Check for
Updates

Version and Configuration Management on a Software

Engineering Database.

lan Thomas *

GIE Emecraude, Bull SA, 68 Route de Versailles, 78430 Louveciennes, France

1. Introduction.

The PCTE interfaces provide a sct of facilitics to
builders of software engincering cnvironments and
integrated toolscts. Part of the interface definition
describes a data repository, thc Object Management
System (OMS), intended to support the storage of all
of the information neccssary for the software
development process.

The OMS data model is based on the binary Entity-
Relationship model. It offers objects, links and
attributes, all of which are typed. Object types are
organised in a hicrarchy with inhcritance of attributes
and relationships defined on an object type to its
descendants. Relationships are bi-dircctional
associations between objects. They can be considered as a
pair of mutually inversc links. Sce [BOUDS8] for a
brief description of PCTE.

2. Version and Configuration Management on the
OMS.

Over the last few years, there has been an cvolution
from the use of file systems as data repositorics for
SEEs to the use of datafobject bascs. PCTE’s OMS
exemplifies this evolution. The additional richness of
the data models of these data/object bases allows
explicit representation of relations betwecen the objects
manipulated in the SEE, including decpendency
information of interest for Configuration Management.

The OMS data model is sufficiently gencral to allow
the modelling of versions in its schema. For example,
one could represent a source file as an object and all
versions of the source file as scparate objects linked to
the source file object by links of a special type.

It seems desirable to avoid explicit reprcsentation of
version organisation in this way. The rcasons for this
are that it is extremely difficult to achicve conscnsus on

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage.
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1989 ACM 089791-334-5/89/0010/0023 $1.50

23

a common version organisation and many organisations
will develop their own or adapt standard ones. Since
tools nced the schema to access objects and therefore
nced to know the version organisation used within the
schema in order to access versions of objects, these tools
would have to vary slightly from organisation to
organisation. At the very least, they would have to have
all navigations (pathnames) re-interpreted.

We are thercfore secking maximum independence of
tools from version organisation in the interests of tool
portability (although this does not apply to tools that
nced to know about version organisation such as CM
tools). Idcally, a tool would have no knowledge of
versions but would have its own defined data model,
suited to its functions and operatc using only that
model. We call this independence from version
organisation transparency. Version organisation and
access 1o appropriate ¢lements by a tool is transparent
to a tool.

There have been some systems that have provided
transparcncy of various sorts. Apollo’s DSEE [LEBLS5]
provides transparcncy by separating the description of
thc components of a configuration and what has to be
donc 1o rebuild it, from the description of the
particular versions of components that have to be used
in a particular build operation. References by a tool
cxccuted during the build (e.g. open) to components
arc translatcd by the opcrating system to refer to the
appropriatc version bound to that component. The tools
that are exccuted during the build are therefore ignorant
of the existence of several versions - they can operate in
a world in which there is only one version of the
components that intcrest them,

Sun’s NSE cnvironment concept offers the possibility of
crealing a new work context within which a user and
tools can operate independently of whether versions of
objccts in that environment exist in other environments.

* Author's present address: Hewlett-Packard, Software Engineering Sys-
tems Division, 3500 Decr Creek Rd., Palo Alto, CA 94304

http://crossmark.crossref.org/dialog/?doi=10.1145%2F72910.73341&domain=pdf&date_stamp=1989-10-01

An approach involving transparcncy had alrcady been
adopted by CADES in the mid-scventics [McGU79].
CADES managed a database of systcm represcntations
and offered its users a complete picturc of the state of
the subsystem. When a new version of a part of a
subsystcm was created, this new version always
appeared within the contcxt of a version of the
complete subsystem. Tools then operated on a complete
understand the

organisation of versions of individual components of the
subsystems.

without

WalivuL

subsvstem

SLUS Y St

hmjma

to

Our analysis of the requircments for CM and the above
systems led us to the belief that VM and CM on object
bases is qualitatively different from VM and CM on
file systems. The following sections describe the
reasons for this belief.

VM and CM for file systems,

In many VM and CM 1ools for file-based cnvironments
we observe that files are treated cssentially as almost
independent entities. There are no explicit links between
files 1o represent the semantics of the relations between
them. There may be some conventions on naming (for
example, .o files are created from .c files etc) but these
dependencies are not explicitly represented in the file
system.

The range of reference points from which a navigation (a
pathname) can start to reach an object of interest is also
small - the file system root and the current dircctory
(though mechanisms exist to shorten the writing of the
path when it passes through some dircclorics e.g.
SHOME).

Files do not have attributes which might be used to
charaterise properties of their contents.

There are a number of systems that deal with the
efficient storage of these individual entties (RCS
[TICH85], SCCS [ROCH75] etc) and most of these
systems also impose a naming policy on the
identification of the versions managed according to the
efficient storage scheme. The above two characteristics,
and the fact that navigation to identify a file has so few
reference points from which to start, have led some
people to belicve that version management is, in part, a
name completion problem. One simply nceds to add a
version-specific suffix to object designations in the
form of pathnames.

Selecting a configuration in such a file-based context
involves selecting a set of "independent” entities. The

24

major problem is cnsuring that the set is consistent and
several approaches are used. In some extensions to file
systems, attributes are used to characterise files and
sclection of files is checked by consistency rules on
attributc values (SHAPE [MAHLS8S8]). Other systems
break the selection space down by separating the choices
into a choice of an interface representation and a choice

of an implementation with automatic management at
least of the consistency of files containing interfaces

aLast L U DRSS s LIS WURIuRasiiaa a1 QL

and implcmentations (ADELE [ESTUSS]).

VM and CM for object bases.

In object bases, objects are not independent entities but
derive at least part of their semantics from their
relationships with other objects. Objects have attribuies
that can be used to characterise the objects and links
that can be used to express dependencies. Navigation to
an object can be achicved by starting from any object in
the object base known to the navigating process and need
not be via a root object or a current directory. There
will be many paths to an object, in general.

Representing a single object’s versions efficiently is
useful in object bases but much less important than the
ability to make versions of groups of linked objects
(and have these stored efficiently).

Some object bases (for example, PCTE’s OMS) provide
an ability to navigate to objects along any of the
relationships to that object and do not provide access to
objects via a unique object identifier. This means that
the designation of a particular object of the base can be
achieved by several different pathnames. In such a
system, it is difficult to view version selection as name
completion.

Constructing a configuration on an object base involves
selecting a set of subgraphs of the object base and
combining them together into some larger subgraph
(that we call a configuration) if they are compatible and
with as little loss of information deriving from the
links leaving the constituent subgraphs as possible. This
is critical in cases where tools that will be run on the
configuration will navigate from objects in the
configuration along the links.

3. The Pact approach to Configuration Manage-

ment.

The Pact project has built VM and CM facilities on the
PCTE interfaces. The approach has been to identify a
common service (the Version Management Common
Service), providing basic version management
capabilities for groups of linked objects, and tool

groups, each supporting particular CM functions. Thesc
arc described more fully in a separatc submission to the
workshop [OQUES9]. The remainder of this scction
outlines the build tool set that is under construction

M~ moy

for the OMS.
The Build Tool Set.

The ghiective
111C QUjCCilve

facilities that are available in
mnnm;r on ﬁlf‘ QVQH‘-‘mQ wn‘hm

S

the tool set is
build tools currently
the more (‘nmn]:(‘ated

context of a SEDB in a way that respects the aims of
the SEDB,

One of the problems to be resolved is the separation
that exists between the textual description of the
dependencies and the representation of these as links
within the base, as maintained by other tools operating
on the base. Another is that one can rebuild attributes,
links (or sets of these) as well as objects.

We have decided to separate the descriptions of the goal
structure, describing the goals and subgoals to be
aitained during a build, from ihe designation of the
objects in the base that may be associated with a

narticular onal ko for ingtanca tha anal namaoag
parucuiar goa. \ul maxe, ior Instance, inc gUar nainios

may also be the pathnames of files associated with the
goals),

Each goal may have an explicit condition and may have
an associated action. The goal structure, which is
explicitly represented in the object base, can expand
during the build to represent the actual goals evaluated
during the build.

The association between a build goal and an OMS object
can be made in several ways:

(i) by name;

{(il) by a query associaicd with a goal and using objeci(s)
associated with the supergoal or subgoal(s);

(iii) in the absence of a query, using information stored
the metabase link by the

(‘harar‘mncmo

Lllaialiliisil

dependencies that they represent.

in tvnes
n types

The design of the build tool group is currently being
carried out. There is, at present, no language available
for the description of the goal structure or the
associations with objects. Our investigations lcad us to
believe that an upward compatible extension of the
syntax of make would be easy to define.

25

References

Boudier G., Gallo, F.,, Minot, R., Thomas, I, “An
Overview of PCTE and PCTE+", in Proceedings of the
3rd ACM Symposium on Practical Software
Development Environments, Boston, November 1988.

Estwblier, J., "A Configuration Manager: the ADELE

Database of Proorams". in Drnrppdlpoc of the Workshop

22la0ase C: Iograms , 1 rTOCCCll Ol IS OIXST

on Software Engineering Environments
Programming-in-the-large, Harwichport, June 1985, pp.
140-147.

Leblang, D. B. and McLean, G., "Configuration
Management for Large-scale Software Development
Efforts", in Proceedings of the Workshop on Software
Engincering Environments for Programming in the
Large, Harwichport, June 1985, pp. 122-127.

Mahler, A. and Lampen, A., "An Integrated Toolset for
Enginecring Software Configurations”, in Proceedings
of the 3rd ACM Symposium on Practical Software
Development Environments, Boston, November 1988.

McGuffin, R.W., Ellison, AE., Tranter, R.,
Wagtmarntt TN "OATNEC. Qaftwara Enginssring in
Yy UDI.IIICI\/UI.I., E L2 PP N AL NT DULLYY AL hlléxllwlllls iis
practice”, in Proccedings of the 4th International

Munich,

Sent

=T

Software Engineering
...... Engmeering,

Conference on

1979. xyz?

Oquendo, F., Berrada, K., Gallo, F., Minot, R,
Thomas, 1., "Version Mechanisms on the PCTE’s Object
Management System for supporting Version and
Configuration Management Tools", submitted to the
Second International ~ Workshop on Software
Configuration Management, to be held in Princeton,
USA, October 1989.

Rochkind, M. J., "The Source Code Control System",
IEEE Transactions on Software Engineering, Vol. 1,

LA AN

No. 4, 1975, pp. 364-370.

Tirhey W ¢

H ; > "ROC A Qugtam f Va
1iCriy, vv. .,

N
ALY T A wyowil 1ul ¥

Software - Practice and Experience, Vol
1985, pp. 637-654.

2700

Cn

nn
CIDIULL LU

15,

niral"
nus: ,

No. 7,

