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1. Introduction 
When a software system is developed by a large 

team of programmers, and has matured’ for several 
years, changes to the code may introduce unexpected 
interactions between diverse parts of the system. This 
occurs because the system has become too large for 
one person to fully understand, and the original 
design documentation has become obsolete as the sys- 
tem has evolved. Symptoms of structural problems 
include too many unnecessary recompilations, unin- 
tended cyclic dependency chains, and some types of 
difficulties with understanding, modifying, and testing 
the system. Most structural problems cannot be 
solved by making a few “small” changes, and most 
require the programmer to understand the overall pat- 
tern of interactions in order to solve the problem. 

The ARCH project at Siemens Research is building 
an “architect’s assistant” for a software maintenance 
environment. &tCH will help the software architect 
analyze the structure of an existing system, specify an 
architecture for it, and determine whether the actual 
software is consistent with the specification. Since the 
system’s structural architecture may never have been 
formally specified, we want ARCH to be able to “dis- 
cover” the architecture by automatically analyzing 
the existing code. It should also be able to critique an 
architecture by comparing it to the existing code and 
suggesting changes that would produce a more 
modular specification. 

1 
The word “matured’ reflects our belief that old software is 

worth maintaining because of stability, refinement, and customer 
loyalty, which only come with experience. 
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A common approach to structural problems is to 
treat cross-reference information as a graph, in which 
software units appear as nodes and cross-references 
appear as edges. Then various methods, both manual 
and automatic, may be used to analyze the graph. 
Recent work by Maarek and Kaiser [l] and Selby and 
Bssili [2] has used clustering methods to summarize 
cross-reference graphs, by clustering nodes into 
groups, and then analyzing edges between groups. 

The &tCH project is developing a new, complemen- 
tary set of analysis methods, baaed on the idea that 
cross references be represented as features of the ob- 
jects they connect. Doing so allows us to use 
similarity measures2 based on shared features. This 
in turn allows us to use conceptual clustering 
methods, originally developed for classification, pat- 
tern recognition, information retrieval, and machine 
learning, and apply them to software analysis. 

We have built a detailed cross-reference extractor 
and a conceptual clustering tool, and are using them 
to analyze cross-reference graphs for several kinds of 
software maintenance problems. Our preliminary 
results suggest that these methods can help reduce un- 
necessary recompilations, summarize complex struc- 
ture graphs, and improve modularity. We plan to de- 
velop interactive techniques that combine the book- 
keeping abilities of the computer with the deep 
knowledge of the maintainer, to produce even better 
solutions. 

This paper discusses some structural problems that 
occur frequently in mature systems, describes our fea- 
ture representation for cross-references, presents the 
prototype conceptual clustering algorithm we are 

2 
The literature of classification normally uses dissimilarity 

measures. We find this term awkward, and will use it only where 
necessary, relying on the intuitive correspondence between 
similarity and dissimilarity. 
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using, and describes how the technology can be used 
to attack the structural problems. We include 
preliminary results of our experiments, and details of 
some planned experiments. 

2. Structural Problems in Large 
Systems 

This section discusses three examples of structural 
problems that occur frequently in large, mature 
software systems. 

2.1. Structure Visualieation 
Many maintenance tasks require the programmer to 

contend with graph-like information, such as cross- 
references, data flow, compilation dependencies, and 
call graphs. Many programmers like to draw these 
graphs and use spatial relationships and edge densities 
to help them understand global characteristics of the 
information. However, when the graph becomes too 
large, the global structure becomes lost in the details, 
even when good heuristic layout algorithms are used. 

To visualize a large graph, the programmer must 
group the nodes of the graph into clusters, where he 
can think of each cluster as a single conceptual 
“chunk” of the code, and then draw edges only be- 
tween chunks. 

In section 6 we will describe an experiment in which 
we used a conceptual clustering algorithm to 
automatically collect “chunks” of a large call graph, 
and help the analyst label them with meaningful 
names. The result appears to be an effective aid to 
graph understanding. 

2.2. Compilation Dependencies 
In large systems, controlling the compilation-time 

dependencies between files can have a significant im- 
pact on many aspects of maintenance. Adams et al 
have recently analyzed change logs for a carefully- 
engineered, new system, written in Ada, and con- 
cluded that more than half of compilations were un- 
necessary [3]. This situation can easily become ag- 
gravated if programmers do not take adequate care 
when grouping utility code (such as macros and type 
definitions) into files. Many projects have a “catch- 
all” file of widely-used declarations. Maintainers are 
unwilling to create a new file to contain a new decla- 
ration, because of the nuisance of changing makefiles, 
notifying the configuration management team, and so 
on. Also, they have no good way of knowing when it 
is time to start a new file. Instead, they place each 
new declaration in an existing file. Consequently, the 
catch-all file may change frequently, causing 
widespread recompilation. Meanwhile, each module is 
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actually using a smaller and smaller fraction of the 
declarations appearing in it. Although Tichy’s smart 
recompilation [4] would alleviate some of the recom- 
pilation cost, the conglomeration of loosely-related 
declarations would continue to cloud the system struc- 
ture. 

Compilation dependencies are also very important 
during system integration, because in real-life 
projects, inconsistency between files is the rule rather 
than the exception. Integration planners need to be 
sure that the files they are integrating interact only in 
limited ways, so that they can get at least part of the 
system working. Each dependency path between files 
represents an opportunity for a syntactic interface er- 
ror, which has the potential to disrupt a system in- 
tegration step. 

The structural problem we will explore in section 7 
is the problem of dividing a “catch-all” include file 
into a “reasonable” set of smaller files, in a way that 
substantially reduces the amount of code each module 
must include. 

2.3. Modularity 
Modularity is generally believed to have a sig- 

nificant impact on testability, maintainability, and 
understandability. As difficult as this belief is to test 
(e.g. [5]), modularity is a well-established qualitative 
goal of software design. 

According to Parnas’s information-hiding 
principle [6], a good modular decomposition is one in 
which each module encapsulates design decisions that 
are likely to change later, typically by implementing 
the decisions in a set of declarations that are hidden 
in a private scope. 

Unfortunately, unless a system’s module structure 
is specified separately from the code, and enforced, it 
tends to deteriorate over time. An individual 
programmer may add a dependency between two 
modules, to solve a particular problem, without caus- 
ing substantial difficulties. However, dozens of ad- 
ditions over several years eventually make the system 
excessively hard to modify, test, or understand. 
Sometimes, there is an attempt to reorganize the sys- 
tem to improve its modularity, but since understand- 
ing is so hard, reorganizing is even harder. 

For example, consider the Siemens BS2000 Operat- 
ing System. It comprises 1 million lines of code, has 
been maintained for 15 years, and currently employs 
300 programmers. A few years ago the project 
management decided to partition the system into 
modules, in a way that would let them sell compact, 
customized configurations. In order to do the par- 
titioning, they decided that they first needed an ac- 



curate specification of the current structure. The 
painstaking process of creating this specification took 
two full years. The ongoing project includes a graph 
editor for writing and displaying the specification, and 
a validation tool for detecting architecture violations 
in the code. These tools will help them keep the ar- 
chitecture and the code consistent, by immediately 
reporting problems, so that they can be addressed be- 
fore they get out of hand. 

In section 8 we will discuss how to analyze the in- 
terconnection structure of a system, to identify 
problems and suggest improvements. 

3. Connections vs. Shared 
Neighbors 

Previous attempts to analyze program structure by 
clustering have used similarity measures based on 
strength of connection. They represent software ob- 
jects as vertices in a graph, and connections between 
objects as edges in the graph. Then they define the 
“strength” of connection between two objects as the 
number of edges connecting them. 

Maarek and Kaiser use connection strength cluster- 
ing for integration planning. They propose to create 
an integration plan by clustering the software units 
into larger and larger clusters, forming a cluster tree. 
Each node of the tree would be an integration step, in 
which the clustered objects were tested together, 
resolving all inconsistencies among them. Maarek and 
Kaiser define a connection as any identifier that is 
defined in one unit (or cluster) and used in another. 
Then they define a similarity measure between two 
clusters based on connection strength between them. 

Selby and Bssili use connection strength clustering 
to identify error-prone code. They define a connec- 
tion between two units as any variable that passes 
data from one to the other. Then they define the 
“goodness” of a cluster as the ratio of its “cohesion” 
(number of connections within the cluster) to its “cou- 
pling” (number of connections between the cluster and 
other objects). 

Although these projects have successfully applied 
their similarity measures to software maintenance 
problems, connection strength does not adequately 
capture design similarity between software units. 

Consider, for example, the Sine and Cosine 
routines from a mathematical software library. One 
would expect that whatever implementation tricks 
were used to make one of them efficient should also be 
used in the other, yet one would be surprised if either 
one of them actually called, or passed data to, the 

other. On the other hand, we would expect that 
many of the other software modules that called the 
sine routine would also call the cosine routine, and 
vice versa. This situation is portrayed in a hypotheti- 
cal call1 graph shown in figure 3-l. A similarity 

A 1 Sine 

B 

% 
c A Cosine 

Figure 3-1: Call Graph With Parallel Structure 

measure based on connection strength would deter- 
mine that Sine is more similar to A, B, and C than it 
is to Cosine. Clustering the two most similar nodes 
might produce the graph in figure 3-2, modulo per- 
mutations of {A, B, C} and {Sine, Cosine}. Clearly, 

Figure 3-2: Summarizing By Connection Strength 

this is unacceptable! We need, instead, a similarity 
measure that recognizes the parallel structure ap- 
paren.t in the figure. Measures based on shared 
neighbors do this very well. In figure 3-1, both Sine 
and Cosine have the neighbors A, B, and C. Con- 
versely, A, B, and C all have the neighbors Sine and 
Cosine. Clustering the two nodes that share the most 
neigbors would produce the graph in figure 3-3 

A\ Sine 
B- q P Y Cosine 

Figure 3-3: Summarizing By Shared Neighbors 

4. Cross References as Features 
Our analysis methods represent edges in a graph as 

features of the nodes they connect, and measures 
similarity of nodes by looking at which features two 
nodes have in common, and which are different. We 
justify this measure of similarity by looking at its im- 
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plications for structure problems in software engineer- 
ing. 

4.1. Representation 
Consider a graph consisting of a set of nodes {A, B, 

C, . ..} and a set of edges {(X, Y)}. We represent each 
node as an object with the same name, and represent 
each edge (X,Y) by giving the object X a feature #Y, 
and giving the object Y a feature &X. We use two 
different kinds of feature names, &A4 and #IU, to dis- 
tinguish the names of an object’s predecessors and 
successors in the graph, respectively. 

In software engineering, these graphs represent 
cross reference information. The set of features 
{#M} of object X represent the non-local names oc- 
curring in it (its names-used), and the set of features 
{&V} represent the names of other software units 
that use the name X (its user-names). In our pre- 
vious example, the Sine and Cosine routines both 
have features {&A, tYB, tYC}, and the routines A, B, 
and C, have features {#Sine, #Cosine}. The hCH 

project uses fully scoped names, so that all software 
units have names that are unique system-wide. 

4.2. Similarity Measures 
By representing cross-references as features, we can 

easily identify neighbors that are common to (shared 
by) two nodes, by comparing their feature lists. We 
can define several interesting similarity measures, by 
counting the number of shared neighbors, non-shared 
neighbors, or both. We can also define aggregate 
measures, for measuring similarity between two 
groups of objects, by looking at the frequency with 
which features occur in the groups. We are currently 
studying similarity measures derived from information 
retrieval, from information theory, and from machine 
learning research. 

Shared-neighbor similarity measures do not replace 
or subsume connection strength measures. If two 
nodes are connected, but have no shared neighbors, 
the similarity between them will be zero. However, 
for some experiments, it makes sense to treat the 
definition site of an identifier as also being a use-site 
for that identifier. In those situations, we give each 
object X the feature #X, and sometimes also &X. 
This gives it some similarity to its neighbors. Future 
research should explore composite similarity measures 
based on both connection strength and shared neigh- 
bors. 

4.3. Software Engineering Rationale 
There are two kinds of reasons to cluster software 

based on shared neighbors: structural reasons and 
semantic reasons. 

The structural reasons arise in situations where the 
patterns of interaction are intrinisically important. 
For example, when ‘partitioning an include file into 
smaller files, declarations that are used in all the same 
modules should be placed in the same partition. 
Similarly, when studying a call graph, forming a 
group out of procedures with the same callers and 
callees allows one to simplify the graph without sup- 
pressing much information. 

The semantic reasons arise because the neighbors of 
a software object tell you what it’s built out of, and 
how it’s used. For example, if you noticed that a cer- 
tain module called the procedures FileOpen, 
FileRead, and StringCompare, you might guess 
that it was doing some kind of lexical analysis on the 
contents of files. 

Even if you don’t know exactly what information a 
name represents, seeing the same name occurring in 
two software units suggests that their implemen- 
tations are related. This may be due to a shared vari- 
able, macro, type, or procedure; in each case, it means 
that they both rely on the functional specification of 
the shared name. 

This shows the relationship between shared neigh- 
bors and the Parnas information-hiding principle: if a 
group of software units share a set of data types, vari- 
ables, macros, and/or procedures, which few other 
units use, the group should be considered as a poten- 
tial module. 

Most of the rationale given above can be reworded 
to support the hypothesis that a procedure or other 
software unit can also be characterized by where it is 
used (its user-names). For example, if most of the 
procedures that invoke the macro XtWindow also in- 
voke XtDisplay, you might guess that the two mac- 
ros are related -- as they are, in MIT’s X Toolkit (71. 

We conclude from the structural and semantic ar- 
guments above that clustering based on shared neigh- 
bors is likely to be a useful way to analyze structural 
problems in large software systems. 

5. The Clustering Procedure 
In this section, we describe the clustering procedure 

we are using in our current experiments. The proce- 
dure is an example of a hierarchical, ascending clas- 
sification method, specialized to be a conceptual 
clustering method. It produces a tree of classes and 
subclasses of the objects. Each class has a description, 
consisting of the size of the cluster and, for each pos- 
sible feature, the proportion of cluster members that 
have the feature. The algorithm presented is a 
prototype; rather than try to give it a mathematical 
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justification, we will discuss the issues we are cur- 
rently exploring as we redesign it. 

5.1. Hierarchical Ascending Classification 
In general, a hierarchical ascending classification 

(IIAC) algorithm forms clusters (classes) of objects in 
a bottom-up fashion, by first forming small clusters of 
closely-related (or very similar) objects, then combin- 
ing the small clusters into larger clusters, finally form- 
ing a classification tree, whose leaves are the original 
objects, and whose interior nodes are the classes. (We 
use the terms “cluster”, “class”, and “category” 
somewhat interchangeably.) The interested reader 
should consult Maarek’s fine overview of HAC 
methods [8]. 

IIAC algorithms may be contrasted with partition- 
ing algorithms, which divide a set of objects into two 
or more classes, then recursively divide each class. At 
each level, a partitioning is sought that maximizes the 
similarity of objects within each class, and maximizes 
the differences between classes. 

Both I-IAC and partitioning methods optimize early 
decisions at the expense of later decisions. The par- 
titioning methods may form excellent top-level classes, 
but the choice of top-level partition may prevent the 
formation of the “best” sub-classes deeper in the tree. 
Conversely, HAG methods form small clusters first, 
and thereby constrain the possible large clusters. 

For our applications, we have concluded that the 
low-level clusters are more important, and we are 
therefore using IIAC methods. For example, a well- 
modularized system should have sharply-defined first- 
level modules, even if the top-level subsystems are a 
little less “pure” because of it. 

5.2. The Algorithm 
We present the control structure of the algorithm 

first, then explain the key computations in more 
detail. 

The Arch Batch Clustering Algorithm 

Purpose: form a classification tree T over the set of 
nodes (N6}. Each subtree represents a category, con- 

taining the nodes named at its leaves. 

1. For each Nj, create tree Ti consisting of the 

single leaf Ni, and place it in the candidate set 

c. 

2. Repeat 

a. Find the most similar pair of trees in C, 
say T, and TS, and remove them from C. 

b. Create tree Tz with two children, Tz and 

TV, and add the new tree to C. 

Until C contains only one tree, say Troot. 

3. Massage ( Troot ) 

Massage is a recursive procedure to increase the 
average branching factor of a tree by eliminating low- 
utility interior nodes. Utility is measured by a cate- 
gory utility function CU ( T ). Eliminating an inte- 
rior node entails promoting its children to be children 
of its parent. 

IGassage ( T ): 

1. Loop 

a. Find a child T, of T such that CU ( Tc ) is 

minimal. 

b. If eliminating T, would increase the 

average category utility of the children of 
T, then 

eliminate Tc 

else exit loop 

end loop 

2. For every child Te of T, 

Massage ( Te ) 

The category utility function CU is the product of 
the size and “purity” of a category. “Purity” is the 
sum of squares of the feature frequencies, i.e. of the 
probability that a member of the category has a given 
feature. It favors categories in which most members 
share many features, and it favors large categories. 

The two most similar categories are actually 
selected by finding the two least dissimilar ones. The 
dissimilarity of two categories, X and Y, is a function 
of their category utilities: 

DisSim (X,Y) = CU(X) + CU(y) - CU(X U Y) 

Two categories with identical feature frequencies will 
have no dissimilarity between them. 

The category utility function was adapted from 
Cobweb’s CU function, on the assumption that only 
“present” features were significant, and not “absent” 
features. 

5.3. Computational complexity 
Our naive implementation of the algorithm has cost 

O(n’f), where n is the number of nodes, and f is the 
average number of features per node. This is due to 
the n2 tree-to-tree comparisons required to find the 
two most similar trees. A more efficient algorithm 
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might be obtained by using inverted indices to analyze 
only the nodes that actually share at least one feature 
with a given node, and by using feature frequency in- 
formation to optimize the order of comparisons. 

Fortunately, the algorithm’s complexity has not yet 
overwhelmed our computing resources. We have been 
analyzing lOO-node graphs in elapsed times of under 
10 minutes, on a Sun 3 workstation. 

6.4. Conceptual Clustering 
A conceptual clustering method is a clustering or 

partitioning method that produces not only the 
clusters themselves, but also descriptions or 
explanations of the clusters. For example, it might 
produce clusters of insect specimens, and label one of 
them “have six legs and four wings”. The cluster is 
said to represent a concept both by estension (listing 
examples) and intention (the description). 

The Cobweb system [9] is a good example of a con- 
ceptual clustering system; it gave us many of the basic 
ideas for our current work. In Cobweb, the descrip- 
tion is simply a list of how many times each feature 
occurs among members of the cluster. ARCH uses the 
same type of description. Since the clusters are 
formed around shared features, the description ac- 
curately explains why the cluster was formed. We 
have found that these descriptions help us to attach 
useful names to the “concepts”, as will be discussed in 
section 6. If &EH had measured similarity by con- 
nection strength instead, then the “explanation” 
would be a list of connections. We rejected this ap- 
proach because we found that lists of connections did 
not give us useful insights into a system’s structure. 

Many conceptual clustering methods include sub- 
methods that select only those clusters that have 
simple and/or useful descriptions. If the cluster tree 
is supporting some knowledge-based application 
program, for example, the choice of clusters may be 
oriented toward making the application as efficient as 
possible. The Massage procedure performs this func- 
tion in ARCH, selecting clusters to optimize average 
category utility. We do this to obtain “reasonable- 
and natural-sized” clusters. For our modularity ex- 
periments, we are exploring acceptance predicates that 
prefer clusters with good information-hiding qualities, 
as described in section 8. 

5.6. Potential Improvements 
We are currently exploring several ways to improve 

the algorithm: 

l Feature weighting by frequency: the current 
algorithm forms clusters around frequently- 
occurring features more than around rare ones. 
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The opposite would be preferable, because, for 
example, the “secrets” of small modules must 
necessarily be rare. We think that systemati- 
cally weighting features in proportion to their 
rarity will produce better results. 

l Similarity measures and category utility: 
There are many valid ways to define similarity 
between groups of objects. We are exploring 
several of them. We are also looking at dif- 
ferent definitions of “purity”. 

l Category elimination: our current method is 
based on optimizing average category utility. 
We are also looking at application-specific 
heuristic predicates, which analyze a subtree 
node in context and accept or reject it. 

l Massaging sequence: our current implemen- 
tation massages the tree top down. This 
produces a “boundary effect” at the bottom of 
the tree, where the average branching factor is 
much less than in the rest of the tree. We ex- 
pect that bottom up or globally-controlled se- 
quencing will produce better trees for the ap- 
plications we are studying. The bottom-up al- 
gorithm is the same as the Massage algorithm 
given, except that step 2 is performed before 
step 1. A globally-controlled algorithm would 
evaluate all nodes in the classification tree, and 
repeatedly eliminate the least desirable one until 
no further benefit is obtained. 

l Adaptation: Allowing human architects to 
bias the weights of features, by providing feed- 
back on classification decisions, should lead to 
improved classification. 

6. Summarizing a Call Graph 
Clustering by connection strength is attractive for 

summarizing call graphs, because it promises to find 
subgraphs containing large numbers of internal con- 
nections, with relatively few connections between sub- 
graphs. However, because of the partial-ordering 
characteristic of call graphs, this approach would tend 
to find “vertical” groups first, because most connec- 
tions would occur between nodes in different levels of 
the graph. Sometimes that kind of analysis is useful, 
but we believe that, for understanding the overall 
structure of a call graph, it is more important to first 
find “horizontal” groups of procedures, representing 
layered abstractions in the system, even if members of 
a group do not directly call one another. 

A preliminary clustering experiment supports this 
hypothesis. The experiment consisted of forming a 



cluster tree, labelling the interior nodes, and then dis- 
playing the graph in various summarized forms using 
the Edge graph browser [lo]. 

The call graph came from the TML subsystem of 
the DOSE structure editor generation system [ll]. 

TML is a recursive descent program interpreter, with 
associated interactive debugging commands. The sub- 
system contains 82 procedures. Its internal call graph 
contains 155 edges. A legible diagram of the call 
graph measures 8” by 30”. It is complicated enough 
that its “overall structure” is not obvious, although a 
knowledgeable maintainer could trace individual paths 
through it without trouble. 

For this experiment we treated each procedure as 
using its own name, as well as defining it, so that 
there would be some similarity between a procedure 
and its callers. We represented this, in the manner 
discussed earlier, by giving each procedure X the fea- 
ture #X. 

The clustering algorithm was presented with 392 
features (2 per edge, plus a self-reference for each 
node). It created a subsystem tree consisting of 29 
clusters, including the root cluster comprising the en- 
tire system, yielding an average branching factor of 
3.8. The run time was 323 seconds on a 12 Mbyte 
diskless Sun 3 workstation. 

The labelling step in this experiment was performed 
manually, but with substantial machine help. The 
machine produced a feature summary for each cluster, 
listing how many times each feature occurred in the 
cluster. By reading these lists, and drawing on our 
knowledge of the code, we easily recognized the com- 
mon design properties of the clustered procedures, and 
wrote short descriptive titles for 26 of the 29 clusters. 

To demonstrate that the clustering was useful for 
understanding the graph, we fed the cluster data and 
the original call graph to Edge for display. From the 
data we generated summaries of the graph at several 
different levels of detail, forming a tutorial sequence 
presenting details of the graph in small, manageable 
increments. Figure 6-l shows a high-level summary, 
dividing the graph primarily into CoarseControl and 
ExpressionUsers, with two pivotal routines connect- 
ing them. Figure 6-2 shows more detail, showing that 
expression evaluation is isolated from the rest of the 
system. Subsequent frames of the tutorial sequence 
show more and more detail, corresponding quite well 
to our own knowledge of the code. 

We conclude from this experiment that clustering 
objects in a software interconnection graph according 
to their names-used and user-names is useful for un- 
derstanding the overall structure of the graph. 
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Figure 6-1: Highly Summarized TML Call Graph 

w G&Pattern 

:i:i:lii:i:i:ii:t:i:i:i:i:i:ii:i:i ::::::.i:::::::::::::::::::::::::: 
Figure 6-2: More Detail of TML Call Graph 

The astute reader might challenge the validity of 
our labelling method, noting that we already under- 
stood the code. We agree that we do not yet have a 
labelling method for unfamiliar code based entirely on 
features. However, the experiment does show that our 
clustering algorithm can discover human-useful con- 
cepts, even though it cannot give them names. It also 



shows that providing the feature summary makes the 
labelling process much easier than labelling without 
knowing the features. We plan to explore automatic, 
heuristic labelling methods that identify the distin- 
guishing features of a category and construct a label 
out of them. 

7. Splitting an Include File 
To split up an includes file that has become too 

large, one must satisfy two goals: keep together those 
declarations that are conceptually related, and 
separate those declarations that are used in different 
files. 

These two needs can be achieved by performing the 
classification in two stages. First, form small clusters 
of units that are closely conceptually related, based on 
all of their names-used and user-names. Have a 
human approve all clusters that are kept. Then, 
group the small clusters into larger clusters based only 
on user-names; specifically, the names of the files 
that use each cluster. 

The second stage requires that rare features out- 
weigh common features in determining clusters, be- 
cause rare features represent files that use few 
clusters, and therefore have much to gain by having 
all those clusters in the same partition. In contrast, 
common features represents files that use many dif- 
ferent clusters, and therefore have little to gain by 
splitting the include file. 

A special feature of this application problem is the 
need to decide exactly how many top-level categories 
are needed in the tree. This decision could be based 
solely on minimizing recompilation cost, or on some 
combination of recompilation cost and the cost of ad- 
ministering large numbers of files. Recompilation cost 
is a function of how much total text must be 
processed, and how many times files must be opened. 
Total text decreases as the number of categories in- 
creases, because each declaration is included fewer 
times. However, more categories implies that more 
F&Open operations will be required. The evaluation 
function could be used automatically, replacing the 
average category utility computation in the Massage 
algorithm. Or, it could be provided to the human ar- 
chitect as advice. 

8. Improving Modularity 
&tCH defines the “architecture” of a system to be a 

subsystem tree plus a list of the allowed export-import 
connections among subsystems. Unlike some systems, 
&WH allows constraints to be specified between any 
pair of subsystems, not just between siblings at the 
same level in the subsystem tree. 

Although fiRCH can use clustering to propose a 
completely new architecture for an existing system, 
this will not be its primary service. It is rare that a 
software project has lost all of its architecture infor- 
mation. Usually, the system is at least divided into 
files, and the files are compiled and linked in some 
non-uniform way that hints at an underlying architec- 
ture. It is also unlikely that an ongoing project would 
accept a completely machine-generated architecture, 
because there are usually non-technical reasons for 
some architectural decisions, and because abruptly 
adopting an unfamiliar architecture would cause an 
unacceptable disruption in the project. 

Therefore, hCH will take advantage of whatever 
architecture specifications are available. It will 
evaluate the “goodness” of the existing architecture 
specifications, with respect to the actual code, and 
propose changes to parts of the architecture while ac- 
cepting other parts as given. For example, it will 
identify “misplaced” procedures that should be moved 
to a different subsystem, and identify potential new 
modules to be formed from parts of existing modules. 

We also hope that, through interactions with 
human architects, ARCH can “learn” which features 
are most important to the architecture, and by using 
this information to weight the features, provide 
analyses that are more useful to the architects. 

Both evaluating existing architectures and propos- 
ing new modules require that we first validate our 
similarity measures, by showing that they measure 
desirable properties of real programs. The next three 
sections describe the validation effort, and then out- 
line how ARCH will use similarity and clustering to as- 
sist human architects. 

8.1. Validating the Similarity Measure 
We are validating the similarity measures by show- 

ing that similar procedures in well-modularized sys- 
tems are likely to belong to the same subsystem. 

We use a nearest neighbors test, based on Ellen 
Voorhees’s test for the cluster hypothesis in infor- 
mation retrieval [12]. (The cluster hypothesis states 
that documents should be clustered because similar 
documents tend to be relevant to the same queries. 
Substitute “procedures” for “documents”, “belong” 
for “be relevant” and “subsystem” for “query” .) A 
software unit’s nearest neighbors are the other 
software units to which it is most similar. A unit is 
well-placed if most of its nearest neighbors are in the 
same module, and mis-placed if most of its nearest 
neighbors are in other modules. We call mis-placed 
units mavericks. The k nearest neighbors test, for 
our problem domain, is this: for each software unit U 
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and each of its k nearest neighbors NN(u,i), i = l..k, 
count how often Module(U) is the same as 
Module(NN(U,i)). 

We are using the nearest neighbor test to analyze 
two real software systems for which the subsystem 
structure is already known. The first, DOSE [ll], is a 
mature, inadequately-structured system. The second, 
the Tiled Window Manager (TWM) [13], is a young, 
carefully structured system. Each contains many 
thousands of lines of code, and on the order of 1,000 
procedures. In both cases we are using “source file” 
to approximate “module” for the purposes of the test, 
on the assumption that good C programmers nor- 
mally use files to define the modularity of their sys- 
tems. We will soon begin evaluating a third system, 
the BS2000, for which an architecture has been care- 
fully specified after 15 years of maintenance. This 
will be the most important test, because the architec- 
ture represents human performance of exactly the task 
we want liRCH to do. 

Although our experiments are incomplete, we are 
finding that a procedure and its nearest neighbor are 
located in the same file at least 70% of the time. 
More interestingly, we are finding that, when the 
nearest neighbor is in a different file, the reasons are 
often enlightening. One common reason is that the 
procedure body is very small (sometimes even 
empty!), making it not very similar to any other func- 
tion. Another reason is that two functions perform 
identical services in different contexts. Yet another is 
that an over-large module has been split across two 
files without regard for information hiding. Oc- 
casionally we find ill-conceived functions that should 
be divided into several subroutines placed in different 
modules, and occasionally we find global variables 
and data structures in need of better modularity. 

From these experiments we are gaining confidence 
that the similarity measure correlates strongly with 
the modularity of carefully-designed code, and that 
when the nearest neighbor test identifies a maverick, 
studying the maverick is likely to reveal important ar- 
chitectural characteristics and/or problems. 

8.2. Suggesting Incremental Improvements 
When validation is complete, hCH will incorporate 

the similarity measures into an architecture critic 
facility, which will analyze existing system architec- 
tures, pointing out anomalies and suggesting improve- 
ments. 

The simplest type of improvement is a single-unit 
move. i%FEH will repeatedly identify a maverick, and 
suggest moving it into the module of one of its nearest 
neighbors. Naturally, only a human architect can 

determine with certainty whether to move a unit. 
Should the architect disagree with a move, &tCH will 
adjust the weights of features, as described before, to 
improve the similarity between the maverick and the 
other members of its module. &tCH will also record 
the architect’s decision so that it does not make the 
same suggestion again later. 

A second kind of improvement entails deleting sub- 
system nodes, much like is done in the Massage pro- 
cedure. ARCH will incorporate heuristic procedures to 
review the features of a subsystem, its children, its 
parent, and its siblings, and assess how much infor- 
mation hiding it is actually doing. It will suggest 
eliminating subsystem nodes that hide little. 

A third kind of improvement entails adding subsys- 
tems. hCH will propose additions by examining each 
node in the subsystem tree and attempting to cluster 
its children. Cluster selection criteria, as are used in 
Massage, will determine whether new nodes would 
improve the structure. 

8.3. Large Scale Restructuring 
Making incremental changes to an existing architec- 

ture can lead only to locally optimum architectures. 
To attain more global optima, larger portions of a 
system may need radical restructuring. 

&-XH’s clustering algorithm, applied to full cross- 
reference data for a set of software units, produces a 
classification tree that can be used as a subsystem 
tree. By weighting features in proportion to their 
rarity, it will tend to concentrate rare features in 
small subtrees, leaving common features more spread 
out. Thus, the algorithm will tend to minimize the 
scopes of infrequently-occurring identifiers. Although 
one cannot always confine a rarely-used identifier to a 
single, small subsystem, one can usually restrict it to 
be used only in a small number of small subsystems. 
On the other hand, a commonly used identifier cannot 
possibly be confined to a small subsystem, because it 
is used by too many other software units. 

Despite these pleasing prospects, ARCH will not 
produce architectures completely automatically. In- 
stead, &tCH will present each of its proposed subsys- 
tems to the architect, as it is formed. If the architect 
approves, the algorithm proceeds in the same fashion 
as if it were fully automatic. If the architect dis- 
agrees, a dialog will uncover the features that charac- 
terize the disagreement. The weights of those features 
will be tuned to fit the judgements that have been 
made so far, and then the classification will continue. 
.We hope that a small number of “no” answers by the 
human will permit enough tuning to substantially 
reduce the total number of “no” answers needed. 
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ARCH will also provide some help with naming the 
new subsystems, based on previous subsystem struc- 
ture. fiRCH will compare each new subsystem to each 
subsystem from the “old” architecture, looking at 
both the software units they contain and the features 
that describe them. It will then suggest naming the 
new subsystem after the most similar “old” subsys- 
tem. 

9. Conclusions 
Representing cross references as features allows us 

to apply feature-based similarity measures and con- 
ceptual clustering techniques to large software sys- 
tems. The measures are complementary to 
connection-strength measures, but do not necessarily 
subsume them. The features allow automatic con- 
struction of useful category descriptions. Shared- 
neighbor similarity appears to be correlated to the 
way that C programmers prefer to partition their 
code into files, although further experiments are 
needed. The mavericks &tCH finds in DOSE and 
TWM point to interesting properties and problems in 
those two systems. The next generation of ARCH will 
be an interactive architecture editor and critic, using 
both maverick analysis and clustering methods to help 
human architects improved their designs. 
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