
Version and Configuration Management on a Software

Engineering Database.

Ian Uwmas *

GIE Emcraudc, Bull SA, 68 Route dc Vcrsaillcs, 78430 Louveciennes, France

1. Introduction.
The PCTE interfaces provide a set of facilities to

builders of software engineering cnvironmcnts and
integrated toolsets. Part of the interface definition
describes a data repository, the Object Managcmcnt
System (OMS), intended to support the storage of all
of the information necessary for the software
development process.

The OMS data model is based on the binary Entity-
Relationship model. It offers objects, links and
attributes, all of which arc typed. Object iypcs are
organ&l in a hierarchy with inhcritancc of attributes
and relationships defined on an object type to its
descendants. Relationships are bi-directional
associations between objects. They can bc considered as a
pair of mutually inverse links. See [BOUD88] for a
brief description of PCTE.

2. Version and Configuration Management on the
OMS.
Over the last few years, there has been an evolution
from the use of file systems as data rcpositorics for
SEES to the use of data/object bases. PCTE’s OMS
exemplifies this evolution. The additional richness of
the data models of these data/object bases allows
explicit representation of relations bctwccn the objects
manipulated in the SEE, including dependency
information of interest for Configuration Managcmcnt.

The OMS data model is sufficiently general to allow
the modclling of versions in its schc’ma. For cxamplc,
one could represent a source file as an object and all
versions of the source file as separate objects linked to
the source file object by links of a special type.

It seems desirable to avoid explicit reprcscntation of
version organisation in this way. The reasons for this
are that it is extremely difficult to achieve consensus on
Permission to copy without fee all or part of this material is granted prwidcd

that the copies are not made or distributed for direct commcrciai adwntagc.

the ACM copyright notice and the title of the publication and its date appcx.
and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish. reqwrcs a fee

and/or specific permission.

0 1989 ACM 08979l-334-5/89/OOlO/OO23 $1.50

a common version organisation and many organisations
will dcvclop their own or adapt standard ones. Since
tools need the schema to access objects and therefore
need to know the version organisation used within the
schema in order to access versions of objects, these tools
would have to vary slightly from organisation to
organisation. At the very least, they would have to have
all navigations (pathnames) re-interpreted.

WC arc themCore seeking maximum independence of
tools from version organisation in the interests of tool
portability (although this does not apply to tools that
need to know about version organisation such as CM
tools). Ideally, a tool would have no knowledge of
versions but would have its own defined data model,
suited to its functions and operate using only that
model. We call this independence from version
organisation transparency. Version organisation and
access to appropriate elements by a tool is transparent
to a tool.

Thcrc have been some systems that have provided
transparency of various sorts. Apollo’s DSEE [LEBL85]
provides transparency by separating the description of
the components of a configuration and what has to be
done to rebuild it, from the description of the
particular versions of components that have to be used
in a particular build operation. References by a tool
cxccutcd during the build (e.g. open) to components
arc translated by the operating system to refer to the
appropriate version bound to that component. The tools
that are cxccutcd during the build are therefore ignorant
of the existence of several versions - they can operate in
a world in which there is only one version of the
components that interest them.

Sun’s NSE cnvironmcnt concept offers the possibility of
creating a new work context within which a user and
tools can opcratc independently of whether versions of
objects in that environment exist in other environments.

* hthor’s prcscnt address: Hewlett-Packard, Software Engineering Sys-
tems Division, 3500 Deer Creek Rd., Palo Alto, CA 94304

23

http://crossmark.crossref.org/dialog/?doi=10.1145%2F72910.73341&domain=pdf&date_stamp=1989-10-01

An approach involving transparency had already been
adopted by CADES in the mid-scventics [McGU79].
CADES managed a database of system rcprcscntations
and offered its users a complete picture of the staLe of
the subsystem. When a new version of a part of a
subsystem was created, this new version always
appeared within the context of a version of the
complete subsystem. Tools then operated on a complete
subsystem without having to undcrsland the
organisation of versions of individual components of the
subsystems.

Our analysis of the requirements for CM and the above
systems led us to the belief that VM and CM on object
bases is qualitatively different from VM and CM on
file systems. The following sections describe the
reasons for this belief.

VM and CM for file systems,

In many VM and CM tools for file-based environments
we observe that files are treated cssenlially as almost
independent entities. There are no explicit links bctwecn
files to represent the semantics of the relations between
them. There may be some conventions on naming (for
example, .o files are created from .c files elc) but these
dependencies are not explicitly represented in the file
system.

The range of reference points from which a navigation (a
pathname) can start to reach an object of interest is also
small - the file system root and the current directory
(though mechanisms exist to shorten the writing of the
path when it passes through some dircctorics e.g.
$HOME).

Files do not have attributes which might be used to
charaterise properties of their contents.

There are a number of systems that deal with the
efficient storage of these individual entities (RCS
[TICH851, SCCS [ROCH75] etc) and most of these
systems also impose a naming policy on the
identification of the versions managed according to the
efficient storage scheme. The above two characteristics,
and the fact that navigation to identify a file has so few
reference points from which to start, have led some
people to believe that version management is, in part, a
name completion problem. One simply needs to add a
version-specific suffix to object designations in the
form of pathnames.

Selecting a configuration in such a file-based context
involves selecting a set of “independent” entities. The

major problem is ensuring that the set is consistent and
se.vcral approaches are used. In some extensions to file
systems, attributes are used to characterise files and
se.lcction of files is checked by consistency rules on
altributc values (SHAPE @4AHL88]). Other systems
break Ihc selection space down by separating the choices
into a choice of an interface representation and a choice
of an implementation with automatic management at
least of the consistency of files containing interfaces
and implcmentalions (ADELE [ESTU85]).

VM and CM for object bases.

In object bases, objects are not independent entities but
derive at least part of their semantics from their
rclalionships with other objects. Objects have attributes
that can be used to characterise the objects and links
that can be used to express dependencies. Navigation to
an object can be achieved by starting from any object in
the object base known to the navigating process and need
not be via a root object or a current directory. There
will bc many paths to an object, in general.

Reprcsenling a single object’s versions efficiently is
useful in object bases but much less important than the
ability to make versions of groups of linked objects
(and have these stored efficiently).

Some object bases (for example, PCTE’s OMS) provide
an ability to navigate to objects along any of the
relationships to that object and do not provide access to
objects via a unique object identifier. This means that
the designation of a particular object of the base can be
achieved by several different pathnames. In such a
system, it is difficult to view version selection as name
completion.

Constructing a configuration on an object base involves
selecting a set of subgraphs of the object base and
combining them together into some larger subgraph
(that we call a configuration) if they are compatible and
with as little loss of information deriving from the
links leaving the constituent subgraphs as possible. This
is critical in cases where tools that will be run on the
configuration will navigate from objects in the
configuration along the links.

3. The Pact approach to Configuration Manage-
ment.
The Pact project has built VM and CM facilities on the
PCTE interfaces. The approach has been to identify a
common service (the Version Management Common
Service), providing basic version management
capabilities for groups of linked objects, and tool

24

groups, each supporting particular CM functions. These
arc described more fully in a separate submission to the
workshop [OQUE89]. The remainder of this section
outlines the build tool set that is under construction
for the OMS .

The Build Tool Set.

The objective of the tool set is to provide at least the
facilities that are available in build tools currently
running on file systems within the more complicated
context of a SEDB in a way that respects the aims of
the SEDB.

One of the problems to be resolved is the separation
that exists between the textual description of the
dependencies and the representation of these as links
within the base, as maintained by other tools operating
on the base. Another is that one can rebuild attributes,
links (or sets of these) as well as objects.

We have decided to separate the descriptions of the goal
structure, describing the goals and subgoals to be
attained during a build, from the designation of the
objects in the base that may be associated with a
particular goal. (In make, for instance, the goal names
may also be the pathnames of files associated with the
goals).

Each goal may have an explicit condition and may have
an associated action. The goal structure, which is
explicitly represented in the object base, can expand
during the build to rcprcscnt the actual goals evaluated
during the build.

The association between a build goal and an OMS object
can be made in several ways:

(i) by name;

(ii) by a query associated with a goal and using object(s)
associated with the supergoal or subgoal(s);

(iii) in the absence of a query, using information stored
in the metabase characterising link types by the
dependencies that they represent.

References

Boudier G., Gallo, F., Minot, R., Thomas, I., “An
Overview of PCTE and PCTE+“, in Proceedings of the
3rd ACM Symposium on Practical Software
Development Environments, Boston, November 1988.

Esmblier, J., “A Configuration Manager: the ADELE
Database of Programs”, in Proceedings of the Workshop
on Software Engineering Environments for
Programming-in-the-large, Harwichport, June 1985, pp.
140-147.

Leblang, D. B. and McLean, G., “Configuration
Management for Large-scale Software Development
Efforts”, in Proceedings of the Workshop on Software
Engineering Environments for Programming in the
Large, Harwichport, June 1985, pp. 122-127.

Mahlcr, A. and Lampen, A., “An Integrated Toolset for
Engineering Software Configurations”, in Proceedings
of the 3rd ACM Symposium on Practical Software
Development Environments, Boston, November 1988.

McGuffin, R.W., Ellison, A.E., Trainer, B.R.,
Westmacott, D.N., “CADES: Software Engineering in
prac ticc” , in Proceedings of the 4th International
Conference on Software Engineering, Munich, Sept
1979. xyz?

Oquendo, F., Berrada, K., Gallo, F., Minot, R.,
Thomas, I., “Version Mechanisms on the PCTE’s Object
Management System for supporting Version and
Configuration Management Tools”, submitted to the
Second International Workshop on Software
Configuration Management, to be held in Princeton,
USA, October 1989.

Rochkind, M. J., “The Source Code Control System”,
IEEE Transactions on Software Engineering, Vol. 1,
No. 4,1975, pp. 364-370.

Tichy, W. F., “RCS - A System for Version Control”,
Software - Practice and Experience, Vol. 15, No. 7,
1985, pp. 637-654.

The design of the build tool group is currently being
carried out. There is, at present, no language available
for the description of the goal structure or the
associations with objects. Our investigations lead us to
believe that an upward compatible extension of the
syntax of make would be easy to define.

25

