number of steps
needed to complete the design, and at the same time reducing the amount of
effort needed to complete each of the design steps .

Such a hybrid approach has successfully been applied to the development of a
variety of shared database applications and software tools by the Microcod e
Tools Engineering Center at IBM in Tucson .

Methods of Top-Down Software Development

	

6



ACM SIGSOFT

	

SOFTWARE ENGINEERING NOTES vol 14 no 2

	

Apr 1989 Page 38

The advantages of this hybrid approach are :

• At the completion of the coarse design, that is, step 8 in Figure 4 ,
sufficient information has been gathered to :

1. Prepare a design document for revie w
2. Prepare a schedule for the detailed design, code, and test stages of

development
3. Determine resource requirement s

• At the completion of the detailed design, code, and test of th e
highest-level component, that is, step 9 in Figure 4, a sufficientl y
tangible subset of the program or system exists to :

1. Show users a part of what they asked fo r
2. Show management that some of the design is successfully operatin g
3. Serve as a building block for subsequent development, that is, step s

10 through 16 in Figure 4 .

Conclusio n

The top-down philosophy of software development can be divided into a
conservative and a radical approach . There are advantages and disadvantage s
in using either approach for developing software .

The hybrid approach discussed in this paper permits all of the advantages o f
the conservative approach that are relevant to having the design work complete d
up front . It also permits all of the advantages of the radical approach tha t
deal with the progression from design to code to test, on a component b y
component basis, in a top-down fashion .

This hybrid approach eliminates the primary disadvantage of the conservativ e
approach by allowing early coding and testing efforts to produce some earl y
tangible results . It also eliminates the primary disadvantage of the radica l
approach by allowing enough design work to be completed up front so that th e
big picture of the development work can be better understood and managed .

Reference s

1. G . D . Bergland, " A Guided Tour of Program Design Methodologies, "
IEEE Computer, Vol . 14, No . 10, Oct . 1981, pp . 13-37 .

2. C . L . McGowan, and J . R . Kelly, Top-Down Structured Programming ,
Petrocelli, New York, 1975 .

3. P . W . Metzger, Managing a Programming Project, 2nd Ed ., Prentice-Hall ,
Englewood Cliffs, New Jersey, 1981 .

4. H . D . Mills, "Top-Down Programming in Large Systems, " in Debugging
Techniques in Large Systems, Prentice-Hall, Englewood Cliffs, New Jersey ,
1971, pp . 41-55 .

5. H . D . Mills, "Structured Programming : Retrospect and Prospect, " IEEE
Software, Vol . 3, No . 6, Nov . 1986, pp . 58-66 .

6. P . Van Leer, "Top-Down Development Using A Program Design Language, "
IBM Systems Journal, Vol . 15, No . 2, 1976, pp . 155-170 .

7. E . Yourdon, Techniques of Program Structure and Design, Chapter 2 ,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975 .

8. E . Yourdon, "Top-Down Design and Testing, " Managing the Structure d
Techniques, Yourdon Inc ., 1976 .


