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Abstract 

We introduce a new randomized sampling technique, 
called Polling which has applications to deriving effi- 
cient parallel algorithms. As an example of its use in 
computational geometry, we present an optimal paral- 
lel randomized algorithm for intersection of half-spaces 
in three dimensions. Because of well-known reductions, 
our methods also yield equally efficient algorithms for 
fundamental problems like t,he convex hull in three di- 
mensions, Voronoi diagram of point sites on a plane and 
Euclidean minimal spanning tree. Our algorithms run 
in time T = O(logn) for worst-case inputs and uses P = 
O(n) processors in a CREW PRAM model where n is 
the input size. They are randomized in the sense that 
they use a total of only O(log2 n) random bits and termi- 
nate in the claimed time bound with probability 1 - n--(y 
for any o > 0. They are also optimal in P . T product 
since the sequential time bound for all these problems 
is Sl(nlogn). The best known deterministic parallel al- 
gorithms for 2-D Voronoi-diagram and 3-D Convex hull 
run in O(log2 n) and O(log2 nlog * n) time respectively 
while using O(n) processors. 

1 Introduction 

1.1 Background and previous work 

Designing efficient parallel algorithms for various fun- 
damental problems in computational geometry has re- 
ceived much attention in the last few years. After some 
early work by Chow [4] in her thesis, Aggarwal et al. [l] 
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developed some general techniques for designing ef- 
ficient parallel algorithms for fundamental geometric 
problems. Most of the problems tackled in that pa- 
per had O(nZogn) sequential complexity and the authors 
presented parallel algorithms which used a linear num- 
ber of processors and ran in O(logk n) time (k being 
typically 2,3 or 4) in size of the input. Consequently, 
a majority of the algorithms were not optimal in P . T 
bounds. A number of the problems in the original list 
(in [l]) have now been successfully resolved as far as 
O(logn) time, n processors algorithms are concerned, 
mainly due to work by Atallah, Cole and Goodrich [2]. 
They extended the techniques used by Cole [9] for his 
parallel mergesort algorithm and used a date-structure 
called plane-szueep tree (first proposed by Aggarwal et 
al. [l]) to arrive at the optimal algorithms. Perhaps the 
two most important problems which have been eluding 
such efforts are the 2-D Voronoi diagram problem and 
the convex hull of points in 3-space. These are very 
fundamental problems in computational geometry and 
optimal algorithms for these problems would imply cor- 
responding optimal solutions for a multitude of other 
problems. 

A very general definition of Voronoi diagram given by 
Edelsbrunner [14] is as follows: 

Let S be a finite set of subsets of Ed and for 
each s E S let d, be a mapping of Ed to pos- 
itive real numbers; we call d,(p) the distance 
function of s. The set {p E Ed: d,(p) < dt(p), 
t E S - {s}} is the Voronoi cell of s and the 
cell complex defined by the Voronoi cells of all 
subsets in S is called the Voronoi diagram of 
S. 

In this paper, we confine ourselves to the case where 
S is a set of points in E2 and the distance function 
is the L2 metric. In mathematical literature, Voronoi 
diagrams appeared as early as in 1850 (due to Dirich- 
let) and again in 190’7 due to Voronoi. Problems about 
packing and coverings of space by balls and other convex 
figures were among the first major applications of such 
diagrams. Shamos and Hoey 1261 introduced Voronoi 
diagrams to computer science and and since then a con- 
siderable amount of research has been devoted for deriv- 
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ing efficient sequential algorithms for the 2-D Voronoi 
diagram problem ([15, 25, 71). The Voronoi diagram 
is a very versatile tool for obtaining efficient solutions 
of some important proximity problems and is also a 
fundamental mathematical object in its own right. A 
large number of the problems can be solved in linear or 
O(n log n) time from the information contained in the 
Voronoi diagram that includes all-points nearest neigh- 
bor, Euclidean minimal spanning tree, diameter, small- 
est enclosing circle among others. 

Since there are sequential algorithms for Voronoi- 
diagrams that run in time O(nlogn), it is a fundamen- 
tal question if there is a parallel algorithm that runs in 
O(logn) time using n processors. Aggarwal et al. have 
given a O(log’ n) time, O(n) processors algorithm but it 
appears that one would require very different techniques 
to eliminate the O(logn) factor. Cole and Goodrich [lo] 
reiterated the difficulties posed by this problem, when 
they provided some more applications of their cascaded- 
merging technique but were unable to extend it to the 
Voronoi diagram problem. In this paper we settle this 
question by presenting a randomized algorithm for this 
problem that runs in O(logn) time and uses n processors 
in a shared memory model of parallel computation. The 
reader should note that the lower-bound of R(nlogn) 
also applies to the randomized algorithms by a reduction 
of sorting to (l-dimensional) Voronoi-diagrams. Lev- 
copoulos, Katajainen and Lingas [20] presented an op- 
timal expected time algorithm for Voronoi diagrams for 
randomly chosen set of input points; in contrast our 
algorithm makes no assumption about the input distri- 
bution and is optimal for the worst-case input. 

Convex hulls in 3-D has a wide range of applications 
ranging from computer graphics to design automation 
to pattern recognition to operations research. Convex 
hulls in three dimensions can also be constructed se- 
quentially in O(nZogn) time where as the best known de- 
terministic parallel algorithm due to Dadoun and Kirk- 
patrick [ll] runs in O(log2 nlog *n) time using n pro- 
cessors. In this paper we actually describe an optimal 
randomized parallel algorithm for constructing convex 
hulls in Euclidean 3-space. Due to a well-known reduc- 
tion from 2-D Voronoi diagrams to 3-D convex hulls, we 
get an equally efficient algorithm for the first problem 
as an immediate corollary. 

1.2 Random-sampling and PoIling in 
computational geometry 

Randomization has been successfully used in a wide 
number of applications (for example see [16,24,27]) and 
has recently been used to obtain efficient algorithms in 
computational geometry. Clarkson [5, 6, 71, Haussler 
and Welzl [17], and Mulmuley [21] used random sam- 
pling techniques to derive better upper-bounds for a 
large number of problems including the post-office prob- 
lem, higher-order Voronoi diagrams, segment intersec- 

tions, linear programming. higher-dimensional convex 
hulls. The general approach taken by these algorithms 
as follows: a randomly chosen subset R of the input 
set S is used to partition the problem into smaller ones. 
Clarkson [7] proved that for a wide class of problems in 
computational geometry, the expected size of each sub- 
problem is O(]S]/]R]) and moreover the expected total 
size of the subproblems is O(]S]). A random subset R 
which satisfies these conditions for fixed constant mul- 
tiples is called a ‘good’ sample and is called ‘bad’ other- 
wise. Clarkson’s results show that by using a straight- 
forward random sampling technique any randomly cho- 
sen subset is good with constant probability; implying 
that it can also be ‘bad’ with constant probability. Con- 
sequently, his methods yielded expected resource bounds 
but cannot be used to obtain high-likelihood bounds 

( i.e. bounds that hold with probability 1 - l/na for 
any ~1 > 0). This makes it very difficult to extend 
his methods in the context of parallel algorithms due 
to the recursive nature of the algorithms. In particu- 
lar the expected bounds at each recursive call are not 
strong enough to bound the resources used by the en- 
tire parallel algorithm due to the following reason. In 
a sequential algorithm, due to the linearity property of 
expectation (i.e. the expectation of the sum is the sum 
of expectations), it suffices to bound the expected time 
required by individual steps. The total expected time of 
the sequential algorithm is the sum of expected time of 
the individual steps. In contrast, consider the recursive 
parallel algorithm as a tree where a node corresponds 
to a procedure and the children of a node corresponds 
to the parallel recursive calls made by the procedure. 
The time required at each level of this tree is the max- 
imtim of the time required by any node of that Ievel. 
There is no known method to bound the maximum of 
the expectations without using higher moments. The 
total time required by the parallel algorithm is the time 
when all the procedures corresponding to the leaf nodes 
are completed. Typically, in a parallel algorithm, the 
number of leaves in the corresponding process tree is at 
least n’ (0 < c < 1). Even if we succeed in bounding 
the expected time for completion of a leaf-node proce- 
dure, the expected bounds are too weak to bound the 
maximum of the time required by all such processes. 

The above problem can be dealt with by developing 
a technique for choosing samples that are ‘good’ (as de- 
fined above) with high probability. By doing so we shall 
show that a leaf-node process terminates in a given time 
bound with probability l- l/n” for any (Y > 0. In partic- 
ular, for o > 1, this implies that the failure probability 
for the entire algorithm is less than l/n”-l (since there 
can be at most O(n) leaf-level processes). We intro- 
duce a technique called polling to obtain a ‘good’ sam- 
ple with high probability with relatively small overhead. 
Roughly speaking, we choose a number, p(n), of ran- 
dom subsets (typically p(n) = O(logn)) independently 
and determine which of these subsets is ‘good’ and with 
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high probability one of them is ‘good’. This scheme, 
though effective, is not very efficient since we have to re- 
peat the procedure p(n) times. However, we show that 
we can draw conclusions about the ‘goSodness’ of a sam- 
ple very accurately by using only a fraction (typically 
l/(p(n)‘@‘) of th e input which then makes the Polling 
scheme very efficient. This is actually very similar to 
the idea of polling a small fraction of ,the population to 
find out how the entire population would behave and 
hence the name. This turns out to be crucial in bound- 
ing the total running time of the parallel algorithm. In 
addition to the applications in obtaining the improved 
results in this paper in computational geometry, Polling 
appears to be a general tool for obtaining improved par- 
allel randomized algorithms. A similar idea had been 
used previously by Rajasekaran and Reif [22] for their 
optimal integer sorting algorithm. 

Note that the second property of a ‘good’ sample i.e. 
that of bounding the total size of the sub-problems is 
not an issue in l-dimensional problems. In the paral- 
lel sorting algorithms of Reischuk[ZO] and Flashsort[lS] 
where the total size of the subproblems always equals 
the input size. This is another reason why the straight- 
forward random sampling techniques do not carry over 
to the recursive algorithms. Clarkson[8] circumvents 
this problem by limiting the number of recursive levels 
by a fixed constant. By using recursion over s(n) steps 
the problem size could grow by a multiplicative factor 
of 2n(a(n)) if the sum of the subproblems increases by 
only a constant factor over the parent-problem at every 
recursive call. This could seriously affect the efficiency 
of the algorithms, especially when we are looking for 
optimal algorithms. We need additional arguments to 
bound the total size of the sub-problems at any level of 
recursive calls (independent of the level number). 

1.3 Main results 

The main result in this paper can be summarized as 
following: 
Theorem: There exists a randomized algorithm in the 
CREW PRAM model for constructing the intersection 
of n half-spaces in three dimensions that runs in O(logn) 
time for any input with probability > 1- l/no (for any 
given o > 0) Bsing n processors. Moreover, we can 
also limit th.e total number of random bits used by our 
algorithm to O(log’ n). 
The above theorem immediately implies equally efficient 
algorithms for the following problems from well-known 
reductions 

(i) Convex-hull of points in J-dimensions 
(ii) Voronoi-diagram of point sites in a plane 
(iii) Euclidean Minimal spanning tree 

The previously best-known algorithms for all these 
problems are sub-optimal by at least an O(logn) factor 
in time complexity. 

We adopt a top-down approach in describing the al- 
gorithm. In the section 2 we list some of the preliminary 
results that will be used as low-level procedures in the 
algorithm and some probabilistic notations used to aid 
the analysis. In section 3, we sketch a very high level de- 
scription of the algorithm that uses the straight-forward 
random sampling (without polling) and if implemented 
in a straightforward manner wouldn’t be very efficient. 
In section 4, we give a formal description of polling and 
its probabilistic analysis. In section 5 we describe an 
efficient procedure for for carrying out the divide step 
of the algorithm. In section 6, we present probabilistic 
arguments for bounding the total time of the algorithm 
with high likelihood and bound the number of proces- 
sors needed at any single step to complete the analysis. 

2 Some preliminary results and 
overview 

2.1 Model of computation and nota- 
tions 

Throughout this paper we will be using the CREW 
PRAM model which is the synchronous shared mem- 
ory model of parallel computation in which processors 
may simultaneousiy read from a memory location but 
are not allowed to write concurrently. At each step, a 
processor is allowed to perform a real-arithmetic opera- 
tion consistent with standard models used for sequential 
geometric algorithms. Moreover, each processor has ac- 
cess to a random-number generator that returns in unit 
time a truly random number of O(logn) bits. However, 
see in section 6.3, where we limit the use of truly random 
bits. 

The term very high likelihood (probability) is used in 
this paper to denote probability > 1 - nVa for some 
(Y > 1 where n is the input size. Just like the big-0 
function serves to represent the complexity bounds of 
deterministic algorithms, we shall use d to represent 
complexity bounds of the randomized algorithms. We 
say that a randomized algorithm has resource bound 6 
(f(n)) if there is a constant c such that the resource used 
by the algorithm is no more than cof(n) with proba- 
bility > 1 - l/na for any cy > 1. (An equivalent def- 
inition will be bounding the resource by (Y . f(n) with 
probability greater than 1 - neca and in the rest of the 
paper they will be used in an interchangeable manner). 
Note that an algorithm whose expected resource bound 
is O(f(n)) does not have any better confidence interval 
beyond using Markov’s inequality i.e. the probability 
that it exceeds the resource bound by a factor k is less 
than l/k. This implies that the failure probability does 
not diminish as rapidly as the high likelihood bounds. 
High-likelihood bounds are especially useful for parallel 
algorithms, where we need to bound the time complex- 
ity of all the processes. In contrast, the expected bounds 
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as used by Clarkson[8] are difficult to use to bound the 
overall maximum time for all processes. 

We will be using the term high-likelihood in a vari- 
ety of situations throughout this paper that may look 
different from the canonical form given in the previous 
paragraph. We illustrate this with two lemmas which 
will be of use later. 

Lemma 2.1 The union of k events (k being any fixed 
integer), each of which succeeds with high probability 
also succeeds with high probability. 

Note that if the failure probability of event i is < l/nai 
the failure probability of the union of the events is less 
than Cf=, nmai < k/ncS where a: = min(crl, ..,cY~). 
This is less than n-(“-@ for any 6 > 0. 

Lemma 2.2 If an algorithm consists of kloglogn (k is 
any positive integer) nested procedure calls such that 
the running time of the procedure at level i (1 < i < 

kloglogn) etceeds cc~log(n’/~~), (u is a constant greater 
than 1) with probability less tha_n l/nQloi, then the en- 
tire program executes in time O(logn). 

A rigorous proof of this assertion can be found in Reif 
and Valiant [24] (Theorem A). 
For the rest of the paper, we assume that the success 
probability required by the algorithm is given, so that 
given n, we can fix cr. From this, one can compute the 
required probability of success at every individual step 
of the algorithm even though we do not provide explicit 
formulae. Also, for convenience of notations, functions 
of n that may not be necessarily integral valued like 
loglogn or nszlpe will actually denote the ceiling of such 
values i.e. rloglogn] and rn’]. This does not affect the 
asymptotic bounds of the algorithm. 

2.2 Useful results 

In the remainder of the paper we shall assume that the 
half-spaces are described as inequalities of the form ax 
+ by + cz + d 2 0. The following observation is useful 
for constructing the intersection of a random subset of 
half-spaces that is used to split up the problem evenly. 

Lemma 2.3 The intersection of a given set of n half..- 
paces can be computed in O(logn) time using n4 proces- 

sors in a CREW PRAM model. 

Proof: Assuming non-degeneracy (i.e. no 4 planes in- 
tersect at a common point), there are O(n3) candidate 
vertices for vertices of the convex hull (of the intersec- 
tion). For each vertex, test whether it is a vertex of 
the convex hull by checking if it satisfies all the equa- 
tions defining the half-spaces. This can be done trivially 
in O(logn) time using n processors for each candidate 
point. Only the vertices would survive. Determine the 
faces of the convex hull by identifying planes that con- 
tain 3 vertices of the intersection. 0 

Lemma 2.4 Given a set of n half-spaces, it is possible 
to compute their intersection in O(log3n) time using n 
processors in a CREW PRAM model. 

Proof: Follows immediately from Aggarwal et al. [l]. 
This result is useful to stop the recursion at a level 

when the problem size is small (typically O(log” n) for 
some integer k) and solve the problem directly. Note 
that any polylog-time algorithm using a linear number 
of processors would again suffice for our purpose. At 
this stage the problem size is so small that using a sub- 
optimal algorithm will not affect the asymptotic com- 
plexity of the algorithm. 

3 A naive random sampling al- 
gorithm and its shortcomings 

Before we embark on a formal proof of the main theo- 
rem, let us give an informal description of the algorithm 2 
using the straight-forward random sampling strategy 
(as used by Clarkson [7]). We intentionally leave out 
Polling from this preliminary discussion to illustrate the 
pitfalls of using naive sampling strategies for parallel al- 
gorithms. We shall assume for the time being that we 
know a point p’ in the intersection of the n half-spaces 
and later show how to determine such a point efficiently. 
Using a random subset of S, we split the original prob- 
lem evenly into smaller sized problems and then apply 
the algorithm recursively to each of the problems. By 
using a random subset of size n’, (0 < c < 1) we split 
up the problem into sub-problems of expected size nl-‘. 
This results in a recurrence of the form T(n) = T(nlec) 
+ f(n), where f(n) is the time for dividing the problem. 
If f(n) 5 6(logn) (which requires the use of Polling that 
we describe in section 4), we have an algorithm whose 
expected running time is bounded by O(logn). We fur- 
ther need to show that the number of processors re- 
quired at each step of the algorithm is O(n). 

Algorithm 

Input: A set S of n half-spaces Hi, Hz, . . . H,. 
Output: The output convex hull C which is 

intersection of the n half-spaces. 
(1) Choose a random subset R C S of half-spaces such 

that ]R] = n’ (for some c, 0 < E < 1 that we shall 
determine during the course of analysis). 

2) Find the intersection of the R haif-spaces and again 
wlog assume that there is no degeneracy i.e. each 

vertex is the intersection of exactly three planes. Take 
a fixed plane and cut up each face of the polyhedron 
with parallel translates of this plane passing through 
the vertices. Thus each face is a trapezoid. Further, 

partition each trapezoid with a diagonal so that each 
face is triangular. For a face 3’; consisting of vertices 

xi, yi/;, ri consider the cone Ci formed by p* a~ the apex 
and Fi as the base. Let CR denote the number of 

cones. Note that Cn 5 ]R]. 
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3) For the S-R remaining half-spaces (which are 
actually equations of planes) find the intersection of 

the planes with the cones. Note that a plane may 
intersect more than one cone:. The intersection of the S 

half spaces is the union of the intersection of the 
half-spaces intersecting a cone (over all cones). That 

is, C is Uic=R, I 1. where I; is the inte:rsection of all 
half-spaces formed by Ci n {Hj} for all j. 

4) If the number of planes intersecting the cone is 
more than a pre-determined threshold apply step 1-3 
recursively to this set of set of half-spaces else solve 

the problem directly (using Lemma 2.4). 
end 

The algorithm outlined above that uses a straight- 
forward random-sampling in step (1) is only a skeleton 
of the actual algorithm and is not very efficient in its 
present form. One of the main problems is that in step 
3), we could have the total size of the sub-problems ex- 
ceed the size of the parent (calling) problem by a large 
factor at each recursive call. Note that bounding this 
increase at each recursive call by a constant factor is 
not sufficient. This would imply that after O(loglogn) 
levels, we can only bound the number of processors re- 
quired at this stage by O(nlog”(‘) n). This is where this 
algorithm differs from some other recursive parallel al- 
gorithms like randomized parallel sorting algorithms of 
[24,25] where the total size of the subproblems is always 
bounded by the input size. We need more sophisticated 
methods for choosing random subset in step (1) to pre- 
vent this. We will show in section 4 how to solve this 
problem using Polling. Moreover, the procedure of de- 
tecting the intersection of the half-planes with the cones 
quickly is in itself a non-trivial task. For the rest of the 
paper, we concentrate on individual steps and provide 
the necessary modifications to prove the main theorem. 

4 Probabilistic lemmas 

4.1 Need for Polling: an improved ran- 
dom sampling technique 

A crucial part of the analysis rests on showing that a 
random subset R can be chosen efficiently in the first 
step of the algorithm that divides the the problem into 
almost equal sized sub-problems. In addition we have to 
show that the union of the sub-problems is almost equal 
to the complexity of the original problem at every stage 
of the recursive calls. The following result follows from 
Clarkson (Clarkson [7], Corollary 4.3) for any random 
R C S with ]R] = T. 

Lemma 4.1 Let Xi denote the set of planes intersect- 
ing cone Ci (using the same terminology as in step 2 of 
the algorithm). Then the following conditions hold with 
with probability at least l/2 

CR 
(i) &I [Xi1 5 h~td(~/T)* E(CJ3) 

and 
(ii) mazilXi--- 5 kmaz(n/r). logr 
where ktotol and k,,, are constants and CR is 
defined previously, . 

Any subset of the input that satisfies the above con- 
ditions for some fixed constants is defined to be ‘good’ 
and otherwise ‘bad’. A direct consequence of the lemma 
is that we can divide up the problem into almost equal 
size sub-problems, such that the increase in the original 
problem size can be bounded by at most a constant mul- 
tiplicative factor of k,,, . Since our objective is to apply 
this recursively, we need a more sophisticated sampling 
algorithm to obtain a sample that is ‘good’ with high 
likelihood. 

4.2 An informal description of Polling 

The abstract idea is following. Since the above events 
would fail only with constant probability, the probabil- 
ity that the conditions would fail in O(logn) indepen- 
dent trials is less than l/n(l for some (Y > 0. That 
is if we choose independently p(n) = O(logn) sets of 
samples, one of them is good with very high likelihood. 
However, to determine if a sample is ‘good’, we would 
have to carry out step 3, O(logn) times each of which 
requires O(logn) time (such a method is described in sec- 
tion 5). Instead, we try to estimate the the number of 
planes intersecting a cone Ci using only a fraction of the 
input planes. For example, we can choose CO . n/ logd n 
for some fixed integer d > 2 and a constant CO (the ac- 
tual value will be determined from the required success 
probability of the algorithm) of the input planes ran- 
domly for the jth sample, Rj. Let Xi be the number 
of planes intersecting cone Ci corresponding to sample 
Rj, 1 5 j 5 blogn where b is fixed integer greater than 
0 which is determined from the success probability of 
the algorithm. Ai be the number of planes intersecting 
Ci out of the n/logd n randomly chosen input planes for 
the same sample. Clearly, Ai is a binomial random vari- 
able with parameters n = co . n/ logd n and p = X!/n 
(see appendix). Assuming that Xj is greater than E 
. logd+l n, for some constant c, we will apply Chernoff 
bounds (see appendix) to tightly bound the estimates 
within a constant multiplicative factor. Since we do it 
only for l/logd n of the input planes, the total number 
of operations for the O(logn) random subsets can be 
bounded by ?(nlogn) 6;; we show in the next section). 
Note that Xi < E log n, is an easy case since 72’. c 

1% d+l n = o(n). 

4.3 Probabilistic analysis of Polling 

More formally, by invoking Chernoff bounds (see Ap- 
pendix equations (1) and (2)), for any (Y > 0 (o is 
a function of cc), there exists a cl, independent of n, 

398 



Prob(A{ 2 aclX{/logd n) _< l/na and Prob(Ai 3 

CZ~CO f X{/logdn) < l/ncoa < l/nQ (for cc > 1). 
From the last two inequalities, X! is bounded by Lj = 

Al logd n/c,-,cza from below, and Uj = by A{ logd n/city 
from above. With appropriate changes in the constants, 
this condition holds with high likelihood (as defined in 
section 2.1) for all Xi simultaneously. We do the proce- 
dure (described in the next section) simultaneously for 
all the samples Rj and choose the sample Rj, using the 
following simple test: 

Algorithm Polling 

(Let Nj = C Ai and the let actual number of intersec- 
tions be denoted by Tj and the upper and lower bounds 
obtained from Nj by Uj and Lj respectively). 

If ktololn > Uj then accept sample Rj (since 
ktotaln 2 Uj >_ Tj), else if ktotoln 5 

Lj then the sample is ‘bad’ (since Etotaln 5 
Lj 5 Tj), else if Lj 5 ktotaln 5 Uj, 

then accept the sample Rio for which Ejo is 
minimum. Since both klotnln and TjO lie in 
this interval this guarantees that Tjo 2 c3 - 
ktotaln where cs = Uj/Lj which is a constant. 

Recall, that from our earlier discussion at least one of 
the samples would satisfy conditions 1 or 3 with very 
high likelihood. We summarize as following : 

Lemma 4.2 (Polling lemma) 1f we can choose a sed 
of random splitters that expects to be ‘good’ (i.e. satisfies 
certain properties), then by using the polling algorithm, 
as described earlier we obtain a sample that is ‘good’ 
with high probability. 

The above procedure can actually be used in a more 
general situation where we need ‘good’ samples with 
very high likelihood from samples that only expect to 
be ‘good’. Moreover, according to our previous discus- 
sion, the extra amount of overhead does not affect the 
asymptotic work done by the algorithm, because it uses 
only a fraction of the input to test the samples. 

5 Finding intersections quickly 

5.1 A locus-based approach for finding 
intersections 

We now focus on describing a procedure to find the in- 
tersection of planes with each of the cones, Cd. Notice 
that a plane may intersect more than one cone which 
rules out detecting the intersections sequentially. That 
is, if a plane intersects n6 cones (6 > 0), we cannot 

afford to detect them one after the other since we are 
looking for an O(logn) time procedure. Note that in 
the sequential case, Clarkson and Shor’s [8] randomized 
incremental constructions give optimal expected time 
bounds that cannot be applied in our case. 

We shall use a locus- based approach to solve this prob- 
lem. This approach involves considering each query as a 
higher-dimensional point and partitioning the underly- 
ing space into regions providing the same answer. Thus 
any query problem can be reduced to a point location 
problem given sufficient preprocessing time and space. 
In our case, we have to pm-process the convex hull of the 
sampled half-spaces in such a way that given any plane, 
we should be able to report the cones that it intersects 
in O(logn) time using at most k processors where k is 
the number of intersections. We shall show that the pre- 
processing for a convex hull of O(n) size can be done in 
O(logn) parallel time using O(ne) processors, where c 
is a fixed constant. Thus we can choose any sample of 
size less than nlic since we have n processors. 

Given a convex polyhedron in 3-D of size O(n) along 
with an internal point which is the apex of the cones, 
there can exist only a polynomial (in n) number of com- 
binatorially distinct possibilities of the way any given 
plane can intersect the cones. This can be seen from the 
following simple argument. Given any plane that inter- 
sects the polyhedron, we can perturb the plane without 
changing the cones it intersects so long as it remains 
within a fixed set of bounding vertices. Figure 1 il- 
lustrates the situation for a two-dimensional case. If 
we consider an equivalence relation where two lines are 
equivalent iff they intersect the same sets of cones then 
the equivalence classes correspond to the cells in the ar- 
rangement A(H) where H = {z)(p) : p is a vertex of 
the convex hull or internal point and D is a dual trans- 
form ) (see [14] for more details). Given any query line 
1, the cones that it intersects is defined by the partition 
of d(H) that 2)(l) belongs to. This observation can be 
extended to hold for any dimension; in our case three. If 
we consider the partitions of the three-space induced by 
the intersections of the constraining half-spaces, these 
are equivalent classes with respect to the cones they in- 
tersect. Notice that even if this partitioning may not be 
minimal but it suffices for our purpose. All that remains 
to be done is pre-compute for each of these regions the 
cones that the corresponding planes would intersect so 
that for any query plane in the same equivalence class 
we can list off the intersecting planes by a table look-up. 

5.2 A point-location algorithm 

For the point-location problem, we use a pre-processing 
scheme due to Dobkin and Lipton [13] because of the 
ease in parallelization. The following is a fairly straight- 
forward extension of their method 

Lemma 5.1 For any set of m planes in E3, it is possi- 
ble to pre-process them in O(logm) time using O(m’) 
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processors, such that point-location for an arbitrary 
query point can be done in O(logm) time. The space 
required is O(m7). 

Proof: Find the pairwise intersections of the given set 
of planes (there are O(m2) of them). Project the re- 
sulting lines on a plane which is not normal to any of 
the lines. Find the pairwise intersections of the straight 
lines and consider their project.ion on the x-axis. There 
are O(m4) intervals induced by these. For each of these 
intervals, order the straight-lines by sorting. This can be 
done in O(logm) time using O(m2) processors for each 
of the O(m4) intervals. There are now O(m6) trape- 
zoidal regions. For each of these, order the planes for 
binary-search by sorting which are totally ordered in 
these subdivisions. This can be done in O(logm) time 
using O(m7) processors. The subdivisions induced by 
this pre-processing are homeomorphic to a 3-cube, so 
that given any query point it can be located in such a 
subdivision with 3 binary searches. 0 

For each of the subdivisions in 3-space, we can pre- 
compute the cones that the corresponding plane inter- 
sects using O(ns) processors. Note that these subdivi- 
sions are finer than the minimal equivalence classes i.e. 
more than one subdivisions could have the same set of 
intersecting cones. We also store the number of mter- 
setting cones for each of the subdivisions so that while 
listing the number of cones each query plane intersects 
we can do the processor allocation easily in O(logn) time 
using a prefix computation. By choosing less than nl/’ 
samples, we can complete the entire preprocessing in 
the required time and processor bounds. 

We summarize our conclusion in this section as follows 

Lemma 5.2 Step three of the algorithm uses O(nlogn) 
space and terminates in O(logn) time using n processors 
in a CREW PRAM model. 

Note that in the course of the entire algorithm, the 
concurrent reads are utilized only during the binary 
searches. 

6 Putting things together 

6.1 ControIling the size of subproblems 

Even though we have shown that most of the algorithm 
works out as desired, there is more that needs to be 
covered to complete the analysis. From lemma 4, we 
know that the size of the problem can increase by a 
constant factor at each level and we wish to avoid this 
happen over O(loglogn) levels, which would increase the 
number of processors required by a polylog factor. 

For this we need to quickly identify the redundant 
planes that do not contribute to the output complexity 
and eliminate them from further recursive calls. This 
enables us to get a global bound on the total size of the 

subprobIems at any stage which we shall show to be lin- 
ear in the input plus the output size. More specifically, 
we allocate the processors recursively to the cones such 
that the number of processors is proportional to the 
number of output vertices in that cone, thereby bound- 
ing the number of processors to be O(n). The details of 
the procedure is described below. After we have found 

the planes intersecting a particular cone, we categorize 
them into the following types: 

(a) The planes that are completely occluded 
by another plane in the cone and hence these 
cannot be a part of the output in the cone 
(b) Planes that are occluded because of more 
than one other plane in the cone i.e. there is 
no one plane that completely occludes them. 
(c) Planes that contribute to an edge without 
an end-point i.e. the end-points lie in some 
other cones. 
(d) Planes that do contribute to a vertex in 
the cone 

To eliminate planes of type (a), we use a variant of the 
3-D maxima algorithm. The 3-D maxima problem is 
defined as: 

Given a set S of n points in a three-dimensional 
space, determine all points p in S such that no 
other point of S has x, y and z coordinates 
that simultaneously exceed the corresponding 
coordinates of p. 

Since cones have a triangular base there are 3 edges 
that join it to the apex p*. We sort the intersections 
of the planes with an edge in increasing distances from 
the apex. We repeat this for all the three edges. Call 
these three edges X, Y, Z and denote the intersection of 
a plane hi as Xi , Yi , Zi and the ranks in the sorted list 
as r(Xi), r(yi) and r(Zi). 
Observation 1: If a plane A is occluded completely 
by another plane B iff it is dominated on its ranks of 
intersection on all the three edges by plane B. 
This gives us an effective strategy for eliminating planes 
of type (a) by identifying the complement of the set of 
the maximal elements, where we use the ranks of the 
intersection on the three edges as the order relation. 
Using the O(logn) time n processors algorithm of [2], 
we can do this in O(logn) time. 

To identify planes of type (b) (c) and (d) we construct 
the intersection of the 3-D convex hull C with each of 
the three faces of the cone. These are intersections of 
the faces with C that are 2-D convex hulls. These will 
be referred to as contours for the following discussion. 
The contours can be computed in O(logn) time with n 
processors using any of the optimal 2-D convex hull al- 
gorithms. Note that these convex contours on the three 
faces are a part of the output and any plane that ap- 
pears on this contour is a part of the final output. Con- 
sequently, a plane of type (b) cannot be a part of this 
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contour. Unfortunately, there can be planes that are 
part of the output but are not part of any conlout (con- 
sider a plane that chops off a cap of the hull within the 
cone). For the time being let us focus on only those 
planes that show up in the contours and consider the 
3-D convex hull formed only by these planes within a 
cone. We shall refer to such a 3-D hull as a skeletal-hull. 
We now make following observation 
Observation 2: Any plane that is is not a part of the 
contour on any face can intersect at most one skeletal 
hull. 

This follows from convexity. Notice that such planes 
are not necessarily a part of the output but we are not 
aiming for an output sensitive algorithm. The previous 
observation guarantees that if a plane is not a part of 
C it will not survive in more that one cone when the 
algorithm is called recursively in the cones. The planes 
that do not intersect the skeletal-hull cannot be a part 
of C within the cone. See Figure 2 for a two-dimensional 
illustration of these cases. 

A plane that contributes to only an edge of the convex 
hull will be a part of the contour and on exactly two 
faces (intersection of the edge with the cone) and hence 
can be identified quickly using sorting. 

The above method for throwing out redundant planes 
ensures that going into any recursive call, the sum of the 
subproblems is less than n + 3m where n and m are re- 
spectively the input and output sizes and assuming that 
there are no singularities (a vertex is the intersection of 
exactly 3 planes). 

We shall now describe a procedure to construct the 
skeletal-hull within a cone and preprocess the skeletal- 
hull such that queries of the kind plane-polyhedra inter- 
section detection can be answered quickly. The latter 
part can be done efficiently using a hierarchical poly- 
hedra decomposition scheme due to Dobkin and Kirk- 
patrick [12]. The construction of the hierarchical rep- 
resentation can be done in 6(logn) time using an al- 
gorithm of Iieif and Sen [23] (also discovered indepen- 
dently by Dadoun and Kirkpatrick [ll] but the analysis 
given in their paper is not sufficient for our purposes). 
Given this representation, the plane-polyhedra intersec- 
tion detection query can be answered in O(logn) sequen- 
tial time (Kirkpatrick [19]). 

We shall now discuss how to construct the skeletal- 
hulls quickly. Although the skeletal-hulls are themselves 
3-D convex hulls they have a much simpler structure. 
More specifically, they have the following property: all 
faces are unbounded (i.e. they are part of the contours. 
This implies that, if we construct them recursively us- 
ing the same algorithm, we do not have to worry about 
case (b) since all planes that are part of the output will 
show up in the contours and this holds for any level 
of the recursive call. From the analysis given in the 
next sub-section the skeletal-hulls can be constructed in 
6(log n) time using a linear number of processors. The 
reader should convince himself that there is no circular- 

ity of arguments here. One way to look at the problem 
is the following : assuming that case (b) doesn’t arise 

( i.e. all planes that are part of the output show up 
in the contours), the algorithm terminates in O(logn) 
time using a linear number of processors. So after hav- 
ing constructed the skeletal-hullfor the cone, the redun- 
dant planes are quickly eliminated using the procedure 
outlined in the previous paragraph. Subsequently, the 
algorithm is called recursively on the cone - this time to 
build the actual hull (in contrast to the skeletal-hull). 

6.2 Final analysis 

Consider the algorithm as a tree where each node cor- 
responds to a procedure and the children of a node 
representing processes corresponding to the recursive 
calls made by the procedure. Then the running time 
of the algorithm corresponds to a worst-case sequence 
of nested procedure calls along any path in this tree 
from the root to a leaf node. This process tree cor- 
responding to the algorithm has the following prop- 
erty. A process at level i (l< i < O(loglogn)) has size 
O(r~(l~/~)-‘) and the process terminates in time O(log 
r~(~/lO)‘) (= (9/10)‘O(logn)) with probability greater 
than 1 - l/r~(‘/~‘)i. From Lemma 2.2, any nested se- 
quence of recursive calls exceeds time cylogn with prob- 
ability less than l/n7 for any y > 1. From Lemma 2.1 
in section 2.1, it follows that all the leaf processes and 
hence the algorithm are completed within the same time 
with high likelihood. The space used is O(n) at step 3 of 
each recursive level giving a total bound of O(nloglogn) 
for all the O(loglogn) recursive levels of the algorithm. 
This proves the main result of the paper. 17 

Corollary 6.1 The following problems can be solved in 
O(Jogn) time using n processors in a CREW PRAM 

(i) Convex hull of a set of points in 3-D 
(ii) Voronoi diagram of point-sites in plane 
(iii) All-points nearest neighbor 
(iv) Euclidean minimal spanning tree 

Proof: (i) follows immediately because of well-known 
reduction of convex hulls to intersection of half-spaces. 
To determine an internal point p* in the intersection, 
we can determine an internal point of the convex hull 
and use it as the origin for the duality transform. The 
origin is known to be contained in the intersection of 
the half-spaces. 
For (ii), given a set of n points in the plane we apply 
an inversive transformation given by Brown [3] to the 
input points to transform the problem into finding the 
convex hull of n points in 3-space. 
(iii) can be obtained in O(logn) time from the Voronoi- 
diagram. 
(iv) can be obtained by running a minimal-spanning tree 
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algorithm on the edges of Delaunay ,triangulation which 
is the dual graph of the Voronoi diagram. 13 

6.3 Bounding the number of random 
bits 

Since randomness has been recognized as a scarce re- 
source, it is important to bound the amount of random 
bits used by our algorithm. 

Lemma 6.1 The algorithm can be made to run in the 
same time bound using at most O&g2 n) truly random 
bits. 

Proof sketch: We use techniques of Karloff and Ragha- 
van [18] to limit the use of truly random bits in Reis- 
chuk’s parallel sorting algorithm. They use pseudo- 
random number sequences of the form a + bei mod P, i 
= I,2,3.. where a,b are truly random seeds of O(logn) 
bits chosen uniformly from Zp for suitable primes P 
of size no(‘). The main ideas are - (1) (Asymptoti- 
cally) similar probabilistic bounds can be derived from 
Chebychev’s inequality which uses only P-way indepen- 
dence and (2) that the same random bits can be reused 
during the the different levels of recursive calls. The 
process tree (as defined in our previous discussion) is 
partitioned into groups of contiguous levels which they 
call bands, where each band uses O(logn) truly ran- 
dom bits. They show that the same random bits can be 
shared by all bands in a path and by all paths in the tree. 
The algorithm still runs in G(logn) time. In our case, 
we use K-way independence where K is a predetermined 
constant and a generalized Chebychev inequality of the 
form Prob((X] 2 t} 5 -&$ where M = E[4(t)]. From 
Lemma A.1 in the appendix, bounds similar to Lemma 
4.1 can be rederived using K-way independence from 
the generalized Chebychev’s inequality. The bounds for 
polling can also be derived similarly from Corollary A. 1. 
We need an extra O(logn) multiplicative factor of truly 
random bits for implementing Polling for which we need 
O(logn) independently chosen random seeds of O(logn) 
bits each. The overall effect of using these schemes is 
that the constants associated with the resource bounds 
grow larger. 0 

7 Concluding Remarks 

The randomized algorithms presented here the rein- 
forces the optimism expressed in an earlier paper (Reif 
and Sen [23]) where we introduced randomization as an 
effective tool for developing parallel algorithms in com- 
putational geometry. Clarkson had demonstrated the 
usefulness of randomization for deriving improved ex- 
pected time bounds for a large number of sequential 
algorithms. Although we draw from Clarkson’s work, 
our results should be of independent interest because 
of many unique additional difficulties presented by the 
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parallel environment and the techniques one needs to 
tackle them. 

This paper describes the first O(log(n) parallel time 
algorithm with optimal speed-up for 3-D convex hulls 
and related problems, however a number of questions 
are left unanswered. The most obvious problem is 
that of designing a deterministic algorithm with same 
bounds. It is possible that an optimal algorithm for 
2-D Voronoi-diagrams may be easier to obtain than a 
similar algorithm for 3-D convex-hulls. Moreover, we 
use the CREW PRAM model for our algorithm that 
raises the question if the algorithm can be made to run 
without the feature of concurrent reads. A more the- 
oretical issue is that of designing sub-logarithmic time 
parallel algorithms for all these problems with optimal 
speed-ups. 

An extremely important area of investigation in the 
field of parallel algorithms for computational geometry 
is development of efficient algorithms for fixed inter- 
connection networks like hypercubes and butterfly net- 
works. In spite of some elegant work done in the PRAM 
model, the currently best known results for almost all 
these fundamental problems except 2-D convex hulls re- 
main sub-optimal. It appears very unlikely that the op- 
timal algorithms would be deterministic since there are 
no known optimal deterministic sorting algorithms for 
these networks. This should encourage more research in 
the area of developing more sophisticated probabilistic 
methods for parallel computational geometry. 
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A Appendix 

We say a random variable X upper-bounds another ran- 
dom variable Y (equivalently Y lower bounds X) if for 
all x such that 0 5 z < 1, Prob(X < Z) < Prob(Y 5 

4. 
A Bernoulli trial is an experiment with two possible 

outcomes viz. success and failure. The probability of 
success is p. 

A binomial variable X with parameters (n,p) is the 
number of successes in n independent Bernoulli trials, 
the probability of success in each trial being p. The 
probability mass function of X can be easily seen to be 

Prob(X 5 x) = 

c&j ( ; ) PV -PY 
The tail end of the Binomial distribution can be 

bounded by Chernofl bounds. In particular the follow- 
ing approximations due to Angluin and Valiant are fre- 
quently used: 

Prob(X 2 m) 5 (z)mem-np (1) 
Prob(X 5 m) 5 (z)me-np+m (2) 

Prob(X 5 (1 - c)pn) < ezp(--E2np/2) (3) 

Prob(X 2 (1 + e)np) 5 ezp(-e2np/3) (4) 
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for all 0 < c < 1. The last two bounds actually follow 
from the Chernoff bounds which (for a discrete distri- 
bution) can be stated as 

Prob[A. + x] 5 zZ-“G1~(z) where GA(Z) is the 
probabihty generating function. 

To minimize the bound we substitute z = r0 that mini- 
mizes the right side expression. 

Similar bounds can be derived even if X is not strictly 
a sum of independent Bernoulli variables but instead 
consists of a sum of variables which are only Sk-way 
independent i.e. any subset of 2k (or less) variables are 
independent. 

Lemma A.1 Let X be a sum of n &k-way independent 
and identical Bernoulli random variables Xi, 1 5 i 5 n 
each of which has a success probability p. Then for a 
fixed k (chosen independently of n), Prob{lX - ~1 > p} 
5 O(s) where p = np and p 5 O(n-p) for some 0 < 
P< 1. 

Proof: Consider the generalized Chebychev’s inequal- 
ity Prob{]X] 1 t} 5 g*iF. Using 4(t) = t2k and 
substituting X-E[X] for X, we get 

Prob{lX - E[X]( 1 E[X]} 5 w 
Let us focus on the numerator - we shall show 
that it is O($) and the lemma follows, Since 

WI = C;zl WA], we can write (X - E[X])2L as 

(Cy=l xi - E[Xi])‘k 

In the multinomial expansion, all the terms containing 
Xi - E[Xi] (for any i) as a factor vanish because of the 
2k-way independence property. 
Note that E[n<zjj, #8(Xs)] = nigj, E[#,(X,)]. 

There are ( z >’ ( “,“I,’ ) terms which have c dis- 

tinct non-unit product terms of the form (Xi - E[Xj])i 
such that i > 0 and c i = 2k. Also note that 
E[(Xj - E[Xj])i] = (1 - p)(-p)’ + p(1 - p)’ 
We can factor out p’ so that we can write the coefficient 
of nc as p2k.f(p,c,k), h w ere f is a function independent 
ofn and can be absorbed in the big-0 notation. From 
our observation about the first-order terms (which van- 
ish), the maximum value of c is k. Moreover from our 
assumption about p 5 O(n-p), the numerator can be 
bound by the asymptotically dominating term O(n’ .p’) 
= O(p’). Since the denominator is p2k, the lemma fol- 
lows. cl 

Corollary A.1 Prob{IX-PJ > 0.~6) 2 0(&j where 
a is a constant between 0 and 1. 

Figure I: Lines 1 and k partition 
the vertices differently and lie 

in different regions of the dual 
space arrangements of vertices. 

(4 

Figure 2: 

(b) 

(a) illustrates case (a). Line a is 

completely dominated by line b. 
(b) illustrates case (b). Line c is 
not dominated by d or e alone but 
by their combination. Clearly line 
c will be eliminated from all other 
cones by case (a). 
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