
Efficient parallel algorithms can be made robust

Paris C. Kanellakis* Alex A. Shvartsmant

Abstract

The efficient parallel algorithms proposed for many
fundamental problems, such as list ranking, comput-
ing preorder numberings and other functions on trees,
or integer sorting, are very sensitive to processor fail-
ures. The requirement of efficiency (commonly for-
malized using Parallel-time x Processors as a cost
measure) has led to the design of highly tuned PRAM
algorithms which, given the additional constraint of
simple processor failures, unfortunately become ineffi-
cient or even incorrect. We propose a new notion of ro-
bustness, that combines efficiency with fault tolerance.
For the common case of fail-stop errors, we develop
a general (and easy to implement) technique to make
robust many efficient parallel algorithms, e.g., algo-
rithms for all the problems listed above. More specif-
ically, for any dynamic pattern of fail-stop errors with
at least one surviving processor, our method increases
the original algorithm cost by at most a multiplicative
factor polylogarithmic in the input size.

1 Introduction

An important issue for the full utilization of multi-
processor technology is: “the reliability problems of

*Address: INRIA /All&r, BP 105, Rocquencoart 73153 Le
Chesnay Ceder, FRANCE. Currently on leave from Brown Uni-
versity. The research of this author was supported by NSF grant
IRI-8617344, ONR grant N00014-83-K-0146 ARPA Order No.
4786, and an Alfred P. Sloan fellowship.

tAddress: Department of Computer Science, Brown Uni-
vewity, PO Box 1910, Providence, RI 02912, USA and Dig-
ital Equipment Corporation, MLOdl-S/E&T, 146 Main Street,
Maynard, MA 01754, USA. The research of this author was sup-
ported by NSF grant IRI-8617344.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-326-4/89/0008/0211 $1.50

systems consisting of a large number of processors”.
Such “massively parallel” systems use many general-
purpose, inexpensive processing elements to attain
computation speed-ups comparable to or better than
those achieved by expensive, specialized machines with
a small number of fast processors. As the number of
such inexpensive elements grows, one would expect to
see an increased number of failures, because it would
be too costly to make each element as reliable in hard-
ware as a single (or few) processor machine. In re-
sponse to this problem, fault tolerance is introduced in
multiprocessors through redundancy in hardware and
software.

In this paper we present a software approach to fault
tolerance that provides an effective way of transform-
ing existing parallel algorithms so that: when processor
fail-stop errors occur, the algorithm dynamically recon-
figures its computation and can successfully proceed to
completion, as long as there is at least one surviving
processor. Most importantly, the transformed parallel
algorithm is robust in the sense that the efficiency of
the original parallel algorithm is not significantly af-
fected: for any pattern of fail-stop errors, the original
(Parallel-time x Processors) performance is increased,
in the worst case, by a polylogan’thmic, in the input
size, multiplicative factor.

Our contributions are: (1) defining the notion of ro-
bust parallel computation, and (2) showing its feasi-
bility and wide applicability.

To understand the motivation for our work consider
a number of fundamental computation tasks such as:
manipulating integers (e.g., add or sort N integers)
manipulating lists and trees (e.g., compute the rank-
ings of the elements of a N-size list, and a preorder
numbering, subtree sizes,. . . , of a N-size tree) and
finding numerical solutions of equations using iterative
methods. Deficient parallel algorithms exist for these
problems. Namely, algorithms that attain close to lin-
ear speed-ups. That is, using P processors the paral-
lel time achieved is T(N)/P, where T(N) is the best
known sequential bound for inputs of size N (within

http://crossmark.crossref.org/dialog/?doi=10.1145%2F72981.72996&domain=pdf&date_stamp=1989-06-01

a multiplicative factor polylogarithmic in N) and P

ranges over 1, . . . , Iv. These algorithms play an im-
portant role in realizing the promise of high speed-ups
using ‘massive” parallelism.

Unfortunat,ely, the quest for high speed-ups has led
to efficient parallel algorithms that are very tightly de-
signed: “every processor is fully utilized doing some-
thing essential for resolving the input task”. Thus,
parallel algorithm efficiency implies a minimization of
redundancy in the computation that leaves very little
room for fault tolerance. It is interesting to note that
most of the known efficient parallel algorithms do not
terminate correctly or become quite inefficient if they
are perturbed by simple processor errors (which are of
course outside the original setting, but are nontheless
realistic).

The model of parallel computation that we use in
this paper is: the synchronous, concurrent read, con-
current write (CRCW) PRAM of FW 781, where the
highest numbered processor write succeeds and the
word size is O(log N), on inputs of size N. We investi-
gate PRAM processors with atomic steps and fail-stop
behavior, e.g., [SS 831. (See Section 2). Consider a
parallel algorithm that uses P processors and that, in
r parallel-time, completes its task on some input data
1 and in the presence of fail-stop errors F. Let there be
pi(1,F) surviving processors at step i. The parallel-
time processor product 7 x P is no longer that relevant.
We use its natural generalization S(I, F), which we call
the available processor steps or S for short.

s = S(I,F) = kPi(I,F)
i=l

In order to deal with processor failures, it is nec-
essary for the correct processors to detect the errors
and reschedule the work of the failed processors. The
main problem for efficient parallel algorithms is that
the minimization of redundancy in the computation
does not leave many resources for error detection and
load rescheduling. It is fairly easy to see that naive
processor error detection and reassignment strategies
(e.g., use a master control or cluster the processors) are
inadequate. A master control is sensitive to particu-
lar patterns of simple errors. Clustering can increase
the performance, measured as worst case available pro-
cessor steps (S defined above), by a linear or greater
multiplicative factor. Let us illustrate this discussion
with an example.

Example 1.1 One of the simplest tasks accomplished
in constant time by a N processor PRAM is the task of:
given a zero-valued array of N elements, write value 1
into each array location. This Write-All problem is
trivially accomplished by the following (PRAM) pro-
gram.

forall processors PID=l..N parbegin
shared integer array x[l..hq;
x[PID] := 1

parend

However, if as little as a single processor fails, then
z[i]=l (;=I, . . . , N) is no longer guaranteed as a post-
condition. Simple fixes are available that will make the
above program more fault tolerant. For example, for
a small number of failures < Jz, consider the clustering
algorithm below. It performs well for dynamic failure
patterns with few errors, but poorly if there are many
failures. For example, if k is fixed and N variable then
it cannot handle N/2 failures, and if k is allowed to
grow to N/2 then S becomes quadratic in N.
forall processors PID=l..N parbegin

shared integer array x[l..N];
for i=PID . PID+k do

ifi<N then x[i] := 1 else x[i-N] := 1 fl
od

parend

cl

Showing the existence of an algorithm for the Write-
All problem of the previous example, for which S
= O(N log2 N), is the key to our technique. Such
an algorithm also illustrates the notion of robustness.
The original parallel-time processor product, N, is in-
creased by at most a clog2 N multiplicative factor, for
any dynamic pattern of failures with at least one sur-
viving processor. Note that we have no a-priori knowl-
edge of how many, when, or which processors will fail.

Our robust solution of the Write-All problem is de-
scribed in Section 3. It is based on a parallel loop
through: (I) an error detecting phase, (2) a load
rescheduling phase, (3) a work phase where assignment
(z[i]:=l) p f is er ormed, and (4) a phase that estimates
the work remaining and controls the parallel loop. The
entire algorithm (IV) is moderately involved, but fairly
modular. Phases 1 and 4 involve bottom up traver-
sal of two different heaps and phase 2 involves a top
down traversal of these heaps. Algorithm W uses the
ability to atomically write PRAM words of O(log N)
bits and not only O(1) bits. (In Section 6 we describe
how to modify IV to relax this assumption). Our so-
lution is simple enough to capture certain engineering
intuitions (e.g., the rescheduling involves divide-and-
conquer) and to be easily implementable (e.g., we in-
clude a reasonably low level description of the code
in Appendix A). Proving robustness is the subject of
Section 4. The phases of the algorithm are such that
reasoning about the failure patterns does not involve
many cases and the algorithm analysis uses recurrences
and inequalities.

In Section 5, we use the Write-All problem to derive
robust solutions for a variety of problems. Most of
the efficient algorithms in the literature can be made
robust. There are a number of easy, yet interesting

212

consequences. The everpresent pointer-doubling algo-
rithm can be implemented in a robust way and this
leads to list ranking with S =O(Nlog3N). One can
compute the tree functions described in [TV 841 with
S=O(N log3 N). Batcher’s bitonic sort [B 681 can be
adapted to give a robust PRAM algorithm for integer
sorting with S =O(N log4 N). Robust PRAM summa-
tion of iV integers is possible with S =O(N log’ N).
For an application from numerical analysis: with the
proposed approach we can increase the fault tolerance
of asynchronous iterative methods [B 781.

In Section 6, we describe how to modify algorithm
W in order to use only atomic writes of constant word
size, without changing its performance. We conclude
in Section 7 with some open questions.

Relationship to other work on fault tolerance:

Adding fault tolerance to algorithms is the subject
of much current research in the (qualitatively different)
setting of dynamic asynchronous network protocols,
see [AAG 871, [AAPS 871, [A 885, [AS 881 for recent
results and an overview of this area. Distributed con-
trollers have been developed for resource allocation in
network protocols, where the total number of messages
sent is the resource controlled. For instance, the algo-
rithms of [LGFG 861 (with a probabilistic setting) and
of [AAPS 871 (with a deterministic setting) are among
the most sophisticated in that area. The problem we
address in this paper is, at an intuitive level, one of con-
trolling resource allocation. The resource controlled is
all available PRAM processor steps, and the reason
we are forced to control it, is the requirement to com-
plete the computation in the presence of faults. Note
that unreliable PRAM processor steps must control all
available PRAM processor steps. This introduces dif-
ficulties that recall the presence of network changes in
[AAG 871, [A 88], [AS 881, i.e., dynamic changes of the
computation medium.

At a high level, there are some analogies between
our approach and the controller of [AAPS 871. But
our emphasis is on fault tolerant, efficient, parallel
computation versus control of communication com-
plexity in distributed networks. More specifically, in
both cases, there are similar concerns of error detec-
tion (best performed through some approximate calcu-
lation) and load rescheduling (best performed through
some divide-and-conquer according to a hierarchy).
However, in each case, we have very different under-
lying models for computation, for faults and for the
resources controlled. As a consequence, the actual al-
gorithms as well as their analysis differ.

It is interesting that the concept of a “communi-
cation complexity controller” (first developed for dis-
tributed computing) has an analog in parallel comput-

. ,
ing, I.e., “an algorithmic transformation that guaran-
tees robustness”. Note that the parallel setting is sim-
pler to define and has an easier to describe solution,
immediately applicable to a large body of existing work
on parallel algorithms.

Our modeling of fault tolerance has some similar-
ities with the design of “robust” sorting networks,
as in [R 851, and in general with the design of reli-
able systems from unreliable components, as in [P 851
or [DPPU 861. One distinguishing characteristic of
our approach is investigating fault tolerance at the
(PRAM) processor level as opposed to at the gate level
[P 85, R 851. Our notion of robustness differs from that
of [R 85]. In the sorting network of [R 851, a linear
number of operations are still critical.

Finally, the parallel setting with fail-stop processor
errors is free from the limitations inherent in situations
that require consensus ([PSL 801, see [F 831 for a good
survey of the topic) such as the lower bounds of [FL 821,
[FLP 851, [DDS 831. This is because atomic broadcast
can be simulated in a synchronous multiprocessor with
shared memory and concurrent writes.

2 Robust parallel computation

We use the CRCW PRAM model [FW 781 where the
highest numbered processor write succeeds and the
word size is O(logN) on inputs of size N. Our basic
technique can be applied in a fairly model indepen-
dent fashion. So in describing PRAM algorithms we
use Pascablike notation with obvious constructs such
as parbegin . . . parend.

For our computation model we assume that: (1) We
start with a set of P initial processors. Each of these
initial processors knows its PID, a unique number in
the range 1,. . . , P. (2) Each processor knows both
the number of initial processors P and the input size
N. It reads them from some common read-only store.
(3) All processors execute the same instructions, from
some common read-only store, on different data. Also,
in the algorithms of this paper all concurrently writ-
ing processors write the same value. (4) We denote
as shared the data-structures manipulated by more
than one processor. All other data-structures are of
constant size and are local to the processors. The ini-
tial values in all these data-structures are assumed to
be 0.

For our failure model we assume that: (1) We only
consider fail-stop behavior: processors can fad between
PRAM steps by stopping ,and not performing any fur-
ther steps. Fail-stop models -are .a reasonable approxi-
mation of what is desirable and achievable in practice
[SS 831. (2) W e assume that individual PRAM steps
are atomic: if they execute then they execute fully, This

213

is a nontrivial assumption, since words are of O(log N)
size. We will reexamine it in Section 6. (3) We allow
any dynamic pattern F of fail-stop errors provided one
processor survives. Clearly one processor is necessary
if anything is to be done. F describes which proces-
sors fail and when, This pattern is determined by an
adversary, who khows all about the algorithm and is
totally unknown to the algorithm. (Note that the only
limitations of the adversary are that: errors must be
fail-stop and one processor survives).

Let a parallel algorithm complete its task, on some
input data I and in the presence of fail-stop errors
F, in parallel-time T. If there are Pi(I,F) surviving
processors at step i then: S(I, F) = Ciz1 Pi(I, F).
S(I, F) is the number of all available PRAM processor
steps.

Definition 2.1 Let T(N) be the best sequential
(RAM) time bound known for N-size instances of
problem II. We say that an algorithm for H is a ro-
bust pamllel algorithm if: for any input I of size N
and for any number of initial processors P (where
1 5 P 5 N) and for any failure pattern F, this al-
gorithm has S(I, F) 5 CT(N) loge’ N, for some fixed
constants c, d.

For simplicity of presentation, in the rest of this ab-
stract we assume that: P the initial number of proces-
sors is N, where N is the input size. Our results easily
extend to any P in the range 1,. . . , N. All logarithms
in this paper are base 2.

3 The Algorithm W

In this section we describe a robust parallel algorithm
W for the Write-All problem from Example 1.1. Here
and in the detailed description in the Appendices we
assume that N is a power of 2. Nonpowers of 2 can be
easily handled using conventional padding techniques.
(Also recall that P = N).

Data-structures: We use four full binary trees, each
of size 2N - 1, stored as heaps in shared memory. By
heap h[l . . .2N - l] we mean that: arruy h codes a full
binary ZTee structure by using h[i] (; = 1,. . . , N - 1)
as an internal tree node with corresponding left child
h[Z] and right child h[2i + l].

The heaps are c[l . . .2N - l] (for processor counting)
cs[l.. .2N - I] (for keeping step numbers) d[l . . .2N -
1] (for progress counting) and a[1 , . .2N - 11 (for top-
down auxiliary accounting). They are initialized to 0.

The input is in shared array z[l . . . N], where the N
elements of this array should be thought of as related
to the leaves of the heaps. Element ~[i] is related to
c[i+N-I], cs[i+N-11, d[i+N-11, and toa[itN-11.

Each processor uses some constant amount of local
memory. For example, this local memory may be used
to perform some simple arithmetic computations. Im-
portant local variables are PID, containing the initial
processor identifier, and pn, containing a dynamically
changing processor number. Note that: PID’s don’t
change but. pn’n do.

Thus, the overall memory used is O(N + P) and the
data-structures are very simple.

Control-flow: The algorithm consists of the parallel
loop right below. This is performed, in a synchronous
way, by all processors that have not stopped. The loop
consists of four phases of steps, and the first time only
part of it is executed (phases 3 and 4). Of course, pro-
cessors can fail-stop at any time during the algorithm.

forall processors PID=l..N parbegin

(Phase 3:) Visit the leaves based on PID to
perform work on the input data.
(Phase 4:) Traverse the d heap bottom up to
measure progress.

while the root of the d heap is not N do

(Phase 1:). Traverse the c, cs heaps bottom up
to count processors a.nd give them pn’s.
(Phase 2:) Traverse the d, a, c heaps top down
to reschedule work.
(Phase 3:) Perform. rescheduled work
on the input data.
(Phase 4:) Traverse the d heap bottom up
to measure progress.

od
parend

The basic idea of the loop is: “For error detection
use bottom up, fast parallel summation to estimate
the surviving processors and to estimate the progress
they have made. For load rescheduling use a top down,
divide-and-conquer strategy baaed on the estimate of
progress made”. This idea is realized as follows.

Phase 1: Each processor PID traverses heaps c
and cs bottom up from z[PID] (i.e., from location
PID+N-1). The O(log N) path of this traversal is the
same (static) for all the loop iterations. As a processor
performs this traversal it calculates an overestimate of
the surviving processors. For this, it uses a standard
O(log N) parallel-time version of a CRCW summation
algorithm. Heap c holds the sums and heap cs times-
tamps (or step numbers) for the current loop iteration.
This allows reusing c without having to initialize it
each time. Also, during this traversal surviving pro-
cessors calculate new processor numbers pn for them-
selves, based on the same sums. (Procedure Static
Bottom Up Traversal in Appendix A).

Phase 2: All surviving processors now start at the
root of the d heap. In d[z.J there is an underestimate

214

of the work already performed in the subtree defined
by i. Now the processors traverse the d heap top down
and get rescheduled dynamically according to the work
remaining to be done in the children of i. Auxiliary
heap a is used by the processors to compute paths
to the leaves that were visited in the past and whose
count is reflected in d[l]. We compute a from d dur-
ing the traversal. The rescheduling of work is done
using divide-and-conquer according to N - a[2i] and
N - a[2i + 11. This is accomplished by modifying pn
and reusing heap c. (Procedure Dynamic Top Down
Traversal in Appendix A).

Phase 3: All processors are now at the leaves. Each
processor tries to write 1 in the leaf it has been resched-
uled to. To start the loop each processor PID tries to
write in location z[PID]. (P rocedure Main in Appendix

A).

Phase 4: The processors record the progress made
by traversing the d heap bottom up and using the
standard summation method. The O(logN) path of
this (dynamic) traversal can differ in each loop iter-
ation, since processors start from the leaves where
they were in phase 3. What is computed each time
is an underestimate of the progress made. No times-
tamps are needed here because the progress recorded
increases monotonically. (Procedure Dynamic Bottom
Up Traversal in Appendix A).

Let us now examine phase 1 in some more detail.
In the bottom up traversal processor PID writes a 1 in
leaf c[PID+N- l] of the tree c. If a processor has failed
before it wrote 1 then that will not contribute to the
overall count. If a processor failed after it wrote 1 then
this number still can contribute to the overall sum, if
its subtree neighbor survives. The same observation
applies to counts at internal nodes, which are sums of
the counts of the children nodes in tree c.

It is easy to show that: phase 1 will always compute
in c[l] an overestimate of the number of processors,
which are surviving at the time of its completion. (See
Lemma 4.1).

For example: given 4 processors, if processor 1 failed
before the start of phase I, and processor 3 failed right
after writing 1 into its leaf c[6], and processor 4 failed
after calculating 2 the sum of its and processor 3’s
contribution in c[3], then the heap will look as follows
at the completion of the phase.

+-mm-+

I31 root value ccl1 = 3
+ ---- + ---- + yet the number of
I ii 21 active processors is 1
+----+----+----+----+

IOI 11 II II
+----+----+----+----+

Pl P2 P3 P4

We also need to enumerate the surviving processors.
This is accomplished by each processor assuming that
it is the only one, and then adding the number of the
surviving processors it estimates to its left. This enu-
meration creates pn.

Finally, in phase 1 we must be able to reuse our heap
several times. This presents a problem. For example,
if a processor wrote 1 into its heap leaf and then failed
then the 1 will remain there forever, thus preventing
us from computing monotonically tighter estimates of
the number of surviving processors. This is rectified by
associating a step number with each node of the count
heap, thus “time stamping” valid data. The count step
is initially zero, and during each successive loop iter-
ation, gets incremented by each surviving processor.
Failed processors will not increment their step num-
bers, thus enabling the surviving processors to detect
counts that are “out of date” and treat them as zeros.
We need not worry about “time stamping” overflow,
since we have words of O(log N) bits and in the worst
case the loop iterates N times. (Because, every itera-
tion writes one bit at least).

We now comment first on phases 3, 4 and then on
phase 2. Phase 3 is where the work of the original non-
robust algorithm gets done. Phase 4 is a simple variant
of phase 1, except for the fact that the path traversed
bottom up is dynamically determined. One can easily
show that: the progress recorded in d[l] by phase 4
increases monotonically and underestimates the actual
progress. (See Lemma 4.1).

In phase 2, it is essential to be able to divide the re-
maining work evenly among the remaining processors.
In the next section, we will show that this is done with
at most a small round-off error. (See Lemma 4.2). We
use pn (dynamic processor number) and reuse heap c
to partition the processors, between the left/right sub-
trees in heap d+

In this phase, we are going to guarantee that the
remaining processors are divided evenly among the
leaves that either have not been visited or whose vis-
itation was not properly recorded in d[l] (recall that
d[l] is an underestimate of the number of the leaves
visited). This is accomplished within the top down
traversal by disregarding “partial” progress recorded
by the processors in the dynamic bottom up traversal
of heap d. This partial progress can be detected, dur-
ing the dynamic top down traversal, when a value at an
internal node of d is less than the sum of the values of
its two descendants. This could happen, if a processor
had failed during the dynamic bottom up traversal of
d. In algorithm W, we use an auxiliary heap a where
the values of d are appropriately reduced to produce
a correct summation heap. The leaves of heap a with
value 0 are those leaves that have not contributed to
the count in d[l].

215

The values of heap u are nonnegative integers
constrained (top down) as follows: a[l]=dfl] and
a[2iJ+a[2i + l]=a[i] and uf2i] 5 d[2i] and a[2i + l] 5
42i + I] (1 _< i 5 N - 1). Clearly this does not define
the values of a uniquely, and our top-down traversal
in Appendix A implements one way of computing the
values of a satisfying these constraints. Note that, for
any a[;], its value is computed based only on the vaIues
of heap d and the values of a along the unique path
from a[i] to the root a[l], this allows us to compute the
accounted values in parallel.

4 Analysis of Algorithm W

We now outline the proof of robustness for the algo-
rithm IV, described in Section 3.

In the dividing done during the dynamic top down
traversal in W, we will allocate processors to tasks that
have been completed, but not yet “accounted for” at
the root d[lJ,. Formally, a leaf of d is accounted if it has
value 1 and if the corresponding computed value in the
leaf of heap a is also 1. In the algorithm W, the pro-
cessors get allocated to the unaccounted leaves (leaves
whose associated value in heap a is 0) in a balanced
fashion.

We need some more terminology. Let us consider
the i-th iteration of the loop. Define: (1) Vi to be
the estimated remaining work, the value of N - d[l]
right before the iteration starts (i.e., right after phase
4 of the previous iteration). (2) Pi to be the real num-
ber of surviving processors, right before the iteration
starts (i.e., right after phase 4 of the previous itera-
tion). (3) Ri to be the estimated number of surviving
processors, that is the value of c[l] right after phase 1
of the iteration. Our algorithm produces fi that is an
overestimate of surviving processors Pi+l. However, at
most P; processors can be counted (an upper bound for
l&). The following can be shown by straightforward
induction on the structure of the tree c (the proof is
omited from this abstract).

Lemma 4.1 In algorithm W, for all loop-iterations i
we have: Pi >_ & > Pi+1 and Vi 2 Ui+r, as long as at
least one processor survives.

The next lemma is proven by establishing an invari-
ant for phase 2 of the algorithm (the proof is easy and
omited from this abstract).

Lemma 4.2 In phase 2 of each loop-iteration i of al-
gorithm W: (1) processors are only allocated to unac-
counted leaves, and (2) no leaf is allocated more than
r&/Ui] processors.

We will treat the three log N time tree traversals
performed by a single processor during each phase of

the algorithm as a single block-step of cost O(log N).
We will charge each processor for each such block
step, regardless of whether the processor actually com-
pletes the traversals or whether it fail-stops somewhere
in-between. This coarseness will not distort our re-
sults; since we can have at most P processor failures
it amou& t.n a. nne time overcharge nf O(Plog N).

Let us take a snapshot of the algorithm after com-
pletion of several loop-iterations. We are right before
loop-iteration i. K stands for the total number of
block-steps performed by the processors in trying to
complete all remaining work (at most Vi). Now we
present the central lemma:

Lemma 4.3 For any failure pattern with at least one
surviving processor, and starting at each loop-iteration
i, algorithm W completes all remaining work. Also, its
total number of block-steps 6 is less than or equal to
Pi + Vi + Pi log(Ui), where 1 5 Pi, Vi 5 N.

Proof sketch: We proceed by induction on the
size of Vi. For the base case: We have at most
one unaccounted leaf and some number of processors
(Ui = 1, P; > 1). As long as at least one processor sur-
vives, we are going to visit the single remaining leaf in
one phase in which at most Pi processors participate
and Pi 5 Pi+l+Pilog(l).

For the inductive hypothesis: we assume the lemma
is true for all Vi < U, Pi 2 1, where U 5 N. We will
then prove it for Ui = U, Pi 2 1.

We divide the proof in two cases: (1) as many un-
accounted leaves at least as processors, i.e., Pi < Vi,
and (2) more processors than unaccounted leaves, i.e.,
Pi > Vi.

In both cases, by Lemma 4.2, We have that the (ac-
counted) progress for iteration i is at least the num-
ber of surviving processors Pi+1 divided by rR;/Ui].
This is because each one of these processors returns
to the root d[l], reporting some progress, and at most
r&/Vi] processors report information about the same
leaf.

Also, by Lemma 4.1, Pi 1 & 2 Pi+1 and we can
assume that HPi = Pi+l, for some A: with 0 < Jz 5 1
(at least one processor survives). Thus, for both the
above cases, we have:

vi+1 5 (Vi - $&j-j I C”i - pi+1 1 + Rip;)

5 Uj(l-
k

1 + vi/Pi 1

For case (1) it is easy to see that we will have at most
one processor allocated to each unaccounted leaf so:
vi+1 5 vi-pi+l- For case (2) by the above inequality
and Pi > Vi we have Ui+l _ < Ui(l - h/2). Now we
use the inductive hypothesis (but for iteration i + 1) in
both cases.

216

Case (1) : The survival of at least one processor and
Ui+r 5 Vi - Pi+i imply that Ui+l < Ui. The total
work (in block-steps) is at most Pi+Vi+l, where by the
hypothesis K+i < Pi+i + Ui+l +Pi+l l~g(Ui+i). Thus,
it suffices to show that Pi+r + Vi+1 + Pi+1 log(Ui+l)
is less than or equal to Vi + Pi log(Ui). This is trivial
given Vi+1 5 Vi - Pi+r and Lemma 4.1.

Case (2): There are two subcases. If k = 1 the
algorithm completes correctly in one iteration and the
work Pi = & = Pi+1 trivially satisfies the Lemma.
The second subcase is the most interesting one and is if
0 < k < 1. For this subcase we use Ui+l 5 Ui(l-k/2),
which implies Vi+1 < Vi. As in case (l), the total
work (in block-steps) is at most Pi+K+,, where by the
hypothesis Vi+1 5 Pi+1 + Ui+l + Pi+; log(Ui+l). Thus,
it suffices to show that Pi+1 + Ui+l + Pi+1 log(Ui+i) is
less than or equal to Vi + Pi log(Vi). For 2 > Ui+i = 1
this is trivial.

By simple manipulation it suffices to show that:
kPi + Ui(1 -k/2) + kPi log(Ui(1 -k/2)) is less than or
equal to Vi + Pi log(Ui) . This is equivalent to showing
that:

k(l-$)+klog(l-;)<(l-k)logU,
i

Recall that all logarithms are base 2 and therefore
(log(1/2) = -1). s ince Vi 2 2 (Vi = 1 was taken
care of by base case) we have log Ui 1 1. Also, in
this case 1 - Ui/2Pi 2 1. It thus suffices to show the
inequality: (*) klog(2 - 1) 5 (1 - k), for 0 < k c 1.
Inequality (*) is true by elementary calculus (it is tight
only for k = 1). This completes the proof of the second
subcase, of case (2) and of the Lemma. q

Theorem 4.1 Algorithm W is a robust parallel
algorithm for the Write-All problem with S =
O(N log’ N), where N is the input array size.

This immediately follows from Definition 2.1 and
Lemmas 4.2 and 4.3. In our analysis we show an up-
per bound of O(N log N) block-steps. It is possible to
construct failure patterns that force the algorithm to
take Q(N log log N) (th’ IS example is due to Jeff Vitter)
and R(N log N/ log log N) block-steps. Finally, note
the difference between block-steps and loop-iterations;
there can be at most N loop-iterations since d[l] de-
creases by at least 1 each time.

5 Some Applications

The algorithm W for the Write-All problem can be
used as a building block for transforming many efficient
parallel algorithms into robust ones.

We can first extend the algorithm W to implement a
robust general parallel array assignment. For example,

consider computing and storing in an array z[l . . . N]
values of a function f whose values depend only on
the processor numbers PID and the initial values of
the array x. Also, assume f can be computed in O(1)
sequential time.

forall processors PID=l..N pm-begin
shared integer array x[l..N];
x[PID] := f(PID,x[l..N])

parend

In order to adapt the algorithm W, we need to con-
vert the parallel assignment to a form that is suitable
for asynchronous fault-tolerant execution. This is ac-
complished using binary version numbers:

forall processors PID=l..N parbegin
shared integer array x[O..l][l..N];
bit integer v;
x[v+l][PID] := f(PID,x[v][l..Nj);
v:=v+l

parend

This approach is conceptually similar to that of
[B 881 where a solution to the concurrent read/write
register problem is given using two registers with sin-
gle bit tags to implement a single register tolerant of
fail-stop errors. Here, v is the current bit (modulo 2)
version number (or tag), so that z[v][l . . . N] is the ar-
ray of current values. Function f will use only these
values of x as its input. The values of f are stored in
c[v + lJ[l . . . N] creating the next generation of array
2. After all the assignments are performed, the binary
version number is incremented (modulo 2).

At this point, a simple transformation of the algo-
rithm W will yield a robust algorithm for generrzl paral-
lel array assignment. In phase 3 the assignment of 1 to
z[i] is replaced with the assignment shown above. One
important application of this technique produces a ro-
bust pointer-doubling operation that is a basic building
block for many parallel algorithms. In a similar way,
it is possible to systematically produce robust versions
of many efficient parallel algorithms.

The transformation is almost automatic for a large
number of efficient parallel algorithms, but not in all
cases. The original algorithm has to have an iterative
structure, that will be simulated by an iterated use
of Write-All. Moreover, the computation performed
must have a Church-Rosser like flavor. For example a
sufficient condition is: “The efficient parallel algorithm
manipulates an array c in an iterative loop. The new
values in t computed by each iteration of the algorithm
depend only on the old values of x. It does not matter
if the operations on some data elements are not per-
formed for some iterations”. Such conditions are true
for many numerical computations, such as in [B 781, to
which we can add robustness (here the running-time
also depends on a desired precision parameter E). Let
us describe some of its more practical consequences.

217

Proposition 5.1 There is a robust parallel algorithm
for list ranking with S = O(N log3 N), where N is the
input list size.

Proposition 5.2 There is a robust parallel algorithm
for computing the tree functions of [TV 84] with S =
O(N log3 N), where iV is the input tree size.

Proposition 5.3 There is a robust parallel bitonic
sort with S = O(N log4 N), where N is the number
of integers to sort.

6 On Constant Word Size

One observation is that algorithm W provides (by its
definition) a robust parallel algorithm for N integer
summation with S = O(N log2 N). The interesting
question, however is what happens with 0(1) bit words
and arithmetic at the bit level. In this section, we
adapt our method to O(1) bit words.

Thus far, we relied on the property of our model
to perform log N parallel writes atomically. That is
the model allows (1) log N-size words to be written in
unit time, and (2) the adversary could cause failures
either before or after the write cycle of the PRAM, but
not during the write cycle. The algorithm W can be
modified so that these two restrictions are relaxed.

The new definition of atomicity becomes: (1) log N-
size words are written using log N bit write cycles, and
(2) the adversary can cause arbitrary fail-stop errors
either before or after the single bit write cycle of the
PRAM, but not during the bit write cycle.

The algorithm W can be modified so that: there
is preservation of the O(N log2 N) available processor
steps (counting log N bit write cycles as one time unit)
and preservation of O(N) word space use (counting
log N bits as one word).

This is accomplished by simulating log N-size word
atomic writes using a single bit tag and two log N-size
words. The two words are numbered 0 and 1, and the
bit tag (initially 0) indicates which of the two words
has valid contents. Thus each shared memory location
is represented as:

record
bit integer t; --current valid version number
integer X[O..l]; --log N-size values indexed by t

end

Each read cycle of the shared memory now becomes:

begin --mmaer~ read cycle
read tag from t; --read the tag
for i=l to log(N) do --read the contents

read bit i of value fkom bit i of X[tag];
od

The write cycle to the shared memory becomes:

begin --macro vtite cycle
read tag from t; --read the tag
tag := tag + 1 (mod 2);
for i=l to log(N) do --write the contents bit at D time

write bit i of value to bit i of X[tag];
od
write tag to t; --write the new tap-

end

Since the single bit tag is the last bit written dur-
ing the write cycle, a failure anywhere during this high
level write cycle will prevent the tag value to be up-

dated, and so any subsequent read will be able to read
the previous value stored. This approach is similar to
that of @3 881, and it is somewhat simpler due to the
fact that we are dealing with the synchronous model.

The algorithm W can be mechanically transformed
using the macro read and write cycles above to a
version that only requires single bit atomic writes.
Clearly, the number of log N-size words read or written
by each macro cycte is O(I) as before, and the shared
memory requirements are within a factor of two of the
original memory size. Therefore, performance of the
modified algorithm has not changed asymptotically.

From the above discussion, it follows that robustness
for Write-All can be achieved with constant size words.
The same arguments apply to all the propositions on
robustness in Section 5.

7 Conclusions

We have formally defined and demonstrated the fea-
sibility and wide applicability of robust parallel com-
putation. We close this paper with a number of open
questions.

What are W’s precise performance bounds and can
it be improved? Are there general characterizations
for classes of problems with robust parallel algorithms?
What extensions can be made to our robustness defi-
nitions (e.g., other types of faults)? What are the pre-
cise analogs of robustness in network models of parallel
computation (this could involve application of the work
on distributed network controllers, e.g., [AAPS 871,
to parallel computation). 7 What about randomized
robust parallel computation (formalizations along the
lines of [LGFG 86])?

Acknowledgements: We would like to thank
Franqois Bancilhon, Serge Abiteboul and Al Lathrop
for their comments on a preliminary draft of this ab-
stract as well as Serge Plotkin and Jeff Vitter for help-
ful discussions.

218

8 References

[A 881 B. Awerbuch, “On the effects of feedback in
dynamic network protocols”, in Proc. of the 29th
IEEE FOGY, pp. 231-242, 1988.

[AAG 87 J Y. Afek, 13. Awerbuch, E. Gafni, “Ap-
plying static network protocols to dynamic net-
works”, in Proc. of the 28th IEEE FOCS, pp.
358-370, 1987.

[AAPS 871 Y. Afek, B. Awerbuch, S. Plotkin, M.
Saks, “Local management of a global resource in
a communication network”, in Proc. of the 28th
IEEE FOG’S, pp. 347-357, 1987.

[AS 881 B. Awerbuch, M. Sipser, “Dynamic networks
are as fast as static networks”, in Proc. ojthe 29th
IEEE FOCS, pp. 206-219, 1988.

[B 681 K.E. Batcher, “Sorting networks and their ap-
plications”, in Proc. of the AFIPS Spring Joint
Comp. Conf., vol. 32, pp. 307-314, 1968.

[B 781 G. Baudet, “Asynchronous iterative methods
for multiprocessors”, JACM, vol. 25, no. 2, pp.
226-244, 1978.

[B 881 B. Bloom, “Constructing two-writer atomic
registers”, IEEE Duns. on Computers, vol. 37,
no. 12, pp. 1506-1514, 1988.

[DDS 831 D. Dolev, C. Dwork, L. Stockmeyer, “On
the minimal synchronism needed for distributed
consensusn, in Proc. of the 24th IEEE FOCS, pp.
393402, 1983.

[DPPU 861 C. Dwork, D. Peleg, N. Pippinger, E.
Upfal, “Fault tolerance in networks of bounded
degree”, in Proc. of the 18th ACM STOC, pp.
370-379, 1986.

[F 831 M. J. Fischer, “The consensus problem in un-
reliable distributed systems (a brief survey)“, Yule
Univ. Tech. Rep., DCS/RR-273, 1983.

[FL 821 M. J. Fischer and N. A. Lynch, “A lower
bound for the time to assure interactive consis-
tency”, IPL, vol. 14., no. 4, pp. 183-186, 1982.

[FLP 851 M. J. Fischer, N. A. Lynch, M. S. Paterson,
“Impossibility of distributed consensus with one
faulty process”, JACM, vol. 32, no. 2, pp. 374
382, 1985.

[LGFG 861 N.A. Lynch, N.D. Griffeth, M.J. Fischer,
L.J. Guibas, “Probabilistic analysis of a network
resource allocation algorithm”, Information and
Control, vol. 68, pp. 47-85, 1986.

[P 851 N. Pippinger, “On networks of noisy gates”, in
Proc. of the 26th IEEE FOCS, pp. 30-38, 1985.

[PSL 801 M. Pease, R. Shostak, L. Lamport, “Reach-
ing agreement in the presence of faults”, JACM,
vol. 27, no. 2, pp. 228-234, 1980.

[R 851 L. Rudolph, “A robust sorting network”, IEEE
Trans. on Comp., vol. c-34, no. 4, pp. 326-335,
1985.

[S 831 R. D. Schlichting and F. B. Schneider, “Fail-
stop processors: an approach to designing fault-
tolerant computing systems”, ACM Trans. Com-
put. Syst., vol. 1, no. 3, pp. 222-238, 1983.

[TV 841 R. E. Tarjan, U. Vishkin, “Finding bicon-
netted components and computing tree functions
in logarithmic parallel time”, in Proc. of the 25th
IEEE FOCS, pp. 12-22, 1984.

[FW 781 S. Fortune and J. Wyllie, “Parallelism in
random access machines”, Proc. 10th ACM
STOC, pp. 114118, 1978.

219

A Write-All Implementation A.2 Static Bottom Up Traversal

A.1 Main Procedure for Write-All

The loop consists of the four phases outlined in Section
3. Processor counting and enumeration is implemented
as a static bootom up traversal in procedure SBU(),
work-s&gnment is done in a dynamic top down traver-
sal in procedure D,TD(), the work itself is a simple
assignmnet “xk]:=ln I and the progress is measured
in procedure via a dynamic bottom up traversal in
D-BU().

forall processors PID=l..N
parbegin

shared integer array
x[l..N], --input army
c[1..2N-11, --processor counts
cs(1..2N-11, --count step number3
d[1..2N-11, --progress/done tree
a[1..2N-I]; --accounted tree

local integer
P% --enumemted processor no.
k --array element PID will be assigned to
step; --time stamp

step := 0; --initialize processor counting step
k := PID; --initially work data item PID
xb] := 1; - -visit leaf
D-BU(k); --measure progress

while d[l] # N do

S-BU(PID,step,pn); --enumerate proc-5
D-TD(pn,k); --assign work
x&] := 1; --do work: hit hf
DBU(k); - - meadwe progress

od
parend ;

All processors traverse heap c to compute the overes-
timate of the number of processors in c[l], and each
processor computes its processor number pn that is
used in the work assignment phase. The heap cs is
used to synchronize processor counting across multiple
calls to S-BU().

procedure S_BTJ(vaIue integer PID, --ptwc. id
shared integer step, --time
local integer pn) --Proc. no.

shared integer array
c[l..ZN-11, --processor count8
cs[l..SN-l]; --count step numbers

local integer jl, j2, --siblings indices
t; --parent of jl and jZ

step := step + 1; --new time stamp

il := PID + (N-l); --heap-leaf init

pn := 1; --assume this processor is no. 2

ctjl] := 1;
csUl] := step; --count the processor once

--Traverse the tree from leaf to root
for 1 ..log(N) do

t := jl div 2; --parent of jr and j.9

if2*t = jl
then j2 := jl + 1 --jl came from left
else j2 := jl - 1 --jl came from right

f-l;

if csfil] = c&2] --both sub-trees active?
then c[t] := c[jl] + 42] --both active

ifjl > j2 --jl came from right
then pn := pn + 421
fl

else c[t] := cljl] --all sibIings failed

fi;
cs[t] := step; --time stamp, and
jl := t --advance up the heap

od
end ;

220

A.3 Dynamic Bottom Up Traversal

Heap d contains the underestimates for the number
of leaves visited in each subtree, with d[l] containing
the underestimate of the total number of leaves visited.
This number is used in terminating the overall program
(when d[l]=N).

procedure D-BU(value integer k --current Ieuf

1
shared integer array

d[1..2N-11; --done/progress tree
local integer

il, i2, - -siblings indices
t; --parent of il and it

il := k + (N-l); --heup-leaf init.
d[il] := 1; --done for good

--Tmverse the tree from leaf to root
for l..log(N) do

t := il div 2; --parent of ii and i2

--compute left/right indices
if 2*t = il
then i2 := il + 1
else i2 := il - 1

fi;

d[t] := d[il] + dF2]; --update progress
il := t --advance to the predecessor

od
end ;

A.4 Dynamic Top Down Traversal

This procedure implements load rescheduling of the re-
maining active processors. Heaps c and d are traversed
top down. Heap a is used to construct paths to a set of
the properly accounted leaves. Heap c is used to par-
tition the remaining processors between the left and
right tree branches, and heap d contains the progress
information for the subtrees being traversed. Proces-
sors are allocated in proportion to the remaining work.

procedure D-TD(value integer pn --enum. no.
local integer k) --data item

shared integer array
c[1..2N-11, --procesor counts
d[1..2N-11; --progress/done tree
a[1..2N-11; --accounted tree

local integer i, il, i2; --curr./left/right indices

i := 1; --start at the root
size := N; --whole tree is visible from the root
a[l] := d[l]; --no. of all accounted nodes

while size # 1 do --traverse -from root to leaf

il := 2*i; i2 := il + 1; ---left/right indices

--compute accounted node values
if d[il]+d[i2] = 0
then a[il] := 0
else a[il] := a[i]*d[il] div(d[il]+d[i2])
fi;
a[i2] := u[i] - a[il];

--processor allot. to left/right sub-trees
c[2*i] := c[i]*((size/2)-a[2*i]) div(size-a[i])
c[2*i+lf := c[i] - c[2*i];

--go left/right based on proc. no.
if pn 5 c[2*i]
then i := 2*i --go left
eise i := 2*i + 1 --go right

pn := pn - c[2*i]
fi;

size := size div2 --half of leaves visible
od ;
k := i - (N-l) -- assign processor based on i

end ;

221

