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Abstract 

The efficient parallel algorithms proposed for many 
fundamental problems, such as list ranking, comput- 
ing preorder numberings and other functions on trees, 
or integer sorting, are very sensitive to processor fail- 
ures. The requirement of efficiency (commonly for- 
malized using Parallel-time x Processors as a cost 
measure) has led to the design of highly tuned PRAM 
algorithms which, given the additional constraint of 
simple processor failures, unfortunately become ineffi- 
cient or even incorrect. We propose a new notion of ro- 
bustness, that combines efficiency with fault tolerance. 
For the common case of fail-stop errors, we develop 
a general (and easy to implement) technique to make 
robust many efficient parallel algorithms, e.g., algo- 
rithms for all the problems listed above. More specif- 
ically, for any dynamic pattern of fail-stop errors with 
at least one surviving processor, our method increases 
the original algorithm cost by at most a multiplicative 
factor polylogarithmic in the input size. 

1 Introduction 

An important issue for the full utilization of multi- 
processor technology is: “the reliability problems of 
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systems consisting of a large number of processors”. 
Such “massively parallel” systems use many general- 
purpose, inexpensive processing elements to attain 
computation speed-ups comparable to or better than 
those achieved by expensive, specialized machines with 
a small number of fast processors. As the number of 
such inexpensive elements grows, one would expect to 
see an increased number of failures, because it would 
be too costly to make each element as reliable in hard- 
ware as a single (or few) processor machine. In re- 
sponse to this problem, fault tolerance is introduced in 
multiprocessors through redundancy in hardware and 
software. 

In this paper we present a software approach to fault 
tolerance that provides an effective way of transform- 
ing existing parallel algorithms so that: when processor 
fail-stop errors occur, the algorithm dynamically recon- 
figures its computation and can successfully proceed to 
completion, as long as there is at least one surviving 
processor. Most importantly, the transformed parallel 
algorithm is robust in the sense that the efficiency of 
the original parallel algorithm is not significantly af- 
fected: for any pattern of fail-stop errors, the original 
(Parallel-time x Processors) performance is increased, 
in the worst case, by a polylogan’thmic, in the input 
size, multiplicative factor. 

Our contributions are: (1) defining the notion of ro- 
bust parallel computation, and (2) showing its feasi- 
bility and wide applicability. 

To understand the motivation for our work consider 
a number of fundamental computation tasks such as: 
manipulating integers (e.g., add or sort N integers) 
manipulating lists and trees (e.g., compute the rank- 
ings of the elements of a N-size list, and a preorder 
numbering, subtree sizes,. . . , of a N-size tree) and 
finding numerical solutions of equations using iterative 
methods. Deficient parallel algorithms exist for these 
problems. Namely, algorithms that attain close to lin- 
ear speed-ups. That is, using P processors the paral- 
lel time achieved is T(N)/P, where T(N) is the best 
known sequential bound for inputs of size N (within 
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a multiplicative factor polylogarithmic in N) and P 

ranges over 1, . . . , Iv. These algorithms play an im- 
portant role in realizing the promise of high speed-ups 
using ‘massive” parallelism. 

Unfortunat,ely, the quest for high speed-ups has led 
to efficient parallel algorithms that are very tightly de- 
signed: “every processor is fully utilized doing some- 
thing essential for resolving the input task”. Thus, 
parallel algorithm efficiency implies a minimization of 
redundancy in the computation that leaves very little 
room for fault tolerance. It is interesting to note that 
most of the known efficient parallel algorithms do not 
terminate correctly or become quite inefficient if they 
are perturbed by simple processor errors (which are of 
course outside the original setting, but are nontheless 
realistic). 

The model of parallel computation that we use in 
this paper is: the synchronous, concurrent read, con- 
current write (CRCW) PRAM of FW 781, where the 
highest numbered processor write succeeds and the 
word size is O(log N), on inputs of size N. We investi- 
gate PRAM processors with atomic steps and fail-stop 
behavior, e.g., [SS 831. (See Section 2). Consider a 
parallel algorithm that uses P processors and that, in 
r parallel-time, completes its task on some input data 
1 and in the presence of fail-stop errors F. Let there be 
pi(1,F) surviving processors at step i. The parallel- 
time processor product 7 x P is no longer that relevant. 
We use its natural generalization S(I, F), which we call 
the available processor steps or S for short. 

s = S(I,F) = kPi(I,F) 
i=l 

In order to deal with processor failures, it is nec- 
essary for the correct processors to detect the errors 
and reschedule the work of the failed processors. The 
main problem for efficient parallel algorithms is that 
the minimization of redundancy in the computation 
does not leave many resources for error detection and 
load rescheduling. It is fairly easy to see that naive 
processor error detection and reassignment strategies 
(e.g., use a master control or cluster the processors) are 
inadequate. A master control is sensitive to particu- 
lar patterns of simple errors. Clustering can increase 
the performance, measured as worst case available pro- 
cessor steps (S defined above), by a linear or greater 
multiplicative factor. Let us illustrate this discussion 
with an example. 

Example 1.1 One of the simplest tasks accomplished 
in constant time by a N processor PRAM is the task of: 
given a zero-valued array of N elements, write value 1 
into each array location. This Write-All problem is 
trivially accomplished by the following (PRAM) pro- 
gram. 

forall processors PID=l..N parbegin 
shared integer array x[l..hq; 
x[PID] := 1 

parend 

However, if as little as a single processor fails, then 
z[i]=l (;=I, . . . , N) is no longer guaranteed as a post- 
condition. Simple fixes are available that will make the 
above program more fault tolerant. For example, for 
a small number of failures < Jz, consider the clustering 
algorithm below. It performs well for dynamic failure 
patterns with few errors, but poorly if there are many 
failures. For example, if k is fixed and N variable then 
it cannot handle N/2 failures, and if k is allowed to 
grow to N/2 then S becomes quadratic in N. 
forall processors PID=l..N parbegin 

shared integer array x[l..N]; 
for i=PID . PID+k do 

ifi<N then x[i] := 1 else x[i-N] := 1 fl 
od 

parend 

cl 

Showing the existence of an algorithm for the Write- 
All problem of the previous example, for which S 
= O(N log2 N), is the key to our technique. Such 
an algorithm also illustrates the notion of robustness. 
The original parallel-time processor product, N, is in- 
creased by at most a clog2 N multiplicative factor, for 
any dynamic pattern of failures with at least one sur- 
viving processor. Note that we have no a-priori knowl- 
edge of how many, when, or which processors will fail. 

Our robust solution of the Write-All problem is de- 
scribed in Section 3. It is based on a parallel loop 
through: (I) an error detecting phase, (2) a load 
rescheduling phase, (3) a work phase where assignment 
(z[i]:=l) p f is er ormed, and (4) a phase that estimates 
the work remaining and controls the parallel loop. The 
entire algorithm (IV) is moderately involved, but fairly 
modular. Phases 1 and 4 involve bottom up traver- 
sal of two different heaps and phase 2 involves a top 
down traversal of these heaps. Algorithm W uses the 
ability to atomically write PRAM words of O(log N) 
bits and not only O(1) bits. (In Section 6 we describe 
how to modify IV to relax this assumption). Our so- 
lution is simple enough to capture certain engineering 
intuitions (e.g., the rescheduling involves divide-and- 
conquer) and to be easily implementable (e.g., we in- 
clude a reasonably low level description of the code 
in Appendix A). Proving robustness is the subject of 
Section 4. The phases of the algorithm are such that 
reasoning about the failure patterns does not involve 
many cases and the algorithm analysis uses recurrences 
and inequalities. 

In Section 5, we use the Write-All problem to derive 
robust solutions for a variety of problems. Most of 
the efficient algorithms in the literature can be made 
robust. There are a number of easy, yet interesting 
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consequences. The everpresent pointer-doubling algo- 
rithm can be implemented in a robust way and this 
leads to list ranking with S =O(Nlog3N). One can 
compute the tree functions described in [TV 841 with 
S=O(N log3 N). Batcher’s bitonic sort [B 681 can be 
adapted to give a robust PRAM algorithm for integer 
sorting with S =O(N log4 N). Robust PRAM summa- 
tion of iV integers is possible with S =O(N log’ N). 
For an application from numerical analysis: with the 
proposed approach we can increase the fault tolerance 
of asynchronous iterative methods [B 781. 

In Section 6, we describe how to modify algorithm 
W in order to use only atomic writes of constant word 
size, without changing its performance. We conclude 
in Section 7 with some open questions. 

Relationship to other work on fault tolerance: 

Adding fault tolerance to algorithms is the subject 
of much current research in the (qualitatively different) 
setting of dynamic asynchronous network protocols, 
see [AAG 871, [AAPS 871, [A 885, [AS 881 for recent 
results and an overview of this area. Distributed con- 
trollers have been developed for resource allocation in 
network protocols, where the total number of messages 
sent is the resource controlled. For instance, the algo- 
rithms of [LGFG 861 (with a probabilistic setting) and 
of [AAPS 871 (with a deterministic setting) are among 
the most sophisticated in that area. The problem we 
address in this paper is, at an intuitive level, one of con- 
trolling resource allocation. The resource controlled is 
all available PRAM processor steps, and the reason 
we are forced to control it, is the requirement to com- 
plete the computation in the presence of faults. Note 
that unreliable PRAM processor steps must control all 
available PRAM processor steps. This introduces dif- 
ficulties that recall the presence of network changes in 
[AAG 871, [A 88], [AS 881, i.e., dynamic changes of the 
computation medium. 

At a high level, there are some analogies between 
our approach and the controller of [AAPS 871. But 
our emphasis is on fault tolerant, efficient, parallel 
computation versus control of communication com- 
plexity in distributed networks. More specifically, in 
both cases, there are similar concerns of error detec- 
tion (best performed through some approximate calcu- 
lation) and load rescheduling (best performed through 
some divide-and-conquer according to a hierarchy). 
However, in each case, we have very different under- 
lying models for computation, for faults and for the 
resources controlled. As a consequence, the actual al- 
gorithms as well as their analysis differ. 

It is interesting that the concept of a “communi- 
cation complexity controller” (first developed for dis- 
tributed computing) has an analog in parallel comput- 

. , 
ing, I.e., “an algorithmic transformation that guaran- 
tees robustness”. Note that the parallel setting is sim- 
pler to define and has an easier to describe solution, 
immediately applicable to a large body of existing work 
on parallel algorithms. 

Our modeling of fault tolerance has some similar- 
ities with the design of “robust” sorting networks, 
as in [R 851, and in general with the design of reli- 
able systems from unreliable components, as in [P 851 
or [DPPU 861. One distinguishing characteristic of 
our approach is investigating fault tolerance at the 
(PRAM) processor level as opposed to at the gate level 
[P 85, R 851. Our notion of robustness differs from that 
of [R 85]. In the sorting network of [R 851, a linear 
number of operations are still critical. 

Finally, the parallel setting with fail-stop processor 
errors is free from the limitations inherent in situations 
that require consensus ([PSL 801, see [F 831 for a good 
survey of the topic) such as the lower bounds of [FL 821, 
[FLP 851, [DDS 831. This is because atomic broadcast 
can be simulated in a synchronous multiprocessor with 
shared memory and concurrent writes. 

2 Robust parallel computation 

We use the CRCW PRAM model [FW 781 where the 
highest numbered processor write succeeds and the 
word size is O(logN) on inputs of size N. Our basic 
technique can be applied in a fairly model indepen- 
dent fashion. So in describing PRAM algorithms we 
use Pascablike notation with obvious constructs such 
as parbegin . . . parend. 

For our computation model we assume that: (1) We 
start with a set of P initial processors. Each of these 
initial processors knows its PID, a unique number in 
the range 1,. . . , P. (2) Each processor knows both 
the number of initial processors P and the input size 
N. It reads them from some common read-only store. 
(3) All processors execute the same instructions, from 
some common read-only store, on different data. Also, 
in the algorithms of this paper all concurrently writ- 
ing processors write the same value. (4) We denote 
as shared the data-structures manipulated by more 
than one processor. All other data-structures are of 
constant size and are local to the processors. The ini- 
tial values in all these data-structures are assumed to 
be 0. 

For our failure model we assume that: (1) We only 
consider fail-stop behavior: processors can fad between 
PRAM steps by stopping ,and not performing any fur- 
ther steps. Fail-stop models -are .a reasonable approxi- 
mation of what is desirable and achievable in practice 
[SS 831. (2) W e assume that individual PRAM steps 
are atomic: if they execute then they execute fully, This 
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is a nontrivial assumption, since words are of O(log N) 
size. We will reexamine it in Section 6. (3) We allow 
any dynamic pattern F of fail-stop errors provided one 
processor survives. Clearly one processor is necessary 
if anything is to be done. F describes which proces- 
sors fail and when, This pattern is determined by an 
adversary, who khows all about the algorithm and is 
totally unknown to the algorithm. (Note that the only 
limitations of the adversary are that: errors must be 
fail-stop and one processor survives). 

Let a parallel algorithm complete its task, on some 
input data I and in the presence of fail-stop errors 
F, in parallel-time T. If there are Pi(I,F) surviving 
processors at step i then: S(I, F) = Ciz1 Pi(I, F). 
S(I, F) is the number of all available PRAM processor 
steps. 

Definition 2.1 Let T(N) be the best sequential 
(RAM) time bound known for N-size instances of 
problem II. We say that an algorithm for H is a ro- 
bust pamllel algorithm if: for any input I of size N 
and for any number of initial processors P (where 
1 5 P 5 N) and for any failure pattern F, this al- 
gorithm has S( I, F) 5 CT(N) loge’ N, for some fixed 
constants c, d. 

For simplicity of presentation, in the rest of this ab- 
stract we assume that: P the initial number of proces- 
sors is N, where N is the input size. Our results easily 
extend to any P in the range 1,. . . , N. All logarithms 
in this paper are base 2. 

3 The Algorithm W 

In this section we describe a robust parallel algorithm 
W for the Write-All problem from Example 1.1. Here 
and in the detailed description in the Appendices we 
assume that N is a power of 2. Nonpowers of 2 can be 
easily handled using conventional padding techniques. 
(Also recall that P = N). 

Data-structures: We use four full binary trees, each 
of size 2N - 1, stored as heaps in shared memory. By 
heap h[l . . .2N - l] we mean that: arruy h codes a full 
binary ZTee structure by using h[i] (; = 1,. . . , N - 1) 
as an internal tree node with corresponding left child 
h[Z] and right child h[2i + l]. 

The heaps are c[l . . .2N - l] (for processor counting) 
cs[l.. .2N - I] (for keeping step numbers) d[l . . .2N - 
1] (for progress counting) and a[1 , . .2N - 11 (for top- 
down auxiliary accounting). They are initialized to 0. 

The input is in shared array z[l . . . N], where the N 
elements of this array should be thought of as related 
to the leaves of the heaps. Element ~[i] is related to 
c[i+N-I], cs[i+N-11, d[i+N-11, and toa[itN-11. 

Each processor uses some constant amount of local 
memory. For example, this local memory may be used 
to perform some simple arithmetic computations. Im- 
portant local variables are PID, containing the initial 
processor identifier, and pn, containing a dynamically 
changing processor number. Note that: PID’s don’t 
change but. pn’n do. 

Thus, the overall memory used is O(N + P) and the 
data-structures are very simple. 

Control-flow: The algorithm consists of the parallel 
loop right below. This is performed, in a synchronous 
way, by all processors that have not stopped. The loop 
consists of four phases of steps, and the first time only 
part of it is executed (phases 3 and 4). Of course, pro- 
cessors can fail-stop at any time during the algorithm. 

forall processors PID=l..N parbegin 

(Phase 3:) Visit the leaves based on PID to 
perform work on the input data. 
(Phase 4:) Traverse the d heap bottom up to 
measure progress. 

while the root of the d heap is not N do 

(Phase 1:). Traverse the c, cs heaps bottom up 
to count processors a.nd give them pn’s. 
(Phase 2:) Traverse the d, a, c heaps top down 
to reschedule work. 
(Phase 3:) Perform. rescheduled work 
on the input data. 
(Phase 4:) Traverse the d heap bottom up 
to measure progress. 

od 
parend 

The basic idea of the loop is: “For error detection 
use bottom up, fast parallel summation to estimate 
the surviving processors and to estimate the progress 
they have made. For load rescheduling use a top down, 
divide-and-conquer strategy baaed on the estimate of 
progress made”. This idea is realized as follows. 

Phase 1: Each processor PID traverses heaps c 
and cs bottom up from z[PID] (i.e., from location 
PID+N-1). The O(log N) path of this traversal is the 
same (static) for all the loop iterations. As a processor 
performs this traversal it calculates an overestimate of 
the surviving processors. For this, it uses a standard 
O(log N) parallel-time version of a CRCW summation 
algorithm. Heap c holds the sums and heap cs times- 
tamps (or step numbers) for the current loop iteration. 
This allows reusing c without having to initialize it 
each time. Also, during this traversal surviving pro- 
cessors calculate new processor numbers pn for them- 
selves, based on the same sums. (Procedure Static 
Bottom Up Traversal in Appendix A). 

Phase 2: All surviving processors now start at the 
root of the d heap. In d[z.J there is an underestimate 

214 



of the work already performed in the subtree defined 
by i. Now the processors traverse the d heap top down 
and get rescheduled dynamically according to the work 
remaining to be done in the children of i. Auxiliary 
heap a is used by the processors to compute paths 
to the leaves that were visited in the past and whose 
count is reflected in d[l]. We compute a from d dur- 
ing the traversal. The rescheduling of work is done 
using divide-and-conquer according to N - a[2i] and 
N - a[2i + 11. This is accomplished by modifying pn 
and reusing heap c. (Procedure Dynamic Top Down 
Traversal in Appendix A). 

Phase 3: All processors are now at the leaves. Each 
processor tries to write 1 in the leaf it has been resched- 
uled to. To start the loop each processor PID tries to 
write in location z[PID]. (P rocedure Main in Appendix 

A). 

Phase 4: The processors record the progress made 
by traversing the d heap bottom up and using the 
standard summation method. The O(logN) path of 
this (dynamic) traversal can differ in each loop iter- 
ation, since processors start from the leaves where 
they were in phase 3. What is computed each time 
is an underestimate of the progress made. No times- 
tamps are needed here because the progress recorded 
increases monotonically. (Procedure Dynamic Bottom 
Up Traversal in Appendix A). 

Let us now examine phase 1 in some more detail. 
In the bottom up traversal processor PID writes a 1 in 
leaf c[PID+N- l] of the tree c. If a processor has failed 
before it wrote 1 then that will not contribute to the 
overall count. If a processor failed after it wrote 1 then 
this number still can contribute to the overall sum, if 
its subtree neighbor survives. The same observation 
applies to counts at internal nodes, which are sums of 
the counts of the children nodes in tree c. 

It is easy to show that: phase 1 will always compute 
in c[l] an overestimate of the number of processors, 
which are surviving at the time of its completion. (See 
Lemma 4.1). 

For example: given 4 processors, if processor 1 failed 
before the start of phase I, and processor 3 failed right 
after writing 1 into its leaf c[6], and processor 4 failed 
after calculating 2 the sum of its and processor 3’s 
contribution in c[3], then the heap will look as follows 
at the completion of the phase. 

+-mm-+ 

I31 root value ccl1 = 3 
+ ---- + ---- + yet the number of 
I ii 21 active processors is 1 
+----+----+----+----+ 

IOI 11 II II 
+----+----+----+----+ 

Pl P2 P3 P4 

We also need to enumerate the surviving processors. 
This is accomplished by each processor assuming that 
it is the only one, and then adding the number of the 
surviving processors it estimates to its left. This enu- 
meration creates pn. 

Finally, in phase 1 we must be able to reuse our heap 
several times. This presents a problem. For example, 
if a processor wrote 1 into its heap leaf and then failed 
then the 1 will remain there forever, thus preventing 
us from computing monotonically tighter estimates of 
the number of surviving processors. This is rectified by 
associating a step number with each node of the count 
heap, thus “time stamping” valid data. The count step 
is initially zero, and during each successive loop iter- 
ation, gets incremented by each surviving processor. 
Failed processors will not increment their step num- 
bers, thus enabling the surviving processors to detect 
counts that are “out of date” and treat them as zeros. 
We need not worry about “time stamping” overflow, 
since we have words of O(log N) bits and in the worst 
case the loop iterates N times. (Because, every itera- 
tion writes one bit at least). 

We now comment first on phases 3, 4 and then on 
phase 2. Phase 3 is where the work of the original non- 
robust algorithm gets done. Phase 4 is a simple variant 
of phase 1, except for the fact that the path traversed 
bottom up is dynamically determined. One can easily 
show that: the progress recorded in d[l] by phase 4 
increases monotonically and underestimates the actual 
progress. (See Lemma 4.1). 

In phase 2, it is essential to be able to divide the re- 
maining work evenly among the remaining processors. 
In the next section, we will show that this is done with 
at most a small round-off error. (See Lemma 4.2). We 
use pn (dynamic processor number) and reuse heap c 
to partition the processors, between the left/right sub- 
trees in heap d+ 

In this phase, we are going to guarantee that the 
remaining processors are divided evenly among the 
leaves that either have not been visited or whose vis- 
itation was not properly recorded in d[l] (recall that 
d[l] is an underestimate of the number of the leaves 
visited). This is accomplished within the top down 
traversal by disregarding “partial” progress recorded 
by the processors in the dynamic bottom up traversal 
of heap d. This partial progress can be detected, dur- 
ing the dynamic top down traversal, when a value at an 
internal node of d is less than the sum of the values of 
its two descendants. This could happen, if a processor 
had failed during the dynamic bottom up traversal of 
d. In algorithm W, we use an auxiliary heap a where 
the values of d are appropriately reduced to produce 
a correct summation heap. The leaves of heap a with 
value 0 are those leaves that have not contributed to 
the count in d[l]. 
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The values of heap u are nonnegative integers 
constrained (top down) as follows: a[l]=dfl] and 
a[2iJ+a[2i + l]=a[i] and uf2i] 5 d[2i] and a[2i + l] 5 
42i + I] (1 _< i 5 N - 1). Clearly this does not define 
the values of a uniquely, and our top-down traversal 
in Appendix A implements one way of computing the 
values of a satisfying these constraints. Note that, for 
any a[;], its value is computed based only on the vaIues 
of heap d and the values of a along the unique path 
from a[i] to the root a[l], this allows us to compute the 
accounted values in parallel. 

4 Analysis of Algorithm W 

We now outline the proof of robustness for the algo- 
rithm IV, described in Section 3. 

In the dividing done during the dynamic top down 
traversal in W, we will allocate processors to tasks that 
have been completed, but not yet “accounted for” at 
the root d[lJ,. Formally, a leaf of d is accounted if it has 
value 1 and if the corresponding computed value in the 
leaf of heap a is also 1. In the algorithm W, the pro- 
cessors get allocated to the unaccounted leaves (leaves 
whose associated value in heap a is 0) in a balanced 
fashion. 

We need some more terminology. Let us consider 
the i-th iteration of the loop. Define: (1) Vi to be 
the estimated remaining work, the value of N - d[l] 
right before the iteration starts (i.e., right after phase 
4 of the previous iteration). (2) Pi to be the real num- 
ber of surviving processors, right before the iteration 
starts (i.e., right after phase 4 of the previous itera- 
tion). (3) Ri to be the estimated number of surviving 
processors, that is the value of c[l] right after phase 1 
of the iteration. Our algorithm produces fi that is an 
overestimate of surviving processors Pi+l. However, at 
most P; processors can be counted (an upper bound for 
l&). The following can be shown by straightforward 
induction on the structure of the tree c (the proof is 
omited from this abstract). 

Lemma 4.1 In algorithm W, for all loop-iterations i 
we have: Pi >_ & > Pi+1 and Vi 2 Ui+r, as long as at 
least one processor survives. 

The next lemma is proven by establishing an invari- 
ant for phase 2 of the algorithm (the proof is easy and 
omited from this abstract). 

Lemma 4.2 In phase 2 of each loop-iteration i of al- 
gorithm W: (1) processors are only allocated to unac- 
counted leaves, and (2) no leaf is allocated more than 
r&/Ui] processors. 

We will treat the three log N time tree traversals 
performed by a single processor during each phase of 

the algorithm as a single block-step of cost O(log N). 
We will charge each processor for each such block 
step, regardless of whether the processor actually com- 
pletes the traversals or whether it fail-stops somewhere 
in-between. This coarseness will not distort our re- 
sults; since we can have at most P processor failures 
it amou& t.n a. nne time overcharge nf O( Plog N). 

Let us take a snapshot of the algorithm after com- 
pletion of several loop-iterations. We are right before 
loop-iteration i. K stands for the total number of 
block-steps performed by the processors in trying to 
complete all remaining work (at most Vi). Now we 
present the central lemma: 

Lemma 4.3 For any failure pattern with at least one 
surviving processor, and starting at each loop-iteration 
i, algorithm W completes all remaining work. Also, its 
total number of block-steps 6 is less than or equal to 
Pi + Vi + Pi log(Ui), where 1 5 Pi, Vi 5 N. 

Proof sketch: We proceed by induction on the 
size of Vi. For the base case: We have at most 
one unaccounted leaf and some number of processors 
(Ui = 1, P; > 1). As long as at least one processor sur- 
vives, we are going to visit the single remaining leaf in 
one phase in which at most Pi processors participate 
and Pi 5 Pi+l+Pilog(l). 

For the inductive hypothesis: we assume the lemma 
is true for all Vi < U, Pi 2 1, where U 5 N. We will 
then prove it for Ui = U, Pi 2 1. 

We divide the proof in two cases: (1) as many un- 
accounted leaves at least as processors, i.e., Pi < Vi, 
and (2) more processors than unaccounted leaves, i.e., 
Pi > Vi. 

In both cases, by Lemma 4.2, We have that the (ac- 
counted) progress for iteration i is at least the num- 
ber of surviving processors Pi+1 divided by rR;/Ui]. 
This is because each one of these processors returns 
to the root d[l], reporting some progress, and at most 
r&/Vi] processors report information about the same 
leaf. 

Also, by Lemma 4.1, Pi 1 & 2 Pi+1 and we can 
assume that HPi = Pi+l, for some A: with 0 < Jz 5 1 
(at least one processor survives). Thus, for both the 
above cases, we have: 

vi+1 5 (Vi - $&j-j I C”i - pi+1 1 + Rip; ) 

5 Uj(l- 
k 

1 + vi/Pi 1 

For case (1) it is easy to see that we will have at most 
one processor allocated to each unaccounted leaf so: 
vi+1 5 vi-pi+l- For case (2) by the above inequality 
and Pi > Vi we have Ui+l _ < Ui(l - h/2). Now we 
use the inductive hypothesis (but for iteration i + 1) in 
both cases. 
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Case (1) : The survival of at least one processor and 
Ui+r 5 Vi - Pi+i imply that Ui+l < Ui. The total 
work (in block-steps) is at most Pi+Vi+l, where by the 
hypothesis K+i < Pi+i + Ui+l +Pi+l l~g(Ui+i). Thus, 
it suffices to show that Pi+r + Vi+1 + Pi+1 log(Ui+l) 
is less than or equal to Vi + Pi log(Ui). This is trivial 
given Vi+1 5 Vi - Pi+r and Lemma 4.1. 

Case (2): There are two subcases. If k = 1 the 
algorithm completes correctly in one iteration and the 
work Pi = & = Pi+1 trivially satisfies the Lemma. 
The second subcase is the most interesting one and is if 
0 < k < 1. For this subcase we use Ui+l 5 Ui(l-k/2), 
which implies Vi+1 < Vi. As in case (l), the total 
work (in block-steps) is at most Pi+K+,, where by the 
hypothesis Vi+1 5 Pi+1 + Ui+l + Pi+; log(Ui+l). Thus, 
it suffices to show that Pi+1 + Ui+l + Pi+1 log(Ui+i) is 
less than or equal to Vi + Pi log( Vi). For 2 > Ui+i = 1 
this is trivial. 

By simple manipulation it suffices to show that: 
kPi + Ui(1 -k/2) + kPi log(Ui(1 -k/2)) is less than or 
equal to Vi + Pi log( Ui) . This is equivalent to showing 
that: 

k(l-$)+klog(l-;)<(l-k)logU, 
i 

Recall that all logarithms are base 2 and therefore 
(log(1/2) = -1). s ince Vi 2 2 (Vi = 1 was taken 
care of by base case) we have log Ui 1 1. Also, in 
this case 1 - Ui/2Pi 2 1. It thus suffices to show the 
inequality: (*) klog(2 - 1) 5 (1 - k), for 0 < k c 1. 
Inequality (*) is true by elementary calculus (it is tight 
only for k = 1). This completes the proof of the second 
subcase, of case (2) and of the Lemma. q 

Theorem 4.1 Algorithm W is a robust parallel 
algorithm for the Write-All problem with S = 
O(N log’ N), where N is the input array size. 

This immediately follows from Definition 2.1 and 
Lemmas 4.2 and 4.3. In our analysis we show an up- 
per bound of O(N log N) block-steps. It is possible to 
construct failure patterns that force the algorithm to 
take Q(N log log N) (th’ IS example is due to Jeff Vitter) 
and R(N log N/ log log N) block-steps. Finally, note 
the difference between block-steps and loop-iterations; 
there can be at most N loop-iterations since d[l] de- 
creases by at least 1 each time. 

5 Some Applications 

The algorithm W for the Write-All problem can be 
used as a building block for transforming many efficient 
parallel algorithms into robust ones. 

We can first extend the algorithm W to implement a 
robust general parallel array assignment. For example, 

consider computing and storing in an array z[l . . . N] 
values of a function f whose values depend only on 
the processor numbers PID and the initial values of 
the array x. Also, assume f can be computed in O(1) 
sequential time. 

forall processors PID=l..N pm-begin 
shared integer array x[l..N]; 
x[PID] := f(PID,x[l..N]) 

parend 

In order to adapt the algorithm W, we need to con- 
vert the parallel assignment to a form that is suitable 
for asynchronous fault-tolerant execution. This is ac- 
complished using binary version numbers: 

forall processors PID=l..N parbegin 
shared integer array x[O..l][l..N]; 
bit integer v; 
x[v+l][PID] := f(PID,x[v][l..Nj); 
v:=v+l 

parend 

This approach is conceptually similar to that of 
[B 881 where a solution to the concurrent read/write 
register problem is given using two registers with sin- 
gle bit tags to implement a single register tolerant of 
fail-stop errors. Here, v is the current bit (modulo 2) 
version number (or tag), so that z[v][l . . . N] is the ar- 
ray of current values. Function f will use only these 
values of x as its input. The values of f are stored in 
c[v + lJ[l . . . N] creating the next generation of array 
2. After all the assignments are performed, the binary 
version number is incremented (modulo 2). 

At this point, a simple transformation of the algo- 
rithm W will yield a robust algorithm for generrzl paral- 
lel array assignment. In phase 3 the assignment of 1 to 
z[i] is replaced with the assignment shown above. One 
important application of this technique produces a ro- 
bust pointer-doubling operation that is a basic building 
block for many parallel algorithms. In a similar way, 
it is possible to systematically produce robust versions 
of many efficient parallel algorithms. 

The transformation is almost automatic for a large 
number of efficient parallel algorithms, but not in all 
cases. The original algorithm has to have an iterative 
structure, that will be simulated by an iterated use 
of Write-All. Moreover, the computation performed 
must have a Church-Rosser like flavor. For example a 
sufficient condition is: “The efficient parallel algorithm 
manipulates an array c in an iterative loop. The new 
values in t computed by each iteration of the algorithm 
depend only on the old values of x. It does not matter 
if the operations on some data elements are not per- 
formed for some iterations”. Such conditions are true 
for many numerical computations, such as in [B 781, to 
which we can add robustness (here the running-time 
also depends on a desired precision parameter E). Let 
us describe some of its more practical consequences. 
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Proposition 5.1 There is a robust parallel algorithm 
for list ranking with S = O(N log3 N), where N is the 
input list size. 

Proposition 5.2 There is a robust parallel algorithm 
for computing the tree functions of [TV 84] with S = 
O(N log3 N), where iV is the input tree size. 

Proposition 5.3 There is a robust parallel bitonic 
sort with S = O(N log4 N), where N is the number 
of integers to sort. 

6 On Constant Word Size 

One observation is that algorithm W provides (by its 
definition) a robust parallel algorithm for N integer 
summation with S = O(N log2 N). The interesting 
question, however is what happens with 0( 1) bit words 
and arithmetic at the bit level. In this section, we 
adapt our method to O(1) bit words. 

Thus far, we relied on the property of our model 
to perform log N parallel writes atomically. That is 
the model allows (1) log N-size words to be written in 
unit time, and (2) the adversary could cause failures 
either before or after the write cycle of the PRAM, but 
not during the write cycle. The algorithm W can be 
modified so that these two restrictions are relaxed. 

The new definition of atomicity becomes: (1) log N- 
size words are written using log N bit write cycles, and 
(2) the adversary can cause arbitrary fail-stop errors 
either before or after the single bit write cycle of the 
PRAM, but not during the bit write cycle. 

The algorithm W can be modified so that: there 
is preservation of the O(N log2 N) available processor 
steps (counting log N bit write cycles as one time unit) 
and preservation of O(N) word space use (counting 
log N bits as one word). 

This is accomplished by simulating log N-size word 
atomic writes using a single bit tag and two log N-size 
words. The two words are numbered 0 and 1, and the 
bit tag (initially 0) indicates which of the two words 
has valid contents. Thus each shared memory location 
is represented as: 

record 
bit integer t; --current valid version number 
integer X[O..l]; --log N-size values indexed by t 

end 

Each read cycle of the shared memory now becomes: 

begin --mmaer~ read cycle 
read tag from t; --read the tag 
for i=l to log(N) do --read the contents 

read bit i of value fkom bit i of X[tag]; 
od 

The write cycle to the shared memory becomes: 

begin --macro vtite cycle 
read tag from t; --read the tag 
tag := tag + 1 (mod 2); 
for i=l to log(N) do --write the contents bit at D time 

write bit i of value to bit i of X[tag]; 
od 
write tag to t; --write the new tap- 

end 

Since the single bit tag is the last bit written dur- 
ing the write cycle, a failure anywhere during this high 
level write cycle will prevent the tag value to be up- 

dated, and so any subsequent read will be able to read 
the previous value stored. This approach is similar to 
that of @3 881, and it is somewhat simpler due to the 
fact that we are dealing with the synchronous model. 

The algorithm W can be mechanically transformed 
using the macro read and write cycles above to a 
version that only requires single bit atomic writes. 
Clearly, the number of log N-size words read or written 
by each macro cycte is O(I) as before, and the shared 
memory requirements are within a factor of two of the 
original memory size. Therefore, performance of the 
modified algorithm has not changed asymptotically. 

From the above discussion, it follows that robustness 
for Write-All can be achieved with constant size words. 
The same arguments apply to all the propositions on 
robustness in Section 5. 

7 Conclusions 

We have formally defined and demonstrated the fea- 
sibility and wide applicability of robust parallel com- 
putation. We close this paper with a number of open 
questions. 

What are W’s precise performance bounds and can 
it be improved? Are there general characterizations 
for classes of problems with robust parallel algorithms? 
What extensions can be made to our robustness defi- 
nitions (e.g., other types of faults)? What are the pre- 
cise analogs of robustness in network models of parallel 
computation (this could involve application of the work 
on distributed network controllers, e.g., [AAPS 871, 
to parallel computation). 7 What about randomized 
robust parallel computation (formalizations along the 
lines of [LGFG 86])? 
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A Write-All Implementation A.2 Static Bottom Up Traversal 

A.1 Main Procedure for Write-All 

The loop consists of the four phases outlined in Section 
3. Processor counting and enumeration is implemented 
as a static bootom up traversal in procedure SBU(), 
work-s&gnment is done in a dynamic top down traver- 
sal in procedure D,TD(), the work itself is a simple 
assignmnet “xk]:=ln I and the progress is measured 
in procedure via a dynamic bottom up traversal in 
D-BU(). 

forall processors PID=l..N 
parbegin 

shared integer array 
x[l..N], --input army 
c[1..2N-11, --processor counts 
cs(1..2N-11, --count step number3 
d[1..2N-11, --progress/done tree 
a[1..2N-I]; --accounted tree 

local integer 
P% --enumemted processor no. 
k --array element PID will be assigned to 
step; --time stamp 

step := 0; --initialize processor counting step 
k := PID; --initially work data item PID 
xb] := 1; - -visit leaf 
D-BU(k); --measure progress 

while d[l] # N do 

S-BU(PID,step,pn); --enumerate proc-5 
D-TD(pn,k); --assign work 
x&] := 1; --do work: hit hf 
DBU(k); - - meadwe progress 

od 
parend ; 

All processors traverse heap c to compute the overes- 
timate of the number of processors in c[l], and each 
processor computes its processor number pn that is 
used in the work assignment phase. The heap cs is 
used to synchronize processor counting across multiple 
calls to S-BU(). 

procedure S_BTJ(vaIue integer PID, --ptwc. id 
shared integer step, --time 
local integer pn) --Proc. no. 

shared integer array 
c[l..ZN-11, --processor count8 
cs[l..SN-l]; --count step numbers 

local integer jl, j2, --siblings indices 
t; --parent of jl and jZ 

step := step + 1; --new time stamp 

il := PID + (N-l); --heap-leaf init 

pn := 1; --assume this processor is no. 2 

ctjl] := 1; 
csUl] := step; --count the processor once 

--Traverse the tree from leaf to root 
for 1 ..log(N) do 

t := jl div 2; --parent of jr and j.9 

if2*t = jl 
then j2 := jl + 1 --jl came from left 
else j2 := jl - 1 --jl came from right 

f-l; 

if csfil] = c&2] --both sub-trees active? 
then c[t] := c[jl] + 42] --both active 

ifjl > j2 --jl came from right 
then pn := pn + 421 
fl 

else c[t] := cljl] --all sibIings failed 

fi; 
cs[t] := step; --time stamp, and 
jl := t --advance up the heap 

od 
end ; 
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A.3 Dynamic Bottom Up Traversal 

Heap d contains the underestimates for the number 
of leaves visited in each subtree, with d[l] containing 
the underestimate of the total number of leaves visited. 
This number is used in terminating the overall program 
(when d[l]=N). 

procedure D-BU(value integer k --current Ieuf 

1 
shared integer array 

d[1..2N-11; --done/progress tree 
local integer 

il, i2, - -siblings indices 
t; --parent of il and it 

il := k + (N-l); --heup-leaf init. 
d[il] := 1; --done for good 

--Tmverse the tree from leaf to root 
for l..log(N) do 

t := il div 2; --parent of ii and i2 

--compute left/right indices 
if 2*t = il 
then i2 := il + 1 
else i2 := il - 1 

fi; 

d[t] := d[il] + dF2]; --update progress 
il := t --advance to the predecessor 

od 
end ; 

A.4 Dynamic Top Down Traversal 

This procedure implements load rescheduling of the re- 
maining active processors. Heaps c and d are traversed 
top down. Heap a is used to construct paths to a set of 
the properly accounted leaves. Heap c is used to par- 
tition the remaining processors between the left and 
right tree branches, and heap d contains the progress 
information for the subtrees being traversed. Proces- 
sors are allocated in proportion to the remaining work. 

procedure D-TD(value integer pn --enum. no. 
local integer k) --data item 

shared integer array 
c[1..2N-11, --procesor counts 
d[1..2N-11; --progress/done tree 
a[1..2N-11; --accounted tree 

local integer i, il, i2; --curr./left/right indices 

i := 1; --start at the root 
size := N; --whole tree is visible from the root 
a[l] := d[l]; --no. of all accounted nodes 

while size # 1 do --traverse -from root to leaf 

il := 2*i; i2 := il + 1; ---left/right indices 

--compute accounted node values 
if d[il]+d[i2] = 0 
then a[il] := 0 
else a[il] := a[i]*d[il] div(d[il]+d[i2]) 
fi; 
a[i2] := u[i] - a[il]; 

--processor allot. to left/right sub-trees 
c[2*i] := c[i]*((size/2)-a[2*i]) div(size-a[i]) 
c[2*i+lf := c[i] - c[2*i]; 

--go left/right based on proc. no. 
if pn 5 c[2*i] 
then i := 2*i --go left 
eise i := 2*i + 1 --go right 

pn := pn - c[2*i] 
fi; 

size := size div2 --half of leaves visible 
od ; 
k := i - (N-l) -- assign processor based on i 

end ; 
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