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Berman and Hartmanis [BH77] conjectured that 
there is a polynomial-time computable isomorphism 
between any two languages m-complete (“Karp” com- 
plete) for NP. Joseph and Young [JY85] discovered 
a structurally defined class of NP-complete sets and 
conjectured that certain of these sets (the Kj’s) are 
not isomorphic to the standard NP-complete sets for 
some one-way functions f. These two conjectures 
cannot both be correct. 

We prove that the isomorphism conjecture is in- 
compatible with the existence of scrambling func- 
tions, a type of powerful one-way function. To pro- 
vide plausibility to the hypothesis that scrambling 
functions exist, we show that they exist relative to a 
random’ oracle. As a corollary, we obtain that the 
isomorphism conjecture fails with respect to a ran- 
dom oracle. 

We introduce a new family of strong one-way func- 
tions, the scrambling functions. If f is a scrambling 
function, then 1<; is not isomorphic to the standard 
NP-complete sets, as Joseph and Young conjectured, 
a.nd the Berman-Hartmanis conjecture fails. As ev- 
idence for the existence of scrambling functions, we 
show that much more powerful one-way functions- 
the annihilating functions-exist relative to a random 
oracle . 

The remainder of Section 1 consists of three parts: 
a historical survey, a precise statement of our results, 
and some possible directions for future research. Sec- 
tion 2 considers the structural consequences of the 
existence of scrambling functions, and Section 3 es- 
tablishes the existence of scrambling functions (and 
still more powerful one-way functions called annihi- 
lating functions) relative to a random oracle. 

1.1 A Brief Survey 

1 Introduction 

The reIationship between the Berman-Hartmanis iso- 
morphism conjecture and existence of one-way func- 
tions has been the subject of considerable research 
and conjecture in recent years, e.g., [JY85,KLD86, 

In this section, we will briefly survey the research 
that lead to this work. The reader may wish to con- 
sult Young’s excellent survey [You881 of structural 
research on isomorphisms, as well as [KMR88] and 
[Mah86]. In th e ex t t, we assume that the reader is fa- 
miliar with the terminology and notation of [KMRS8]. 
For readers unfamiliar with this earlier paper, we de- 
fine our terms in the footnotes. 

*The first author was supported in part by NSF Grant 
DCR-8602562 

+The third author was supported in part by NSF Grant 
DCR-8602991 

1.1.1 The Structural Approach 

Permission to copy without fee all or part of this material is granted pro- 
vided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to republish, 
requires a fee and/or specific permission. 

Berman and Hartmanis [BH77] conjectured that all 
m-complete languages for NP are polynomial time 
isomorphic to one another.’ As evidence for this 

‘Our use of random is to be carefully distinguished 

from Chaitin’s use of the same term. Chaitin uses random 
to mean algorithmically incompressible, whereas we use 
the term to mean possessing all arithmetically definable 
properties of measure one. 

@ 1989 ACM O-89791-307~8/89/0005/0157 $1 SO 
2A language is a set of strings. 
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coqjecture, they modified th.e proof of the SchrGder- 
Bernstein Theorem to show that paddablei3 NP- 
complete languages are isomorphic to one another. 
As the converse is immediate, it folllows that the iso- 
morphism conjecture is equivalent to the conjecture 

If. A and B are languagels, then A is polynomial-time 
many-one reducible to B if there is a polynomial-time 
computable function I: C’ --+ 12’ such that 

This relation is denoted by f: A. 5% B, or simply A <& B. 
If f:A _<k B, and f is also one-one, then we say A 
is polynomial-time one-one reducible to B, and write 
f: A 5: B. If f can be chosen to be length-increasing as 
well as one-one, then we say A is polynomial-time 1-k re- 
ducible to B, and write f: A <r.,i B. As a general rule, we 
are only interested in (possibly relativized) polynomial- 
time reducibilities, and so we abbreviate polynomkal-time 
many-one reducible by m-reducible, polynomial-time one- 
one reducible by I-reducible, and polynomial-time l-li re- 
ducible by I-li reducible. 

A language L is complete for a class C with respect to 
a reducibility sr if L is C, and for all M E C, M sr L. In 
the literature, the term NP-complete is often used with- 
out specifying the intended reducibility. In the early liter- 
ature, NP-completeness usually meant with respect to log- 
space reductions. In more recent literature, NP-complete 
has come to mean with respect to m-reductions. We use 
the term in this latter sense. 

If A <g B and B <k .4, then we say A and B are 
polynomiul-time many-one eqwiualent, and write A 5; B. 
The notions of f-equivalent and l-li equivalent are defined 
analogously. The collection of languages equivalent to a 
language A is called the degree of A. Thus, the m-degree 
of .4 is {B : A SL B}. The set of NP-complete languages 
is an important example of an m-degree. 

If f: A <pm B, where f is one-one, onto, and polynomial- 
time invertible, then we say that f is a polynomial-time 
isomorphism between A and 8, and write f : A 5Ep B. 
We abbreviate polynomial-time isomorphism by isomor- 
phism. We say that a degree collapses if and only if all of 
its members are isomorphic to one another. Notice that 
m-degrees and l-degrees are always unions of isomorphism 
classes, but 1-li degrees need not be. 

In our terminology, the Berman-Hartmanis isomor- 
phism conjecture can be stated succinctly: the complete 
m-degree for NP collapses. 

3A padding function ((., .)) is a polynomial-time com- 
putable one-one function from pairs of strings to strings 
that is polynomial-time invertible in both [MY85]. A lan- 
guage A is paddable [BH77] if for all z and y, 

z E A e ((z, y)) E A. 

The original definition of padding function given by 
Berman and Hartmanis only required polynomial-time 
invertibility in the second argument. However, if a set 
is paddable by a Berman-Hartmanis function, then it is 
paddable by our definition. 

that all NP-complete languages a.re paddable. By 
surveying the literature of the time on NP-complete 
languages, Berman and Hartmanis established that 
all of the then-known NP-complete languages were 
paddable, thereby providing empirical evidence for 
their conjecture. 

In the years immediately following the isomorphism 
conjecture, research centered not on the conjecture 
itself, but rather on structural predictions of the con- 
jecture. For example, the isomorphism conjecture 
predicts that there are no sparse4 NP-complete lan- 
guages. This prediction was verified by Mahaney 
[Mah82] under the hypothesis that P # NP. 

Another direction pursued in the years immediately 
following the conjecture was to “relocate” it to other 
natural degrees. In their original article, Berman 
and Hartmanis conjectured not only that the NP- 
complete degree collapsed, but also that the PSPACE 
complete degree collapsed. Berman [Ber77] was able 
to obtain a number of important partial results, e.g., 
that the complete m-degree for EXP consists of a sin- 
gle 1-li degree. 

A re-examination of the isomorphism conjecture 
began with Joseph and Young’s [JY85] definition of a 
new class of NP-complete languages-the k-creative 
languages. Joseph-Young then constructed specific k- 
creative languages (the 1<j’s) from polynomial-time 
computable, honest5 functions f. At present, it is 
only known how to pad a I<: when f is polynomial- 
time invertible. Joseph and Young conjectured that 

If a padding function ((., .)> is also onto, then we say 
((., -)) is a polynomial-time pairing function. If a set A is 
paddable by a pairing function ((v, -)), then A is a cylinder. 
Cylinders arise naturally as Cartesian products, and SO 

occur in many natural complete degrees. 
Let (e, y) be the standard Rogers’ pairing function 

([Rog67, Page 641: i((z + y)’ + 1: + 3~)). It is easy 
to see that (2, y) is a polynomial-time pairing function 
according to our definitions; moreover, (., .) is length- 
nondecreasing in both arguments. Let B x C denote 
{(b,c) : b E B A c E C}. If B is m-complete for NP, 
then A = B x C’ is 1-li complete for NP. 

Most complexity classes are closed under X, i.e., if C 
is a complexity class, and A, B E C, then A x B E C. 
Moreover, most complexity classes contain 2’. For such 
complexity classes, the construction above yields a simple 
but important result: If B is m-complete for C, then B x 

C* is paddable and l-li complete for C. 
*A language L is sparse if there is a polynomial p such 

that for every n there are p(n) or fewer elements of L of 
length less than or equal to n. 

‘A function f is honest if there is a polynomial p such 
that for every 2 E C’, IzI 5 p(lf(z)l). Every polynomial 
time invertible function is honest. It is generally believed 
that the converse is false. 
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one-way functions exist, and that some I(r” is non- 
paddable. 

This conjecture goes beyond asserting that the 
Berman-Hartmanis conjecture fails: it asserts that a 
language with a specific form will witness the failure. 
These sets, the Kf’s, are not merely m-complete,for 
NP, they are 1-li complete. Thus, the Joseph-Young 
conjecture predicts that the l-li complete degree for 
NP fails to collapse. We refer to this possibly weaker 
prediction as the encrypted set conjecizlre, as it claims 
that there exists a one-way (encryption) function f 
such that f(SAT) is not is isomorphic to SAT. 

At the time the Berman-Hartmanis and Joseph- 
Young conjectures were made, both predicted proper- 
ties of the NP-complete degrees that were not known 
to hold for any degrees: in particular, the Berman- 
Hartmanis conjecture predicts that the complete m- 
degree for NP collapses, and yet no nontrivial col- 
lapsing m-degree was known; and the Joseph-Young 
conjecture predicts that the complete I-li degree for 
NP does not collapse, and yet no noncollapsing l-li 
degree was known to exist. 

If one-way functions don’t exist, then the Schrijder- 
Bernstein-Berman-Hartmanis proof shows that every 
1-li degree collapses. Therefore, a minimal hypothe- 
sis for the construction of a noncollapsing 1-li degree 
is the existence of a one-way function. Watanabe 
[Wat85] conjectured that the existence of a one-way 
function is an adequate hypothesis for the construc- 
tion of a noncollapsing 1-li degree, and he was proven 
correct by Ko, Long, and Du [KLD86]. This valida- 
tion of a prediction of the Joseph-Young conjecture 
is an important piece of evidence in its favor. 

The following year, we [KMR88] showed that there 
a.re nontrivial collapsing m-degrees, providing analo- 
gous evidence in favor of the Berman-Hartmanis con- 
jecture. 

1.1.2 Relativizations 

Relativizations have long been used in structural 
complexity theory to probe the limitations of our 
proof techniques. Indeed, the use of relativizations 
has been so successful that at times it seems that any 
reasonable complexity theoretic statement holds rel- 
ative to some oracle. The various isomorphism con- 
jectures are a notable exception to this trend: it has 
proven very difficult to produce oracles relative to 
which one can decide the various conjectures. 

The one simple relativization is an oracle relative 
to which the complete m-degree for EXP collapses. 
By Berman’s theorem that the m-complete for EXP 
consists of a 1-li degree, it suffices to take an oracle 
relative to which one-way functions fail to exist, for 

if one-way functions don’t exist, then all l-li degrees 
must collapse. The original Baker-Gill-Solovay oracle 
relative to which P = NP suffices. 

In contrast, and in spite of widely perceived simi- 
larities between NP and EXP, progress has not been 
made in obtaining an oracle relative to which the com- 
plete degree for NP collapses. 

Kurtz [Kur83] provided the first example of an or- 
acle relative to which P # NP and yet the isomor- 
phism conjecture fails. Curiously, the failure of the 
isomorphism conjecture relative to Kurtz’s oracle is 
different from that predicted by Joseph and Young, as 
it is obtained by splitting the m-complete degree for 
NP into several l-degrees. Thus, while the Berman- 
Hartmanis and the Joseph-Young conjectures can not 
both be true, they can both be false. Hartmanis 
and Hemachandra [HH87], by combining Kurtz’s con- 
struction with the Rackoff’s [Rac82] construction of 
an oracle relative to which P = UP # NP, construct 
an oracle relative to which both conjectures fail. 

After publication of the Hartmanis-Hemachandra 
paper, we had the following view of oracles and iso- 
morphisms: it was possible to make the complete de- 
grees for higher classes such as EXP collapse, but 
we did not know how to make them fail to col- 
lapse; it was possible to make the complete degree 
for NP fail to collapse, but we could’not make it col- 
lapse; there was no natural complexity class which 
we could both make collapse, and make fail to col- 
lapse; and while it was possible to make either or both 
of the Berman-Hartmanis and Joseph-Young conjec- 
tures fail, we could not make either succeed. 

After [KLD86] and [KMR88] appeared, we hoped 
to break the impasse. We expected that the tech- 
niques of [KLD86] could be exploited in an oracle 
construction relative to which the Joseph-Young con- 
jecture holds; we expected that the techniques of 
[KMR88] could be used to construct an oracle relative 
to which the Berman-Hartmanis conjecture holds. 

We achieved [KMR87] 1 imited success by construct- 
ing a sparse oracle relative to which there is a collaps- 
ing m-degree in NP. As sparse oracles seem less likely 
to distort structural relationships than unrestricted 
oracles6, we take this as evidence for the proposition 
that some m-degree in NP collapses. 

Homer and Selman [HSSS] achieved the first break- 
through, producing an oracle relative to which the m- 
complete degree for Cg collapses, as well as an oracle 
relative to which it fails to collapse. By their efforts, 
the complete m-degree for C; became the first natu- 
ral degree to have both collapsing and noncollapsing 
relativizations. 

6We defend this position in footnote 8. 
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In this paper, we show that the encrypted set con- 
jecture holds relative to a random oracle. Relative 
to a random oracle, higher c,omplexity classes such as 
PSPRCE and EXP fail to collapse, and so we provide 
numerous examples of natural complexity classes that 
can be relativized in both directions. 

This leaves, of the many questions about oracles 
and isomorphisms, only the original problem un- 
solved: to construct an oracle relative to which the 
Berman-Hartmanis conjecture holcls. 

1.1.3 Randomness 

If T is a statement about complexity theory, e.g., P # 
NP, it is not unusual for there to be oracles A and B 
such that TA is true, and TE is false. If only for this 
reason, unrestricted relativizations cannot be relied 
upon for insight into what is true in the unrelativized 
world. 

In spite of this difficulty, it is possible to restrict the 
set of permissible oracles so that a coherent picture 
emerges. Two notable examples of such restrictions 
are to random and generic oracles7 Complexity the- 
ory relative to a random oracle is well defined, as is 
complexity theory relative to a generic oracle. Let 7 
denote the set of true formulae in some fixed formal- 
ization of complexity theory, ;rn denote the formulae 
true relative to a random oracle, and 7” denote the 
formulae true relative to a generic oracle.” 

7These two classes of oracles have been studied fairly 
extensively by recursion-theorists. We direct the reader 
to [.foc80] for an introduction to generic oracles, and to 
[ICurBl] for random oracles. 

sA number of authors have studied mechanisms for re- 
stricting the notion of relativization so as to obtain “ab- 
solut,e” results. These restrictions come in two flavors: 
restricting the machine’s ability to access the oracle, and 
restricting the class of oracles to be considered. The re- 
strictions of interest to this program are those which pre- 
serve the validity of certain complexity theoretic state- 
ments. 

A pertinent example of such a result is that all sparse 
oracles agree as to whether or not the polynomial-time 
hierarchy collapses [BBS86,LS86]. As the empty oracle is 
sparse, if a sparse oracle can be constructed relative to 
which one can determine whether or not the polynomial- 
time hierarchy collapses, then one has settled the unrela- 
tivized question as well. 

We know of no complexity theoretic statements T such 
that for sparse oracles A and B, TA is true but T” is false. 
This suggests a “sparse oracle hypothesis.” While we do 
not believe that the sparse oracle hypothesis is true, its 
validity in certain special cases provides evidence for our 
earlier claim that sparse oracles are less likely to distort 
relationships among complexity classes than unrestricted 
relativizations. 

The relationship between these theories has been 
the focus of considerable research. Most known re- 
sults about 7 are also true of 7” and ‘Tg: this merely 
reflects the fact that we have few tools for proving 
theorems about unrelativized complexity theory that 
do not relativize. 

The theory 7” is fairly well understood, as most 
oracle constructions that separate two classes can be 
modified to apply to generic oracles. For example, 
from Yao’s proof that the polynomial time hierarchy 
(PH) separates relative to some oracle, it is not dif- 
ficult to demonstrate that PH separates with respect 
to a generic oracle. 

The theory ‘TR is less well understood, in part be- 
cause its measure theoretic arguments are more dif- 
ficult than the Baire category theoretic arguments of 
7”. For example, the proof that NP # coNP relative 
to a generic oracle is a consequence of the original 
Baker-Gill-Solovay [BGS75] construction of an ora- 
cle that separates P and NP; while the proof that 
NP # coNP relative to a random oracle is difficult 
and deep [BG81]. 

1.2 Overview of New Results 

This section surveys the technical contributions of 
this paper. A one-way function (cf. Definition 2.1) is 
a polynomial-time computable, one-one, honest func- 
tion that is not polynomial-time invertible. We have 
not been able to make progress on the Joseph-Young 
conjecture under the hypothesis that one-way func- 
tions exist. We have, however, been able to make 
considerable progress under a stronger hypothesis: 

Definition 2.2 A function f is a scrambling func- 
tion if and only if f is a one-way function and 
range(f) does not contain a nonempty paddable set. 

First, we show that if scrambling functions exist, 
then the encrypted set conjecture holds: 

Theorem 2.3 If scrambling functions exist, the 
complete I-Ii degree for NP fails to collapse. 

In fact, if scrambling functions exist, then the 
Joseph-Young conjecture holds, as the noncollapse 
can be witnessed by a I<!: 

Theorem 2.4 If f is a scrambling function, then I<; 
is a nonpaddable I-li complete set for NP. 

This noncollapse of a 1-li degree is not specific to 
the NP-complete degree. We can show that a large 
number of other natural, complete degrees also all fail 
to collapse if scrambling functions exist. 
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Theorem 2.8 Ifscrambling functions exist, then the 
complete I-li degrees for NP, PSPACE, EXP, NEXP, 
and RE fail to collapse. 

In as much as a direct proof of the existence of 
scrambling functions seems to be beyond our imme- 
diate ability, as a surrogate, we looked for an oracle 
relative to which such functions exist. It was intu- 
itively obvious that scrambling functions must exist 
relative to a random oracle. In fact, much more pow- 
erful one-way functions exist relative to a random or- 
acle : 

Definition 2.9 A function f is an annihilating func- 
tion if and only if f is a l-way function such that 
all polynomial- time decidable subsets of range(f) are 
sparse. 

It is not difficult to see that an annihilating func- 
tion is necessarily a scrambling function. 

Theorem 3.6 Annihilating functions exist relative 
to a random oracle. 

Combining Theorems 2.8 and 3.6 yields 

Theorem 3.7 Relative to a random oracle, the com- 
plete 1-h degrees for NP, PSPACE, EXP, NEXP, and 
RE do not collapse. In particular, the isomorphism 
conjecture fails relative to a random oracle. 

1.3 Further Questions 

We see a number of opportunities for improving on 
our results of this paper. 

A first opportunity is to weaken the structural hy- 
potheses that suffice to prove the encrypted set con- 
jecture. We do not believe that either the “vanilla” 
one-way functions of Grollmann and Selman, or our 
own more powerful scrambling functions, are the cor- 
rect characterization. 

A second opportunity is to explore additional struc- 
tural consequences of the existence of scrambling 
and/or annihilating functions. It seems that the ex- 
istence of annihilating functions ought to have pro- 
found structural consequences, and yet none of our 
structural theorems require this power. In particular, 
we would like to see proofs that the existence of anni- 
hilating functions implies the complete m-degree for 
NP consists of a single 1-li degree, or perhaps that the 
existence of annihilating functions implies that the 
polynomial-time hierarchy separates. In view Theo- 
rem 3.6, these structural consequences would imme- 
diately hold relative to a random oracle. 

We would like to see structural hypotheses that are 
equivalent to the existence of these strong one-way 

functions, much as P # UP is equivalent to the ex- 
istence of one-way functions. This sort of structural 
taxonomy of one-way functions seems to have a great 
deal of promise. 

A final opportunity is to look for more powerful 
structural properties that hold relative to random or 
generic oracles. We have found random oracles, in 
particular, to be a valuable “laboratory” for explor- 
ing the plausibility of various structural hypotheses. 
In particular, random oracles tend to be very good at 
separating deterministic and nondeterministic com- 
plexity classes, and at producing sets with very strong 
immunity properties. 

2 Structural Theorems 

In this section, we consider various strengthenings of 
the definition of a l-way function. 

Definition 2.1 A function f is a l-way function if 
and onJy if f is honest, one-one, polynomial-time 
computable, and not polynomial-time invertible. 

Our definition of l-way function requires totality, 
which is not the case in all presentations. Groll- 
mann and Selman [GS84,GS88] and Ko [Ko85] show 
that the existence of l-way functions is equivalent to 
P # UP. Ko, Long, and Du [KLD86] show that if 
l-way functions exist, then length increasing l-way 
functions exist. 

We introduce two more powerful variants of the 
notion of a l-way function, and show that if these 
functions exist, then the complete 1-li degree for NP 
(and for many other natural complexity classes) does 
not collapse. 

Definition 2.2 A function f is a scrambling func- 
tion if and only if f is a one-way function and 
range(f) does not contain a nonempty paddable set. 

As with “vanilla” one-way functions [KLD86, 
Proposition 2.13, if scrambling functions exist, then 
length increasing scrambling functions exist. 

The existence of scrambling functions implies that 
the encrypted set conjecture is valid. 

Theorem 2.3 Ifscrambling functions exist, then the 
complete I-Ji degree for NP fails to collapse, and so 
the isomorphism conjecture fails 

Proof: Let f be a length increasing scrambling 
function and let A be paddable l-li complete for NP. 
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Consider” B = f”A. It is easy to see that B is l-li Theorem 2.7 If scrambling functions exist, then ev- 
complete for NP. ery image complete I-Ji degrees with a paddable eJ- 

AS B C range(f), B cannot be paddable. As ement does not collapse; and every image complete 
paddability is an isomorphism invariant, A and B are m-degree contains an image complete 1-h degree that 
not isomorphic. does not collapse. 

cl 

It is natural to ask whether or not the existence of 
scrambling functions implies the Joseph-Young con- 
jecture. 

To this end, let pi denote the i-th nondeterministic 
Turing machine, and let 9i denote its running time. 
Joseph and Young define 

K/k = {f(i) : @i(f(i)) < /iI ‘ If(# + /iI:] 

for one-one, honest, polynomial-time computable f. 
It is clear that I<; is a subset of range(f), and so 

is not paddable. By the analysis in [JY85], “3 will 
be 1-li complete for NP whenever f is a scrambling 
function, 

We have 

Theorem 2.4 If f is a scrambling function, then I<! 
is a nonpaddable I-Ji complete set for NP. 

Theorem 2.3 is far more general than it might ini- 
tially appear. In particular, the hypothesis that A 
was l-li complete for NP was only used to ensure 
that B <y-ii A. By isolating this hypothesis, we can 
extend the proof of Theorem 2.3 to obtain the non- 
collapse of many other 1-li degrees. 

Definition 2.5 A set A is 1-li image complete if 
and only if for every poJynomiaJ-time computable I-Ji 
function f, f”A <y-ii A. Similarly, a set A is m-image 
complete if and only if fi)r every honest, polynomial- 
time computable f, f”A 5% A. 

Image completeness is a property shared by the 
complete languages for most natural complexity 
classes containing NP. In partic.ular, the complete 
languages for NP, PSPACE, EXP, NEXP, and RE 
are all image complete. The following proposition is 
trivial. 

Proposition 2.6 If A is I-Ji image complete, tllen 
so is every set in the I-Ji degree of A. If A is m-image 
complete, then so is every set in f;he m-degree of A. 

Proposition 2.6 enables us to extend the terminol- 
ogy of image completeness from sets to degrees. 

‘We use the set theoretic f”A to denote {f(z) : 2: E 
A}, rather than the more conventional f(A). The later 
notation is ambiguous in situations where A may be in 
the domain of f. 

Many natural classes contain m-image complete 
sets. Thus, 

Theorem 2.8 If scrambling functions exist, then the 
complete I-Ji degrees for NP, PSPACE, EXP, NEXP, 
and RE fail to collapse. 

In Section 3, we will show that there are oracles 
relative to which scrambling functions exist, indeed, 
that much more powerful sorts of l-way functions ex- 
ist relative to random oracles. 

Definition 2.9 A function f is an annihilating func- 
tion if and only if f is a I-way function such that 
all polynomial- time decidable subsets of range( f) are 
sparse. 

As before, if annihilating functions exist, then 
length increasing annihilating functions exist. 

Annihilating functions are, in one sense, the most 
powerful sort of one-way function possible, for the 
range of every polynomial-time computable one-one 
function must contain sparse sets with arbitrarily 
large polynomial census. 

It is easy to see that every annihilating function is 
a scrambling function. The main result of the Sec- 
tion 3 is that annihilating functions exist relative to 
a random oracle. 

3 Randomness 

In this section we will show that annihilating func- 
tions exist relative to a random oracle. 

3.1 Notation 

We consistently identify sets with their characteristic 
functions. Thus, if A C D and z E D, then 

A(x)= 

The cardinality of a set A is denoted by j/Al]. 
If A C 2w, then we use ,u(d) to denote the Lebesgue 

measure [Oxt80] of A. In this paper, we will consider 
only lst-order definable subsets of 2w. Definable sub- 
sets are explicitly Borel, and therefore are measur- 
able. We will use the term probabilily as a synonym 
for measure. E.g., if we say that a random oracle 
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R is in A with probability p, this means that A has 
measure p. 

A tail set is a subset P of 2w that is closed under 
finite variants, i.e., if X and Y are subsets of w such 
that X A Y is finite, then X E P w Y E P. Kol- 
mogorov’s zero-one law [Oxt80, Theorem 21.31 states 
that a measurable tail set must have measure 0 or 
1. Structural properties such as {X : Px # NPX} 
are definable tail sets, and so have measure 0 or 1. 
Informally, this means that there is a well-defined 
“measure 1” theory. If P is a measure 1 subset of 
2”, then we say P holds relative to a random ora- 
cle. In essence, this defines our use of the word ran- 
dom. It should be noted that this use of random 
[Kur81,Kur88] is more restrictive than Chaitin’s use 
[Cha77,Cha87] of th e same term. Thus, if we claim 
P holds relative to a random oracle, there may well 
be Chaitin random sets X such that X @ P. For 
example, the statement {X : X is not arithmetic} is 
a measure one property of 2w, and yet Chaitin’s 0 is 
arithmetic. 

An operator is a function from 2w to 2”. We often 
decurry an operator, and view it as a function from 
2” x w to 2. If L is an operator, we will generally write 
LR(n) rather than L(R,n) or L(R)(n). As elements 
of 2” are identified with languages, an operator can 
be identified with a function from languages to lan- 
guages. In this guise, operators are usually referred 
to as reducibilities. Occasionally, we view the argu- 
ment to an operator as having been fixed, in which 
case we speak of relativizations or oracle dependent 
languages. It is helpful to realize that these notions, 
which are superficially quite different, are mathemat- 
ically equivalent. 

The most important classes of operators are the 
continuous and the partial recursive operators. A 
partial recursive operator need not be continuous, but 
all total recursive operators are. The polynomial-time 
computable operators are total, and therefore contin- 
uous. We refer the reader to [Rog67] for a mathemat- 
ical introduction to operators. 

3.2 Annihilating functions exist rela- 
tive to a random oracle 

We focus our attention on the following function: 

<R(Z) = R(4)R(~10). . . R(z103’“1). 

Lemmas 3.1 and 3.5 show that CR is an annihilating 
function with probability at least l/2. By general 
measure theoretic principles (Theorem 3.6), annihi- 
lating functions exist relative to a random oracle. 

It is easily seen that & maps strings of length 7t to 
strings of length 3n + 1. Therefore <R is honest. 

Lemma 3.1 With positive probability, <R is one- 
one. 

Proof: If CR(~) = JR(~), then a and b must have 
the same length. We establish an upper-bound on 
the probability that two strings of length 12 have the 
same image, and then by summing over n, establish 
an upper-bound of l/2 on the probability that & fails 
to be one-one. 

If a and b are distinct elements of length n, then 
the probability that they have the same image under 
<R is exactly l/2 3n+1. There are (“,“) distinct pairs 
of elements of length n, and so the probability that 
there exist two strings of length n having the same 
image under <R can be bounded above by 

2” 0 1 
223”+1= 

292n - 1) 
23n+l 

< 2n-l2n 
23n+1 

1 
= p+2. 

We can now bound the probability that there are 
<R is not one-one by summing this estimate over all 
12: 

c 
1 1 

nEw 2n+2 = 2’ 

As <R is not one-one with probability at most l/2, it 
is one-one with probability at least l/2. 

0 

To show that <R is an annihilating function with 
positive probability, we need to show for random R 
that if LR c range(eR), and if <R(Z) E LR, then 
LR(&$(2)) must depend on 2 for all but finitely many 
2. In fact, this really isn’t an observation about com- 
putation, but rather about information. 

Definition 3.2 Let R and 5’ be oracles. We say that 
R and S are x-variants if and only if RA S c (x10” : 
k E 3n+ 1). If R and S are C-variants, then we write 
R-z S. 

Clearly -Z. is an equivalence relation for every 
string x. 

Definition 3.3 If L is an oracle-dependent language, 
then we say LR examined x on argument y if and only 
if there is an S, S wZ R, such that y E LR A Ls. 

The terminology examined is an artifact of viewing 
L as a Turing machine, where we say LR(y) examines 
a string x if L on input y queries R about a string 
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of the form x10”. Notice that the definition of ezam- The set ‘R(n) is merely the collection of oracles R 
ined given in Definition 3.3 is more restrictive than relative to which for some k > rz, UR contains few 
the Turing machine definition, as <a Turing machine enough elements of length 31c + 1 to fit within the 
may make queries whose answer does not affect the range of <R, and UR has an element of length 3k + 1 
outcome of the computation. in range(fR). 

Lemma 3.4 Let U be a continuous operator such 

that for all x, y, and R, if y = <R(X) E UR, then 
UR(y) does not examine 2:. The probability that UR 

is an infinite subset of ra.nge(<R) fbr a random R is 
zero. 

We claim that for all n, 

P(W4) I l/2”. 

By countable subadditivity, 

(2) 

P(R(~)) I c c A@ : bdx) E UR A 
Proof: We establish a stronger result than we 
claim. We show that if U is a continuous operator, 
and if for all x, y, and R, U”(y) does not examine 
x whenever y = [R(z) E UR then the probability 
that UR both contains 2” or fewer elements of length 
23n+X or less for every n, and has an infinite intersec- 
tion with range(&), is zero. 

Let x E 2”. Define 

k>n r~2k 

IIUR(-p 3k+l)) < 29) 

k>n x~2k 

(by 1) 

M,&) = {R : CR(Z) E CrR A 11~~ n23n+ill I??} 

We claim 

= 
Cl 

1 2k-+1 
k>n 

= l/an 

,u(Mn(z)) < 1/22”‘*. (1) 

Consider a fixed language R. This R has exactly 

and therefore (2). 

23nf1 equally probable z-variants. It suffices to show 
that at most 2” of R’s x-variants can be in ~!&(a:).~” 

Now, if UR is an infinite subset of range(&), then 
R E R(n) for every n. The lemma follows, as /1(7?(n)) 
can be made as small as desired by an appropriate 
choice of n. 

Let Y = {yi : i E I} be the collection of strings of 
length 3n+ 1 in UR that do not examine x. If S is an 
x-variant of R, then by the definition of “examine,” 
we must have Y C Us. If l/Y/l > 2n, then none of 
R’s z-variants are% Mn(z), and (1) holds. 

Lemma 3.5 With probability 1, if LR c range(&) 
is a polynomial-time computable set relative to R, 
then LR is sparse. 

Therefore, assume llYl/ 5 2n. Let S be an x-variant 
of R, and let y = (s(x) E Us. We claim that y must 
be one of the yi’s. If not, t,hen lJss must examine x, 
but in this case y 9 Us by our hypothesis on U. Thus, 
the only variants of R which can be in Mn(z) are the 
variants S such that [s(z) = yi for some i. There is 
one such variant for every i E 1, and therefore at most 
2” many such variants. Again, (1) holds, establishing 
our claim. 

Proof: We begin by decomposing LR into two dis- 
joint sets: QR is the set of y E LR such that LR(y) 
examined an x such that <R(X) = y; and UR is the 
set of y E LR such that LR did not examine such an 
x. It suffices to show that with probability 1, QR is 
sparse, and if UR is a subset of range(&), then UR 
is sparse. 

Let 

R(n) = {R : (Elk > n.)(% E 2”)[<,(4 E UR A 

JJU’2 n 239l 5 271. 

By Lemma 3.4, if UR 2 range([R), then UR is 
finite, and so it suffices to show that QR is sparse 
with probability 1. 

“Well, actually, this does not suffice. Technically, one 
leas to extend the notion of z-variant to basic open inter- 
vals. Then, consider minimal basic open intervals c such 
that U’(y) is determined for all y E 23n’1 and r wz cr. (It 
is at this point that we use the hypothesis of continuity.) 
These u’s form a finite partition of 2”. The argument 
which we state informally in terms of R can then be for- 
mally stated in terms of the O’S. 

For each string y of length 3n + 1, the probability 
that any given x of length n is a preimage of y is 
1/23”+1. As QR can examine at most p(3n + 1) po- 
tential preimages of y, the probability that QR will 
examine a preimage of y is at most p(3n + 1)/23”+1. 

Therefore, the expected number of elements of 
length 3n + 1 that QR will accept is bounded by 
23n+‘(p(3n + 1)/23”+1) = ~(372 + 1). 

We claim that the probability that QR can contain 
more than n2p(3n + 1) many elements is bounded 
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above by nm2, otherwise the mass contributed to the 
expected number of elements of QR by these “large” 
sets would exceed the overall expectation. As QR can 
never have a negative number of elements of a given 
length, this cannot occur. 

The probabiIity that QR can have more than 
L*p(3/c + I) elements for some k > n is therefore 
bounded by 

c 
1 

$<-. 
k>n 

n-l 

The lemma follows immediately. 

0 

Theorem 3.6 Annihilating functions exist relative 
to a random oracle. 

Proof: If an annihilating function exists with re- 
spect to an oracle R, an annihilating function ex- 
ists with respect to all its finite variants. By Kol- 
mogorov’s zero-one law (cf. [OxtSO, Theorem 21.3]), 
the measure of the set of oracles R such that there is 
an annihilating function relative to R has measure 0 
or 1. By Lemmas 3.1 and 3.5, we know that there is a 
set of positive measure on which & is an annihilating 
function. The theorem follows immediately. 

0 

The folIowing theorem is an immediate conse- 
quence of Theorem 3.6, Theorem 2.8, and the fact 
that all annihilating functions are scrambling func- 
tions. 

Theorem 3.7 Relative to a random oracle, the com- 
plete 1-L degrees for NP, PSPACE, EXP, NEXP, and 
RE do not collapse. In particular, the isomorphism 
conjecture fails relative to a random oracle. 
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