
Cross References are Features

Robert W. Schwanke and Michael A. Platoff

Siemens Corporate Research, Inc.
755 College Rd. East
Princeton, NJ 08540

USA

1. Introduction
When a software system is developed by a large

team of programmers, and has matured’ for several
years, changes to the code may introduce unexpected
interactions between diverse parts of the system. This
occurs because the system has become too large for
one person to fully understand, and the original
design documentation has become obsolete as the sys-
tem has evolved. Symptoms of structural problems
include too many unnecessary recompilations, unin-
tended cyclic dependency chains, and some types of
difficulties with understanding, modifying, and testing
the system. Most structural problems cannot be
solved by making a few “small” changes, and most
require the programmer to understand the overall pat-
tern of interactions in order to solve the problem.

The ARCH project at Siemens Research is building
an “architect’s assistant” for a software maintenance
environment. &tCH will help the software architect
analyze the structure of an existing system, specify an
architecture for it, and determine whether the actual
software is consistent with the specification. Since the
system’s structural architecture may never have been
formally specified, we want ARCH to be able to “dis-
cover” the architecture by automatically analyzing
the existing code. It should also be able to critique an
architecture by comparing it to the existing code and
suggesting changes that would produce a more
modular specification.

1
The word “matured’ reflects our belief that old software is

worth maintaining because of stability, refinement, and customer
loyalty, which only come with experience.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission ofthe Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

0 1989 ACM 08979l-334-5/S9/OOlO/OO86 $1.50

A common approach to structural problems is to
treat cross-reference information as a graph, in which
software units appear as nodes and cross-references
appear as edges. Then various methods, both manual
and automatic, may be used to analyze the graph.
Recent work by Maarek and Kaiser [l] and Selby and
Bssili [2] has used clustering methods to summarize
cross-reference graphs, by clustering nodes into
groups, and then analyzing edges between groups.

The &tCH project is developing a new, complemen-
tary set of analysis methods, baaed on the idea that
cross references be represented as features of the ob-
jects they connect. Doing so allows us to use
similarity measures2 based on shared features. This
in turn allows us to use conceptual clustering
methods, originally developed for classification, pat-
tern recognition, information retrieval, and machine
learning, and apply them to software analysis.

We have built a detailed cross-reference extractor
and a conceptual clustering tool, and are using them
to analyze cross-reference graphs for several kinds of
software maintenance problems. Our preliminary
results suggest that these methods can help reduce un-
necessary recompilations, summarize complex struc-
ture graphs, and improve modularity. We plan to de-
velop interactive techniques that combine the book-
keeping abilities of the computer with the deep
knowledge of the maintainer, to produce even better
solutions.

This paper discusses some structural problems that
occur frequently in mature systems, describes our fea-
ture representation for cross-references, presents the
prototype conceptual clustering algorithm we are

2
The literature of classification normally uses dissimilarity

measures. We find this term awkward, and will use it only where
necessary, relying on the intuitive correspondence between
similarity and dissimilarity.

86

http://crossmark.crossref.org/dialog/?doi=10.1145%2F72910.73351&domain=pdf&date_stamp=1989-10-01

using, and describes how the technology can be used
to attack the structural problems. We include
preliminary results of our experiments, and details of
some planned experiments.

2. Structural Problems in Large
Systems

This section discusses three examples of structural
problems that occur frequently in large, mature
software systems.

2.1. Structure Visualieation
Many maintenance tasks require the programmer to

contend with graph-like information, such as cross-
references, data flow, compilation dependencies, and
call graphs. Many programmers like to draw these
graphs and use spatial relationships and edge densities
to help them understand global characteristics of the
information. However, when the graph becomes too
large, the global structure becomes lost in the details,
even when good heuristic layout algorithms are used.

To visualize a large graph, the programmer must
group the nodes of the graph into clusters, where he
can think of each cluster as a single conceptual
“chunk” of the code, and then draw edges only be-
tween chunks.

In section 6 we will describe an experiment in which
we used a conceptual clustering algorithm to
automatically collect “chunks” of a large call graph,
and help the analyst label them with meaningful
names. The result appears to be an effective aid to
graph understanding.

2.2. Compilation Dependencies
In large systems, controlling the compilation-time

dependencies between files can have a significant im-
pact on many aspects of maintenance. Adams et al
have recently analyzed change logs for a carefully-
engineered, new system, written in Ada, and con-
cluded that more than half of compilations were un-
necessary [3]. This situation can easily become ag-
gravated if programmers do not take adequate care
when grouping utility code (such as macros and type
definitions) into files. Many projects have a “catch-
all” file of widely-used declarations. Maintainers are
unwilling to create a new file to contain a new decla-
ration, because of the nuisance of changing makefiles,
notifying the configuration management team, and so
on. Also, they have no good way of knowing when it
is time to start a new file. Instead, they place each
new declaration in an existing file. Consequently, the
catch-all file may change frequently, causing
widespread recompilation. Meanwhile, each module is

87

actually using a smaller and smaller fraction of the
declarations appearing in it. Although Tichy’s smart
recompilation [4] would alleviate some of the recom-
pilation cost, the conglomeration of loosely-related
declarations would continue to cloud the system struc-
ture.

Compilation dependencies are also very important
during system integration, because in real-life
projects, inconsistency between files is the rule rather
than the exception. Integration planners need to be
sure that the files they are integrating interact only in
limited ways, so that they can get at least part of the
system working. Each dependency path between files
represents an opportunity for a syntactic interface er-
ror, which has the potential to disrupt a system in-
tegration step.

The structural problem we will explore in section 7
is the problem of dividing a “catch-all” include file
into a “reasonable” set of smaller files, in a way that
substantially reduces the amount of code each module
must include.

2.3. Modularity
Modularity is generally believed to have a sig-

nificant impact on testability, maintainability, and
understandability. As difficult as this belief is to test
(e.g. [5]), modularity is a well-established qualitative
goal of software design.

According to Parnas’s information-hiding
principle [6], a good modular decomposition is one in
which each module encapsulates design decisions that
are likely to change later, typically by implementing
the decisions in a set of declarations that are hidden
in a private scope.

Unfortunately, unless a system’s module structure
is specified separately from the code, and enforced, it
tends to deteriorate over time. An individual
programmer may add a dependency between two
modules, to solve a particular problem, without caus-
ing substantial difficulties. However, dozens of ad-
ditions over several years eventually make the system
excessively hard to modify, test, or understand.
Sometimes, there is an attempt to reorganize the sys-
tem to improve its modularity, but since understand-
ing is so hard, reorganizing is even harder.

For example, consider the Siemens BS2000 Operat-
ing System. It comprises 1 million lines of code, has
been maintained for 15 years, and currently employs
300 programmers. A few years ago the project
management decided to partition the system into
modules, in a way that would let them sell compact,
customized configurations. In order to do the par-
titioning, they decided that they first needed an ac-

curate specification of the current structure. The
painstaking process of creating this specification took
two full years. The ongoing project includes a graph
editor for writing and displaying the specification, and
a validation tool for detecting architecture violations
in the code. These tools will help them keep the ar-
chitecture and the code consistent, by immediately
reporting problems, so that they can be addressed be-
fore they get out of hand.

In section 8 we will discuss how to analyze the in-
terconnection structure of a system, to identify
problems and suggest improvements.

3. Connections vs. Shared
Neighbors

Previous attempts to analyze program structure by
clustering have used similarity measures based on
strength of connection. They represent software ob-
jects as vertices in a graph, and connections between
objects as edges in the graph. Then they define the
“strength” of connection between two objects as the
number of edges connecting them.

Maarek and Kaiser use connection strength cluster-
ing for integration planning. They propose to create
an integration plan by clustering the software units
into larger and larger clusters, forming a cluster tree.
Each node of the tree would be an integration step, in
which the clustered objects were tested together,
resolving all inconsistencies among them. Maarek and
Kaiser define a connection as any identifier that is
defined in one unit (or cluster) and used in another.
Then they define a similarity measure between two
clusters based on connection strength between them.

Selby and Bssili use connection strength clustering
to identify error-prone code. They define a connec-
tion between two units as any variable that passes
data from one to the other. Then they define the
“goodness” of a cluster as the ratio of its “cohesion”
(number of connections within the cluster) to its “cou-
pling” (number of connections between the cluster and
other objects).

Although these projects have successfully applied
their similarity measures to software maintenance
problems, connection strength does not adequately
capture design similarity between software units.

Consider, for example, the Sine and Cosine
routines from a mathematical software library. One
would expect that whatever implementation tricks
were used to make one of them efficient should also be
used in the other, yet one would be surprised if either
one of them actually called, or passed data to, the

other. On the other hand, we would expect that
many of the other software modules that called the
sine routine would also call the cosine routine, and
vice versa. This situation is portrayed in a hypotheti-
cal call1 graph shown in figure 3-l. A similarity

A 1 Sine

B

%
c A Cosine

Figure 3-1: Call Graph With Parallel Structure

measure based on connection strength would deter-
mine that Sine is more similar to A, B, and C than it
is to Cosine. Clustering the two most similar nodes
might produce the graph in figure 3-2, modulo per-
mutations of {A, B, C} and {Sine, Cosine}. Clearly,

Figure 3-2: Summarizing By Connection Strength

this is unacceptable! We need, instead, a similarity
measure that recognizes the parallel structure ap-
paren.t in the figure. Measures based on shared
neighbors do this very well. In figure 3-1, both Sine
and Cosine have the neighbors A, B, and C. Con-
versely, A, B, and C all have the neighbors Sine and
Cosine. Clustering the two nodes that share the most
neigbors would produce the graph in figure 3-3

A\ Sine
B- q P Y Cosine

Figure 3-3: Summarizing By Shared Neighbors

4. Cross References as Features
Our analysis methods represent edges in a graph as

features of the nodes they connect, and measures
similarity of nodes by looking at which features two
nodes have in common, and which are different. We
justify this measure of similarity by looking at its im-

88

plications for structure problems in software engineer-
ing.

4.1. Representation
Consider a graph consisting of a set of nodes {A, B,

C, . ..} and a set of edges {(X, Y)}. We represent each
node as an object with the same name, and represent
each edge (X,Y) by giving the object X a feature #Y,
and giving the object Y a feature &X. We use two
different kinds of feature names, &A4 and #IU, to dis-
tinguish the names of an object’s predecessors and
successors in the graph, respectively.

In software engineering, these graphs represent
cross reference information. The set of features
{#M} of object X represent the non-local names oc-
curring in it (its names-used), and the set of features
{&V} represent the names of other software units
that use the name X (its user-names). In our pre-
vious example, the Sine and Cosine routines both
have features {&A, tYB, tYC}, and the routines A, B,
and C, have features {#Sine, #Cosine}. The hCH

project uses fully scoped names, so that all software
units have names that are unique system-wide.

4.2. Similarity Measures
By representing cross-references as features, we can

easily identify neighbors that are common to (shared
by) two nodes, by comparing their feature lists. We
can define several interesting similarity measures, by
counting the number of shared neighbors, non-shared
neighbors, or both. We can also define aggregate
measures, for measuring similarity between two
groups of objects, by looking at the frequency with
which features occur in the groups. We are currently
studying similarity measures derived from information
retrieval, from information theory, and from machine
learning research.

Shared-neighbor similarity measures do not replace
or subsume connection strength measures. If two
nodes are connected, but have no shared neighbors,
the similarity between them will be zero. However,
for some experiments, it makes sense to treat the
definition site of an identifier as also being a use-site
for that identifier. In those situations, we give each
object X the feature #X, and sometimes also &X.
This gives it some similarity to its neighbors. Future
research should explore composite similarity measures
based on both connection strength and shared neigh-
bors.

4.3. Software Engineering Rationale
There are two kinds of reasons to cluster software

based on shared neighbors: structural reasons and
semantic reasons.

The structural reasons arise in situations where the
patterns of interaction are intrinisically important.
For example, when ‘partitioning an include file into
smaller files, declarations that are used in all the same
modules should be placed in the same partition.
Similarly, when studying a call graph, forming a
group out of procedures with the same callers and
callees allows one to simplify the graph without sup-
pressing much information.

The semantic reasons arise because the neighbors of
a software object tell you what it’s built out of, and
how it’s used. For example, if you noticed that a cer-
tain module called the procedures FileOpen,
FileRead, and StringCompare, you might guess
that it was doing some kind of lexical analysis on the
contents of files.

Even if you don’t know exactly what information a
name represents, seeing the same name occurring in
two software units suggests that their implemen-
tations are related. This may be due to a shared vari-
able, macro, type, or procedure; in each case, it means
that they both rely on the functional specification of
the shared name.

This shows the relationship between shared neigh-
bors and the Parnas information-hiding principle: if a
group of software units share a set of data types, vari-
ables, macros, and/or procedures, which few other
units use, the group should be considered as a poten-
tial module.

Most of the rationale given above can be reworded
to support the hypothesis that a procedure or other
software unit can also be characterized by where it is
used (its user-names). For example, if most of the
procedures that invoke the macro XtWindow also in-
voke XtDisplay, you might guess that the two mac-
ros are related -- as they are, in MIT’s X Toolkit (71.

We conclude from the structural and semantic ar-
guments above that clustering based on shared neigh-
bors is likely to be a useful way to analyze structural
problems in large software systems.

5. The Clustering Procedure
In this section, we describe the clustering procedure

we are using in our current experiments. The proce-
dure is an example of a hierarchical, ascending clas-
sification method, specialized to be a conceptual
clustering method. It produces a tree of classes and
subclasses of the objects. Each class has a description,
consisting of the size of the cluster and, for each pos-
sible feature, the proportion of cluster members that
have the feature. The algorithm presented is a
prototype; rather than try to give it a mathematical

89

justification, we will discuss the issues we are cur-
rently exploring as we redesign it.

5.1. Hierarchical Ascending Classification
In general, a hierarchical ascending classification

(IIAC) algorithm forms clusters (classes) of objects in
a bottom-up fashion, by first forming small clusters of
closely-related (or very similar) objects, then combin-
ing the small clusters into larger clusters, finally form-
ing a classification tree, whose leaves are the original
objects, and whose interior nodes are the classes. (We
use the terms “cluster”, “class”, and “category”
somewhat interchangeably.) The interested reader
should consult Maarek’s fine overview of HAC
methods [8].

IIAC algorithms may be contrasted with partition-
ing algorithms, which divide a set of objects into two
or more classes, then recursively divide each class. At
each level, a partitioning is sought that maximizes the
similarity of objects within each class, and maximizes
the differences between classes.

Both I-IAC and partitioning methods optimize early
decisions at the expense of later decisions. The par-
titioning methods may form excellent top-level classes,
but the choice of top-level partition may prevent the
formation of the “best” sub-classes deeper in the tree.
Conversely, HAG methods form small clusters first,
and thereby constrain the possible large clusters.

For our applications, we have concluded that the
low-level clusters are more important, and we are
therefore using IIAC methods. For example, a well-
modularized system should have sharply-defined first-
level modules, even if the top-level subsystems are a
little less “pure” because of it.

5.2. The Algorithm
We present the control structure of the algorithm

first, then explain the key computations in more
detail.

The Arch Batch Clustering Algorithm

Purpose: form a classification tree T over the set of
nodes (N6}. Each subtree represents a category, con-

taining the nodes named at its leaves.

1. For each Nj, create tree Ti consisting of the

single leaf Ni, and place it in the candidate set

c.

2. Repeat

a. Find the most similar pair of trees in C,
say T, and TS, and remove them from C.

b. Create tree Tz with two children, Tz and

TV, and add the new tree to C.

Until C contains only one tree, say Troot.

3. Massage (Troot)

Massage is a recursive procedure to increase the
average branching factor of a tree by eliminating low-
utility interior nodes. Utility is measured by a cate-
gory utility function CU (T). Eliminating an inte-
rior node entails promoting its children to be children
of its parent.

IGassage (T):

1. Loop

a. Find a child T, of T such that CU (Tc) is

minimal.

b. If eliminating T, would increase the

average category utility of the children of
T, then

eliminate Tc

else exit loop

end loop

2. For every child Te of T,

Massage (Te)

The category utility function CU is the product of
the size and “purity” of a category. “Purity” is the
sum of squares of the feature frequencies, i.e. of the
probability that a member of the category has a given
feature. It favors categories in which most members
share many features, and it favors large categories.

The two most similar categories are actually
selected by finding the two least dissimilar ones. The
dissimilarity of two categories, X and Y, is a function
of their category utilities:

DisSim (X,Y) = CU(X) + CU(y) - CU(X U Y)

Two categories with identical feature frequencies will
have no dissimilarity between them.

The category utility function was adapted from
Cobweb’s CU function, on the assumption that only
“present” features were significant, and not “absent”
features.

5.3. Computational complexity
Our naive implementation of the algorithm has cost

O(n’f), where n is the number of nodes, and f is the
average number of features per node. This is due to
the n2 tree-to-tree comparisons required to find the
two most similar trees. A more efficient algorithm

90

might be obtained by using inverted indices to analyze
only the nodes that actually share at least one feature
with a given node, and by using feature frequency in-
formation to optimize the order of comparisons.

Fortunately, the algorithm’s complexity has not yet
overwhelmed our computing resources. We have been
analyzing lOO-node graphs in elapsed times of under
10 minutes, on a Sun 3 workstation.

6.4. Conceptual Clustering
A conceptual clustering method is a clustering or

partitioning method that produces not only the
clusters themselves, but also descriptions or
explanations of the clusters. For example, it might
produce clusters of insect specimens, and label one of
them “have six legs and four wings”. The cluster is
said to represent a concept both by estension (listing
examples) and intention (the description).

The Cobweb system [9] is a good example of a con-
ceptual clustering system; it gave us many of the basic
ideas for our current work. In Cobweb, the descrip-
tion is simply a list of how many times each feature
occurs among members of the cluster. ARCH uses the
same type of description. Since the clusters are
formed around shared features, the description ac-
curately explains why the cluster was formed. We
have found that these descriptions help us to attach
useful names to the “concepts”, as will be discussed in
section 6. If &EH had measured similarity by con-
nection strength instead, then the “explanation”
would be a list of connections. We rejected this ap-
proach because we found that lists of connections did
not give us useful insights into a system’s structure.

Many conceptual clustering methods include sub-
methods that select only those clusters that have
simple and/or useful descriptions. If the cluster tree
is supporting some knowledge-based application
program, for example, the choice of clusters may be
oriented toward making the application as efficient as
possible. The Massage procedure performs this func-
tion in ARCH, selecting clusters to optimize average
category utility. We do this to obtain “reasonable-
and natural-sized” clusters. For our modularity ex-
periments, we are exploring acceptance predicates that
prefer clusters with good information-hiding qualities,
as described in section 8.

5.6. Potential Improvements
We are currently exploring several ways to improve

the algorithm:

l Feature weighting by frequency: the current
algorithm forms clusters around frequently-
occurring features more than around rare ones.

91

The opposite would be preferable, because, for
example, the “secrets” of small modules must
necessarily be rare. We think that systemati-
cally weighting features in proportion to their
rarity will produce better results.

l Similarity measures and category utility:
There are many valid ways to define similarity
between groups of objects. We are exploring
several of them. We are also looking at dif-
ferent definitions of “purity”.

l Category elimination: our current method is
based on optimizing average category utility.
We are also looking at application-specific
heuristic predicates, which analyze a subtree
node in context and accept or reject it.

l Massaging sequence: our current implemen-
tation massages the tree top down. This
produces a “boundary effect” at the bottom of
the tree, where the average branching factor is
much less than in the rest of the tree. We ex-
pect that bottom up or globally-controlled se-
quencing will produce better trees for the ap-
plications we are studying. The bottom-up al-
gorithm is the same as the Massage algorithm
given, except that step 2 is performed before
step 1. A globally-controlled algorithm would
evaluate all nodes in the classification tree, and
repeatedly eliminate the least desirable one until
no further benefit is obtained.

l Adaptation: Allowing human architects to
bias the weights of features, by providing feed-
back on classification decisions, should lead to
improved classification.

6. Summarizing a Call Graph
Clustering by connection strength is attractive for

summarizing call graphs, because it promises to find
subgraphs containing large numbers of internal con-
nections, with relatively few connections between sub-
graphs. However, because of the partial-ordering
characteristic of call graphs, this approach would tend
to find “vertical” groups first, because most connec-
tions would occur between nodes in different levels of
the graph. Sometimes that kind of analysis is useful,
but we believe that, for understanding the overall
structure of a call graph, it is more important to first
find “horizontal” groups of procedures, representing
layered abstractions in the system, even if members of
a group do not directly call one another.

A preliminary clustering experiment supports this
hypothesis. The experiment consisted of forming a

cluster tree, labelling the interior nodes, and then dis-
playing the graph in various summarized forms using
the Edge graph browser [lo].

The call graph came from the TML subsystem of
the DOSE structure editor generation system [ll].

TML is a recursive descent program interpreter, with
associated interactive debugging commands. The sub-
system contains 82 procedures. Its internal call graph
contains 155 edges. A legible diagram of the call
graph measures 8” by 30”. It is complicated enough
that its “overall structure” is not obvious, although a
knowledgeable maintainer could trace individual paths
through it without trouble.

For this experiment we treated each procedure as
using its own name, as well as defining it, so that
there would be some similarity between a procedure
and its callers. We represented this, in the manner
discussed earlier, by giving each procedure X the fea-
ture #X.

The clustering algorithm was presented with 392
features (2 per edge, plus a self-reference for each
node). It created a subsystem tree consisting of 29
clusters, including the root cluster comprising the en-
tire system, yielding an average branching factor of
3.8. The run time was 323 seconds on a 12 Mbyte
diskless Sun 3 workstation.

The labelling step in this experiment was performed
manually, but with substantial machine help. The
machine produced a feature summary for each cluster,
listing how many times each feature occurred in the
cluster. By reading these lists, and drawing on our
knowledge of the code, we easily recognized the com-
mon design properties of the clustered procedures, and
wrote short descriptive titles for 26 of the 29 clusters.

To demonstrate that the clustering was useful for
understanding the graph, we fed the cluster data and
the original call graph to Edge for display. From the
data we generated summaries of the graph at several
different levels of detail, forming a tutorial sequence
presenting details of the graph in small, manageable
increments. Figure 6-l shows a high-level summary,
dividing the graph primarily into CoarseControl and
ExpressionUsers, with two pivotal routines connect-
ing them. Figure 6-2 shows more detail, showing that
expression evaluation is isolated from the rest of the
system. Subsequent frames of the tutorial sequence
show more and more detail, corresponding quite well
to our own knowledge of the code.

We conclude from this experiment that clustering
objects in a software interconnection graph according
to their names-used and user-names is useful for un-
derstanding the overall structure of the graph.

92

Figure 6-1: Highly Summarized TML Call Graph

w G&Pattern

:i:i:lii:i:i:ii:t:i:i:i:i:i:ii:i:i ::::::.i::::::::::::::::::::::::::
Figure 6-2: More Detail of TML Call Graph

The astute reader might challenge the validity of
our labelling method, noting that we already under-
stood the code. We agree that we do not yet have a
labelling method for unfamiliar code based entirely on
features. However, the experiment does show that our
clustering algorithm can discover human-useful con-
cepts, even though it cannot give them names. It also

shows that providing the feature summary makes the
labelling process much easier than labelling without
knowing the features. We plan to explore automatic,
heuristic labelling methods that identify the distin-
guishing features of a category and construct a label
out of them.

7. Splitting an Include File
To split up an includes file that has become too

large, one must satisfy two goals: keep together those
declarations that are conceptually related, and
separate those declarations that are used in different
files.

These two needs can be achieved by performing the
classification in two stages. First, form small clusters
of units that are closely conceptually related, based on
all of their names-used and user-names. Have a
human approve all clusters that are kept. Then,
group the small clusters into larger clusters based only
on user-names; specifically, the names of the files
that use each cluster.

The second stage requires that rare features out-
weigh common features in determining clusters, be-
cause rare features represent files that use few
clusters, and therefore have much to gain by having
all those clusters in the same partition. In contrast,
common features represents files that use many dif-
ferent clusters, and therefore have little to gain by
splitting the include file.

A special feature of this application problem is the
need to decide exactly how many top-level categories
are needed in the tree. This decision could be based
solely on minimizing recompilation cost, or on some
combination of recompilation cost and the cost of ad-
ministering large numbers of files. Recompilation cost
is a function of how much total text must be
processed, and how many times files must be opened.
Total text decreases as the number of categories in-
creases, because each declaration is included fewer
times. However, more categories implies that more
F&Open operations will be required. The evaluation
function could be used automatically, replacing the
average category utility computation in the Massage
algorithm. Or, it could be provided to the human ar-
chitect as advice.

8. Improving Modularity
&tCH defines the “architecture” of a system to be a

subsystem tree plus a list of the allowed export-import
connections among subsystems. Unlike some systems,
&WH allows constraints to be specified between any
pair of subsystems, not just between siblings at the
same level in the subsystem tree.

Although fiRCH can use clustering to propose a
completely new architecture for an existing system,
this will not be its primary service. It is rare that a
software project has lost all of its architecture infor-
mation. Usually, the system is at least divided into
files, and the files are compiled and linked in some
non-uniform way that hints at an underlying architec-
ture. It is also unlikely that an ongoing project would
accept a completely machine-generated architecture,
because there are usually non-technical reasons for
some architectural decisions, and because abruptly
adopting an unfamiliar architecture would cause an
unacceptable disruption in the project.

Therefore, hCH will take advantage of whatever
architecture specifications are available. It will
evaluate the “goodness” of the existing architecture
specifications, with respect to the actual code, and
propose changes to parts of the architecture while ac-
cepting other parts as given. For example, it will
identify “misplaced” procedures that should be moved
to a different subsystem, and identify potential new
modules to be formed from parts of existing modules.

We also hope that, through interactions with
human architects, ARCH can “learn” which features
are most important to the architecture, and by using
this information to weight the features, provide
analyses that are more useful to the architects.

Both evaluating existing architectures and propos-
ing new modules require that we first validate our
similarity measures, by showing that they measure
desirable properties of real programs. The next three
sections describe the validation effort, and then out-
line how ARCH will use similarity and clustering to as-
sist human architects.

8.1. Validating the Similarity Measure
We are validating the similarity measures by show-

ing that similar procedures in well-modularized sys-
tems are likely to belong to the same subsystem.

We use a nearest neighbors test, based on Ellen
Voorhees’s test for the cluster hypothesis in infor-
mation retrieval [12]. (The cluster hypothesis states
that documents should be clustered because similar
documents tend to be relevant to the same queries.
Substitute “procedures” for “documents”, “belong”
for “be relevant” and “subsystem” for “query” .) A
software unit’s nearest neighbors are the other
software units to which it is most similar. A unit is
well-placed if most of its nearest neighbors are in the
same module, and mis-placed if most of its nearest
neighbors are in other modules. We call mis-placed
units mavericks. The k nearest neighbors test, for
our problem domain, is this: for each software unit U

93

. . . i ;.

and each of its k nearest neighbors NN(u,i), i = l..k,
count how often Module(U) is the same as
Module(NN(U,i)).

We are using the nearest neighbor test to analyze
two real software systems for which the subsystem
structure is already known. The first, DOSE [ll], is a
mature, inadequately-structured system. The second,
the Tiled Window Manager (TWM) [13], is a young,
carefully structured system. Each contains many
thousands of lines of code, and on the order of 1,000
procedures. In both cases we are using “source file”
to approximate “module” for the purposes of the test,
on the assumption that good C programmers nor-
mally use files to define the modularity of their sys-
tems. We will soon begin evaluating a third system,
the BS2000, for which an architecture has been care-
fully specified after 15 years of maintenance. This
will be the most important test, because the architec-
ture represents human performance of exactly the task
we want liRCH to do.

Although our experiments are incomplete, we are
finding that a procedure and its nearest neighbor are
located in the same file at least 70% of the time.
More interestingly, we are finding that, when the
nearest neighbor is in a different file, the reasons are
often enlightening. One common reason is that the
procedure body is very small (sometimes even
empty!), making it not very similar to any other func-
tion. Another reason is that two functions perform
identical services in different contexts. Yet another is
that an over-large module has been split across two
files without regard for information hiding. Oc-
casionally we find ill-conceived functions that should
be divided into several subroutines placed in different
modules, and occasionally we find global variables
and data structures in need of better modularity.

From these experiments we are gaining confidence
that the similarity measure correlates strongly with
the modularity of carefully-designed code, and that
when the nearest neighbor test identifies a maverick,
studying the maverick is likely to reveal important ar-
chitectural characteristics and/or problems.

8.2. Suggesting Incremental Improvements
When validation is complete, hCH will incorporate

the similarity measures into an architecture critic
facility, which will analyze existing system architec-
tures, pointing out anomalies and suggesting improve-
ments.

The simplest type of improvement is a single-unit
move. i%FEH will repeatedly identify a maverick, and
suggest moving it into the module of one of its nearest
neighbors. Naturally, only a human architect can

determine with certainty whether to move a unit.
Should the architect disagree with a move, &tCH will
adjust the weights of features, as described before, to
improve the similarity between the maverick and the
other members of its module. &tCH will also record
the architect’s decision so that it does not make the
same suggestion again later.

A second kind of improvement entails deleting sub-
system nodes, much like is done in the Massage pro-
cedure. ARCH will incorporate heuristic procedures to
review the features of a subsystem, its children, its
parent, and its siblings, and assess how much infor-
mation hiding it is actually doing. It will suggest
eliminating subsystem nodes that hide little.

A third kind of improvement entails adding subsys-
tems. hCH will propose additions by examining each
node in the subsystem tree and attempting to cluster
its children. Cluster selection criteria, as are used in
Massage, will determine whether new nodes would
improve the structure.

8.3. Large Scale Restructuring
Making incremental changes to an existing architec-

ture can lead only to locally optimum architectures.
To attain more global optima, larger portions of a
system may need radical restructuring.

&-XH’s clustering algorithm, applied to full cross-
reference data for a set of software units, produces a
classification tree that can be used as a subsystem
tree. By weighting features in proportion to their
rarity, it will tend to concentrate rare features in
small subtrees, leaving common features more spread
out. Thus, the algorithm will tend to minimize the
scopes of infrequently-occurring identifiers. Although
one cannot always confine a rarely-used identifier to a
single, small subsystem, one can usually restrict it to
be used only in a small number of small subsystems.
On the other hand, a commonly used identifier cannot
possibly be confined to a small subsystem, because it
is used by too many other software units.

Despite these pleasing prospects, ARCH will not
produce architectures completely automatically. In-
stead, &tCH will present each of its proposed subsys-
tems to the architect, as it is formed. If the architect
approves, the algorithm proceeds in the same fashion
as if it were fully automatic. If the architect dis-
agrees, a dialog will uncover the features that charac-
terize the disagreement. The weights of those features
will be tuned to fit the judgements that have been
made so far, and then the classification will continue.
.We hope that a small number of “no” answers by the
human will permit enough tuning to substantially
reduce the total number of “no” answers needed.

94

ARCH will also provide some help with naming the
new subsystems, based on previous subsystem struc-
ture. fiRCH will compare each new subsystem to each
subsystem from the “old” architecture, looking at
both the software units they contain and the features
that describe them. It will then suggest naming the
new subsystem after the most similar “old” subsys-
tem.

9. Conclusions
Representing cross references as features allows us

to apply feature-based similarity measures and con-
ceptual clustering techniques to large software sys-
tems. The measures are complementary to
connection-strength measures, but do not necessarily
subsume them. The features allow automatic con-
struction of useful category descriptions. Shared-
neighbor similarity appears to be correlated to the
way that C programmers prefer to partition their
code into files, although further experiments are
needed. The mavericks &tCH finds in DOSE and
TWM point to interesting properties and problems in
those two systems. The next generation of ARCH will
be an interactive architecture editor and critic, using
both maverick analysis and clustering methods to help
human architects improved their designs.

10. Acknowledgements
Gail Kaiser encouraged us to pursue this project be-

fore we were sure we should. Francie Newbery kindly
supplied us with the source code for Edge, and lots of
cooperation as Rita Altucher stress-tested and
debugged it with large graphs. George Drastal intro-
duced us to conceptual clustering and told us about
Cobweb. Chris Buckley and Vivek Gore have been
implementing and running the nearest-neighbor tests.

Yoelle S. Maarek and Gail E. Kaiser, “Change
Management in Very Large Software Systems”,
Phoenix Conference on Computer Systems
and Communications, IEEE, March 1988, pp.
280-285.

Richard W. Selby and Victor R. Basili, “Error
Localization During Software Maintenance:
Generating Hierarchical System Descriptions
from the Source Code Alone”, Conference on
Software Maintenance -- 1988, IEEE, Ott
1988.

Rolf Adams, Annette Weinert and Walter
Tichy, “Software Change Dynamics or Half of
all Ada Compilations are Redundant”,
European Software Engineering Conference,
1989.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Walter F. Tichy, “Smart Recompilation”,
ACM Trans. Bogramming Lang. and
Systems, Vol. 8, No. 3, July 1986, pp. 273-291.

Virginia R. Gibson and James A. Senn, “Sys-
tem Structure and Software Maintenance Per-
formance”, Communications 0 f the
ACM, Vol. 32, No. 3, March 1989, pp.
347-358.

David L. Parnas, “On the Criteria To Be Used
In Decomposing Systems Into Modules”, Tech.
report, Computer Science Department,
Carnegie-Mellon University, August 1971.

Joel McCormack, Paul Asente, and Ralph
R. Swick, “X Toolkit Intrinsics -- C Language
X Interface”, Tech. report, Massachusetts In-
stitute of Technology, 1988.

Yoelle S. Maarek, Using Structural Infor-
mation for Managing Very Large Software
Systems, PhD dissertation, Technion -- Israel
Institute of Technology, January 1989.

Douglas Fisher, “Knowledge Acquisition Via
Incremental Conceptual Clustering”, Machine
Learning, Vol. 2, No. 2, 1987, pp. 139-179.

Frances J. Newbery, “EDGE: An Extendible
Directed Graph Editor”, Tech. report 8/88,
Universitaet Karlsruhe, 1988.

Peter H. Feiler, Fahimeh Jalili, and Johann
H. Schlichter, “An Interactive Prototyping En-
vironment for Language Design”, Proceedings
of the Hawaii Conference on System
Sciences, January 1986.

Ellen M. Voorhees, “The Cluster Hypothesis
Revisited”, Research and Development in In-
formation Retrieval, ACM SIGIR, June 1985.

Ellis S. Cohen, Edward T. Smith, and Lee
A. Iverson, “Constraint-Based Tiled Win-
dows”, First International Conference on
Computer Workstations, IEEE Computer
Society, November 1985.

95

