
Configuration Management using SySL

Ronnie Thomson and Ian Sommerville
Department of Comput.ing,

University of Lancaster,
Baihigg, Lancaster,

LA1 4YR, United Kingdom.

1. Introduction

Software configuration management is concerned primarily
with the consistent labelling and tracking of project
information and managing change to that information [l].
Its objective is to try and control the changes that are made
to the software in such a way as to preserve the integrity of
the system and provide a basis on which to measure
quality, both of the system and the development process.

Initially, software configuration management
systems were aimed at the results of the software life-cycle
itself (i.e. software components) without trying to manage
other outputs from the various stages in the process.
Systems such as Make [2] and SCCS [3] are indicative of
such an approach. However recent research has recognised
that software configuration management should be applied
throughout the software process. Therefore information
such as design diagrams, requirements documents, test data,
etc, as well as code, should be under the control of the
configuration management system.

System modelling lies at the heart of software
configuration management. The system model captures the
state of the system, identifies the parts making up the
system and specifies how to put these components together.
To provide features such as the identification of baselines,
the system model must capture the process by which the
system is constructed, the identifiable pieces of information
which emerge during the development process and their
relationships. There are many dimensions to system
modelling identified in [4].

(i) Organisational : Deals with external factors
identifying organisational responsibility within the project.
(ii) Structural : Here we are recording the elements which
make up a system and how they fit together.
(iii) Spatial : Deals with topology of our development
environment and issues related to the distributed location of
project information.
(iv) Temporal : This aspect deals with the development
history of both the system as a whole and each of the
subparts making up the system.
(v) Purpose : Here we are recording the issues that were
discussed during the development of the system.
(vi) Procedural : This records the knowledge that is
necessary to build a release of the system.
Permiwon to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish. requires a fee

and/or specific permission.

t, 1989 ACM 089791.334.5/89/OOlO/O106 $1.50

This paper discusses a system modelling language and
supporting toolkit, called SySL, that was developed as part
of Eclipse [5], a joint industry/academia project which
developed an software engineering environment (SEE).

2. SySL - A System Structure Language

SySL is used to represent the structure of a software
system, highlighting the dependencies and relationships that
may exist between structural components. A description of
the structure can be used as an architectural blueprint for the
system development, providing a reference point for
designers, programmers, managers, etc. involved in the
project. Different members of software projects adopt
different roles within a project and information
requirements, within such roles, vary considerably from the
very abstract to the specific. SySL provides constructs
which allow project information to be presented at varying
levels of detail, according to the role of the reader.

Language features include:

(i) Description of systems at various levels of
abstraction. SySL encapsulates the idea of a class of
systems which share certain common features. Individual
members of this class are described by instantiating a
generic structure.
(ii) Constraint association on particular
combinations of entities. A SySL description of a
system can validated against the project database
representation. Attributes and relationships defined in the
SySL description can be checked against those which are
assumed to exist in the database.
(iii) Description of any structured system. All
information generated during a project should be under the
control of the configuration management system. SySL has
been generalised to embrace any logical collection of
components in a project database.
(iv) Description of the logical system structure.
SySL is used to present the user with view of logical
system structure as opposed to the physical structure that
exists in a project database. This allows the designer of the
system to describe the system in terms of logical entities.
Further refinement of the description during the
implementation phase maps this logical structure onto
physical entities in the SEE.

Large software systems are made up of thousands of entities
participating in many different types of relationships and

106

http://crossmark.crossref.org/dialog/?doi=10.1145%2F72910.73353&domain=pdf&date_stamp=1989-10-01

held in the project database. The database schema provides
the user with access to this information.

SySL includes constructs to define the following:
(1) Classes of database items which are defined by
enumeration of explicit items or by class unions, (2) The
structure associated with all members of a particular class,
(3) The specific configuration of individual members of a
class, (4) The interface published by individual members of
a class, (5) Constraints on classes in general or on
individual class members.

SySL is a language for programming-in-the-large
(PIL) [6] and as such is an extension of module
interconnection languages (MIL) [7]. Work in this field has
developed from a practical point of view as a method of
representing the relationships between components. MILs
are notations for describing a system during its development
and of representing the numerous versions which comprise
a system. In [6] it was stated that the task of “structuring a
large collection of modules to form a system is an
essentially different intellectual activity from that of
constructing the individual modules”. It is then argued that
a different type of notation capable of representing the
entities and abstractions used in PIL.

The most notable work in this field includes
languages like MIL75 [63 and INTERCOL [8], etc. In such
languages the interconnections between software
components, representing different types of dependencies,
are described explicitly. The structure of the system is in
static terms and this allows the system structure to be
checked for consistency and completeness. Other languages
and software development tools represent this type of
information in different ways. For example, a certain degree
of module interconnection can be represented in languages
such as Ada, Modula-2, etc. However these languages do
not support concepts like versions and configurations,
which are important for PIL.

2.2. A SySL Example

To illustrate SySL, we present an example describing the
SySL tool support system. This shows how the language
supports views at different levels of abstraction and shared
configurations.

Classes of systems which share certain common
features can described via the class declaration facility which
allows systems to be defined by explicit enumeration of
class members which can be specific systems or subclasses.
Each system named as a member of a class is said to be a
particular configuration of the class. For example

class STRUCTURED-VIEWER is
(ADA-VIEWER, SYSL-VIEWER)

defines a class STRUCTURED-VIEWER which has two
members, namely ADA-VIEWER and SYSL-VIEWER
both of which are subclasses. Each subclass can be further
defined in terms of specific entities or subclasses.

To describe the common features or characteristics
of a group of systems the language contains a structuring
facility whereby a generic structure describes the structure of
the entities in terms of other classes of entities. This
structure is associated with a class through name
association.

structure STRUCTURED~VIEWER is
[COMPILER],
SETUP ROUTINE,
INTERFACE,
VIEWER,
EDITOR,
{DATABASE} *

end structure

The specification of STRUCTURED~VIEWER indicates
that it comprises a number of other classes of components
some of which are optional, indicated by the square
brackets, and some of which are repeated, indicated by the
curly brackets. The asterisk after the closing curly brackets
as in the DATABASE class above indicates that there may
be a number of such components in a system of the type
STRUCTURED VIEWER. The description is abstract and
details as to sp&ific systems or configurations of systems
has not been given.

Any defined class can have a structure, therefore
classes, which are defined as part of a structure declaration,
can themselves have a structure. For example, the class
VIEWER which is part of the class
STRUCXlRED_VIEWER above can be described thus.

structure VIEWER is
{MENU-SETUP}*,
{EVENT_HANDLER}*,
{OPERATIONS}*,
{TEXT-SETUP}*,
DISPLAY

end structure

We continue to refine the structure of a system or
class of systems in the above manner. The result of this
process is a tree-like structure defining the overall structure
of a system.

We can further “refine class definitions by
partitioning each subclass into further subclasses or by
naming specific systems within a class. For example the
subclass SYSL-VIEWER which was named as part of the
STRUCTURED~VIEWER class can be defined as follows.

class SYSL-VIEWER is
(sun-viewer, vax-viewer)

Here we have identified two systems namely,
sun viewer and vux viewer which are members of the class
SYSL VIEWER. E&h sun viewer and vax viewer above
correspond to objects in rhe SEE, i.e. th>y are actual
software systems. The structure of both systems is inherited
through the class hierarchy already defined. However if we
wish to display more details of these systems we can do so
by instantiating the structure tree that was inherited with
SYSL-VIEWER as follows;

structure SYSL VIEWER :
STRUCTURED VIEWER is

COMPILER => sysl-compiler,
SETUP-ROUTINE => sysl-main,
INTERFACE,
VIEWER,
EDITOR,
{DATABASE}*

end structure

107

In this definition, the COMPILER component has been
instantiated to the entity sysl-compiler and the
SETUP-ROUTINE to the entity sysl-main. All instances
of systems of the class SYSL VIEWER include these
components.

Instances of sysf-viewers are described by
instantiating the other elements of SYSL-VIEWER:

system sun-viewer : SYSL-VIEWER is
INTEXFACE => setup-interface,
VIEWER => sysl-viewer,
EDITOR => sysl-editor,
DATABASE => sysl-database

end system

We do not need to repeat part of the structure which defines
the use of components sysl compiler and sysl main as they
are inherited by all systemcin the class SYSL-VIEWER.

Each part of the structure tree is in&ntiated with
details of specific components making up a system.
Therefore following on from the above description, the
structure of the VIEWER component given in sun-viewer
above, sysl-viewer, is:

system sysl-viewer : VIEWER is
provides (edit-win-event)
requires (object-def)
MENU-SETUP => menu-setup,
EVENT-HANDLER => (edit-win-event,

menu-event, keyboard-input),
TEXT-SETUP => (text-structure, text-index),
DISPLAY => display,
OPERATIONS => (object-commands)

end system

Software components may use components or
resources which are logically unrelated to the part of the
system being described. This usage is like a horizontal flow
of resources across the system. These resources may
correspond to functions and procedures, data types, etc. To
enable this horizontal usage of resources to be specified,
component descriptions have resource clauses which specify
the interface to the component and specifies dependencies
between components.

As well as the structural aspects of a system,
SySL can be used to record other types of relationships.
Such implicit relationships between components include
‘partof, ‘includes’ and ‘is dependent-on’, etc. The language
includes assertions which can record other types of
relationships by simply attaching attributes to components.
Assertions provide the ability to state some property about
a component or class of components, define component
relationships or retrict certain combinations of components
in a particular configuration. For example, in the class
STRUCTURED-VIEWER the COMPILER and
DATABASE components can theoretically be missing any
configurations of that class. If we wish to enforce the rule
that both components must be present in a particular
subclass of systems, for example within ADA-VIEWER,
then the following rule would be used.

assert ADA-VIEWER :
forall i: member(i, ADA-VIEWER)
and not(not-present(COMPILER) and

108

not-present(DATABASE))

Which states than no configuration of the class
ADA-VIEWER can have both the COMPILER and
DATABASE components missing for the configuration to
be a valid one.

3. The SySL Toolkit.

A SySL description must reflect project structure to be of
any use. This is difficult if the language is detached from
the environment containing the project information.
Therefore we have provided tools which automate the task
of keeping such a description consistent with the project it
is modelling. Among the tools provided are a powerful
language-oriented editing system which provides a
structured approach to viewing and editing descriptions.

Other facilities, apart from the language, that are
provided by the language toolkit are described below. Figure
1 provides a logical view of the language and the tools.

SySL
Description

SySL
Editor

SySL naming
Context

c
SySL 1 Na!ng
Compiler ---+ EgdencY System

I

1
*

SySL
Rule Base

YA 2Es System
Builder

Fig 1 : A Logical view of the SySL Toolkit

(i) Language Processor and Graph Generator: The
environment uses a dependency graph generated by the
language processor. This graph is a logical representation of
the equivalent SySL description. Nodes in this graph
represent entities in the system description and links
between nodes represent relationships between entities.
(ii) Language Editor: SySL is an important source of
documentation on the system. The language editor provides
a structured approach to viewing and editing this dependency
graph.
(iii) Name Management: SySL provides no explicit
naming conventions for identifying version of components.
We assume that the underlying SEE provides such
facilities. This tool provides the user with a means to map
the SySL names onto the SEE database names.
(iv) System Builder: Allows the user to generate the
information required to build a system. The tool is based on
a rule base which contains the knowledge about the types of
component and information required to build the
components.

3.2. Generating a System Release

The most important feature of the SySL toolkit is its
ability to generate, automatically, an executable version of

the system descrbed by the SySL description. As part of the
SySL toolkit we have provided a tool which takes a SySL
description, a set of rules describing how to build different
types of components and generates the information to build
the system. The prototype generates a Unix makefile [2].
Three important subsystems on which system building is
based include;

(i) The dependency graph: Contains logical
representation of the system structure.
(ii) Name management system : Provides mapping
between the logical representation in graph onto the
physical representation in project database.
(iii) System builder: Takes the logical representation and
the information contained in the name management system
and, using a rule base of translation rules, generates a Unix
makefile.

Each logical item in the SySL description is mapped onto a
physical entity in the project database. This mapping
identifies the particular version that is to be used. The
mapping process is aided by the use of a context. This
contains a list of names and versions. The Name
management system takes the context and binds the SySL
description. This system is similar to configuration threads
in the DSEE system [ll] and generic configurations in
Adele [121. The build tool takes both the graph, and the
mapping information to generate a Unix makefile. A rule
base, containing the build information, is used to generate
the correct makefile rules.

4. Conclusions
This paper has demonstrated the feasibility and applicability
of a number of different features of the SySL system.

(i) Building from a logical system description.
Software is designed and implemented in a modular fashion,
with components in the software system representing
logical entities in the design. SySL allows a system to be
built from this logical description.
(ii) Abstract description of complex system
structures. Software systems have a long life-time and as
such are implemented once but read many times and
maintained over many years. Therefore the presentation of
complex system information at a more understandable and
abstract level is essential.
(iii) Re-configuring Software. The task of re-
configuring a system is difficult and error-prone. The
provision of a powerful language-oriented editor and object
name manager, allows a designer to easily reconfigure the
system.

We have evaluated our system by describing hardware,
software and documentation systems and found it
sufficiently general purpose to describe any type of system
which may be represented in an Eclipse database. At the
time of writing, an initial version of the system is
complete. To demonstrate the ideas we have developed a
version of the system builder which generates UNIX
makefiles. We have also completed a port of the system
into the PCTE [lo] domain.

5. References

Ul Bersoff, E. H., Henderson, V. D., Seigel, S. G.
Software Configuration Management: A Tutorial. IEEE
Computer, Vo12 No 1, 1979.

PI Feldman, S.I. MAKE - A program for
maintaining computer programs. Sofwure Practice and
Experience, 9,255-265. 1979.

[31 Rochkind, M. J. The Source Code Control
System. IEEE Transactions on Sofnvare Engineering, Vol
SE-l, No 4, Dee 1975.

141 Chase, R. P. and Fuchs, M. System Modelling.
Proceedings of the InternationalWorkshop on
SoftwareVersion and Configuration Control. Grassau, W.
Germany. Jan 1988.

r51 Alderson, A., Bott, M.F and Falla, M. An
Overview of Eclipse. Proc. 1st UK Conf. on Integrated
Project Support Environments, York, April 1985. To be
published by Peter Perigrinus, London, 1985.

PI DeRemer, F. and Kron, H.H. Programming in the
large versus programming in the small. IEEE Transactions
on Sofrwure Engineering. SE-2 (2). 80-86, 1976.

[71 R. Prieto-Diaz and J. Neighbors. Module
Interconnection Languages. Journal of Systems and
Software. Vo16, 1986.

[81 Tichy, W.F. Software Development Control
Based on Module Interconnection. Proc.lth Jnt. Conf on
Software Engineering, 29-41, Munich, 1979.

WI Campbell, I. PCTE proposal for a public common
tool interface, in Software Engineering Environments,
edited by I. Sommerville, published by Peter Pererinus,
1986.

Dll Leblang, D. B, Chase, R. P. and Spilke, H.
Increasing Productivity with a Parallel Configuration
Manager, in Proceedings of the International Workshop on
Software Version and Configuration Control, Grassau, W.
Germany, 1988.

ml Estublier, J. A Configuration Manager: The Adele
data base of programs, in Workshop on Software
Engineering Environments for Programming-in-the-large,
Harwichport, MA, June 1985.

109

