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Abstract� What should it mean for an agent to know or believe an assertion is true with
probability ���� Di�erent papers 
FH��� FZ��a� HMT��� give di�erent answers� choosing to
use quite di�erent probability spaces when computing the probability that an agent assigns to
an event	 We show that each choice can be understood in terms of a betting game	 This betting
game itself can be understood in terms of three types of adversaries in�uencing three di�erent
aspects of the game	 The �rst selects the outcome of all nondeterministic choices in the system�
the second represents the knowledge of the agent�s opponent in the betting game �this is the key
place the papers mentioned above di�er�� the third is needed in asynchronous systems to choose
the time the bet is placed	 We illustrate the need for considering all three types of adversaries
with a number of examples	 Given a class of adversaries� we show how to assign probability
spaces to agents in a way most appropriate for that class� where �most appropriate� is made
precise in terms of this betting game	 We conclude by showing how di�erent assignments of
probability spaces �corresponding to di�erent opponents� yield di�erent levels of guarantees in
probabilistic coordinated attack	

This paper appeared in Journal of the ACM� �������������� September ���
	



� Introduction

In nearly every �eld of research concerned with systems of interacting agents�be it distributed
computing� arti�cial intelligence� or economics�people have found it useful to think about
these systems in terms of knowledge	 In game theory� for example� a player�s strategy typically
takes into account the knowledge the player acquires about the other players� strategies	 In
all of these �elds� an important subclass of interactions involve probability	 For example� a
player in a game might toss a coin in order to determine its next move	 In such contexts� it
is natural to �nd oneself reasoning�at least informally�about knowledge and probability and
their interaction	 This sort of reasoning is quite common in computer science� such as when
reasoning about probabilistic primality�testing algorithms	 Such an algorithm might guarantee
that if the input n is a composite number� then with high probability the algorithm will �nd
a �witness� that can be used to verify that n is composite	 Loosely speaking� we reason� if an
agent runs this algorithm on input n and the algorithm fails to �nd such a witness� then the
agent knows that n is almost certainly prime� since the agent is guaranteed that the algorithm
would almost certainly have found a witness had n been composite	

A number of recent papers have tried to formalize this sort of reasoning about knowledge and
probability	 Fagin and Halpern 
FH��� present an abstract model for knowledge and probability
in which they assign to each agent�state pair a probability space to be used when computing the
probability� according to that agent at that state� that a formula � is true	� In their framework�
the problem of modeling knowledge and probability reduces to choosing this assignment of
probability spaces	 Although they show that more than one choice may be reasonable� they do
not tell us how to make this choice	 One particular �and quite natural� choice is made in 
FZ��a�
and some arguments are presented for its appropriateness�� another is made in 
HMT��� and
used to analyze interactive proof systems	 It is not initially clear� however� which choice is most
appropriate	

In this paper� we clarify the issues involved in choosing the right assignment of probability
spaces	 We argue that no single assignment is appropriate in all contexts� the right way to think
about these assignments is in terms of strategies for a betting game� and di�erent assignments
can be viewed as most appropriate in the contexts of betting against di�erent opponents in
this game	 Thinking in terms of probability� the truth of a statement such as �event E will
occur with probability �� depends on the assignment of probability spaces	 Thinking in terms
of games� if the opponent can in�uence the occurrence of an event E in any way� then the truth
of a statement such as �event E will occur with probability �� depends on the extent to which
the opponent can in�uence E� and the success of any strategy depending on the occurrence of
E depends on the power of the opponent	 We establish a correspondence between assignments
of probability spaces and powers of opponents� and hence establish a correspondence between
assignments and winning strategies in this betting game against these opponents	

We �nd� however� there is more to the betting game than just the opponent you are betting
against	 Roughly speaking� the setting in which the game is played is also of great importance	
We identify three aspects of the game and its environment that capture all that is relevant� and

�Related results about their model appear in �FH��� FHM����
�In �FZ	
� FZ		b�� other de�nitions of knowledge involving probability are proposed� in order to analyze an

interactive proof of quadratic residuosity� but these de�nitions are primarily concerned with accounting for the
limited computational power of agents in the system�
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model them in terms of three types of adversaries� each playing a fundamentally di�erent role	
We brie�y describe these adversaries and their roles here� and explore them in greater depth in
the rest of the paper	

When we analyze probabilistic protocols� we do so in terms of probability distributions on
the runs or executions of the protocol	 When we say that a protocol is correct with probability
���� we are trying to say that the protocol will do the right thing in ��� percent of the runs	 In
fact� a statement like ���� percent of the runs� does not usually make sense� since we usually
have probability distributions on subsets of the runs� but not on the entire set of runs	 For
example� consider any probabilistic primality�testing algorithm 
Rab��� SS���	 For each �xed
input �the number to be tested�� the coins tossed during the algorithm induce a probability
space on the set of runs of the algorithm with that input� but we do not have a distribution
on the set of all runs because we are not willing to assume a distribution on the inputs	 When
we say that the algorithm works with probability 	��� we really mean that for every choice
of input the algorithm is correct in 	�� of the runs with that input	 The choice of input is
a nonprobabilistic choice� and the coin tosses are probabilistic choices	 The role of the �rst
type of adversary in our framework is to distinguish between these two types of choices� this
adversary factors out all nonprobabilistic choices in the system� so that for each adversary the
remaining probabilistic choices induce a natural probability distribution on the set of runs with
that adversary	

The probability on the runs can be viewed as giving us an a priori probability of an event�
before the protocol is run	 However� the probability an agent places on runs will in general
change over time� as a function of information received by the agent in the course of the
execution of the protocol	 New subtleties arise in analyzing this probability	

Consider a situation with three agents p�� p�� and p�	 Agent p� tosses a fair coin at time �
and observes the outcome at time �� but agents p� and p� never learn the outcome	 What is
the probability according to p� that the coin lands heads� Clearly at time �� before the coin is
tossed� it should be ���	 What about at time �� There is one argument that says the answer
should be ���	 After all� agent p� does not learn any more about the coin as a result of its
having been tossed� so why should its probability change� Another argument says that after
the coin has been tossed� it does not make sense to say that the probability of heads is ���	
The coin has either landed heads or it hasn�t� so the probability of the coin landing heads is
either � or � �although agent p� does not know which�	 This point of view appears in a number
of papers in the philosophical literature �for example� 
Fra��� Lew����	 Interestingly� the same
issue arises in quantum mechanics� in Schr�odinger�s famous cat�in�the�box thought experiment
�see 
Pag��� for a discussion�	

We claim that these two choices of probability are best explained in terms of betting games
�assuming honest players�	 At time �� agent p� should certainly be willing to accept an o�er
from either p� or p� to bet  � for a payo� of  � if the coin lands heads �assuming p� is risk
neutral��	 Half the time the coin will land heads and p� will be  � ahead� and half the time
the coin will land tails and p� will lose  �� but on average p� will come out even	 On the other
hand� p� is clearly not willing to accept such an o�er from p� at time � �since p� can tell at time
� whether it is going to win the bet� and since p� is presumably willing to o�er the bet only

�Informally� an agent is said to be risk neutral if it is willing to accept all bets where its expected winnings
are nonnegative�
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when it will win�� although p� is still willing to accept this bet from p�	 The point here is that
if you do not want to lose money in a betting game� not only is your knowledge important� but
also the knowledge of the opponent o�ering the bet	 Betting games are not played in isolation!

Thus� the role played by the second type of adversary in our framework is to model the
knowledge of the opponent o�ering a bet to an agent at a given point in the run	 We sometimes
identify the opponent with an adversary of this type	 One obvious choice of opponent is to
assume you are playing against someone whose knowledge is identical to your own	 This is what
decision theorists implicitly do when talking about an agent�s posterior probabilities 
BG����
it is also how we can understand the choice of probability space made in 
FZ��a�	 By way of
contrast� the choice in 
HMT��� corresponds to playing someone who has complete knowledge
about the past and knows the outcome of the coin toss� this corresponds to the viewpoint that
says that when the coin has landed� the probability of heads is either � or � �although you may
not know which�	

A further complication arises when analyzing asynchronous systems	 In this case� there is
a precise sense in which an agent does not even know exactly when the event to which it would
like to assign a probability is being tested �for example� when a bet is being placed�	 Thus we
need to consider a third type of adversary in asynchronous systems� whose role is to choose
this time	 To illustrate the need for this third type of adversary� we give an example of an
asynchronous system where there are a number of plausible answers to the question �What is
the probability the most recent coin toss landed heads�� It turns out that the di�erent answers
correspond to di�erent adversaries choosing the times to perform the test in di�erent ways	 We
remark that the case of asynchronous systems is also considered in 
FZ��a�	 We can understand
the assignment of �con�dence� made there as corresponding to playing against a certain class
of adversaries of this third type	

As the preceding examples suggest� each of the earlier de�nitions of probabilistic knowledge
that appear in the literature can be understood as the �best� de�nition for a particular choice
of adversaries	 On the other hand� we show that every choice of adversaries gives rise to a
de�nition of probabilistic knowledge that is �best� for that choice	 To make this precise� we
formalize our intuition that the probability an agent assigns to an event is related to the payo�
the agent is willing to accept in a betting game with an opponent	 We de�ne a particular
betting game� and show that once we �x the choice of adversaries� there is a de�nition of
probabilistic knowledge that is best in terms of doing as well as possible against an opponent
whose knowledge is modeled by the second adversary	 We show how this de�nition corresponds
to a strategy that enables the agent to break even �at least� in the game� and how any other
de�nition with this property corresponds to an overly conservative strategy that assumes the
opponent is more powerful than it really is	 These results form the technical core of our paper	

The rest of the paper is organized as follows	 In the next section� Section �� we provide
a formal model of a system of agents such as a distributed system	 In Section 
 we consider
the problem of putting a probability on the runs of a system� this is where we need the �rst
type of adversary� to factor out the nondeterministic choices	 In Section � we start to consider
the issue of how probability should change over time	 In Section � we consider the choices
that must be made in a general de�nition of probabilistic knowledge	 In Section � we consider
particular choices of probability assignments that seem reasonable in synchronous systems	 Here
we consider the second type of adversary� representing the knowledge of the opponent in the






betting game	 In Section �� we consider asynchronous systems� where we also have to consider
the third type of adversary	 In Section � we apply our ideas to analyzing the coordinated
attack problem� showing how di�erent notions of probability correspond to di�erent levels of
guarantees in coordinated attack	 The paper ends with two appendices	 In Appendix A we give
the proofs of the results claimed in the paper� and in Appendix B we discuss some interesting
secondary observations related to the rest of the paper	

� Modeling systems

As the examples in the introduction show� the analysis of a probabilistic system typically
depends on the choice of a probability distribution on the runs or executions of the system	 In
this section� we �x a model of computation that de�nes these runs� and in later sections we will
vary the probability distributions associated with these runs	 Our model is actually the model
given in 
HF���� which is itself a simpli�cation of the model given in 
HM���	 Both models are
heavily in�uenced by models for distributed computation	

Consider an arbitrary system of n interacting agents p�� � � � � pn	 Intuitively� a run of a system
is a complete description of one of the possible interactions of the agents	 Such an interaction
is uniquely determined by the sequence of global states through which the system passes as a
result of the interaction	 A global state is modeled as a tuple consisting of each process� local
state� together with the state of the environment where� loosely speaking� the environment is
intended to capture everything relevant to the state of the system that cannot be deduced from
the agents� local states	 Formally� a global state is an �n"���tuple �se� s�� � � � � sn� of local states�
where si is the local state of agent pi� and se is the state of the environment	 A run of the
system is mapping r from times to global states	 We assume for sake of convenience that times
are natural numbers	 A system is a set R of runs� intuitively the set of all possible interactions
of the system agents	 We denote the global state at time k in run r by r�k�� the local state
of pi in r�k� by ri�k�� and the state of the environment by re�k�	 We refer to the ordered pair
�r� k� consisting of a run r and a time k as a point	 Later in the paper� we will assume that the
entire history of a run r up to time k is encoded in the environment�s state in r�k�	 This allows
us to think of the runs of a system in terms of a computation tree� nodes of the tree are global
states �and correspond to a set of points�� and the paths in the tree are the runs of the system	
We say that a run r� extends a point �r� k� if r and r� pass through the same global states up
to time k� that is� r�k�� # r��k�� for � � k� � k	

A fact is considered to be true or false of a point	 We identify a fact � with the set of points
at which � is true� and write �r� k� j# � i� � is true at �r� k�	� In a system R� a fact � is said
to be a fact about the run if� given two points of the same run� � is either true at both points
or false at both points	 Similarly� a fact � is said to be a fact about the global state if� given two
points with the same global state� � is true at both points or false at both points	

We now de�ne what it means for an agent to know a fact � at a point �r� k� of a system
R	 Intuitively� ri�k� captures all of agent pi�s information at �r� k�	 We say pi considers a point
�r�� k�� possible at �r� k�� and write �r� k� �i �r

�� k��� if pi has the same local state at both points�

�In Section � we de�ne a logical language for describing such facts� Formally� a fact is the interpretation of a
formula in such a language� See �HM��� for a complete formal treatment of the syntax and semantics of such a
language�
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that is� if ri�k� # r�i�k
��	 We use Ki�r� k� to denote f�r�� k�� j �r� k� �i �r

�� k��g� the set of points
agent pi considers possible at �r� k�	 Following 
HM��� �and many other papers since then�� we
say pi knows � at �r� k� if � is true at all points pi considers possible at �r� k�	 This means pi
knows � at �r� k� if � is guaranteed to hold given the information recorded in pi�s local state
at �r� k�	 More formally� we denote the fact that pi knows � at �r� k� by �r� k� j# Ki�� and
de�ne �r� k� j# Ki� i� �r�� k�� j# � for all �r�� k�� � Ki�r� k�	 While this de�nition of knowledge
depends heavily on the system R �it restricts the set of points an agent considers possible at a
given point�� the system will always be clear from context and we omit explicit reference to R
in our notation	

� Probability on runs

In order to discuss the probability of events in a distributed system� we must specify a proba�
bility space	 In this section we show that in order to place a reasonable probability distribution
on the runs of a system� it is necessary to postulate the existence of the �rst type of adversary
sketched in the introduction	

Consider the simple system consisting of a single agent that tosses a fair coin once and halts	
This system consists of two runs� one in which the coin comes up heads and one in which the
coin comes up tails	 The coin toss induces a very natural distribution on the two runs� each is
assigned probability ���	

Now consider the system �suggested by Moshe Vardi� a variant appears in 
FZ��a�� consisting
of two agents� p� and p�� where p� has an input bit and two coins� one fair coin landing heads
with probability ��� and one biased coin landing heads with probability ��
	 If the input bit
is �� p� tosses the fair coin once and halts	 If the input bit is �� p� tosses the biased coin and
halts	 This system consists of four runs of the form hb� ci� where b is the value of the input bit
and c is the outcome of the coin toss	 What is the appropriate probability distribution on the
runs of this system� For example� what is the probability of heads�

Clearly the conditional probability of heads given that the input bit is � should be ����
while the conditional probability of heads given the input bit is � should be ��
	 But what is
the unconditional probability of heads� If we are given a distribution on the inputs� then it is
easy to answer this question	 If we assume� for example� that � and � are equally likely as input
values� then we can compute that the probability of heads is �

� �
�
� " �

� �
�
� # �

�� 	 If we are not
given a distribution on the inputs� then the question has no obvious answer	 It is tempting to
assume� therefore� that such a distribution exists	 Often� however� assuming a particular �xed
distribution on inputs leads to results about a system that are simply too weak to be of any
use	 Knowing an algorithm produces the correct answer in 	�� of its runs when all inputs are
equally likely is of no use when the algorithm is used in the context of a di�erent distribution
on the inputs	

To overcome this problem� one might be willing to assume the existence of some �xed but
unknown distribution on the inputs	 Proving that an algorithm produces the correct answer in
	�� of the runs in the context of an unknown distribution� however� is no easier than proving
that for each �xed input the algorithm is correct in 	�� of the runs� since it is always possible
for the unknown distribution to place all the probability on the input for which the algorithm
performs particularly poorly	 Here the advantage of viewing the system as a single probability
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space is lost� since this is precisely the proof technique one would use when no distribution is
assumed in the �rst place	 Moreover� assuming the existence of some unknown distribution
on the inputs simply moves all problems arising from nondeterminism up one level	 Although
we have a distribution on the space of input values� we have no distribution on the space of
probability distributions	

This discussion leads us to conclude that some choices in a distributed system must be
viewed as inherently nondeterministic �or� perhaps better� nonprobabilistic�� and that it is
inappropriate� both philosophically and pragmatically� to model probabilistically what is inher�
ently nondeterministic	 But then how can we reason probabilistically about a system involving
both nondeterministic and probabilistic choices� Our solution�which is essentially a formaliza�
tion of the standard approach taken in the literature�is to factor out initial nondeterministic
events� and view the system as a collection of subsystems� each with its natural probability
distribution	 In the coin tossing example above� we would consider two probability spaces� one
corresponding to the input bit being � and the other corresponding to the input bit being �	
The probability of heads is ��� in the �rst space and ��
 in the second	�

We want to stress that although this example may seem arti�cial� analogous examples
frequently arise in the literature	 In a probabilistic primality�testing algorithm 
Rab��� SS����
for example� we do not want to assume a probability distribution on the inputs	 We want to
know that for each choice of input� the algorithm gives the right answer with high probability	
Rabin�s primality�testing algorithm 
Rab��� is based on the existence of a polynomial�time
computable predicate Pn�a� with the following properties� ��� if n is composite� then at least

�� of the a � f�� � � � � n� �g cause Pn�a� to be true� and ��� if n is prime� then no such a causes
n to be true	 Rabin�s algorithm generates a polynomial number of a�s at random	 If Pn�a� is
true for any of the a�s generated� then the algorithm outputs �composite�� otherwise it outputs
�prime�	 Property ��� guarantees that if the algorithm outputs �composite�� then n is de�nitely
composite	 If the algorithm outputs �prime�� then there is a chance that n is not prime� but
property ��� guarantees that this is very rarely the case� if n is indeed composite� then with high
probability the algorithm outputs �composite�	 If the algorithm outputs �prime�� therefore�
it might seem natural to say that n is prime with high probability� but� of course� this is not

�Often� even in the presence of nondeterminism� we can impose a meaningful distribution on the runs of a
system without factoring the system into subsystems� but the resulting distribution still may not capture all
of our intuition� The problem in the preceding example is that probabilistic events 
the coin toss� depend on
nonprobabilistic events 
the input bit�� Suppose� however� the agent tosses a fair coin regardless of the input
bit�s value� Now it is natural to assign probability ��� to each of the events f
�� h�� 
�� h�g and f
�� t�� 
�� t�g
that the coin lands head and tails� respectively� Consider� however� the situation 
discussed in �FH		� HMT		��
where an agent performs a given action a i� the input bit is � and the coin landed heads� or the input bit is �
and the coin landed tails� It is natural to argue that the probability the agent performs the action a is also ����
if the input bit is � then with probability ��� the coin will land heads and a will be performed� and if the input
bit is � then with probability ��� the coin will land tails and a will be performed� Unfortunately� our �natural�
distribution on the runs of the system does not support this line of reasoning� since this distribution does not
assign a probability to the set f
�� h�� 
�� t�g corresponding to the performance of a� In fact� if we could assign
a probability to this set� then we would have to consider it a measurable set� Using this information� we could
then prove that the sets f
�� h�� 
�� t�g and f
�� h�� 
�� t�g are also measurable sets� This means that we would
have to assign a probability to having the input bit set to � or �� but the setting of the input bit was assumed
to be nondeterministic� Again� however� if we factor out this initial nondeterminism� we can view the system
as two subsystems with obvious associated probability distributions� and within each subsystem the action a is
performed with probability ���� This is precisely what the reasoning underlying our intuition is implicitly doing�
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Figure �� A �labeled� computation tree	

quite right	 The input n is either prime or it is not� it does not make sense to say that it is
prime with high probability	 On the other hand� it does make sense to say that the algorithm
gives the correct answer with high probability	 The natural way to make this statement precise
is to partition the runs of the algorithm into a collection of subsystems� one for each possible
input� and prove that the algorithm gives the right answer with high probability in each of these
subsystems� where the probability on the runs in each subsystem is generated by the random
choices for a	 While for a �xed composite input n there may be a few runs where the algorithm
incorrectly outputs �prime�� in almost all runs it will give the correct output	

In many contexts of interest� the choice of input is not the only source of nondeterminism
in the system	 Later nondeterministic choices may also be made throughout a run	 In asyn�
chronous distributed systems� for example� it is common to view the choice of the next pro�
cessor to take a step or the next message to be delivered as a nondeterministic choice	 Similar
arguments to those made above can be used to show that we need to factor out these nonde�
terministic choices in order to use the probabilistic choices �coin tosses� to place a well�de�ned
probability on the set of runs	 A common technique for factoring out these nondeterministic
choices is to assume the existence of a scheduler deterministically choosing �as a function of the
history of the system up to that point� the next processor to take a step �cf	 
Rab��� Var����	
It is standard practice to �x some class of schedulers� perhaps the class of �fair� schedulers
or �polynomial�time� schedulers� and argue that for every scheduler in this class the system
satis�es some condition	

As we now show� if we view all nondeterministic choices as under the control of some
adversary taken from some class of adversaries� then there is a straightforward way to view the
set of runs of a system as a collection of probability spaces� one for each adversary	 By �xing
an adversary we factor out the nondeterministic choices and are left with a purely probabilistic
system� with the obvious distribution on the runs determined by the probabilistic choices made
during the runs	 This is essentially the approach taken in 
FZ��a�	

Once we �x an adversary A� we can view the runs of the system with this adversary as
a �labeled� computation tree TA �see Figure ��	 As in Section �� nodes of the tree are global
states and paths in the tree are runs	 Now� however� edges of the tree are labeled with positive
real numbers such that for every node the values labeling the node�s outgoing edges sum to �	
Intuitively� the value labeling an outgoing edge of node s represents the probability the system
makes the corresponding transition from node s	 Given a �nite path in the tree� the probability
of the set of runs extending this �nite path is simply the product of the probabilities labeling
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the edges in this �nite path	

It is natural to view this computation tree TA as a probability space� a tuple �RA�XA� �A�
where RA is the set of runs in TA� XA consists of subsets of RA that are measurable �that is� the
ones to which a probability can be assigned� these are generated by starting with sets of runs
with a common �nite pre�x and closing under countable union and complementation�� and a
probability function �A de�ned on sets in XA so that the probability of the set of all runs with a
common pre�x is the product of the probabilities labeling the edges of the pre�x	 If we restrict
attention to �nite runs �as is done in 
FZ��a��� then it is easy to see that each individual run
is measurable� so that XA consists of all possible subsets of RA	 Moreover� in the case of �nite
runs� the probability of a run is just the product of the transition probabilities along the edges
of the run	

It is occasionally useful to view this computation tree TA as consisting of two components�
the tree structure �that is� the unlabeled graph itself�� and the assignment of transition proba�
bilities to the edges of the tree	 Given an unlabeled tree TA� we de�ne a transition probability

assignment for TA to be a mapping � assigning transition probabilities to the edges of TA	 We
will use the notation TA at times to refer to the unlabeled tree� to the labeled tree� and to the
induced probability space� which is meant should be clear from context	

We de�ne a probabilistic system to consist of a collection of labeled computation trees �which
we view as separate probability spaces�� one for each adversary A in some set A	 We assume
that the environment component in each global state in TA encodes the adversary A and the
entire past history of the run	 This technical assumption ensures that di�erent nodes in the
same computation tree have di�erent global states� and that we cannot have the same global
state in two di�erent computation trees	 Given a point c� we denote the computation tree
containing c by T �c�	 Our technical assumption guarantees that T �c� is well�de�ned	

The choice of the appropriate set A of adversaries against which the system runs is typi�
cally made by the system designer when specifying correctness conditions for the system	 An
adversary might be limited to choosing the initial input of the agents �in which case the set of
possible adversaries would correspond to the set of possible inputs� as is the case in the context
of primality�testing algorithms in which an agent receives a single number �the number to be
tested� as input	 On the other hand� an adversary may also determine the order in which agents
are allowed to take steps� the order in which messages arrive� or the order in which processors
fail	 One might also wish to restrict the computational power of the adversary to polynomial
time	 What is the most appropriate set of powers to assign to the adversary� It depends on
the application	

� Probability at a point

In the preceding section� we showed how to use the notion of an adversary to impose a meaning�
ful probability distribution on the runs of a system	 In order to de�ne an agent�s probabilistic
knowledge at a given point� however� we seem to require a probability distribution on the points
of the system� and not the runs	 An agent�s probability distribution on points must certainly
be related to the distribution on runs if it is to be at all meaningful	 Nevertheless� the two
distributions may be quite di�erent	 For example� just as an agent�s knowledge varies over time�
we would expect the probability an agent assigns to an event to vary over time	 In contrast�
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the distribution over runs can be viewed as a static distribution	 Furthermore� depending on
which of the two distributions we use� we can be led to quite di�erent analyses of a protocol	
The purpose of this section is to make clear the distinction between distributions over runs and
distributions over points	

To begin� consider the Coordinated Attack problem 
Gra���	 Two generals A and B must
decide whether to attack a common enemy� but we require that any attack be a coordinated at�
tack� that is� A attacks i� B attacks	 Unfortunately� they can communicate only by messengers
who may be captured by the enemy	 It is known that it is impossible for the generals to coordi�
nate an attack under such conditions 
Gra��� HM���	 Suppose we relax this condition� however�
and require only that the generals coordinate their attack with high probability 
FH��� FZ��a�	
To eliminate all nondeterminism� let us assume general A tosses a fair coin to determine whether
to attack� and let us assume the probability a messenger is lost to the enemy is ���	 Let us
assume further that the system is completely synchronous	 Our new correctness condition is
that the condition �A attacks i� B attacks� holds with probability ���	

Consider the following two�step solution CA� to the problem	 At round �� A tosses a coin
and sends �� messengers to B i� the coin landed heads	 At round �� B sends a messenger to
tell A whether it has learned the outcome of the coin toss	 At round �� A attacks i� the coin
landed heads �regardless of what it hears from B� and B attacks i� at round � it learned that
the coin landed heads	 It is not hard to see that if we put the natural probability space on the
set of runs� then with probability at least ��� �taken over the runs� A attacks i� B attacks� if
the coin lands tails then neither attacks� and if the coin lands heads then with probability at
least ��� at least one of the ten messengers sent from A to B at round � avoids capture and
both generals attack	

This is very di�erent� however� from saying that at all times both generals know that with
probability at least ��� the attack will be coordinated	 To see this� consider the state just before
attacking in which A has decided to attack but has received a message from B saying that B
has not learned the outcome of the coin toss	 At this point� A is certain the attack will not be
coordinated	 Although we have not yet given a formal de�nition of how to compute an agent�s
probability at a given point� it seems unreasonable for an agent to believe with high probability
that an event will occur when information available to the agent guarantees it will not occur	

On the other hand� consider the solution CA� di�ering from the preceding one only in
that B does not try to send a messenger to A at round � informing A about whether B has
learned the outcome of the coin toss	 An easy argument shows that in this protocol� at all
times both generals have con�dence �in some sense of the word� at least ��� that the attack
will be coordinated	 Consider B� for example� after having failed to receive a message from
A	 B reasons that either A�s coin landed tails and neither general will attack� which would
happen with probability ���� or A�s coin landed heads and all messengers were lost� which
would happen with probability ������ and hence the conditional probability that the attack
will be coordinated given that B received no messages from A is at least ���	

As the preceding discussion shows� in a protocol which has a certain property P with high
probability taken over the runs� an agent may still �nd itself in a state where it knows perfectly
well that P does not �and will not� hold	 While correctness conditions P for problems arising in
computer science have typically been stated in terms of a probability distribution on the runs�
it might be of interest to consider protocols where an agent knows P with high probability at
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all points	 As we shall show� the probability distribution on the runs typically corresponds to
each agent�s probability distribution at time �	 Thus� we can view the probability on the runs
as an a priori probability distribution	 To require a fact �or a condition P � to hold with high
probability from each agent�s point of view at all times is typically a much stronger requirement
than requiring it to hold with high probability over the set of runs	 Arguably� in many cases� it is
also a more natural requirement	 It seems quite natural� for example� to require of a coordinated
attack protocol that A have high con�dence at all points that the attack will be coordinated�
rather than allowing A to attack even when it is certain the attack will be uncoordinated	

� De�nitions of probabilistic knowledge

We want to make sense of statements such as �at the point c� agent pi knows � holds with
probability ��	 The problem is that� although we typically have a well�de�ned probability dis�
tribution on the set of runs in each computation tree� in order to make sense of such statements
we need a probability distribution on the points pi considers possible at c	 The reason we need
a distribution on points and not just on runs is that many interesting facts are facts about
points and not about runs	 Consider� for example� the fact �the most recent coin tossed landed
heads�	 If a coin is tossed many times in a single run� say once every clock tick� this fact may
be true at some points of the run and false at others� and hence is a fact about points and not
about runs	 When reasoning about probabilistic protocols� it seems quite natural to want to
make formal statements of the form �agent p knows with probability ��� that the most recent
coin tossed by agent q landed heads�� this is not a fact about runs	 If we restrict our attention
to facts about runs� then we can make do simply with a distribution on runs� but this precludes
�or at least complicates� the discussion of many interesting events in a system	

We begin by reviewing the general framework of 
FH��� in which� given a particular assign�
ment of probability spaces to points and agents� we can make sense of such statements about
an agent�s probabilistic knowledge	 The remainder of the paper will focus on the construction
of appropriate probability assignments	

De�ne a probability assignment P to be a mapping from an agent pi and point c to a
probability space Pi�c # �Si�c�Xi�c� �i�c�	 Here Si�c is a set of points� Xi�c is the set of measurable
subsets of Si�c� and �i�c is a probability function assigning a probability to the sets in Xi�c	

� In
most cases of interest� one can think of Si�c as a subset of the points agent pi considers possible
at c � that is� Si�c � Ki�c� � and one can think of �i�c as indicating the relative likelihood
according to pi that a particular point in Si�c is actually the current point c	�

Given such an assignment� let Si�c��� be the set of the points in Si�c satisfying �� that is�
Si�c��� # fd � Si�c � d j# �g	 It is natural to interpret �i�c�Si�c���� as the probability � is true�
according to agent pi at the point c	 One problem with this interpretation� of course� is that

�We often follow the standard practice �Hal��� p� 
�� of identifying the probability space Pi�c with the sample
space Si�c� the intention should be clear from context�

�Returning to the question of distributions on runs versus points� notice that as long as the set Si�c does not
contain more than one point per run� there is a natural bijection from the probability on the points in Si�c to the
probability on the runs going through Si�c� In general� however� we allow more than one point on the same run
to appear in Si�c� As we shall see in the next section� this generality is useful when dealing with asynchronous
systems�
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the set Si�c��� is not guaranteed to be measurable� and hence �i�c�Si�c���� is not guaranteed
to be well�de�ned	 In order to deal with this problem� we follow the approach of 
FH���� and
make use of inner and outer measures	 Given a probability space �S�X � ��� the inner measure
�� and outer measure �� are de�ned by

���S
�� # sup f��T � � T � S � and T � Xg

���S�� # inf f��T � � T � S� and T � Xg

for all subsets S� of S	 Roughly speaking� the inner �resp	 outer� measure of Si�c��� is the best
lower �resp	 upper� bound on the probability � is true� according to pi at c	 It is easy to see
that ���T � # �� ���T

c� for any set T � where T c is the complement of T 	 Given a probability
assignment P � we write P � c j# Pri��� 	 � to mean �i�c��Si�c���� 	 �	� Note that we need
the probability assignment P to make sense of Pri	 We take K�

i � to be an abbreviation for
Ki�Pri��� 	 ��� thus K�

i � means that agent pi knows that the probability of � is at least �
since Pri��� 	 � holds at all points pi considers possible	

We now have all the de�nitions needed to give semantics to a logical language of knowledge
and probability	 In particular� the language of most interest to us in the remainder of this
paper is the language L�$� obtained by �xing a set $ of primitive propositions and closing
under the standard boolean connectives �conjunction and negation�� the knowledge operators
Ki� probability formulas of the form Pri��� 	 �� and the standard �linear time� temporal logic
operators next 
 and until U 	 Note that L�$� is su%ciently powerful to express the operators
K�

i and the temporal operators henceforth � and eventually �		 In the context of a given
system� we say that L�$� is state�generated if each of the primitive propositions in $ is a fact
about the global state� and we say that L�$� is su�ciently rich if for every global state g there
is a primitive proposition in $ true at precisely those points with global state g	 This condition
ensures that the language L�$� is rich enough to allow us to talk about individual global states	
The assumption that L�$� is state�generated is quite reasonable in practice� we typically take
the primitive propositions to represent facts such as �the coin landed heads�� �the message was
received�� or �the value of variable x is ��	 Each of these facts is a fact about the global state�
since the history is recorded in the global state	 Su%cient richness is a technical condition
required for a few of our results	 We can always make a language su%ciently rich by adding
primitive propositions	

We now have a natural way of making sense of knowledge and probability� given a probability
assignment P 	 Unfortunately� we still do not know how to choose P � but our choices are
somewhat more constrained than they may at �rst appear	 We are given the computation
trees and the associated distributions on runs� and we clearly want the distribution on the
sample space Si�c of points we associate with agent pi at point c to be related somehow to
these distributions on runs	 We next show that once we choose the sample spaces Si�c� there is
a straightforward way to use the distribution on runs to induce a distribution on Si�c	 Thus�

�We remark that we can easily extend these de�nitions to more complicated formulas such as Pri
�� �
�Pri
��� see �FH		��

	We de�ne 
r� k� j��� i� 
r� k��� j� �� so �� is true at time k in a run i� � is true at time k��� after the
next step� We de�ne 
r� k� j� �U � to mean there exists � � k such that 
r� �� j� � and 
r� ��� j� � for all �� with
k � �� � �� Thus �U � is true at 
r� k� if � is true at some point in the future� and � is true until then� Recall
that ��� which says that � is true at some point in the future� can be taken as an abbreviation of true U �� and
that ��� which says that � is true now and forever in the future� is an abbreviation for �����
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once we are given an appropriate choice of sample spaces and the distributions on runs of
the computation trees� we can construct the probability assignment	 The problem of choosing
a probability assignment� therefore� essentially reduces to choosing the sample spaces	 This
reduction will clarify important issues in determining the appropriate choice of probability
assignments	

The idea of our construction is quite straightforward� given a sample space Si�c and a subset
S � Si�c� the probability of S �relative to Si�c� is just the probability of the runs going through
S normalized by the probability of the set of runs going through Si�c	 In other words� the
probability of S is the conditional probability a run passes through S� given that the run passes
through Si�c	

In order for this simple idea to work� however� the set Si�c must satisfy a few requirements	
One natural choice for Si�c is the setKi�c� of all points agent pi considers possible at c	 In general�
however� this set contains points from many di�erent computation trees� and attempting to
impose a distribution on this set of points leads to the same di%culties that led us to factor out
nondeterminism and view a system as a collection of computation trees in the �rst place	 Recall
the example from Section 
 in which p� tosses a fair or biased coin� depending on whether its
input is � or �	 Before �and after� the coin is tossed� p� considers four worlds possible� one
from each possible run	 We can no more place a probability on these points than we could
place a probability on the four runs	 On the other hand� given a point c from a run with input
bit � �corresponding to the biased coin�� if we restrict S��c to consist of the two points in the
computation tree with input �� then we can put a probability on the two points in the obvious
way and compute the probability of heads as ��
	 This intuition leads us to require that each
set Si�c be contained entirely within a single computation tree�

REQ�	 All points of Si�c are in T �c�	

We remark that� while REQ� does not allow us to take Si�c to be all of Ki�c�� it still seems
natural to choose Si�c � Ki�c�	 We say that a probability assignment is consistent if it satis�es
this condition	 As pointed out in 
FH���� a consequence of this is that if pi knows �� then
� holds with probability �� that is� Ki��� � �Pri��� # ��	�
 With a consistent assignment�
it cannot be the case that agent pi both knows � and at the same time assigns �� positive
probability	

In order to use the construction described above to impose a distribution on the set Si�c� how�
ever� we must require more of Si�c than the single condition REQ�	 Because this idea involves
conditioning on the set of runs passing through Si�c� the de�nition of conditional probability
forces us to require that this set of runs is a measurable set with positive measure	 Suppose
T �c� # �RA�XA� �A�� for some adversary A	 Given a set S of points contained in T �c�� denote
by R�S� the set of runs passing through S� that is� R�S� # fr � RA � �r� k� � S for some kg	
We require that

REQ�� R�Si�c� � XA and �A�R�Si�c�� � ��

Note that REQ� implies REQ�	 Nevertheless� REQ� is a relatively weak requirement	 For
example� the next result shows that REQ� is always satis�ed in practice	 A set S of points is

�
In fact� as pointed out in �FH		�� this axiom characterizes the property that the probability space used by
pi is a subset of the points that pi considers possible�
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said to be state generated if �r� k� � S and r�k� # r��k�� imply �r�� k�� � S� in other words� S
contains all points with the same global state as �r� k�	

Proposition �� If Si�c is state generated and satis�es REQ�� then Si�c satis�es REQ�	

The proof of Proposition � �and all other technical results in this paper� can be found in
Appendix A	 We remark that this statement is actually independent of the transition probabil�
ity assignment � assigning probabilities to the edges of TA	 While REQ� seems to depend on
both Si�c and � � Proposition � tells us we can choose Si�c without regard for � and be con�dent
REQ� will be satis�ed for whatever � we eventually choose� as long as Si�c is state generated	

Given a set of points Si�c satisfying REQ� and REQ�� we now make precise our idea for
imposing a distribution on Si�c	 Intuitively� to construct the collection Xi�c of measurable subsets
of Si�c� we project the measurable subsets of the runs of T �c� onto Si�c	 Formally� given a set
R� of runs and a set S of points� we de�ne Proj�R�� S� # f�r� k� � S � r � R�g	 We de�ne

Xi�c # fProj�R�� Si�c� � R
� � XAg�

Finally� we de�ne the probability function �i�c on the measurable subsets of Si�c via conditional
probability�

�i�c�S� # �A�R�S� j R�Si�c�� #
�A�R�S��

�A�R�Si�c��

for all S � Xi�c	 Let Pi�c # �Si�c�Xi�c� �i�c�	

Proposition �� If Si�c satis�es REQ� and REQ�� then Pi�c is a probability space	

We can now formalize our intuition that the construction of probability assignments reduces
to the choice of sample spaces	 Given a system �i	e	� a collection of labeled computation trees��
de�ne a sample space assignment to be a function S that assigns to each agent pi and point c
a sample space S�i� c� # Si�c satisfying REQ� and REQ�	 Given a sample space assignment S�
our construction shows how to obtain a probability space Pi�c for all agents pi and all points
c	 This naturally determines a probability assignment P � which we call the the probability

assignment induced by S	 We note that the de�nition of P actually depends on both the sample
space assignment S and the transition probability assignment � �implicitly determined by the
fact that we have labeled computation trees�	 There are times when it is convenient to start
with an unlabeled computation tree� labeled by some transition probability assignment � 	 In
this case� we refer to P as the probability assignment induced by S and � 	 For future reference�
we de�ne a fact � to be measurable with respect to S if Si�c��� � Xi�c for all agents pi and
points c	

The preceding discussion makes precise the idea that choosing a probability assignment
reduces to choosing a sample space assignment� but still does not help us choose the sample space
assignment	 Di�erent choices result in probability assignments with quite di�erent properties	
Let us return to the example in the introduction� where p� tosses a fair coin� and neither p�
nor p� observe the outcome	 Clearly� at time � �after the coin has been tossed�� p� considers
two points possible� say h �the coin landed heads� and t �the coin landed tails�	 Consider the
sample space assignment S� such that S���� h� # S���� t� # fh� tg	 At both points h and t� the
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same sample space is being used� and at both points� with respect to the induced probability
assignment� the probability of heads is ���	 Thus� p� knows that the probability of heads is
���	 According to this choice of sample spaces� p� has not learned anything about the outcome
of the coin �ip at time �� and the probability of heads at time � is the same as at time �	 On the
other hand� consider assignment S� such that S���� h� # fhg and S���� t� # ftg	 With respect
to the induced probability assignment� the probability of heads at h according to p� is �� while
the probability of heads at t is �	 According to this choice of sample spaces� the coin has either
landed heads or landed tails� so all that p� can say is that it knows that the probability of heads
is either � or �� but it doesn�t know which	 Which is the right probability assignment� As we
hinted in the introduction� the answer depends on another type of adversary� the one that p�
views itself as playing against	 This is the focal point of the next section	

We conclude this section with one further example	 Consider a system where a fair die is
tossed by p� and p� does not know the outcome	 Suppose that at time � the die has already been
tossed	 Let c�� � � � c� be the six points corresponding to the possible outcomes of the die	 What
sample space assignment should we use for p�� One obvious choice is to take the assignment
S� which assigns the same sample space at all six points� the space consisting of all the points	
With respect to this sample space� each point will have probability ���	 Let � be the statement
�the die landed on an even number�	 Clearly� in the probability space induced by this sample
space� � holds with probability ���	 Since p� uses the same sample space at all six points�
agent p� knows that the probability of � is ���	 A second possibility is to consider two sample
spaces S� # fc�� c�� c�g and S� # fc�� c�� c�g� let the assignment S� assign the sample space S�

to agent p� at all the points in S�� and the sample space S� at all the points in S�	 Thus� at all
the points in S�� the probability of � is ��
� while at all the points in S�� the probability of �
is ��
	 All p� can say is that it knows that the probability of � is either ��
 or ��
� but it does
not know which	

Clearly we can subdivide the six points into even smaller subspaces	 It is not too hard to
show that the more we subdivide� the less precise is p��s knowledge of the probability	 �We prove
a formal version of this statement in the next section	� But why bother subdividing� Why not
stick to the �rst sample space assignment� which gives the most precise �and seemingly natural�
answer� Our reply is that� again� this may not be the appropriate answer when playing against
certain adversaries	

� Probability assignments in synchronous systems

We �rst consider the problem of selecting appropriate probability assignments in completely
synchronous systems	 Intuitively� a system is synchronous if all agents e�ectively have access
to a global clock	 Formally� a system is synchronous 
HV��� if for all points �r� k� and �r�� k��
and all agents pi� if ri�k� # r�i�k

�� then k # k�	 This means� for example� that no two points an
agent pi considers indistinguishable can lie on the same run	

When considering probability� it turns out that many things become much easier in the
context of synchronous systems	 For example� it turns out that� in practice� sample space
assignments satisfy three natural properties� �a� they are state generated� �b� they are inclusive�
which means c � Si�c for all agents pi and points c� and �c� they are uniform� which means that
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d � Si�c implies Si�d # Si�c for all agents pi and points c and d	�� We say that S �and its induced
probability assignment� is standard if it satis�es these three properties	 For the remainder of
this section we consider only standard assignments	

One convenient feature of synchronous systems is that all facts of interest are measurable	
Recall that L�$� is state generated with respect to a system R if all the primitive propositions
in $ are facts about the global state	

Proposition �� In a synchronous system� if S is a consistent� standard assignment and L�$�
is state generated� then � is measurable with respect to S for all facts � � L�$�	

This result says that for all practical purposes we do not have to concern ourselves with non�
measurable sets and inner measures in synchronous systems	 The proof is by induction on the
structure of �� and can be found in Appendix A	

We begin our examination of probability assignments in synchronous systems by de�ning
four sample space assignments and their induced probability assignments	 Each of these assign�
ments can be understood in terms of a betting game against an appropriate opponent	 �This
is the second type of adversary mentioned in the introduction	� We make this intuition precise
after we have de�ned the probability assignments	

The �rst of these assignments corresponds to what decision theorists would call an agent�s
posterior probability	 This is essentially the probability an agent would assign to an event given
everything the agent knows	 This intuitively corresponds to the bet an agent would be willing
to accept from a copy of itself� someone with precisely the same knowledge that it has	 We
make this relationship between probability and betting precise shortly	

What probability space corresponds to an agent�s conditioning on its knowledge in this way�
Since we have identi�ed an agent pi�s knowledge with the set of points pi considers possible at
c� this set of points seems the most natural choice for the space	 As we have seen� however� this
set of points is not in general contained in one computation tree	 Thus� we consider instead
the set of points in c�s computation tree T �c� that pi considers possible at c	 This is just
the set Treei�c # fd � T �c� � c �i dg	 It is clear that Treei�c satis�es REQ�� that it satis�es
REQ� follows by Proposition � since it is state generated	 By Proposition �� therefore� the
induced probability space �Treei�c�Xi�c� �i�c� is indeed a probability space	 Let Spost be the
sample space assignment that assigns the space Treei�c to agent pi at the point c� and let Ppost

be the probability assignment induced by Spost	

The probability space Ppost

i�c has a natural interpretation	 It is generated by conditioning on
everything pi knows at the point c and the fact that it is playing against the adversary A that
generated the tree TA in which c lies	 Of course� the agent considers many adversaries possible	
Thus� the statement Ppost� c j# K�

i � means that for all adversaries pi considers possible at c
�given its information at c�� the probability of � given all pi knows is at least �	 Ppost is precisely
the assignment advocated in 
FZ��a� in the synchronous case	

Suppose now that pi were considering accepting a bet from someone �not necessarily an
agent in the system� with complete knowledge of the past history of the system	 In this case�

��Condition 
c� is essentially the de�nition of a uniform probability assignment from �FH		�� A probability
assignment induced by a uniform sample space assignment as we have de�ned it here is a uniform probability
assignment in the sense of �FH		��
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we claim that the appropriate choice of probability space for pi at the point c # �r� k� is all the
other points �r�� k� that have the same pre�x as �r� k� up to time k� in other words� all points
with the global state r�k�	 Call this set of points Pref i�c	 Note that Pref i�c is independent
of pi� and depends only on the point c	 Moreover� Pref i�c is clearly state generated �by r�k�
itself�� so by Propositions � and � we can again induce a natural probability distribution on this
set of points by conditioning on the runs passing through Pref i�c	 Let Sfut denote the sample
space assignment that assigns Pref i�c to pi at c� and let Pfut denote the probability assignment
induced by Sfut	 We remark that this is the probability assignment used in 
HMT���� as well
as 
LS���	

In the probability space Pfut

i�c � any event whose outcome has already been determined before
reaching the point c will have probability either � or �	 Future events �that get decided further
down the computation tree� still have nontrivial probabilities� which is why we have termed it
a future probability assignment	

Let us reconsider yet again the coin tossing example from the introduction� where agent p�
tosses a fair coin at time � but agents p� and p� do not learn the outcome	 Since the coin has
already landed at time �� it is easy to check that we have

Pfut� c j# K��Pr��heads� # � 
 Pr��heads� # ���

On the other hand� we have

Ppost� c j# K��Pr��heads� # �����

Thus� Ppost and Pfut correspond to the two natural answers we considered for the probability of
heads	 They capture the intuition that the answer depends on the knowledge of the opponent
p� is betting against� Pfut corresponds to betting against p�� and Ppost corresponds to betting
against p�	

Notice that in both the cases of Ppost and Pfut� the probability space associated with an
agent at a point corresponds to the set of points the agent and its opponent both consider
possible	 We can assume� without loss of generality� that this opponent is an agent in the
system	 Suppose� in general� that pi is considering what an appropriate bet to accept from pj
would be	 We claim �and show below� that in this case the probability assignment should be
generated by the joint knowledge of agents pi and pj � as represented by the intersection of the
points they both consider possible� that is� by the set Treeji�c # Treei�c � Treej�c	�� Again it is
easy to see that Treeji�c is state generated� so by Propositions � and � we can induce the natural
distribution on this set of points by conditioning on the runs passing through Treeji�c	 Let Sj

be the sample space assignment that assigns Treeji�c to pi at c� and let P j be the probability
assignment induced by Sj 	

All the examples we have seen up to now�Spost� Sfut� and Sj�have had the property that
Si�c � Ki�c�� which means they are consistent	 As mentioned in Section �� such assignments are
characterized by the intuitively desirable condition Ki���� �Pri��� # ��� when we return to
the coordinated attack problem in Section �� we will see an example of an inconsistent assign�
ment which causes an agent to know the attack will be coordinated with high probability� while

��Note that Treeii�c � Treei�c� In this sense� this construction can be viewed as a generalization of the previous
one� but the sample space assignment Si being de�ned here is not the same as Spost�
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knowing that the attack will not be coordinated! While consistency seems a natural restric�
tion on probability assignments� it is not a requirement of our framework	 There may be be
technical reasons for considering inconsistent assignments	 One obvious �although inconsistent�
probability assignment associates with the point c # �r� k� the set of all time k points in its
computation tree	 Call this set All i�c	 �All i�c is in fact independent of pi	� The probability
space induced by the construction of Proposition � in this case simulates the probability on
the runs	 Let us denote the associated sample space and probability assignments by Sprior and
Pprior	 Notice that if pi uses the probability space Pprior

i�c � it is essentially ignoring all that it
has learned up to the point c�up to time k in r�which is why we have termed it a prior
probability	

All four of the sample space assignments we have constructed are standard assignments	 In
fact� it is not di%cult to see that any assignment constructed on the basis of some opponent�s
knowledge will be standard	 This lends some justi�cation to our restriction to standard as�
signments	 We can view these four assignments as points in a lattice of all possible standard
sample space assignments	 We de�ne an ordering � on this lattice by S� � S i� S�i�c � Si�c for
every agent pi and point c	 As usual� we write S� 	 S when S� � S for distinct S � and S	 An
important property of this ordering is the following�

Proposition �� If S and S� are standard assignments satisfying S� � S� then for every agent
pi and point c� the set Si�c can be partitioned into sets of the form S�i�d with d � Si�c	

Intuitively� this means that the sets S�i�c are re�nements of the sets Si�c� since the sets S �i�c are
obtained by partitioning the sets Si�c	 Consider Spost and Sfut� for example	 Every set Treei�c
of Spost can be partitioned into the sets Treeji�d of Sfut with d � Treei�c	 In fact� it is clear that

Sfut � Sj � Spost � Sprior �

Furthermore� notice that Spost is greatest �with respect to �� among all consistent sample space
assignments	

In the case of consistent assignments� if we interpret Si�c as the intersection of pi�s knowledge
with its opponent�s knowledge� we can think of S� � S as roughly meaning that the opponent
corresponding to S� considers fewer points possible and hence knows more than the opponent
corresponding to S	 This means� for example� that Spost� as the maximal consistent assignment�
corresponds to playing against the least powerful opponent	

The ordering on sample spaces assignments induces an obvious ordering on probability
assignments� given two sample space assignments S� and S and their induced probability as�
signments P � and P � respectively� we de�ne P � � P i� S� � S	 Similarly� we de�ne P � 	 P i�
S� 	 S	 An important point to note is that if P � and P are consistent assignments satisfying
P � � P � then ��i�c can be obtained from �i�c by conditioning with respect to S�i�c�

Proposition �� In a synchronous system� if P � and P are consistent� standard assignments
satisfying P � � P � then for all agents pi� all points c� and all measurable subsets S� � X �

i�c�

�a� S� � Xi�c �so that� in particular� S�i�c itself is a measurable subset of Si�c��

�b� �i�c�S�i�c� � ��

��



�c� ��i�c�S
�� # �i�c�S

�jS�i�c� #
�i�c�S

��
�i�c�S

�

i�c�
�

It follows that any consistent probability assignment can be obtained from Ppost by conditioning	

We are now able to make precise the sense in which Ppost� P j� and Pfut are the �right�
probability assignments for an agent to use when playing against an opponent who knows
exactly as much as it does� when playing against pj � and when playing against an opponent
who has complete information about the past	 We focus on P j here� but the arguments are the
same in all cases	

Consider the following betting game between agents pi and pj at a point c	 Agent pj o�ers
pi a payo� of 
 for a bet on �	 Agent pi either accepts or rejects the bet	 If pi accepts the bet�
pi pays one dollar to pj in order to play the game� and pj pays 
 dollars to pi if � is true at c	
Thus� if pi accepts this bet at the point c� then pi�s net gain is either 
� � or �� depending on
whether � is true or false at c� if pi rejects the bet� we say its gain is �	

One criterion of a good de�nition of probabilistic knowledge is that it should help pi play
this game	 Intuitively� assuming that pi is risk neutral and rational� there should be some
relationship between the probability � with which pi knows � and the payo� 
 that would
induce pi to accept a bet on �	 If � is close to � then pi might require a high payo� to make
the bet�s risk acceptable� while if � is close to � then pi might be willing to accept a much
lower payo� since the chance of losing is so remote	 Our claim that P j is the right probability
assignment is based on the fact that P j determines for an agent pi the lowest acceptable payo�
for a bet with pj on a fact �	 In other words� P j determines precisely how an agent pi should
bet when betting against pj 	 In fact� P j is in a sense the unique such probability assignment	
We now make this intuition precise	

What should pi consider an acceptable payo� for a bet on �� assuming pi does not want to
lose money on the bet� Since pj is presumably following some strategy for o�ering bets to pi�
the acceptable payo� should take this strategy into account	 Consider� for example� the system
in which pj secretly tosses a fair coin at time �� and o�ers at time � to bet pi that the coin
landed heads	 If pj is following the strategy of always o�ering a payo� of  �� independent of
the outcome of the coin toss� then pi can always safely accept the bet since� on average� it will
not lose any money �that is� pi�s expected pro�t is zero�	 If pj o�ers a payo� of  � only when
the coin lands tails� then pi is certain to lose money	 On the other hand� if pj o�ers a payo� of
 � only when the coin lands heads� then it is pj who is certain to lose money	 While we expect
that pj will not follow a strategy that will cause it to lose money� we assume only that pj �s
strategy for o�ering bets depends only on its local state	 In other words� given two points pj is
unable to distinguish� pj must o�er the same payo� for a bet on � at both points	 Formally� a
strategy for pj is a function from pj �s local state at a point c to the payo� pj should o�er pi for
a bet on � at c	 Similarly� we assume that pi�s strategy for accepting or rejecting bets �that is�
for computing acceptable payo�s� is also a function of its local state	

Again� what should pi consider an acceptable payo� for a bet on �� Suppose pi decides it
will accept any bet on � with a payo� of at least ��� when its local state is si �remember that
pi�s strategy for accepting bets must be a function of its local state�	 Denoting by Bet��� ��
the rule �accept any bet on � with a payo� of at least ����� how well does pi do by following
Bet��� �� when its local state is si� Clearly pi will win some bets and lose others� so we
are interested in computing pi�s expected pro�t	 This in turn depends on pj �s strategy	 This
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leads us to compute� for each of pj �s strategies f � agent pi�s expected pro�t when pi follows
Bet��� �� and pj follows f 	 Intuitively� if� for each of pj �s strategies� agent pi�s expected pro�t
is nonnegative� then pi does not lose money on average by following Bet��� ��� regardless of
pj �s strategy	 Bet��� �� is a safe bet for pi against pj 	

To make this precise� �x some sample space assignment S and induced probability assign�
ment P � two agents pi and pj � and a fact � that is measurable with respect to S	 Let the
value of the random variable Wf # Wf��� �� at a point d denote pi�s pro�t �or winnings� at d�
assuming pi is following Bet��� �� and pj is following f 	 Let Ei�c
Wf � # ESi�c


Wf � denote the
expected value of Wf with respect to the probability space Si�c	 We say pi breaks even with
Bet��� �� with respect to S at c if Ei�c
Wf � 	 � for every strategy f for pj 	 We say Bet��� ��
is S�safe for pi at c if pi knows that it breaks even with Bet��� �� with respect to S at c� that
is� pi breaks even with Bet��� �� at all points pi considers possible at c	

There is still one important question left to answer� what probability space should we use
to compute this expectation at a point c� One reasonable choice is to take Treei�c	 This
would correspond to computing this expectation with respect to everything pi knows	 Another
reasonable choice would be to take Treeji�c	 This would correspond to the intuition that pi wants
to do well for every possible choice of what pj could do to pi� since pj �s strategy is a function
of its local state� pj �s strategy could potentially have pj o�ering di�erent payo�s at points in
the di�erent sets Tree

j

i�c	 It turns out that the choice doesn�t make any di�erence �at least
in the synchronous setting�	 The following result shows that the two de�nitions of safety are
equivalent in synchronous systems	

Proposition �� In a synchronous system� for all facts �� all agents pi and pj � and all points c�
the rule Bet��� �� is Tree�safe for pi at c i� Bet��� �� is Treej�safe for pi at c	

For the sake of being concrete� we choose the probability space Tree
j

i�c since it is slightly
easier to compute with	 Our claim that P j is the right probability assignment to use when
playing against pj is made concrete by the following result� which states that P j determines�
for every agent pi� precisely what bets are safe when betting against pj 	

Theorem 	� For all facts � measurable with respect to P j� all agents pi� and all points c� the
rule Bet��� �� is P j�safe for pi at c i� P j� c j# K�

i �	

We view this as the main result of our paper	 It says that P j determines precisely what bets
are safe for pi to accept	 If� using the probability assignment P j� agent pi knows the probability
of � is at least �� then pi knows it will at least break even betting on � when the payo� is
���	 On the other hand� if� using P j� agent pi considers it possible that the probability of � is
less than �� then there is a strategy pj can use that causes pi to lose money betting on � when
the payo� is ���	 In other words� P j is the right probability assignment to use when betting
against pj 	

While this theorem is stated only for measurable facts �� remember that Proposition 

assures us that facts of interest are typically measurable in synchronous systems	 In fact� the
same theorem holds even for nonmeasurable facts� once we de�ne an appropriate notion of
expectation for such facts� we consider this notion in Appendix B	�
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The proof of Theorem � depends only on the fact that P j is induced by Sj� and is actually
independent of the particular transition probability assignment � determining the distribution
on runs	 In this sense it is really Sj that is determining what bets are safe for pi to accept	
We can formalize this intuition as follows	 We say that a standard sample space assignment
S determines safe bets against pj in a system consisting of unlabeled computation trees if�
for all transition probability assignments � assigning transition probabilities to edges of the
computation trees� the following condition holds for the probability assignment P induced by
S and � �

P � c j# K�
i � implies Bet��� �� is safe for pi at c

for all facts � � L�$�� all agents pi� and all points c	 Notice that this de�nition quanti�es over
all transition probability assignments � � requiring that the probability assignment induced by
S determines safe bets regardless of the actual choice of � 	 Our intuition says that the �right�
way to go about constructing a probability assignment should not depend on the details of the
transition probabilities	 We would like some uniform way of choosing the probability space that
does not change if there are small perturbations in the probability� Theorem � shows us that
it is always possible to construct an assignment P j in this way	

While the proof of Theorem � shows that Sj determines safe bets against pj � it turns out
that there are other assignments that determine safe bets against pj 	 If the language L�$� is
su%ciently rich� however� so that there are a lot of possible events that can be bet on� then Sj

enjoys the distinction of being the maximum such assignment	

Theorem 
� In a synchronous system� if S is a consistent� standard assignment� then

�a� if S � Sj� then S determines safe bets against pj � and

�b� if S determines safe bets against pj and L�$� is su%ciently rich� then S � Sj	

We interpret Theorems � and � as providing strong evidence that Sj is the right sample
space assignment� and hence that P j is the right probability assignment� to use when playing
against an opponent with pj �s knowledge	 It says that the only way for pi to be guaranteed it is
using a safe betting strategy against pj is by assuming the opponent is at least as powerful as pj 	
Intuitively� the more powerful the opponent the less con�dent the agent is that it will be able to
win a bet with this opponent� and the higher the payo� the agent will require before accepting
a bet	 Consequently� pi is being unduly conservative if it takes a probability assignment that
corresponds to an agent that is more powerful than pj since it may pass up bets it should
accept	��

��Strictly speaking� we should justify the fact that pi should use a rule of the form Bet
���� in order to
determine when to accept a bet� After all� why should such a simple threshold function be appropriate� It is
conceivable that a better money�making strategy might tell pi� say� to accept a bet on � if the o�ered payo� is in
the interval ��� �� or �	� ���� and reject the bet otherwise� It is not hard to show� however� that because we make
no assumption about the strategy being followed by pj 
other than requiring that it be a function of pj�s local
state�� this second strategy is safe for pi at c i� it is safe for pi at c to accept a bet on � if the o�ered payo� is in
the interval ������ i�e� if Bet
�� ���� is safe for pi at c� Consequently� an optimal strategy can always be taken
to be a threshold function like Bet
�����

��



In the process of making this intuition precise� we can prove a theorem that gives us further
insight into relationships between sample space assignments on the lattice	 Recall that we have
de�ned K�

i � to mean agent pi knows � is a lower bound on the probability of �	 We can
extend this de�nition to deal with intervals in a straightforward way	 We would like to de�ne
K �����

i � to mean Ki�� � Pri��� � 
�� which should mean agent pi knows the probability of � is
somewhere between � and 
	 Since � may not correspond to a measurable set� what we really
mean is that the inner measure of � is at least � and the outer measure is at most 
	 Since
we interpret Pri as inner measure when � does not correspond to a measurable set� and since
���T � # � � ���T

c� for any set T � we can capture this intuition in terms of our language by
interpreting K �����

i � as an abbreviation for Ki
�Pri���� 	 �� � �Pri���� 	 � � 
��	 To relate
this de�nition to our earlier de�nition of K�

i �� notice that K�
i � is equivalent to K �����

i �	 We
can now prove the following	

Theorem �� In a synchronous system� if P � and P are consistent� standard assignments sat�
isfying P � 	 P � then

�a� for every fact �� every agent pi� every point c� and all �� 
 with � � � � 
 � �� we have

P �� c j# K �����

i � implies P � c j# K �����

i ��

�b� there exist a fact �� an agent pi� a point c� and �� 
 with � � � � 
 � � such that

P �� c �j# K �����

i � and yet P � c j# K �����

i �

P �� c �j# K �
���

i �� and yet P � c j# K �
���

i ���

If L�$� is su%ciently rich� then � � L�$�	��

Part �a� shows that an agent�s con�dence interval does not increase in the presence of a more
powerful opponent� part �b� shows that it might actually decrease	 The fact � from part �b�
gives an example of a case that agent pi might be unduly conservative by using an inappropriate
probability assignment� using P �� agent pi would reject bets on � with payo� ��� even though
it should be accepting all such bets	

In the light of these results� which probability assignment should we use in practice� Our
results show that Ppost has a special status among probability assignments	 It is a maximum
assignment among consistent assignments in the lattice with the � ordering� and so� by The�
orem �� gives the sharpest bounds on the probability interval among all consistent probability
assignments	 In addition� any other consistent probability assignment can be obtained from
Ppost by a process of conditioning	 There is also a sense in which Ppost is the �right� assign�
ment to use provided we put the betting game we have been using into the system� as opposed
to having it be external to the system� we discuss this issue in greater detail in Appendix B	
Finally� Ppost is the probability assignment that corresponds to what decision theorists seem to
use when referring to an agent�s subjective �or posterior� probability	 However� as we have seen�

��Recall from Section � that a fact is identi�ed with a set of points� and that a formula is a sentence in a logic
that denotes a set of points 
that is� a formula expresses a fact�� When we write � � L
��� we mean that the
fact � is expressible in the language L
���
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Ppost may not always be the �right� probability assignment to use	 The right choice depends on
the knowledge of the opponent o�ering us the bet in the system we wish to analyze	 Although
Ppost may give a smaller interval than P j �intuitively giving sharper bounds on an agent�s belief
a fact is true�� if pi uses the better lower bound from Ppost as a guide to deciding what bet to
accept from pj � it may wind up losing money	 In fact� it follows from Theorems � and � that P j

is the probability assignment that gives an agent the best interval and still guarantees a good
betting strategy	

Even in cases where Ppost is the �right� choice� it is not necessarily the probability we want to
use in computations	 It may not always be necessary to obtain the sharpest interval of con�dence
possible	 A rough bound may be su%cient	 Theorem � shows that proving a lower bound on an
agent�s con�dence using a certain choice of probability space implies the same bound holds with
any de�nition higher in the lattice	 The advantage of using a probability assignment that lies
lower in lattice is that� because the individual probability spaces are smaller� the computations
may be simpler	 Consider the de�nition Pfut� for example	 Here the probability space we
associate with a point �r� k� consists only of points �r�� k� having the same global state as �r� k�	
The runs r� are the runs extending the global state r�k�	 This means we can reason about the
probability of a future event given a �xed global state	 In contrast� a de�nition such as Ppost

allows for the possibility that the runs r� may extend any of a collection of global states� which
may mean we no longer have the luxury of arguing about the probability of a future event
given a �xed global state	 At the very least� reasoning in terms of Pfut instead of Ppost obviates
the need for reasoning in terms of conditional probability	 When arguing about the level of
con�dence of an agent� it seems best to choose a de�nition as low in the lattice as possible to
make the proof as simple as possible� but high enough to enable one to prove a su%ciently high
level of con�dence	

� Probability assignments in asynchronous systems

We now turn our attention to choosing appropriate probability assignments in asynchronous
systems	 While we drop the synchronous assumption that ri�k� # r�i�k

�� implies k # k�� we
still assume the existence of a global clock� although agents in the systems may not have access
to this clock or may only know approximate values of the clock	 We remark that even in the
context of asynchronous systems� the four sample space assignments discussed in the previous
section�Spost� Sfut� Sj� and Sprior�still make perfect sense	 The intuition motivating these
de�nitions remains the same� in particular� Theorem � which says that Sj determines safe bets
against pj still holds	

A number of things do change� however	 For one thing� Proposition 
 no longer holds�
so many facts of interest become nonmeasurable	 Equally important� Proposition �� which
says that consistent probability assignments further down in the lattice can all be obtained by
conditioning on consistent probability assignments higher in the lattice� also fails in general	
The reason it may fail is that if S� � S� we are no longer guaranteed that S�i�c is a measurable

subset of Si�c	 For example� although P j � Ppost� Treeji�c need not be a measurable subset of
Treei�c	 If pj can distinguish time � points from time � points but pi cannot� and if c is a time �
point� then Treeji�c consists only of time � points while Treei�c consists of the time � and � points	
In this case� Treeji�c is not a measurable subset of Treei�c� since Tree

j

i�c does not contain all points

��



of Treei�c contained in runs passing through Tree
j

i�c	 All our conditioning arguments used this
measurability assumption	 Consequently� it is no longer true that all consistent assignments
can be obtained by conditioning on Ppost	 For similar reasons� in general asynchronous systems�
using Treei�c and using Treeji�c in the de�nition of a safe bet does not necessarily give the same
results	 �The conditional probability argument used in the proof of Proposition � depends on
the fact that the sets Treeji�c are measurable subsets of Treei�c	� The fact that Theorem � holds
in asynchronous systems� saying that Sj still determines safe bets against pj � depends on the
fact that we use Treeji�c in the de�nition of a safe bet	 We can prove analogues of Propositions �
and � as well as Theorem �� provided we assume that S�i�c is a measurable subset of Si�c for all
agents pi and points c	�� Unfortunately� as we shall see� this measurability requirement does
not hold in many cases of interest	

The situation is perhaps best illustrated by an example	 Consider a simple asynchronous
system �similar to the example in the introduction� in which agent p� tosses a fair coin �� times
� once each clock tick � and halts� agents p� and p� do nothing and never learn the outcome
of the coin tosses	 This system consists of a single computation tree� a complete binary tree of
depth �� with every transition labeled ���	 Suppose agent p� does not have access to a clock�
and so is unable to distinguish any of the global states in the tree	 On the other hand� p� has
access to the clock� and so can tell each time apart	

There are clearly ��
 possible runs in the system� one corresponding to each of the possible
sequences of coin tosses	 Since p� cannot distinguish any point on any of these runs� for
every point c� the set Spost

��c consists of every point in the system	 Which subsets of Spost

��c are
measurable� Since the computation tree is �nite� each individual run is a measurable set� so
all sets of runs are measurable	 And since the measurable subsets of Spost

��c are obtained by
projecting measurable subsets of runs onto Spost

��c � the sets in X post

��c are those consisting of all the
points on some set of runs in the computation tree	

Let � be the fact �the most recent coin toss landed heads�� which is initially false at time
�	 Although this is a fact about the global state� the set of points where it is true is not a
measurable subset of Spost

��c � since it does not consist of all the points on some subset of runs	
This already shows that Proposition 
 fails in this case	 Thus� we cannot talk about the
probability that p� knows � at a point c in the tree	 We can talk about the inner and outer
measure of Spost

��c ���� however	 Since the only nonempty measurable set contained in Spost

��c ��� is
the set of points on the single run in which the coin lands heads every time� the inner measure
of this set is ����
� similarly� the outer measure is �� �����
�	

While values such as ����
 and �� �����
� may seem somewhat strange at �rst glance� they
are not totally unmotivated	 Consider the situation of agent p� at a point c trying to �gure
out the probability of heads�the probability that � is true�given only the probability on the
runs	 Agent p� has no idea which run it is in	 The only run in which it is always the case that
the most recent coin toss landed heads is the run where the coin lands heads on every toss�
this run occurs with probability ����
	 On the other hand� in all the runs except for the one
in which the coin lands tails on every toss� it is possible that the most recent coin toss landed

��In part 
b� of this analogue of Theorem �� we must also strengthen the de�nition of su�ciently rich to mean
that for every global state there is a primitive proposition in � true at all points of all runs passing through
this global state� This is due to the fact that consistent assignments in asynchronous systems allow a set Si�c to
contain more than one point of a given run�
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heads	 Thus� in a set of runs of probability � � �����
�� it is possible that the most recent
coin toss landed heads	 This means that ����
 and �� ����
�the inner and outer measure of
Spost

��c ����provide lower and upper bounds on the probability of being in a run where the most
recent coin toss landed heads	

Now suppose that agent p� is betting against p�	 Since p� knows what the time is� each set
S�
���r�k� consists of all the time k points	 With respect to the sample space assignment S�� the

fact � is measurable	 In fact� it is easy to see that ���S��c���� # ��� for all points c	 To sum

up� we have Ppost� c j# K

����
��������
��
� � and Ppost� c j# �K

���
� �� while P�� c j# K

���
� �	��

This may seem somewhat counterintuitive� since it seems to suggest that p� must play more
conservatively against a copy of itself than against p�� who knows more	 This is especially so
since there is another line of reasoning about this situation which would lead p� to conclude that
it knows that the probability that the most recent coin toss landed heads is ���� even without
considering p�	 Agent p� reasons as follows� �The current time is k� although I do not know
what k is	 Regardless of the particular value of k� the probability that the kth coin toss lands
heads is ���� and hence I know the most recent coin toss landed heads with probability ���	�
The sample space assignment that captures this intuition would associate with the point �r� k�
and agent p� the set of time k points in �r� k��s computation tree agent p� considers possible
at �r� k� �as opposed to considering all the points in the computation tree that p� considers
possible� as is done by Ppost�	 But this is precisely the assignment S�!

In order to understand this situation a little better� let us reconsider the assignment Ppost	
We claim that the reason the interval 
����
� ��� ����
�� arises here is di�erent from the reason
intervals arise in the context of the synchronous systems studied in the preceding section	 In
the context of synchronous systems� because pj �s strategy depends on its local state and pi does
not know which local state pj is currently in� pi has to partition Ki�c� and view each element of
the partition as an independent probability space� computing the probability of � separately in
each one	 A formula such as K �����

i � holds when the probability of � can range from � to 
 in
the di�erent probability spaces	 In our current example� however� there is only one probability
space� the interval arises because of the nonmeasurability of �	 Depending on how �lucky� p�
is in the choice of where in each run it tests for heads� the probability of getting heads could
range from ����
 to �� �����
�	

We can view the nonmeasurability that arises due to asynchrony as a new element of un�
certainty that an adversary can exploit	 Intuitively� in the coin tossing example� when p� plays
against �a copy of� itself� since p� does not know where in the run it is� an adversary gets to
choose that	 On the other hand� when playing against p�� at least p� knows that all the worlds
in a given sample space are time k points� for some �xed k	 We can view our analysis where
we obtain the answer ��� without invoking p� as implicitly assuming an adversary who chooses
the time k the test for � is to be performed	 Such an adversary is an adversary of the third
type mentioned in the introduction	 Given any time k chosen by this adversary� the probability
of � is ���	

We can formalize this analysis as follows	 With each time k we associate a separate com�
putation tree corresponding to the adversary Ak that chooses time k to test for the truth of

��Note that this does not contradict Theorem �� since Theorem � would hold only if S�
i�c is a measurable subset

of Si�c for all pi and c� which we have already noted is not the case�
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a fact� in our case for the truth of �	 The probability space for p� at each point in the tree
corresponding to Ak consists of the time k points in the tree� each of which is assigned equal
probability	 In each of these probability spaces the probability of heads is ���� so p� knows that
the most recent coin toss landed heads with probability ���	

There is no reason� however� to restrict this third type of adversary to simply making an
initial choice of the stopping time	 Suppose we have �xed a collection of adversaries of the �rst
type �the computation trees� and an adversary of the second type �say pj�	 We de�ne a cut

through Tree
j

i�c to be a subset of Treeji�c containing precisely one point from every run passing
through Treeji�c� every run passing through Treeji�c is cut precisely once by such a set of points	
We de�ne a type three adversary to be a function mapping an agent pi and a point c to a cut
through Treeji�c	 Intuitively� pi and pj are betting on a fact �� but neither knows precisely where
in the run the bet is taking place� it is the third type of adversary who determines where in
the run the bet is actually made	 The cut through Treeji�c chosen by the adversary is the set of
points at which the adversary will cause the bet to take place when the local states of pi and
pj are given by c	

In the example above� when p� plays against a copy of itself� the adversary chooses one cut
per computation tree� since p� considers all points in the computation tree possible	 In the case
of p� playing against p� �who knows the time�� the adversary chooses one cut for every time k�
this cut must in fact consist of all time k points in the tree	 �In general� if we are considering a
set of time k points� the only allowable cut is the one consisting of all points	 This is why the
issue of an adversary choosing such cuts does not arise when considering synchronous systems	�

To make formal sense of this� suppose we are given a set A of type one adversaries �de�
termining the possible initial nondeterministic choices�	 This determines a set of computation
trees� as we have already discussed	 Fix a type two adversary� say pj 	 Let C be a set of type
three adversaries in this collection of computation trees �so that the adversaries in C choose
stopping times�	 Notice that the de�nition of C depends on A and pj 	 We can then construct
one computation tree TA�C for each A � A and C � C	 For a �xed A � A� the computation
trees TA�C look identical �essentially just like TA� for all choices of C � C except that we put
C into the environment state at each point in TA�C 	 The sample space assignment SC maps
an agent pi and a point c of a tree TA�C to a sample space SCi�c � Tree

j

i�c such that for each

run r � R�Treeji�c�� exactly one point �r� k� � Tree
j

i�c is in SCi�c	 Intuitively� this is the point
in r where the test is performed	 Note that if we consider two adversaries C�C� � C and two
corresponding points c and c� in TA�C and TA�C� � the sample spaces Si�c and Si�c� used by pi at
these two points will in general be di�erent� at c� it is C that determines at which point in
each run in the tree that pi considers possible at c the test will be performed� while at c� it is
C� that makes this determination	 Notice that� in the presence of this third type of adversary�
it is no longer the case that all sample space assignments de�ned in asynchronous systems are
standard assignments	 For example� it no longer need be the case that c � SCi�c	

Intuitively� playing against a copy of yourself places no constraints on this third type of
adversary	 To make this precise� once we �x a set of adversaries of the �rst type A �and a copy
of yourself as the type � adversary� and consider the resulting system� we can take pts�A� to
be the set of all possible adversaries of the third type in this system	 Let Spts be the sample
space assignment SC de�ned above where C # pts�A�� and let Ppts be the induced probability
assignment	
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Proposition ��� Ppost� c j# K

����
i � i� Ppts � c j# K


����
i �� for every fact �� agent pi� and point c	

The proof of this result shows that Ppost can be understood in asynchronous systems in terms
of an adversary that chooses as the time for the test to be performed the worst possible time
from pi�s point of view	��

Of course� there is no reason to assume that a type three adversary must either be restricted
to choosing horizontal cuts of time k points or be allowed to choose completely arbitrary cuts
of points	 Other intermediate de�nitions seem plausible as well	 One can imagine a partially
synchronous model in which processors cannot tell time but are guaranteed that� for every k� all
processors take their kth step within some time interval of width �	 It would seem reasonable to
require the adversary of the third type� rather than selecting horizontal time k cuts or totally
arbitrary cuts� to select cuts with the property that every point in the cut is a time k point
for some k falling in some interval of width �	 We can also generalize the notion of type three
adversary slightly so as not to require that it choose a cut� but rather have it choose at most
one point per run	 The intuition here is that this adversary simply does not give pi the chance
to bet in certain runs	 In our coin tossing example� such an adversary could allow pi to bet on
heads only when the coin has landed tails	 The issue of de�ning reasonable adversaries of the
third type deserves further study	

We close this section with a comparison of our de�nition of probability in asynchronous
systems with that of 
FZ��a�	 The probability assignment used in 
FZ��a� in the asynchronous
setting has much the same �avor as that of our Ppts 	 Rather than assuming that the adversary
chooses at a point c a cut of points through Treei�c� however� Fischer and Zuck assume that the
adversary chooses a cut of global states through Treei�c� that is� a set of global states appearing
in Treei�c with the property that no two global states lie on the the same run	 Intuitively� this
means that if the adversary performs the test at one point� it performs the test at all other
points with the same global state	 This seems like a reasonable restriction� but it leads to some
unexpected consequences	

Let us call the class of adversaries considered in 
FZ��a� state � let Sstate be the sample
space assignment SC de�ned above where C # state� and let Pstate be the induced probability
assignment	 Rather than giving formal de�nitions here� we give an example to show how Pstate

di�ers from Ppts 	 Consider a system in which p� tosses a biased coin which lands heads with
probability ��� and tails with probability ���	 The system consists of two runs we can denote by
h and t and four points corresponding to times � and � in runs h and t	 The computation tree
has only three nodes� a root R encoding the points �h� �� and �t� ��� a node H corresponding to
the point �h� ��� and a node T corresponding to �t� ��	 Suppose p� is able to distinguish only
the point �h� �� from the remaining three points and suppose that � is the fact �the coin lands
heads� �so that � is true at �h� �� and �h� ��� and false elsewhere�	 Let c be a time � point�
say �t� ��� and consider the probability with which p� knows � with respect to Ppts and Pstate	
An adversary in pts can either choose f�h� ��� �t� ��g or f�h� ��� �t� ��g as the set of points to
perform the experiment� � is true with probability ��� with respect to both sets	 It follows

that Ppts� c j# K�		
� �� in fact we have Ppts � c j# K


�		��		�
� �	 Similarly� an adversary in state can

��Another interpretation of this result is that the language obtained by closing a set of formulas under the
standard boolean connectives and the modal operators K�

i cannot distinguish the assignments Ppost and Ppts�
We note that the richer language of �FH		� can distinguish these assignments�
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choose either the node R or the node T as a state at which to perform the experiment� since
these are the cuts of global states contained in fR� Tg	 The choice of R corresponds to the
adversary in pts that chooses f�h� ��� �t� ��g	 However� the choice of T does not correspond to
f�h� ��� �t� ��g	 In fact� there is no adversary in state corresponding to this adversary in pts�
since it would amount to choosing the nodes R and T � both of which lie on the same run	 With
respect to the choice R� � holds with probability ���� with respect to the choice T � � holds with

probability �	 Thus� we get Pstate � c j# K


��		�
� �	 In some sense it seems that Ppts is giving the

more reasonable answer here	 Since p� knows that� a priori� the coin will land heads with high
probability� and its information has not eliminated either run� it should still consider heads
extremely probable	��

	 An application
 coordinated attack

As an application of the framework we have developed� we specify the probabilistic coordinated
attack problem in terms of knowledge and probability� and show how the nature of the prob�
lem changes as the probability assignment changes	 Recall from Section � that deterministic
coordinated attack requires that two generals A and B coordinate a synchronized attack on a
common enemy� in spite of the fact that A and B can communicate only by sending messages
via messengers who can be captured by the enemy	 If we de�ne �CA to be the fact �A attacks
i� B attacks�� then we can take the problem�s correctness condition to be that �CA holds at all
points	 The analogous correctness condition for probabilistic coordinated attack would be that
�CA holds with high probability	 The meaning of this slippery phrase �with high probability�
is the topic of this section	

Halpern and Moses 
HM��� have already demonstrated a strong relationship between de�

terministic coordinated attack and a state of knowledge called common knowledge	 Intuitively�
a formula � is common knowledge if all agents know �� all agents know all agents know �� and
so on ad in�nitum	 Formally� given a set G � fp�� � � � � png of agents� it is customary to de�ne
everyone in G knows �� denoted EG�� by

EG� �
�
pi�G

Ki��

and to de�ne � is common knowledge to G� denoted CG�� by

CG� � EG�� EGEG�� � � � �E
m
G � � � � � �

It is not hard to prove that common knowledge satis�es the following statements 
HM����

�	 the �xed point axiom� CG� � EG��� CG���

�	 the induction rule� &From � � EG�� � �� infer � � CG��

��Note that this example also shows that the adversaries in state are examples of the more general adversaries
discussed above� that do not necessarily choose one point per run� For example� the adversary choosing the
global state T does not choose a point in the run h�
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The �rst statement says that CG� is a �xed point of the equation X � EG�� �X�	 It can be
shown to follow from the induction rule that CG� is the greatest �xed point� and thus is implied
by all other �xed points of this equation 
HM���	 In fact� it is common to de�ne common
knowledge as the greatest �xed point of this equation� since this is the stronger de�nition in
general and is the de�nition that extends most easily to other settings 
HM��� FH��� PT���	
The induction rule�in the simple case that � � ��says that if � is a �public fact� in the
sense that everyone knows � whenever � is true� then it is common knowledge whenever it is
true	

What Halpern and Moses show is that common knowledge of a certain fact is a necessary
condition for coordinated attack	 They also show that common knowledge of nontrivial facts
cannot be attained in systems such as systems in which messages may fail to be delivered� and
hence that coordinated attack is not possible in systems such as ours �cf	 
Gra����	 Given this
relationship between deterministic attack and common knowledge� it is natural to ask about a
relationship between probabilistic attack and probabilistic common knowledge	

By direct analogy to the �xed�point de�nition of common knowledge� Fagin and Halpern 
FH���
de�ne probabilistic common knowledge of � to be the greatest �xed point of the X � E�

G
���X��

where E�
G� �

V
pi�GK

�
i �	 This de�nition is not equal to the in�nite conjunction of the formu�

las �E�
G
�k� for k � �� but it is easy to show that this de�nition satis�es the obvious analogues

of the �xed point axiom and induction rule given above	

Returning to deterministic attack� notice that since �CA is true at all points� the induction
rule implies CG�CA holds at all points	 In fact� since CG�CA implies �CA� an alternative spec�
i�cation of coordinated attack is that CG�CA holds at all points �and not that �CA holds at
all points�	 Suppose we �x some � � � and take the speci�cation of probabilistic attack to be
that C�

G�CA holds at all points	 Are there implementations of this version of probabilistic at�
tack� The answer depends on the choice of probability assignment	 Stronger assignments yield
stronger notions of probabilistic common knowledge� and hence make stronger requirements of
the implementation	

Consider the assignment Pfut	 Here the opponent o�ering an agent a bet knows the entire
global state at every point	 If there is any point where the attack is uncoordinated� then no later
point of any run extending this point can satisfy �CA	 At this point �CA holds with probability
� �according to Pfut�� so it easily follows that C�

G�CA cannot hold at all points	 This says
that an algorithm achieves probabilistic coordinated attack with respect to Pfut i� it achieves
coordinated attack	 Since coordinated attack is known to be unattainable in asynchronous
systems� we cannot get probabilistic coordinated attack either with respect to such a strong
opponent	

Next consider the assignment Ppost	 Here the opponent o�ering the bet has precisely the
same knowledge as the agent itself	 Consequently� if it is possible to reach a point at which
the agent can determine from its local state that no run extending the point can satisfy �CA�
the agent knows �CA does not hold� and hence neither does C�

G�CA	 Consequently� our �rst
implementation CA� of the probabilistic attack problem does not have the property that C�

G�CA

holds at all points �with respect to Ppost�� but our second implementation CA� does	 This can
be proved by �rst observing that E�

G�CA holds at all points �with respect to Ppost� and hence
by the induction rule �taking the formula � in the rule to be true�� so does C�

G�CA	

Notice that with respect to any consistent probability assignment� if at some point an agent
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in G knows �CA does not hold� then C�
G�CA cannot hold at this point �since C�

G�CA implies
E�

G�CA by the �xed point axiom� while Ki�� implies �E�
G�CA for all i � G�	 Consequently�

it cannot be the case that C�
G�CA holds at all points of CA� with respect to any consistent

assignment	 Is it possible for C�
G�CA to hold at all points of CA� with respect to any probability

assignment� Since this algorithm guarantees �CA holds with probability �� taken over the runs�
the obvious solution is to make the assignment mimic the probability distribution on the runs	
In particular� consider Pprior	 It is easy to see that with this assignment� every agent knows
�CA with probability � at all points of the system	 Since E�

G�CA holds at all points� it follows
by the induction rule that C�

G
�CA holds at all points as well	

We summarize our discussion in the following proposition	

Proposition ���

�	 CA� achieves probabilistic coordinated attack with respect to Pprior but not Ppost	

�	 CA� achieves probabilistic coordinated attack with respect to Ppost �and Pprior� but not
Pfut	


	 A protocol achieves probabilistic coordinated attack with respect to Pfut i� it achieves
coordinated attack	 Hence no such protocol exists in which the generals actually attack�
but do not attack in the absence of messages	

This proposition shows how increasing the power of the opponent �moving down in the
lattice� strengthens the kind of guarantees that can be made for probabilistic attack	 As we
have already seen� Pprior corresponds to probability over the runs	 And indeed� CA� does give us
coordination in almost all the runs	 However� as we observed in Section �� by following protocol
CA�� general A can attack even though A is certain that the attack will not be coordinated	
Since CA� achieves coordinated attack with respect to Ppost� this situation cannot arise with
CA�	 Finally� part 
 of Proposition �� shows that achieving coordinated attack with high
probability with respect to the knowledge of an agent that knows everything that has happened
in the past is too much to expect in this setting	

Note that all of the probability assignments agree at time �� and the probability they assign
to a set of points is identical to the probability of the set of runs going through those points�
i	e	 if c is a time � point in TA and RA��� is the set of runs in TA satisfying a fact � about the
run� then

�A�R���� # �post

i�c �Treei�c���� # �j

i�c�Tree
j

i�c���� # �fut

i�c �Pref i�c���� # �prior

i�c �All i�c�����

However� at later times� it is only Pprior that agrees with the initial probability on runs	 Thus�
for the other probability assignments� saying that � holds with probability greater than � at
all points �r� k� in TA according to pi will generally be a stronger statement than saying it holds
with probability � taken over the runs of TA	

Of course� it is perfectly conceivable we might want to consider probability assignments
besides those that we have discussed above� which will make yet more guarantees	 Considering
such intermediate assignments might be particularly appropriate in protocols where security is
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a major consideration� such as cryptographic protocols	 There it becomes quite important to
consider the knowledge of the agent we are betting against	

We remark that a slightly stronger de�nition of probabilistic coordinated attack is considered
in 
FZ��a�� it is required only that the conditional probability that both parties attack together�
given that one of the parties attacks� is at least �	�	 It is then shown in 
FZ��a� that this form
of probabilistic coordinated attack corresponds to all the agents having average belief of � that
the attack will be coordinated	 We can reinterpret their results in our language as showing
that this notion of coordinated attack is equivalent to probabilistic common knowledge with
respect to another probability assignment� much in the spirit of Pprior	 What is interesting here
is that the probability space used by 
FZ��a� for this analysis is not Ppost� but an inconsistent
probability assignment	 This point is not signi�cant in their example� since their results are
consistent with one�s intuition	 In general� however� it seems unreasonable to use inconsistent
probability assignments� since one can be led to counterintuitive results with such assignments	
Consider Pprior in the context of CA�	 Since there is a point at which the information in agent
A�s local state guarantees the attack will not be coordinated� according to Pprior both K�

A�CA

and KA��CA hold at this point	 In other words� the choice of Pprior has the e�ect of saying
that at a point an agent can have high con�dence in a fact it knows to be false	

The preceding discussion raises another interesting point	 While it is typically the case that
computer science applications consider only probabilities over runs �such applications typically
require only that a condition P hold throughout a large fraction of the runs� which corresponds
to Pprior�� it is not clear that this is always appropriate	 If an agent running a probabilistic
coordinated attack algorithm that is guaranteed to work with high probability over the runs
�nds itself in a state where it knows that the attack will not be coordinated� then it seems
clear that it should not proceed with the attack	 It may be worth reconsidering a number of
algorithms to see if they can be redesigned to give stronger guarantees	 This may be particularly
appropriate in the context of zero�knowledge protocols 
GMR���� where the current de�nitions
allow a prover to continue playing against a veri�er even when the prover knows perfectly well
that it has already leaked information to the veri�er� and may continue to do so	 Although it
is extremely unlikely that the prover will �nd itself in this situation� it may be worth trying to
redesign the protocol to deal with this possibility	 While adaptive protocols � where processors
modify their actions in light of what they have learned� are common in the control theory
literature� the probabilistic algorithms that are used in distributed systems typically are not
adaptive	 It seems that a number of algorithms can be converted to adaptive algorithms with
relatively little overhead	 We hope to study this issue more carefully in the future	

� Conclusion

We have provided a framework for reasoning about knowledge and probability in distributed
systems	 We have illustrated the fact that no single de�nition of probabilistic knowledge is
appropriate in all contexts� and we have shown that each de�nition of probabilistic knowledge
is best understood in terms of a particular choice of three types of adversaries	 The primary
technical contribution of this work has been to show how to construct the most appropriate

�	Although it is not clear from the de�nition of probabilistic attack given in �FZ		a� over what the probability
is being taken� the results given clearly assume that the probability is being taken over the runs�
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de�nition in the context of any particular choice of these adversaries	 Introducing the notion
of an adversary has helped clear up a number of subtle issues in the study of probability� such
as what the probability that a coin lands heads is after the coin has been tossed	 In addition�
our approach allows us to unify the di�erent approaches to probability in distributed systems
that have appeared in earlier works	

The challenge that remains is to apply this new�found understanding to real problems	 In
order to apply our results� there is one extension of this work that might be useful	 We have
shown how to construct the most appropriate probability space for a given opponent in a betting
game� but we have made no assumptions about the strategy the adversary is following	 One
potentially fruitful line of research is to understand how our results are e�ected if we make
assumptions about the strategies the adversary pj is allowed to follow� such as assuming that
pj is trying to maximize its payo� and not simply trying to break even	 If pj is willing to take
risks to increase its payo�� then this might decrease the minimum payo� pi is willing to accept
on a bet	 Such extensions could be useful when applying this framework to applications from
game theory and economics� such as contract negotiation	

The area of application that appears to have the most potential is the analysis of probabilistic
distributed protocols� especially cryptographic protocols	 The most promising direction could
be the speci�cation of cryptographic protocols in terms knowledge and probability	 Correctness
conditions in cryptography are typically described at a very low�level of abstraction� involving
Turing machines and complicated statements of conditional probability	 If it were possible to
specify these protocols at a higher level of abstraction in terms of knowledge and probability�
then it could be possible to reason about these protocols at a higher level of abstraction using
the axioms and inference rules for probabilistic knowledge given by Fagin and Halpern 
FH���	
Some progress in this direction has already been made	 Fischer and Zuck 
FZ��� have used
notions of knowledge� probability and complexity theory to analyze a particular interactive
proof for quadratic residuosity� and Halpern� Moses� and Tuttle 
HMT��� have used related
notions to completely characterize interactive and zero knowledge proof systems in terms of
knowledge	 The current di%culty in continuing down this path is that we do not have helpful
axioms and inference rules for reasoning about complexity theory� and hence it is di%cult to
use these characterizations to reason about these protocols in a mechanical way	 On the other
hand� reasoning about the purely probabilistic aspects of these protocols is certainly possible�
using the axioms and inference rules of 
FH���	

A Proofs of results

This appendix contains the proofs of all results claimed in the paper	

Proposition �� If Si�c is state generated and satis�es REQ�� then Si�c satis�es REQ�	

Proof� Given a global state g� let Gg be the set of points �r� k� with r�k� # g� and let
Rg be the set of runs through g	 By our technical assumption that the global state encodes
the adversary and the past history of the run� each global state is contained in precisely one
computation tree� and appears precisely once in this tree	 Thus� Gg and Rg are contained in
a single computation tree� and Rg # R�Gg�	 Since Si�c is state generated� Si�c is the union
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of a collection of sets of the form Gg	 Since Si�c satis�es REQ�� it is contained in a single
computation tree TA # �RA�XA� �A�� and since a single computation tree contains at most
a countable number of global states� Si�c is a countable union of sets of the form Gg	 Thus�
R�Si�c� is the countable union of sets of the form Rg # R�Gg� with g a global state in TA	 By
the de�nition of TA� each set Rg is a measurable set of runs with positive measure� and hence
their countable union R�Si�c� must also be a measurable set with positive measure	 It follows
that Si�c satis�es REQ�	

Proposition �� If Si�c satis�es REQ� and REQ�� then Pi�c is a probability space	

Proof� We must show �see 
Hal���� that Xi�c is a set of subsets of Si�c including Si�c that is
closed under the formation of complements and countable unions� and that �i�c is a nonnegative�
countably additive function on Xi�c satisfying �i�c��� # �	

Let T �c� # �RA�XA� �A�	 Since Si�c # Proj�RA� Si�c� and RA � XA� we have Si�c � Xi�c	 If
X � Xi�c� then X # Proj�R� Si�c� for some R � XA� since XA is closed under complementation�
Rc � XA and Xc # Proj�Rc� Si�c� � Xi�c� and hence Xi�c is closed under complementation	 If
X�� X�� � � � is a countable collection of sets from Xi�c� then for each j we haveXj # Proj�Rj� Si�c�
for some Rj � XA	 Since XA is closed under countable union� R # �jRj � XA	 It follows that

X # �jXj # �jProj�Rj� Si�c� # Proj��jRj � Si�c� # Proj�R� Si�c��

so X � Xi�c and Xi�c is closed under countable union	

Since Si�c is contained in a single computation tree by REQ�� and since R�Si�c� � XA

and �A�R�Si�c�� � � by REQ�� conditional probability with respect to R�Si�c� is well�de�ned�
and hence �i�c is well�de�ned	 Clearly� �i�c is nonnegative since �A is	 Furthermore� �i�c��� #
�A�����A�R�Si�c�� # �	 Finally� supposeX�� X�� � � � is a countable collection of pairwise�disjoint
sets in Xi�c	 For each j� we have Xj # Proj�Rj� Si�c� for some Rj � XA	 We can assume every
run in Rj passes through Si�c� or we can replace Rj with the measurable set R�Si�c�� Rj � and
we can assume the Rj are pairwise disjoint� since if r is contained in both Rj and Rk then some
point on r is contained in both Xj # Proj�Rj� Si�c� and Xk # Proj�Rk� Si�c�� contradicting the
pairwise�disjointness of Xj and Xk	 It follows from the pairwise�disjointness of the Rj # R�Xj�
that

�i�c��jXj� #
�A�R��jXj��

�A�R�Si�c��
#
�A��jR�Xj��

�A�R�Si�c��
#
X
j

�A�R�Xj��

�A�R�Si�c��
#
X
j

�i�c�Xj��

and hence �i�c is countably additive	

Proposition �� In a synchronous system� if S is a consistent� standard assignment and L�$�
is state generated� then � is measurable with respect to S for all facts � � L�$�	

Proof� Recall that L�$� is state generated if all the primitive propositions in $ are facts about
the global state	 Recall also that � is measurable with respect to S if Si�c��� � Xi�c for all
agents pi and points c	 Fix an agent pi and a point c	 Let Sk denote the set of time k points
in the computation tree T �c� containing c	 We claim it is enough to show that
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��� R�Sk���� is a measurable set of runs for all times k and all formulas � � L�$�	

To see this� notice that since S is a consistent assignment in a synchronous system� Si�c contains
only time k points for some k	 In fact� since Si�c satis�es REQ�� all points of Si�c are contained
in T �c�	 Consequently� R�Si�c���� # R�Si�c��R�Sk����	 Since R�Si�c� is measurable by REQ��
condition ��� will imply R�Si�c���� is measurable	 It will follow that Si�c��� is a measurable
subset of Si�c	

The proof of ��� proceeds by induction on the structure of �	 If � is a primitive proposition
in $� then since L�$� is state generated we know that � must be a fact about the global state	
Arguments similar to those used for Proposition �� therefore� su%ce to show that R�Sk���� is
a measurable set of runs	 The cases of negation and conjunction follow immediately from the
fact that measurable sets are closed under complementation and intersection	 For � # Ki��
since Ki� is a fact about the global state� the arguments for such a formula is identical to the
argument for primitive propositions above	

For � # Pri��� 	 �� consider any time k point d	 Since S is inclusive� we know that d � Si�d	
Since S is a consistent assignment in a synchronous system� we know that Si�d contains only
time k points from T �d�	 It follows that Sk is the union of sets of time k points of the form Si�d	
Moreover� since S is uniform� the Si�d actually partition Sk	 Finally� since each Si�d is state
generated and since there are at most a countable number of time k global states in any given
tree� we see that Sk is partitioned into a countable collection of sets of the form Si�d	 Now� since
we consider only uniform sample space assignments� it is easy to check that � is true at either
all or none of the points in Si�d	 It follows that Sk��� is partitioned into a countable collection
of sets of the form Si�d� and hence that R�Sk���� is partitioned into a countable collection of
sets of the form R�Si�d�	 Since the sets R�Si�d� are measurable by REQ�� so is their countable
union R�Sk����	

For � # 
�� notice that � is true at �r� k " �� i� 
� is true at �r� k�	 It follows that
R�Sk�
��� # R�Sk������� and hence by the inductive hypothesis for � that R�Sk���� #
R�Sk�
��� is a measurable set of runs	 In fact� a simple extension of this argument �by
induction on 
� shows that if R�Sk���� is measurable then so is R�Sk�
����	

For � # �U �� de�ne �U
 � to be the formula �� and de�ne �U� � for 
 � � to be the formula
� � � � ��
���� �
��	 It is easy to see that �U � is true at a point d i� �U� � is true at d for
some 
 	 �	 Thus� Sk��U �� #

S
��
 Sk��U� �� and hence R�Sk��U ��� #

S
��
R�Sk��U� ���	

Since the induction hypothesis holds for the subformulas � and �� the preceding paragraph
shows that each set R�Sk��U� ��� is also measurable� and hence so is their countable union
R�Sk���� # R�Sk��U ���	

Proposition �� If S and S� are standard assignments satisfying S� � S� then for every agent
pi and point c� the set Si�c can be partitioned into sets of the form S�i�d with d � Si�c	

Proof� Suppose that S and S� are standard assignments satisfying S � � S	 Since S� is inclusive
and S is uniform� we have d � S�i�d � Si�d # Si�c for every d � Si�c� and hence Si�c is the union of
the S�i�d with d � Si�c	 Furthermore� since S� is uniform� two sets S�i�d and S�i�e are either equal
or disjoint� and hence Si�c can be partitioned into sets of the form S�i�d with d � Si�c	







Proposition �� In a synchronous system� if P � and P are consistent� standard assignments
satisfying P � � P � then for all agents pi� all points c� and all measurable subsets S� � X �

i�c

�a� S� � Xi�c �so that� in particular� S�i�c itself is a measurable subset of Si�c��

�b� �i�c�S
�
i�c� � ��

�c� ��i�c�S
�� # �i�c�S

�jS�i�c� #
�i�c�S

��
�i�c�S�

i�c
� �

Proof� Fix an agent pi� a time k point c of TA # �RA�XA� �A�� and a set S� � X �
i�c	

�a� Since S� � X �
i�c� there must exist some subset R� � XA such that S� # Proj�R�� S�i�c�	

Without loss of generality� we can assume that R� � R�S�i�c� �since we can replace R�

with R� � R�S�i�c�� which must also be measurable since REQ� guarantees R�S �i�c� is
measurable�	 Since S�i�c � Si�c and both S�i�c and Si�c consist of time k points �since P and
P � are consistent assignments in a synchronous system�� we have

Proj�R�� S�i�c� # f�r�� k� � S�i�c � r
� � R�g # f�r�� k� � Si�c � r

� � R�g # Proj�R�� Si�c��

Thus S� # Proj�R�� Si�c�� which shows that S� is a measurable subset of Si�c	

�b� By part �a�� it follows that S�i�c is a measurable subset of Si�c	 Since we have restricted to
standard assignments S�� we know that S �i�c is state generated� and arguments similar to
the proof of Proposition � show that �i�c�S

�
i�c� � �	

�c� Tracing through de�nitions� we see

��i�c�S
�� #

�A�R�S���

�A�R�S�i�c��
#

�A�R�S �����A�R�Si�c��

�A�R�S�i�c����A�R�Si�c��
#

�i�c�S
��

�i�c�S
�
i�c�

# �i�c�S
�jS�i�c��

Proposition �� In a synchronous system� for all facts �� all agents pi and pj � and all points c�
the rule Bet��� �� is Tree�safe for pi at c i� Bet��� �� is Treej�safe for pi at c	

Proof� Since P j and Ppost are standard probability assignments satisfying P j � Ppost� the
sample space Treei�c can be partitioned into the sample spaces Treeji�d with d � Treei�c� and

each such Treeji�d is a measurable subset of Treei�c by Proposition �	 The law of conditional
expectation� therefore� states that

ETreei�c 
Wf � #
X

ETreei�c 
Wf jTree
j

i�d��i�c�Tree
j

i�d��

where the summation is taken over the sets of the form Treeji�d partitioning in Treei�c	 Since

P j � Ppost� we can use part �c� of Proposition � to prove thatETreei�c 
Wf jTree
j

i�d� # E
Tree

j

i�d


Wf ��

and hence that
ETreei�c 
Wf � #

X
E
Tree

j
i�d


Wf ��i�c�Tree
j

i�d��


�



Suppose Bet��� �� is Treej�safe for pi at c	 Then ETree
j
i�d


Wf � 	 � for all f and for all points

d agent pi considers possible at c� which implies ETreei�e 
Wf � 	 � for all f and for all points e
agent pi considers possible at c� and hence that Bet��� �� is Tree�safe for pi at c	

Conversely� suppose Bet��� �� is not Treej�safe for pi at c	 Then E
Tree

j
i�d


Wf � 	 � for some

f and some point d agent pi considers possible at c	 Let f � be the strategy that is identical to
f at all points in Kj�d�� and hence at all points in Tree

j

i�d� but o�ering a payo� of � everywhere
else	 Notice that f � is a strategy �a function of pj �s local state�	 If pj uses strategy f �� then
the best pi can do at points not in Kj�d� is to break even� so E

Tree
j
i�e

Wf �� � � for e �� Kj�d�	

Moreover� since f and f � are identical on Treeji�d� we have E
Tree

j

i�d


Wf �� 	 � by our choice of

d	 Since Treei�c is the disjoint union of Treeji�d and sets Treeji�e with e �� Kj�d�� it follows that
ETreei�c 
Wf �� 	 �� and hence that Bet��� �� is not Tree�safe for pi at c	

Theorem 	� For all facts � measurable with respect to P j� all agents pi� and all points c� the
rule Bet��� �� is P j�safe for pi at c i� P j� c j# K�

i �	

Proof� Consider the evaluation of Ec
Wf � # E
Tree

j
i�c


Wf��� ��� for arbitrary points c and

strategies f 	 Since pj has the same local state at all points of Treeji�c and f is a function of
pj �s local state� pj o�ers the same payo� 
 for a bet on � at all points of Treeji�c	 Since pi is
following Bet��� �� at all points of Treeji�c� agent pi accepts the bet at all points of Treeji�c or
rejects the bet at all such points� depending on whether 
 	 ���	 If pi rejects� then Ec
Wf � is
obviously �	 If pi accepts� then pi�s pro�t is 
 � � at points satisfying � and �� at all other
points� and hence Ec
Wf � # 
�j

i�c�Tree
j

i�c����� �	 �Notice that because � is measurable with
respect to P j� we are guaranteed that Treeji�c��� is a measurable subset of Treeji�c� and hence
�j

i�c�Tree
j

i�c���� is well�de�ned	�

Suppose P j� c j# K�
i �	 This means that �j

i�d�Tree
j

i�d���� 	 � for all points d agent pi
considers possible at c	 For every point d agent pi considers possible at c and every strategy
f for pj � therefore� we have Ed
Wf � 	 � since 
�j

i�d�Tree
j

i�d���� � � 	 ������ � � # � when

 	 ���	 It follows that Bet��� �� is safe for pi at c	

Suppose P j� c �j# K�
i �	 This means that �j

i�d�Tree
j

i�d���� 	 � for some point d agent pi
considers possible at c	 Let f be the strategy for pj o�ering a payo� of ��� for a bet on � at all
points pj considers possible at d� and hence at all points of Treeji�d� and � elsewhere	 It follows
that Ed
Wf � 	 ������� � # � for the given strategy f and the given point d agent pi considers
possible at c� and hence that Bet��� �� is not safe for pi at c	

Theorem 
� In a synchronous system� if S is a consistent� standard assignment� then

�a� if S � Sj� then S determines safe bets against pj � and

�b� if S determines safe bets against pj and L�$� is su%ciently rich� then S � Sj	

Proof� Theorem � tells us that Sj itself determines safe bets� and from Theorem ��a� �proved
below�� it follows that if S 	 Sj � then S determines safe bets� too	 This proves part �a�	


�



To prove part �b�� suppose S �� Sj� which means Si�c �� Tree
j

i�c for some agent pi and point
c	 It is easy to construct a transition probability assignment � inducing a distribution � on
the runs of T �c� satisfying ��R�Si�c�� � ��R�Treeji�c��	 To see this� notice that Si�c �� Tree

j

i�c

implies d � Si�c and d �� Treeji�c for some time k point d in T � and if Gd is the set of points
with d�s global state� then Gd � Si�c and Gd � Treeji�c # � since S and Sj are state generated
�they are standard�	 By causing � to assign high probabilities to the edges in the path from
the root of T to d�s global state in T � we can guarantee that ��R�Gd�� � ���	 This guarantees
that ��R�Si�c�� 	 ��R�Gd�� � ���� and since Gd and Tree

j

i�c are disjoint� that ��R�Treeji�c�� 	
�� ��R�Gd�� 	 ���� so ��R�Si�c�� � ��R�Treeji�c�� as desired	

Now let P be the probability assignment induced by S and � � and let P j be the probability
assignment induced by Sj and � 	 Furthermore� let Gc be the set of points with global state
c� let � be the fact which is true precisely of the points in Gc� and let � # ��	 Since L�$�
is su%ciently rich� it follows that � � $� since L�$� is closed under negation� it follows that
� # �� � L�$�	

Since both S and Sj are standard� and hence inclusive and state generated� it follows that
Gc � Si�c � Tree

j

i�c	 Since � is false only at points in Gc� and since Gc is contained in both Si�c
and Treeji�c� it is easy to see that

� # �i�c�Si�c���� #
��R�Si�c��� ��R�Gc��

��R�Si�c��

and

�j # �j

i�c�Tree
j

i�c���� #
��R�Treeji�c��� ��R�Gc��

��R�Treeji�c��
�

Furthermore� since S is uniform �it is standard�� any set Si�e not equal to Si�c is disjoint from
Si�c and hence from Gc� so �i�e�Si�e���� # �i�e�Si�e� # � for all such sets Si�e	 It follows that
P � c j# K�

i �	

On the other hand� since ��R�Si�c�� � ��R�Treeji�c�� and ��R�Gc�� � �� it is easy to see

that � � �j 	 Let f be the strategy in which pj o�ers a payo� of ��� for � at points of Kj�c��
and suppose pi uses the rule Bet��� ��	 Clearly Wf # Wf ��� �� is ��� � � on Tree

j

i�c��� and
�� o� this set	 Thus�

E
Tree

j
i�c

�Wf � #

�
�

�
� �

�
�j " ������� �j� 	

�
�

�
� �

�
�� ��� �� # ��

which means Bet��� �� is not safe for pi at c	

Note that the universal quanti�cation over transition probability assignments is crucial in
this proof	 Given a fact � false only at points in the intersection of Si�c and Tree

j

i�c� the proof
shows that a necessary condition for P � c j# K�

i � to imply that Bet��� �� is safe for pi at c is
that the measure of the runs through Si�c is less than or equal to the measure of the runs through
Treeji�c	 In fact� this is a su%cient condition as well	 For any given � it may be possible to
construct a set Si�c �� Tree

j

i�c satisfying this condition� but the only way to satisfy this condition
for all � is to take Si�c � Treeji�c	

Theorem �� In a synchronous system� if P � and P are consistent� standard assignments sat�
isfying P � 	 P � then


�



�a� for every fact �� every agent pi� every point c� and all �� 
 with � � � � 
 � �� we have

P �� c j# K �����

i � implies P � c j# K �����

i ��

�b� there exist a fact �� an agent pi� a point c� and �� 
 with � � � � 
 � � such that

P �� c �j# K �����

i � and yet P � c j# K �����

i �

P �� c �j# K �
���

i �� and yet P � c j# K �
���

i ���

If L�$� is su%ciently rich� then � � L�$�	

Proof� First we prove part �a�	 Suppose P �� c j# K �����

i �	 This means � � ��i�d��S
�
i�d���� �

��i�d
��S�i�d���� � 
 for all points d � Ki�c�	 Choose some point d � Ki�c�	 Since P � and P are

consistent �and uniform� and satisfy P � � P � the set Si�d is the disjoint union of a collection of
probability spaces S�i�d� � � � � � S

�
i�d�

with dj � Si�d � Ki�c�� each a measurable subset of Si�d	 It
follows that Si�d��� is the disjoint union of S�i�d����� � � � � S

�
i�d�

���	 An easy computation shows
that

P
j �i�d��S

�
i�dj

���� � �i�d��Si�d����	 Since P � � P � Proposition � shows that ��i�dj can be

obtained from �i�d by conditioning on S�i�dj 	 It follows that

�i�d��S
�
i�dj

���� # sup
n
�i�d�T

�� � T � � S�i�dj���� T
� � X �

i�dj

o

# sup
n
��i�dj �T

���i�d�S
�
i�dj� � T � � S �i�dj���� T

� � X �
i�dj

o

# sup
n
��i�dj �T

�� � T � � S�i�dj���� T
� � X �

i�dj

o
�i�d�S

�
i�dj�

# ��i�dj �
�S�i�dj�����i�d�S

�
i�dj��

Combining the preceding statements� we have

� #
X
j

� �i�d�S
�
i�dj�

�
X
j

��i�dj�
�S�i�dj���� �i�d�S

�
i�dj�

#
X
j

�i�d��S
�
i�dj����

� �i�d��Si�d����

A similar argument shows �i�d
��Si�d���� � 
	 Since these arguments hold for all d � Ki�c�� it

follows that P � c j# K �����

i �	

We now prove part �b�	 Since P � 	 P � it follows that Si�c contains two disjoint sets S�i�c and
S�i�d for some agent pi and points c and d	 Let � be the fact true at precisely the points in the
set Gc of points with c�s global state� and let � # ��	 Notice that since P � is standard and
hence state generated� Gc is contained in S�i�c and disjoint from S�i�d	 If L�$� is su%ciently rich�
then � � $� and hence � # �� � L�$�	

Since Gc � S�i�c � Si�c� the fact � holds with probability � with respect to all probability
spaces determined by P � and P except S�i�c and Si�c	 Since P � � P � Proposition � tells us that


�



��i�c can be obtained from �i�c by conditioning on S�i�c	 It is easy to see� therefore� that � holds
with probability

�� # ��i�c�S
�
i�c���� #

�i�c�S
�
i�c�� �i�c�Gc�

�i�c�S
�
i�c�

with respect to S�i�c� and probability

� # �i�c�Si�c���� #
�i�c�Si�c�� �i�c�Gc�

�i�c�Si�c�

with respect to Si�c	 Since �i�c�S
�
i�c� 	 �i�c�Si�c� # �� however� it is easy to see that �� 	 �	 It

follows that P � c j# K �����

i � but P �� c �j# K �����

i �	

On the other hand� �� holds with probability � with respect to all probability spaces
determined by P � and P except S�i�c and Si�c	 The fact �� holds with probability � � �� with
respect to S�i�c and probability ��� with respect to Si�c	 Since �

� 	 �� we have ��� 	 �����

setting 
 # �� �� it follows that P � c j# K �
���

i �� but P �� c �j# K �
���

i ��	

Proposition ��� Ppost� c j# K

����
i � i� Ppts � c j# K


����
i �� for every fact �� agent pi� and point c	

Proof� Recall that we have �xed the class A of adversaries of the �rst type� and that for the
adversary of the second type� each agent bets against itself	 Consider the adversary C � pts�A�
of the third type mapping an agent pi and a point d to the set SC

i�d of points de�ned as follows�
for every run r passing through Treei�d� choose a point �r� k� � Treei�d satisfying �� if such
a point exists� and choose an arbitrary point �r� k� � Treei�d if all such points of r in Treei�d
satisfy �	 It is easy to see that the same set of runs pass through SC

i�d and Treei�d� and that a
run r passes through SC

i�d��� i� � is true at all points of r contained in Treei�d	 It follows that
SC

i�d��� and Treei�d��� have the same inner measure with respect to SC

i�d and Treei�d� respectively	
On the other hand� consider an arbitrary adversary D � pts�A� mapping pi and d to the set
SD

i�d �contained in Treei�d�	 Suppose the run r passes through SC

i�d���	 It follows from the
de�nition of SC

i�d��� that � must hold at every point of r in Treei�d	 Since SD

i�d must contain
precisely one such point� r must pass through SD

i�d��� as well	 It follows that the inner measure

of SD

i�d��� must be at least the inner measure of SC

i�d���� thus� the in�mum of ��ptsi�d ���S
D

i�d����

� taken over all adversaries D � pts�A� � is precisely ��ptsi�d ���S
C

i�d���� and we have already

observed that ��ptsi�d ���S
C

i�d��� and ��post

i�d ���Treei�d���� are equal	 A similar construction shows

that the supremum of ��ptsi�d �
��SD

i�d���� � taken over all adversaries D � pts�A� � is precisely
��post

i�d ���Treei�d����	 Since these statements are true for all points d agent pi considers possible

at c� we have Ppts� c j# K �����

i � i� Ppost� c j# K �����

i �	

B Discussion

In this appendix� we discuss a few issues related to observations made in this paper	


�



B�� The need for protocols

Although from a computer scientist�s point of view� it seems quite natural to assume� as we do�
that all agents in a system follow some kind of a protocol� protocols are not quite so standard
in the probability theory literature	 Interestingly� Shafer observes 
Sha��� that it is necessary
for us to think in terms of protocols if we are to make sense of �conditioning on everything an
agent knows� as is done by Ppost	 His argument� which we reproduce here� is based on Freund�s

puzzle of the two aces �see 
Fre���� other references are given in 
Sha����	

Consider a deck with four cards� the ace and deuce of hearts and spades	 After a fair shu'e
of the deck� two cards are dealt to p�	 Now what is the probability� according to p�� that p�
holds both aces� First� notice that if A� B� C� and D denote the events that p� holds two aces�
at least one ace� the ace of spades� and the ace of hearts� respectively� then

Pr�A� # Pr�A �B� # Pr�A � C� #
�

�
� Pr�B� #

�

�
� Pr�C� # Pr�D� #

�

�
�

Suppose p� �rst says it holds an ace	 Conditioning on this information� p� computes the
probability p� holds both aces to be

Pr�AjB� #
���

���
#

�

�
�

As a result of learning p� holds at least one ace� the probability according to p� that p� holds
both aces increases	

Suppose p� then says it holds the ace of spades	 Conditioning on this additional information�
p� computes the probability p� holds both aces to be

Pr�AjC� #
���

���
#

�



�

As a result of learning not only that p� holds at least one ace� but that it actually holds the
ace of spades� the probability according to p� that p� holds both aces increases even more	
Similarly� Pr�AjD� # ��
	

But is this second computation reasonable� When p� learns B� then p� knows that p� has
either the ace of spades or the ace of hearts	 When p� learns C� then p� knows that p� de�nitely
has the ace of spades	 Is it reasonable for the probability p� places on event A� that p� holds
two aces� to increase from ��� to ��
 simply as a result of learning which of the two aces p�
has� It seems just as reasonable to argue that the information about which ace p� actually has
is useless� and p��s probability of A shouldn�t change upon hearing that C �or D� holds	

As Shafer points out� the right way for p� to update its probability of A depends on what
protocol the agents are following	 If the agents had agreed p� would �rst reveal whether it held
an ace� and then whether it held the ace of spades� then the increase seems reasonable� if p�
says it holds an ace� then p��s learning p� does not hold the ace of spades causes p��s probability
that p� holds both aces to go down to �� so learning that p� does hold the ace of spades should
make p��s probability go up	 On the other hand� if the agents were following a protocol whereby
p� �rst reveals whether it has an ace� and then� if it does� reveals the suit of one of the aces it
holds� choosing between hearts and spades at random if it has both aces� then p��s probability


�



should not change as a result of hearing that p� holds the ace of spades	�
 We leave it to the
reader to construct the computation trees corresponding to the two protocols described above�
and to check that using Ppost� we do indeed get the right probabilities in each case	 Again� the
key point here is that we need the protocol to be completely speci�ed in order to appropriately
compute the conditional probabilities	

B�� Safe bets and nonmeasurable facts

Recall that the statement of Theorem � says that for measurable facts� P j determines safe bets
against pj 	 The condition of measurability is required in order for the use of expectation in the
de�nition of a safe bet to make sense	 Remember that Bet��� �� is safe for pi at c if Ed�Wf� #
E
Tree

j

i�d

�Wf��� ��� is nonnegative for all points d agent pi considers possible at c� and for all

strategies f for pj 	 We computed in the proof of Theorem � that Ed�Wf� # 
�i�d�Si�d����� ��
where 
 is the payo� o�ered by pj in Si�d �Si�d was actually Treeji�d�	 In order for �i�d�Si�d����
to be well de�ned� however� Si�d��� must be a measurable subset of Si�d� which means � must
be measurable	

In fact� Theorem � holds for nonmeasurable facts as well� but we must �rst give a meaningful
de�nition of expectation for nonmeasurable events	 The intuition behind the inner and outer
measures �� and �� of a measure space �S�X � �� is that ���S �� and ���S�� give upper and lower
bounds on the probability of S�� if S� is actually a measurable set� of course� these bounds are
equal to the actual probability	 This is made precise by a classical result 
Hal��� which says
that if �S�X �� �� extends �S�X � �� �in that X � � X and � and � agree on X �� then for all sets
X � X �� we have ���X� � ��X� � ���X�	 Moreover� the bounds described by the inner and
outer measure are actually attainable� in that for all subsets X � S� there is a probability space
�S�X �� �� extending �S�X � �� such that X � X � and ��X� # ���X�� a similar result holds in
the case of outer measure	

We want to extend these ideas to expected value	 More precisely� we would like to de�ne
a notions of inner expected value and outer expected value for a �nonmeasurable� random
variable X which give� respectively� lower and upper bounds on what should be the expected
value of X if we were to extend the measure space as above to make X measurable	 This
requires some work in general� but in the special case where X takes on only two values� it can
be done in a straightforward way	 If the two values taken on by X are x and y� with x � y�
then we de�ne the inner and outer expectations of a random variable X by

E��X� # x���X # x� " y���X # y� and
E��X� # x���X # x� " y���X # y�	

It is not hard to show that these de�nitions agree with the expected value if the sets X # x
and X # y are measurable� and that these values are attainable if we extend the probability
space in the right way to make these sets measurable	

�
Although Shafer does not mention this point� the need to assume that p� chooses between hearts and spades
at random if it holds both aces is crucial here� For example� suppose p� always tells p� it holds the ace of hearts
when it holds both aces� In this case� p��s probability p� holds both aces should decrease to � when p� says it
holds the ace of spades�

��



Notice that the random variable Wf in which we are interested in fact takes on only two
values �depending on whether � is true or false�	 Thus� applying these de�nitions� we get�

E��Wf � # �
 � �����Si�d���� " �������Si�d�����

# �
 � �����Si�d����� ��� ���Si�d�����

# 
���Si�d����� ��

which looks very similar to the formula computed for measurable facts	 Following the last two
paragraphs of the proof of Theorem � using this formula� it is easy to see the rest of the proof
holds� and hence that Theorem � is true using inner expectation in place of expectation in the
de�nition of a safe bet	

B�� Putting the betting game into the system

Our primary motivation for this work is the analysis of probabilistic systems	 An example of this
kind of system is the one generated by a randomized primality�testing algorithm	 This system
consists of a collection of computation trees� where each tree describes the set of executions of
the algorithm with a particular initial input	 In Section �� we introduced the notion of a betting
game and used it to justify the use of one probability assignment over another when analyzing
this kind of system	 This game was not considered part of the system being analyzed	 It was
useful a tool in the analysis� but we did not intend for an agent to pause after each round and
actually bet with the adversary	

On the other hand� suppose we do have the agent play the game at the end of each round	
This requires that we embed the betting game in the model of a system� and in this section we
show one way to do this	 Interestingly� once we have added the game to our model� we can see
how the act of playing the game increases the agent�s knowledge about the system	 Intuitively�
when an agent pi is considering whether to accept a bet from an adversary pj � it must consider
all possible states that pj could be in and all possible strategies that pj could be using for
o�ering bets	 Before pj o�ers the bet to pi� agent pi has little idea what state or what strategy
pj is using	 After pj o�ers the bet� however� pi can use the o�ered payo� to restrict the set of
possible states and strategies for pj 	 We can capture this intuition with a result stating that
before a bet on � is o�ered� pi must use P j and condition on the joint knowledge of pi and pj to
compute its probability for �� but after hearing the payo� pj is o�ering� pi has learned enough
about the states and strategies of pj that it can use Ppost and condition on its own knowledge
to compute its probability for �� and the result will be the same as using P j	 This perhaps
explains the central role played by Ppost in many intuitive attempts to model betting games	

Consider a propositional formula � and a synchronous system R� we construct a new syn�
chronous system R	 obtained from R by inserting a betting game on � at the end of every
round	 Recall that R consists of a collection of computation trees� one tree TA for every ad�
versary A� and that a strategy for pj is a function f from local states to payo�s	 The system
R	 also consists of a collection of computation trees� one tree TA�f for every tree TA in R and
strategy f for pj 	 There is a one�to�one correspondence between runs of TA and runs of TA�f �
where a run r in TA corresponds to the run rf de�ned as follows�

�	 If pi has local state s at time m in r� then pi has local states �s��� and �s� 
� at times

��



�m and �m" � in rf � where 
 is the payo� determined by f at �r�m�	 �We take 
 to be
� if pj �s action at �r�m� according to f is not to o�er a bet	�

�	 For all other agents pk� if pk has local state s at time m in r� then pk has local state s at
times �m and �m" � in rf 	


	 The truth value of propositional formulas is the same at the points �r�m�� �rf � �m� and
�rf � �m"��	 �So that a propositional formula does not change truth values between times
�m and �m" � in R		�

Finally� we assume that the probability distribution on runs is the same in TA and TA�f � for
any subset X of runs in TA� the probability of X in TA is the same as the probability of the
corresponding set f�X� # frf � r � Xg in TA�f 	

Given a point c # �r�m� of R� we write cf # �rf � �m� and c�f # �rf � �m " ��	 We think

of the point c�f in R	 as describing the betting game that would have been played at c in R�

since pi�s local state at c
�
f consists of its local state at c and all the information about pj �s o�er

needed to determine the outcome of the bet	 If we ignore the payo� information in pi�s local
state and the duplication of global states� then the execution rf looks just like the execution r	

The informal intuition described above is captured by the following result�

Theorem ��� If � is a propositional formula� c is a point of a synchronous system R� and f
is a strategy for pj � then the following are equivalent�

�a� P j� c j# K�
i ��

�b� P j� cf j# K�
i ��

�c� Ppost� c�f j# K�
i �	

Proof� We begin by proving that �a� and �b� are equivalent	 First� for any pair of strategies
f and g� we know that c �i d i� cf � dg� since pi has the same local state s in c and d i�
pi has the same local state �s��� in cf and dg	 Second� we know that there is a one�to�one

correspondence between points d� of Treeji�d and points d�g of Treeji�dg � that � is true at d� i� �

is true at d�g� and that the probability distributions on Tree
j
i�d and Tree

j
i�dg

are the same	 Thus�

P j� d j# Pri��� 	 � i� P j� dg j# Pri��� 	 �	 Combining these two observations� it follows that
P j� c j# K�

i � i� P j� cf j# K�
i �� and we are done	

We observe that P j� dg j# Pri��� 	 � i� P j� d�g j# Pri��� 	 � for every point dg	 To see
this� recall that pj �s strategy is a function of its local state	 Thus� pj o�ers the same payo� 
 at

all points of Treeji�dg � and so eg � Tree
j
i�dg

i� e�g � Tree
j

i�d
g
	 Consequently� we know that there

is a one�to�one correspondence between the points eg � Tree
j
i�dg

and the points e�g � Tree
j

i�d
g
�

that � is true at eg i� � is true at e�g � and that the probability distributions over Treeji�dg and

Tree
j

i�d
g
are the same� and the result follows	

We now prove that �b� implies �c�� suppose that P j� dg j# Pri��� 	 � for every dg �i cf �
and let us prove that Ppost� d�g j# Pri��� 	 � for every d�g �i c

�
f 	 Given d�g �i c

�
f � the set

��



Treei�d
g
is a disjoint union of sets Treej

i�e
g
with e�g �i c

�
f 	 Since e�g �i c

�
f implies eg �i cf �

we know that P j� eg j# Pri��� 	 � by hypothesis� and that P j� e�g j# Pri��� 	 � by the

observation above	 Consequently� the probability of � in each set Treej
i�e
g

is at least �	 Since

the probability of � in Treei�d
g
must be a convex combination of these probabilities� we have

Ppost� d�g j# Pri��� 	 �	

We now prove that �c� implies �b�� suppose that Ppost� d�g j# Pri��� 	 � for every d�g �i c
�
f �

and let us prove that P j� dg j# Pri��� 	 � for every dg �i cf 	 Given dg �i cf � let �s� 
� be the
local state of pi in both dg and cf � and let t be the local state of pj in dg	 Let h be the strategy
for pj with the property that h�t� # g�t� # 
 and with the property that h maps distinct local

states to distinct payo�s	 It is clear that Treej
i�d


h

# Treei�d

h
� since pi has the same local state

�s� 
� at all points of Treei�d

h
� so pi was o�ered the same payo� 
 at all these points� meaning

that pj must have the same local state t in all these points	 Since d�h �i d
�
g �i c

�
f � we know

that Ppost� d�h j# Pri��� 	 � by hypothesis� and hence that P j� d�h j# Pri��� 	 �	 It is easy to
see that P j� d�h j# Pri��� 	 � implies P j� d�g j# Pri��� 	 �	 The fact that P j� dg j# Pri��� 	 �
follows by the observation above	

Notice that in Theorem �� �and in all the other results of the paper�� we assume that pi has
had no idea of what strategy pj is using	 We can easily modify the approach above to model a
situation where pi does have some information about pj �s strategy	 Among other things� we can
consider the standard assumption in game theory� that pj is rational� that is� pj would never
o�er pi a bet on � at odds ��� unless pj �s probability �according to Ppost� were at least �	
Notice that because an agent�s probability is computed relative to the set of worlds that that
agent considers possible� it is quite possible for pi and pj to agree to bet� this is because the fact
that they have di�erent information causes their estimates of the probability to di�er	 But now
notice that� if we assume pj is rational� then pi learns something signi�cant about the set of
worlds pj considers possible if pj o�ers him a bet	 Moreover� if pi is rational� then pj also learns
something signi�cant when pi accepts or rejects	 Suppose we modify the scenario to allow pj to
change his mind� so that if pi accepts or rejects� pj can o�er a bet with di�erent odds	 Suppose
we continue in this fashion until �nally pj o�ers pi a bet with odds � that pi accepts� and pj no
longer changes his mind	 A well�known result of game theory� due to Aumann 
Aum���� says
that at this point both pi and pj must agree that the probability of � is exactly ���	 Roughly
speaking� this says that rational agents cannot agree to disagree	��
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