
Polling : A :New Rand omized Sampling Technique
For Computation al Geometry

John H. Reif and Sandeep Sen’
Computer Science Department

Duke University
Durham, N.C. 27706

Abstract

We introduce a new randomized sampling technique,
called Polling which has applications to deriving effi-
cient parallel algorithms. As an example of its use in
computational geometry, we present an optimal paral-
lel randomized algorithm for intersection of half-spaces
in three dimensions. Because of well-known reductions,
our methods also yield equally efficient algorithms for
fundamental problems like t,he convex hull in three di-
mensions, Voronoi diagram of point sites on a plane and
Euclidean minimal spanning tree. Our algorithms run
in time T = O(logn) for worst-case inputs and uses P =
O(n) processors in a CREW PRAM model where n is
the input size. They are randomized in the sense that
they use a total of only O(log2 n) random bits and termi-
nate in the claimed time bound with probability 1 - n--(y
for any o > 0. They are also optimal in P . T product
since the sequential time bound for all these problems
is Sl(nlogn). The best known deterministic parallel al-
gorithms for 2-D Voronoi-diagram and 3-D Convex hull
run in O(log2 n) and O(log2 nlog * n) time respectively
while using O(n) processors.

1 Introduction

1.1 Background and previous work

Designing efficient parallel algorithms for various fun-
damental problems in computational geometry has re-
ceived much attention in the last few years. After some
early work by Chow [4] in her thesis, Aggarwal et al. [l]

Research supported in part by Airforce Contract AFSOR-87-

0386, Office of Naval Research Contract N00014-87-K-0310, Na-

tional Science Foundation Contract CCR-8696134, DARPA/ARO

Contract DAAL03-88-K-0185, DARPA/ISTO Contract N00014-

88-K-0458.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1989 ACM O-89791-307-8/89/0005/0394 $1.50

developed some general techniques for designing ef-
ficient parallel algorithms for fundamental geometric
problems. Most of the problems tackled in that pa-
per had O(nZogn) sequential complexity and the authors
presented parallel algorithms which used a linear num-
ber of processors and ran in O(logk n) time (k being
typically 2,3 or 4) in size of the input. Consequently,
a majority of the algorithms were not optimal in P . T
bounds. A number of the problems in the original list
(in [l]) have now been successfully resolved as far as
O(logn) time, n processors algorithms are concerned,
mainly due to work by Atallah, Cole and Goodrich [2].
They extended the techniques used by Cole [9] for his
parallel mergesort algorithm and used a date-structure
called plane-szueep tree (first proposed by Aggarwal et
al. [l]) to arrive at the optimal algorithms. Perhaps the
two most important problems which have been eluding
such efforts are the 2-D Voronoi diagram problem and
the convex hull of points in 3-space. These are very
fundamental problems in computational geometry and
optimal algorithms for these problems would imply cor-
responding optimal solutions for a multitude of other
problems.

A very general definition of Voronoi diagram given by
Edelsbrunner [14] is as follows:

Let S be a finite set of subsets of Ed and for
each s E S let d, be a mapping of Ed to pos-
itive real numbers; we call d,(p) the distance
function of s. The set {p E Ed: d,(p) < dt(p),
t E S - {s}} is the Voronoi cell of s and the
cell complex defined by the Voronoi cells of all
subsets in S is called the Voronoi diagram of
S.

In this paper, we confine ourselves to the case where
S is a set of points in E2 and the distance function
is the L2 metric. In mathematical literature, Voronoi
diagrams appeared as early as in 1850 (due to Dirich-
let) and again in 190’7 due to Voronoi. Problems about
packing and coverings of space by balls and other convex
figures were among the first major applications of such
diagrams. Shamos and Hoey 1261 introduced Voronoi
diagrams to computer science and and since then a con-
siderable amount of research has been devoted for deriv-

394

ing efficient sequential algorithms for the 2-D Voronoi
diagram problem ([15, 25, 71). The Voronoi diagram
is a very versatile tool for obtaining efficient solutions
of some important proximity problems and is also a
fundamental mathematical object in its own right. A
large number of the problems can be solved in linear or
O(n log n) time from the information contained in the
Voronoi diagram that includes all-points nearest neigh-
bor, Euclidean minimal spanning tree, diameter, small-
est enclosing circle among others.

Since there are sequential algorithms for Voronoi-
diagrams that run in time O(nlogn), it is a fundamen-
tal question if there is a parallel algorithm that runs in
O(logn) time using n processors. Aggarwal et al. have
given a O(log’ n) time, O(n) processors algorithm but it
appears that one would require very different techniques
to eliminate the O(logn) factor. Cole and Goodrich [lo]
reiterated the difficulties posed by this problem, when
they provided some more applications of their cascaded-
merging technique but were unable to extend it to the
Voronoi diagram problem. In this paper we settle this
question by presenting a randomized algorithm for this
problem that runs in O(logn) time and uses n processors
in a shared memory model of parallel computation. The
reader should note that the lower-bound of R(nlogn)
also applies to the randomized algorithms by a reduction
of sorting to (l-dimensional) Voronoi-diagrams. Lev-
copoulos, Katajainen and Lingas [20] presented an op-
timal expected time algorithm for Voronoi diagrams for
randomly chosen set of input points; in contrast our
algorithm makes no assumption about the input distri-
bution and is optimal for the worst-case input.

Convex hulls in 3-D has a wide range of applications
ranging from computer graphics to design automation
to pattern recognition to operations research. Convex
hulls in three dimensions can also be constructed se-
quentially in O(nZogn) time where as the best known de-
terministic parallel algorithm due to Dadoun and Kirk-
patrick [ll] runs in O(log2 nlog *n) time using n pro-
cessors. In this paper we actually describe an optimal
randomized parallel algorithm for constructing convex
hulls in Euclidean 3-space. Due to a well-known reduc-
tion from 2-D Voronoi diagrams to 3-D convex hulls, we
get an equally efficient algorithm for the first problem
as an immediate corollary.

1.2 Random-sampling and PoIling in
computational geometry

Randomization has been successfully used in a wide
number of applications (for example see [16,24,27]) and
has recently been used to obtain efficient algorithms in
computational geometry. Clarkson [5, 6, 71, Haussler
and Welzl [17], and Mulmuley [21] used random sam-
pling techniques to derive better upper-bounds for a
large number of problems including the post-office prob-
lem, higher-order Voronoi diagrams, segment intersec-

tions, linear programming. higher-dimensional convex
hulls. The general approach taken by these algorithms
as follows: a randomly chosen subset R of the input
set S is used to partition the problem into smaller ones.
Clarkson [7] proved that for a wide class of problems in
computational geometry, the expected size of each sub-
problem is O(]S]/]R]) and moreover the expected total
size of the subproblems is O(]S]). A random subset R
which satisfies these conditions for fixed constant mul-
tiples is called a ‘good’ sample and is called ‘bad’ other-
wise. Clarkson’s results show that by using a straight-
forward random sampling technique any randomly cho-
sen subset is good with constant probability; implying
that it can also be ‘bad’ with constant probability. Con-
sequently, his methods yielded expected resource bounds
but cannot be used to obtain high-likelihood bounds

(i.e. bounds that hold with probability 1 - l/na for
any ~1 > 0). This makes it very difficult to extend
his methods in the context of parallel algorithms due
to the recursive nature of the algorithms. In particu-
lar the expected bounds at each recursive call are not
strong enough to bound the resources used by the en-
tire parallel algorithm due to the following reason. In
a sequential algorithm, due to the linearity property of
expectation (i.e. the expectation of the sum is the sum
of expectations), it suffices to bound the expected time
required by individual steps. The total expected time of
the sequential algorithm is the sum of expected time of
the individual steps. In contrast, consider the recursive
parallel algorithm as a tree where a node corresponds
to a procedure and the children of a node corresponds
to the parallel recursive calls made by the procedure.
The time required at each level of this tree is the max-
imtim of the time required by any node of that Ievel.
There is no known method to bound the maximum of
the expectations without using higher moments. The
total time required by the parallel algorithm is the time
when all the procedures corresponding to the leaf nodes
are completed. Typically, in a parallel algorithm, the
number of leaves in the corresponding process tree is at
least n’ (0 < c < 1). Even if we succeed in bounding
the expected time for completion of a leaf-node proce-
dure, the expected bounds are too weak to bound the
maximum of the time required by all such processes.

The above problem can be dealt with by developing
a technique for choosing samples that are ‘good’ (as de-
fined above) with high probability. By doing so we shall
show that a leaf-node process terminates in a given time
bound with probability l- l/n” for any (Y > 0. In partic-
ular, for o > 1, this implies that the failure probability
for the entire algorithm is less than l/n”-l (since there
can be at most O(n) leaf-level processes). We intro-
duce a technique called polling to obtain a ‘good’ sam-
ple with high probability with relatively small overhead.
Roughly speaking, we choose a number, p(n), of ran-
dom subsets (typically p(n) = O(logn)) independently
and determine which of these subsets is ‘good’ and with

395

high probability one of them is ‘good’. This scheme,
though effective, is not very efficient since we have to re-
peat the procedure p(n) times. However, we show that
we can draw conclusions about the ‘goSodness’ of a sam-
ple very accurately by using only a fraction (typically
l/(p(n)‘@‘) of th e input which then makes the Polling
scheme very efficient. This is actually very similar to
the idea of polling a small fraction of ,the population to
find out how the entire population would behave and
hence the name. This turns out to be crucial in bound-
ing the total running time of the parallel algorithm. In
addition to the applications in obtaining the improved
results in this paper in computational geometry, Polling
appears to be a general tool for obtaining improved par-
allel randomized algorithms. A similar idea had been
used previously by Rajasekaran and Reif [22] for their
optimal integer sorting algorithm.

Note that the second property of a ‘good’ sample i.e.
that of bounding the total size of the sub-problems is
not an issue in l-dimensional problems. In the paral-
lel sorting algorithms of Reischuk[ZO] and Flashsort[lS]
where the total size of the subproblems always equals
the input size. This is another reason why the straight-
forward random sampling techniques do not carry over
to the recursive algorithms. Clarkson[8] circumvents
this problem by limiting the number of recursive levels
by a fixed constant. By using recursion over s(n) steps
the problem size could grow by a multiplicative factor
of 2n(a(n)) if the sum of the subproblems increases by
only a constant factor over the parent-problem at every
recursive call. This could seriously affect the efficiency
of the algorithms, especially when we are looking for
optimal algorithms. We need additional arguments to
bound the total size of the sub-problems at any level of
recursive calls (independent of the level number).

1.3 Main results

The main result in this paper can be summarized as
following:
Theorem: There exists a randomized algorithm in the
CREW PRAM model for constructing the intersection
of n half-spaces in three dimensions that runs in O(logn)
time for any input with probability > 1- l/no (for any
given o > 0) Bsing n processors. Moreover, we can
also limit th.e total number of random bits used by our
algorithm to O(log’ n).
The above theorem immediately implies equally efficient
algorithms for the following problems from well-known
reductions

(i) Convex-hull of points in J-dimensions
(ii) Voronoi-diagram of point sites in a plane
(iii) Euclidean Minimal spanning tree

The previously best-known algorithms for all these
problems are sub-optimal by at least an O(logn) factor
in time complexity.

We adopt a top-down approach in describing the al-
gorithm. In the section 2 we list some of the preliminary
results that will be used as low-level procedures in the
algorithm and some probabilistic notations used to aid
the analysis. In section 3, we sketch a very high level de-
scription of the algorithm that uses the straight-forward
random sampling (without polling) and if implemented
in a straightforward manner wouldn’t be very efficient.
In section 4, we give a formal description of polling and
its probabilistic analysis. In section 5 we describe an
efficient procedure for for carrying out the divide step
of the algorithm. In section 6, we present probabilistic
arguments for bounding the total time of the algorithm
with high likelihood and bound the number of proces-
sors needed at any single step to complete the analysis.

2 Some preliminary results and
overview

2.1 Model of computation and nota-
tions

Throughout this paper we will be using the CREW
PRAM model which is the synchronous shared mem-
ory model of parallel computation in which processors
may simultaneousiy read from a memory location but
are not allowed to write concurrently. At each step, a
processor is allowed to perform a real-arithmetic opera-
tion consistent with standard models used for sequential
geometric algorithms. Moreover, each processor has ac-
cess to a random-number generator that returns in unit
time a truly random number of O(logn) bits. However,
see in section 6.3, where we limit the use of truly random
bits.

The term very high likelihood (probability) is used in
this paper to denote probability > 1 - nVa for some
(Y > 1 where n is the input size. Just like the big-0
function serves to represent the complexity bounds of
deterministic algorithms, we shall use d to represent
complexity bounds of the randomized algorithms. We
say that a randomized algorithm has resource bound 6
(f(n)) if there is a constant c such that the resource used
by the algorithm is no more than cof(n) with proba-
bility > 1 - l/na for any cy > 1. (An equivalent def-
inition will be bounding the resource by (Y . f(n) with
probability greater than 1 - neca and in the rest of the
paper they will be used in an interchangeable manner).
Note that an algorithm whose expected resource bound
is O(f(n)) does not have any better confidence interval
beyond using Markov’s inequality i.e. the probability
that it exceeds the resource bound by a factor k is less
than l/k. This implies that the failure probability does
not diminish as rapidly as the high likelihood bounds.
High-likelihood bounds are especially useful for parallel
algorithms, where we need to bound the time complex-
ity of all the processes. In contrast, the expected bounds

396

as used by Clarkson[8] are difficult to use to bound the
overall maximum time for all processes.

We will be using the term high-likelihood in a vari-
ety of situations throughout this paper that may look
different from the canonical form given in the previous
paragraph. We illustrate this with two lemmas which
will be of use later.

Lemma 2.1 The union of k events (k being any fixed
integer), each of which succeeds with high probability
also succeeds with high probability.

Note that if the failure probability of event i is < l/nai
the failure probability of the union of the events is less
than Cf=, nmai < k/ncS where a: = min(crl, ..,cY~).
This is less than n-(“-@ for any 6 > 0.

Lemma 2.2 If an algorithm consists of kloglogn (k is
any positive integer) nested procedure calls such that
the running time of the procedure at level i (1 < i <

kloglogn) etceeds cc~log(n’/~~), (u is a constant greater
than 1) with probability less tha_n l/nQloi, then the en-
tire program executes in time O(logn).

A rigorous proof of this assertion can be found in Reif
and Valiant [24] (Theorem A).
For the rest of the paper, we assume that the success
probability required by the algorithm is given, so that
given n, we can fix cr. From this, one can compute the
required probability of success at every individual step
of the algorithm even though we do not provide explicit
formulae. Also, for convenience of notations, functions
of n that may not be necessarily integral valued like
loglogn or nszlpe will actually denote the ceiling of such
values i.e. rloglogn] and rn’]. This does not affect the
asymptotic bounds of the algorithm.

2.2 Useful results

In the remainder of the paper we shall assume that the
half-spaces are described as inequalities of the form ax
+ by + cz + d 2 0. The following observation is useful
for constructing the intersection of a random subset of
half-spaces that is used to split up the problem evenly.

Lemma 2.3 The intersection of a given set of n half..-
paces can be computed in O(logn) time using n4 proces-

sors in a CREW PRAM model.

Proof: Assuming non-degeneracy (i.e. no 4 planes in-
tersect at a common point), there are O(n3) candidate
vertices for vertices of the convex hull (of the intersec-
tion). For each vertex, test whether it is a vertex of
the convex hull by checking if it satisfies all the equa-
tions defining the half-spaces. This can be done trivially
in O(logn) time using n processors for each candidate
point. Only the vertices would survive. Determine the
faces of the convex hull by identifying planes that con-
tain 3 vertices of the intersection. 0

Lemma 2.4 Given a set of n half-spaces, it is possible
to compute their intersection in O(log3n) time using n
processors in a CREW PRAM model.

Proof: Follows immediately from Aggarwal et al. [l].
This result is useful to stop the recursion at a level

when the problem size is small (typically O(log” n) for
some integer k) and solve the problem directly. Note
that any polylog-time algorithm using a linear number
of processors would again suffice for our purpose. At
this stage the problem size is so small that using a sub-
optimal algorithm will not affect the asymptotic com-
plexity of the algorithm.

3 A naive random sampling al-
gorithm and its shortcomings

Before we embark on a formal proof of the main theo-
rem, let us give an informal description of the algorithm 2
using the straight-forward random sampling strategy
(as used by Clarkson [7]). We intentionally leave out
Polling from this preliminary discussion to illustrate the
pitfalls of using naive sampling strategies for parallel al-
gorithms. We shall assume for the time being that we
know a point p’ in the intersection of the n half-spaces
and later show how to determine such a point efficiently.
Using a random subset of S, we split the original prob-
lem evenly into smaller sized problems and then apply
the algorithm recursively to each of the problems. By
using a random subset of size n’, (0 < c < 1) we split
up the problem into sub-problems of expected size nl-‘.
This results in a recurrence of the form T(n) = T(nlec)
+ f(n), where f(n) is the time for dividing the problem.
If f(n) 5 6(logn) (which requires the use of Polling that
we describe in section 4), we have an algorithm whose
expected running time is bounded by O(logn). We fur-
ther need to show that the number of processors re-
quired at each step of the algorithm is O(n).

Algorithm

Input: A set S of n half-spaces Hi, Hz, . . . H,.
Output: The output convex hull C which is

intersection of the n half-spaces.
(1) Choose a random subset R C S of half-spaces such

that]R] = n’ (for some c, 0 < E < 1 that we shall
determine during the course of analysis).

2) Find the intersection of the R haif-spaces and again
wlog assume that there is no degeneracy i.e. each

vertex is the intersection of exactly three planes. Take
a fixed plane and cut up each face of the polyhedron
with parallel translates of this plane passing through
the vertices. Thus each face is a trapezoid. Further,

partition each trapezoid with a diagonal so that each
face is triangular. For a face 3’; consisting of vertices

xi, yi/;, ri consider the cone Ci formed by p* a~ the apex
and Fi as the base. Let CR denote the number of

cones. Note that Cn 5]R].

397

3) For the S-R remaining half-spaces (which are
actually equations of planes) find the intersection of

the planes with the cones. Note that a plane may
intersect more than one cone:. The intersection of the S

half spaces is the union of the intersection of the
half-spaces intersecting a cone (over all cones). That

is, C is Uic=R, I 1. where I; is the inte:rsection of all
half-spaces formed by Ci n {Hj} for all j.

4) If the number of planes intersecting the cone is
more than a pre-determined threshold apply step 1-3
recursively to this set of set of half-spaces else solve

the problem directly (using Lemma 2.4).
end

The algorithm outlined above that uses a straight-
forward random-sampling in step (1) is only a skeleton
of the actual algorithm and is not very efficient in its
present form. One of the main problems is that in step
3), we could have the total size of the sub-problems ex-
ceed the size of the parent (calling) problem by a large
factor at each recursive call. Note that bounding this
increase at each recursive call by a constant factor is
not sufficient. This would imply that after O(loglogn)
levels, we can only bound the number of processors re-
quired at this stage by O(nlog”(‘) n). This is where this
algorithm differs from some other recursive parallel al-
gorithms like randomized parallel sorting algorithms of
[24,25] where the total size of the subproblems is always
bounded by the input size. We need more sophisticated
methods for choosing random subset in step (1) to pre-
vent this. We will show in section 4 how to solve this
problem using Polling. Moreover, the procedure of de-
tecting the intersection of the half-planes with the cones
quickly is in itself a non-trivial task. For the rest of the
paper, we concentrate on individual steps and provide
the necessary modifications to prove the main theorem.

4 Probabilistic lemmas

4.1 Need for Polling: an improved ran-
dom sampling technique

A crucial part of the analysis rests on showing that a
random subset R can be chosen efficiently in the first
step of the algorithm that divides the the problem into
almost equal sized sub-problems. In addition we have to
show that the union of the sub-problems is almost equal
to the complexity of the original problem at every stage
of the recursive calls. The following result follows from
Clarkson (Clarkson [7], Corollary 4.3) for any random
R C S with]R] = T.

Lemma 4.1 Let Xi denote the set of planes intersect-
ing cone Ci (using the same terminology as in step 2 of
the algorithm). Then the following conditions hold with
with probability at least l/2

CR
(i) &I [Xi1 5 h~td(~/T)* E(CJ3)

and
(ii) mazilXi--- 5 kmaz(n/r). logr
where ktotol and k,,, are constants and CR is
defined previously, .

Any subset of the input that satisfies the above con-
ditions for some fixed constants is defined to be ‘good’
and otherwise ‘bad’. A direct consequence of the lemma
is that we can divide up the problem into almost equal
size sub-problems, such that the increase in the original
problem size can be bounded by at most a constant mul-
tiplicative factor of k,,, . Since our objective is to apply
this recursively, we need a more sophisticated sampling
algorithm to obtain a sample that is ‘good’ with high
likelihood.

4.2 An informal description of Polling

The abstract idea is following. Since the above events
would fail only with constant probability, the probabil-
ity that the conditions would fail in O(logn) indepen-
dent trials is less than l/n(l for some (Y > 0. That
is if we choose independently p(n) = O(logn) sets of
samples, one of them is good with very high likelihood.
However, to determine if a sample is ‘good’, we would
have to carry out step 3, O(logn) times each of which
requires O(logn) time (such a method is described in sec-
tion 5). Instead, we try to estimate the the number of
planes intersecting a cone Ci using only a fraction of the
input planes. For example, we can choose CO . n/ logd n
for some fixed integer d > 2 and a constant CO (the ac-
tual value will be determined from the required success
probability of the algorithm) of the input planes ran-
domly for the jth sample, Rj. Let Xi be the number
of planes intersecting cone Ci corresponding to sample
Rj, 1 5 j 5 blogn where b is fixed integer greater than
0 which is determined from the success probability of
the algorithm. Ai be the number of planes intersecting
Ci out of the n/logd n randomly chosen input planes for
the same sample. Clearly, Ai is a binomial random vari-
able with parameters n = co . n/ logd n and p = X!/n
(see appendix). Assuming that Xj is greater than E
. logd+l n, for some constant c, we will apply Chernoff
bounds (see appendix) to tightly bound the estimates
within a constant multiplicative factor. Since we do it
only for l/logd n of the input planes, the total number
of operations for the O(logn) random subsets can be
bounded by ?(nlogn) 6;; we show in the next section).
Note that Xi < E log n, is an easy case since 72’. c

1% d+l n = o(n).

4.3 Probabilistic analysis of Polling

More formally, by invoking Chernoff bounds (see Ap-
pendix equations (1) and (2)), for any (Y > 0 (o is
a function of cc), there exists a cl, independent of n,

398

Prob(A{ 2 aclX{/logd n) _< l/na and Prob(Ai 3

CZ~CO f X{/logdn) < l/ncoa < l/nQ (for cc > 1).
From the last two inequalities, X! is bounded by Lj =

Al logd n/c,-,cza from below, and Uj = by A{ logd n/city
from above. With appropriate changes in the constants,
this condition holds with high likelihood (as defined in
section 2.1) for all Xi simultaneously. We do the proce-
dure (described in the next section) simultaneously for
all the samples Rj and choose the sample Rj, using the
following simple test:

Algorithm Polling

(Let Nj = C Ai and the let actual number of intersec-
tions be denoted by Tj and the upper and lower bounds
obtained from Nj by Uj and Lj respectively).

If ktololn > Uj then accept sample Rj (since
ktotaln 2 Uj >_ Tj), else if ktotoln 5

Lj then the sample is ‘bad’ (since Etotaln 5
Lj 5 Tj), else if Lj 5 ktotaln 5 Uj,

then accept the sample Rio for which Ejo is
minimum. Since both klotnln and TjO lie in
this interval this guarantees that Tjo 2 c3 -
ktotaln where cs = Uj/Lj which is a constant.

Recall, that from our earlier discussion at least one of
the samples would satisfy conditions 1 or 3 with very
high likelihood. We summarize as following :

Lemma 4.2 (Polling lemma) 1f we can choose a sed
of random splitters that expects to be ‘good’ (i.e. satisfies
certain properties), then by using the polling algorithm,
as described earlier we obtain a sample that is ‘good’
with high probability.

The above procedure can actually be used in a more
general situation where we need ‘good’ samples with
very high likelihood from samples that only expect to
be ‘good’. Moreover, according to our previous discus-
sion, the extra amount of overhead does not affect the
asymptotic work done by the algorithm, because it uses
only a fraction of the input to test the samples.

5 Finding intersections quickly

5.1 A locus-based approach for finding
intersections

We now focus on describing a procedure to find the in-
tersection of planes with each of the cones, Cd. Notice
that a plane may intersect more than one cone which
rules out detecting the intersections sequentially. That
is, if a plane intersects n6 cones (6 > 0), we cannot

afford to detect them one after the other since we are
looking for an O(logn) time procedure. Note that in
the sequential case, Clarkson and Shor’s [8] randomized
incremental constructions give optimal expected time
bounds that cannot be applied in our case.

We shall use a locus- based approach to solve this prob-
lem. This approach involves considering each query as a
higher-dimensional point and partitioning the underly-
ing space into regions providing the same answer. Thus
any query problem can be reduced to a point location
problem given sufficient preprocessing time and space.
In our case, we have to pm-process the convex hull of the
sampled half-spaces in such a way that given any plane,
we should be able to report the cones that it intersects
in O(logn) time using at most k processors where k is
the number of intersections. We shall show that the pre-
processing for a convex hull of O(n) size can be done in
O(logn) parallel time using O(ne) processors, where c
is a fixed constant. Thus we can choose any sample of
size less than nlic since we have n processors.

Given a convex polyhedron in 3-D of size O(n) along
with an internal point which is the apex of the cones,
there can exist only a polynomial (in n) number of com-
binatorially distinct possibilities of the way any given
plane can intersect the cones. This can be seen from the
following simple argument. Given any plane that inter-
sects the polyhedron, we can perturb the plane without
changing the cones it intersects so long as it remains
within a fixed set of bounding vertices. Figure 1 il-
lustrates the situation for a two-dimensional case. If
we consider an equivalence relation where two lines are
equivalent iff they intersect the same sets of cones then
the equivalence classes correspond to the cells in the ar-
rangement A(H) where H = {z)(p) : p is a vertex of
the convex hull or internal point and D is a dual trans-
form) (see [14] for more details). Given any query line
1, the cones that it intersects is defined by the partition
of d(H) that 2)(l) belongs to. This observation can be
extended to hold for any dimension; in our case three. If
we consider the partitions of the three-space induced by
the intersections of the constraining half-spaces, these
are equivalent classes with respect to the cones they in-
tersect. Notice that even if this partitioning may not be
minimal but it suffices for our purpose. All that remains
to be done is pre-compute for each of these regions the
cones that the corresponding planes would intersect so
that for any query plane in the same equivalence class
we can list off the intersecting planes by a table look-up.

5.2 A point-location algorithm

For the point-location problem, we use a pre-processing
scheme due to Dobkin and Lipton [13] because of the
ease in parallelization. The following is a fairly straight-
forward extension of their method

Lemma 5.1 For any set of m planes in E3, it is possi-
ble to pre-process them in O(logm) time using O(m’)

399

processors, such that point-location for an arbitrary
query point can be done in O(logm) time. The space
required is O(m7).

Proof: Find the pairwise intersections of the given set
of planes (there are O(m2) of them). Project the re-
sulting lines on a plane which is not normal to any of
the lines. Find the pairwise intersections of the straight
lines and consider their project.ion on the x-axis. There
are O(m4) intervals induced by these. For each of these
intervals, order the straight-lines by sorting. This can be
done in O(logm) time using O(m2) processors for each
of the O(m4) intervals. There are now O(m6) trape-
zoidal regions. For each of these, order the planes for
binary-search by sorting which are totally ordered in
these subdivisions. This can be done in O(logm) time
using O(m7) processors. The subdivisions induced by
this pre-processing are homeomorphic to a 3-cube, so
that given any query point it can be located in such a
subdivision with 3 binary searches. 0

For each of the subdivisions in 3-space, we can pre-
compute the cones that the corresponding plane inter-
sects using O(ns) processors. Note that these subdivi-
sions are finer than the minimal equivalence classes i.e.
more than one subdivisions could have the same set of
intersecting cones. We also store the number of mter-
setting cones for each of the subdivisions so that while
listing the number of cones each query plane intersects
we can do the processor allocation easily in O(logn) time
using a prefix computation. By choosing less than nl/’
samples, we can complete the entire preprocessing in
the required time and processor bounds.

We summarize our conclusion in this section as follows

Lemma 5.2 Step three of the algorithm uses O(nlogn)
space and terminates in O(logn) time using n processors
in a CREW PRAM model.

Note that in the course of the entire algorithm, the
concurrent reads are utilized only during the binary
searches.

6 Putting things together

6.1 ControIling the size of subproblems

Even though we have shown that most of the algorithm
works out as desired, there is more that needs to be
covered to complete the analysis. From lemma 4, we
know that the size of the problem can increase by a
constant factor at each level and we wish to avoid this
happen over O(loglogn) levels, which would increase the
number of processors required by a polylog factor.

For this we need to quickly identify the redundant
planes that do not contribute to the output complexity
and eliminate them from further recursive calls. This
enables us to get a global bound on the total size of the

subprobIems at any stage which we shall show to be lin-
ear in the input plus the output size. More specifically,
we allocate the processors recursively to the cones such
that the number of processors is proportional to the
number of output vertices in that cone, thereby bound-
ing the number of processors to be O(n). The details of
the procedure is described below. After we have found

the planes intersecting a particular cone, we categorize
them into the following types:

(a) The planes that are completely occluded
by another plane in the cone and hence these
cannot be a part of the output in the cone
(b) Planes that are occluded because of more
than one other plane in the cone i.e. there is
no one plane that completely occludes them.
(c) Planes that contribute to an edge without
an end-point i.e. the end-points lie in some
other cones.
(d) Planes that do contribute to a vertex in
the cone

To eliminate planes of type (a), we use a variant of the
3-D maxima algorithm. The 3-D maxima problem is
defined as:

Given a set S of n points in a three-dimensional
space, determine all points p in S such that no
other point of S has x, y and z coordinates
that simultaneously exceed the corresponding
coordinates of p.

Since cones have a triangular base there are 3 edges
that join it to the apex p*. We sort the intersections
of the planes with an edge in increasing distances from
the apex. We repeat this for all the three edges. Call
these three edges X, Y, Z and denote the intersection of
a plane hi as Xi , Yi , Zi and the ranks in the sorted list
as r(Xi), r(yi) and r(Zi).
Observation 1: If a plane A is occluded completely
by another plane B iff it is dominated on its ranks of
intersection on all the three edges by plane B.
This gives us an effective strategy for eliminating planes
of type (a) by identifying the complement of the set of
the maximal elements, where we use the ranks of the
intersection on the three edges as the order relation.
Using the O(logn) time n processors algorithm of [2],
we can do this in O(logn) time.

To identify planes of type (b) (c) and (d) we construct
the intersection of the 3-D convex hull C with each of
the three faces of the cone. These are intersections of
the faces with C that are 2-D convex hulls. These will
be referred to as contours for the following discussion.
The contours can be computed in O(logn) time with n
processors using any of the optimal 2-D convex hull al-
gorithms. Note that these convex contours on the three
faces are a part of the output and any plane that ap-
pears on this contour is a part of the final output. Con-
sequently, a plane of type (b) cannot be a part of this

400

contour. Unfortunately, there can be planes that are
part of the output but are not part of any conlout (con-
sider a plane that chops off a cap of the hull within the
cone). For the time being let us focus on only those
planes that show up in the contours and consider the
3-D convex hull formed only by these planes within a
cone. We shall refer to such a 3-D hull as a skeletal-hull.
We now make following observation
Observation 2: Any plane that is is not a part of the
contour on any face can intersect at most one skeletal
hull.

This follows from convexity. Notice that such planes
are not necessarily a part of the output but we are not
aiming for an output sensitive algorithm. The previous
observation guarantees that if a plane is not a part of
C it will not survive in more that one cone when the
algorithm is called recursively in the cones. The planes
that do not intersect the skeletal-hull cannot be a part
of C within the cone. See Figure 2 for a two-dimensional
illustration of these cases.

A plane that contributes to only an edge of the convex
hull will be a part of the contour and on exactly two
faces (intersection of the edge with the cone) and hence
can be identified quickly using sorting.

The above method for throwing out redundant planes
ensures that going into any recursive call, the sum of the
subproblems is less than n + 3m where n and m are re-
spectively the input and output sizes and assuming that
there are no singularities (a vertex is the intersection of
exactly 3 planes).

We shall now describe a procedure to construct the
skeletal-hull within a cone and preprocess the skeletal-
hull such that queries of the kind plane-polyhedra inter-
section detection can be answered quickly. The latter
part can be done efficiently using a hierarchical poly-
hedra decomposition scheme due to Dobkin and Kirk-
patrick [12]. The construction of the hierarchical rep-
resentation can be done in 6(logn) time using an al-
gorithm of Iieif and Sen [23] (also discovered indepen-
dently by Dadoun and Kirkpatrick [ll] but the analysis
given in their paper is not sufficient for our purposes).
Given this representation, the plane-polyhedra intersec-
tion detection query can be answered in O(logn) sequen-
tial time (Kirkpatrick [19]).

We shall now discuss how to construct the skeletal-
hulls quickly. Although the skeletal-hulls are themselves
3-D convex hulls they have a much simpler structure.
More specifically, they have the following property: all
faces are unbounded (i.e. they are part of the contours.
This implies that, if we construct them recursively us-
ing the same algorithm, we do not have to worry about
case (b) since all planes that are part of the output will
show up in the contours and this holds for any level
of the recursive call. From the analysis given in the
next sub-section the skeletal-hulls can be constructed in
6(log n) time using a linear number of processors. The
reader should convince himself that there is no circular-

ity of arguments here. One way to look at the problem
is the following : assuming that case (b) doesn’t arise

(i.e. all planes that are part of the output show up
in the contours), the algorithm terminates in O(logn)
time using a linear number of processors. So after hav-
ing constructed the skeletal-hullfor the cone, the redun-
dant planes are quickly eliminated using the procedure
outlined in the previous paragraph. Subsequently, the
algorithm is called recursively on the cone - this time to
build the actual hull (in contrast to the skeletal-hull).

6.2 Final analysis

Consider the algorithm as a tree where each node cor-
responds to a procedure and the children of a node
representing processes corresponding to the recursive
calls made by the procedure. Then the running time
of the algorithm corresponds to a worst-case sequence
of nested procedure calls along any path in this tree
from the root to a leaf node. This process tree cor-
responding to the algorithm has the following prop-
erty. A process at level i (l< i < O(loglogn)) has size
O(r~(l~/~)-‘) and the process terminates in time O(log
r~(~/lO)‘) (= (9/10)‘O(logn)) with probability greater
than 1 - l/r~(‘/~‘)i. From Lemma 2.2, any nested se-
quence of recursive calls exceeds time cylogn with prob-
ability less than l/n7 for any y > 1. From Lemma 2.1
in section 2.1, it follows that all the leaf processes and
hence the algorithm are completed within the same time
with high likelihood. The space used is O(n) at step 3 of
each recursive level giving a total bound of O(nloglogn)
for all the O(loglogn) recursive levels of the algorithm.
This proves the main result of the paper. 17

Corollary 6.1 The following problems can be solved in
O(Jogn) time using n processors in a CREW PRAM

(i) Convex hull of a set of points in 3-D
(ii) Voronoi diagram of point-sites in plane
(iii) All-points nearest neighbor
(iv) Euclidean minimal spanning tree

Proof: (i) follows immediately because of well-known
reduction of convex hulls to intersection of half-spaces.
To determine an internal point p* in the intersection,
we can determine an internal point of the convex hull
and use it as the origin for the duality transform. The
origin is known to be contained in the intersection of
the half-spaces.
For (ii), given a set of n points in the plane we apply
an inversive transformation given by Brown [3] to the
input points to transform the problem into finding the
convex hull of n points in 3-space.
(iii) can be obtained in O(logn) time from the Voronoi-
diagram.
(iv) can be obtained by running a minimal-spanning tree

401

algorithm on the edges of Delaunay ,triangulation which
is the dual graph of the Voronoi diagram. 13

6.3 Bounding the number of random
bits

Since randomness has been recognized as a scarce re-
source, it is important to bound the amount of random
bits used by our algorithm.

Lemma 6.1 The algorithm can be made to run in the
same time bound using at most O&g2 n) truly random
bits.

Proof sketch: We use techniques of Karloff and Ragha-
van [18] to limit the use of truly random bits in Reis-
chuk’s parallel sorting algorithm. They use pseudo-
random number sequences of the form a + bei mod P, i
= I,2,3.. where a,b are truly random seeds of O(logn)
bits chosen uniformly from Zp for suitable primes P
of size no(‘). The main ideas are - (1) (Asymptoti-
cally) similar probabilistic bounds can be derived from
Chebychev’s inequality which uses only P-way indepen-
dence and (2) that the same random bits can be reused
during the the different levels of recursive calls. The
process tree (as defined in our previous discussion) is
partitioned into groups of contiguous levels which they
call bands, where each band uses O(logn) truly ran-
dom bits. They show that the same random bits can be
shared by all bands in a path and by all paths in the tree.
The algorithm still runs in G(logn) time. In our case,
we use K-way independence where K is a predetermined
constant and a generalized Chebychev inequality of the
form Prob((X] 2 t} 5 -&$ where M = E[4(t)]. From
Lemma A.1 in the appendix, bounds similar to Lemma
4.1 can be rederived using K-way independence from
the generalized Chebychev’s inequality. The bounds for
polling can also be derived similarly from Corollary A. 1.
We need an extra O(logn) multiplicative factor of truly
random bits for implementing Polling for which we need
O(logn) independently chosen random seeds of O(logn)
bits each. The overall effect of using these schemes is
that the constants associated with the resource bounds
grow larger. 0

7 Concluding Remarks

The randomized algorithms presented here the rein-
forces the optimism expressed in an earlier paper (Reif
and Sen [23]) where we introduced randomization as an
effective tool for developing parallel algorithms in com-
putational geometry. Clarkson had demonstrated the
usefulness of randomization for deriving improved ex-
pected time bounds for a large number of sequential
algorithms. Although we draw from Clarkson’s work,
our results should be of independent interest because
of many unique additional difficulties presented by the

402

parallel environment and the techniques one needs to
tackle them.

This paper describes the first O(log(n) parallel time
algorithm with optimal speed-up for 3-D convex hulls
and related problems, however a number of questions
are left unanswered. The most obvious problem is
that of designing a deterministic algorithm with same
bounds. It is possible that an optimal algorithm for
2-D Voronoi-diagrams may be easier to obtain than a
similar algorithm for 3-D convex-hulls. Moreover, we
use the CREW PRAM model for our algorithm that
raises the question if the algorithm can be made to run
without the feature of concurrent reads. A more the-
oretical issue is that of designing sub-logarithmic time
parallel algorithms for all these problems with optimal
speed-ups.

An extremely important area of investigation in the
field of parallel algorithms for computational geometry
is development of efficient algorithms for fixed inter-
connection networks like hypercubes and butterfly net-
works. In spite of some elegant work done in the PRAM
model, the currently best known results for almost all
these fundamental problems except 2-D convex hulls re-
main sub-optimal. It appears very unlikely that the op-
timal algorithms would be deterministic since there are
no known optimal deterministic sorting algorithms for
these networks. This should encourage more research in
the area of developing more sophisticated probabilistic
methods for parallel computational geometry.

References

PI

PI

PI

141

PI

A. Aggar-
wal, B. Chazelle, L. Guibas, C. O’Dunlaing, and
C. Yap. Parallel computational geometry. Proc. of
25th Annual Symposium on Foundations of Com-
puter Science, pages 468 - 477, 1985. also appears
in full version in Algorithmica, Vol. 3, No. 3, 1988,
pp. 293-327.

M.J. Atallah, R. Cole, and M.T. Goodrich. Cascad-
ing divide-and-conquer: A technique for designing
parallel algorithms. Proc. of the 28th Annual Sym-
posium on the Foundations of Computer Science,
pages 151 - 160, 1987.

K.Q. Brown. Voronoi diagram from convex hulls.
Informat. Process Lett., 9:223 - 228.

Anita Chow. Parallel Algorithms for Geometric
Problems. PhD thesis, University of Illinois at
Urbana-Champaign, 1980.

K.L. Clarkson. A probabilistic algorithm for the
post-office problem. Proc of the 17th Annual
SIGACT Symposium, pages 174 - 184, 1985.

PI

PI

PI

PI

PO1

PII

WI

[=I

PI

PI

WI

PA

P81

WI
PO1

K.L. Clarkson. New applications of random sam-
pling in computational geometry. Discrete and
Computational Geometry, pages 195 - 222, 1987.

K.L. Clarkson. Applications of random sampling in
computational geometry ii. Proc of the 4th Annual
ACM Symp on Computational Geometry, pages 1
- 11, 1988.

K.L. Clarkson and P. Shor. Algorithms for diame-
tral pairs and convex hulls that are optimal, ran-
domized and incremental. Proc. of the 4th ACM
Symp. on Computational Geometry, 1988.

R. Cole. Parallel merge sort. Proc. of the 27th
Annual IEEE Symp. on Foundations of Computer
Science, pages 511 - 516, 1986.

R. Cole and M.T. Goodrich. Optimal parallel algo-
rithms for polygon and point-set problems. Proc. of
the 4th ACM Symp. on Computational Geometry,
pages 201 - 210, 1988.

N. Dadoun and D.G. Kirkpatrick. Parallel process-
ing for efficient subdivision search. Proc. of the 3rd
Annual ACM Symp on Comput. Geom, pages 205
- 214, 1987.

D. Dobkin and D. Kirkpatrick. A linear time algo
rithm for determining the separation of covex poly-
hedra. Journal of Algorithms, 6(3):381- 392, 1985.

D. Dobkin and R.J. Lipton. Multidimensional
searching problems. SIAM J. on Computing, 5:lSl
- 186, 1976.

H. Edelsbrunner. Algorithms in combinatorial ge-
ometry. EATCS Monographs on Theoetical Com-
puter Science. Springer Verlag, 1987.

S. Fortune. A sweepline algorthm for voronoi dia-
grams. Proc of the &ml ACM Symp. on Comput.,
pages 511 - 516, 1986.

H. Gazit. An optimal randomized parallel algo-
rithm for finding connected components in a graph.
Proc. of the 27th Annual IEEE Symp. on Founda-
tions of Computer Science, pages 492 - 501, 1986.

D. Haussler and E. Welzl. e-nets and simplex range
queries. Discrete and Computational Geometry,
2(2):127 - 152, 1987.

H. Karloff and P. Raghavan. Randomized algo-
rithms and pseudorandom numbers. Proc. of the
20th Annual STOC, 1988.

D.G. Kirkpatrick. private communication.

C. Levcopoulos, J. Katajainen, and A. Lingas.
An optimal expected-time parallel algorithm for
voronoi diagrams. Scandenavian conference on the-
oretical computer science, 1988.

WI

P21

K. Mulmuley. A fast planar partition aIgorithm 1.
Proc. of the 29th IEEE FOCS, pages 580 - 589,
1988.

S. Rajasekaran and J. Reif. Optimal and subloga-
rithmic time radomized parallel sorting algorithms.
Technical Rept, Aiken Computing lab, Harvard
University, 1986. To appear in SIAM Journal on
Computing.

[231 J.H. Reif and S. Sen. Optimal randomized parallel
algorithms for computational geometry. Proc. of
the 16th International conference on Parallel Pro-
cessing, 1987. A revised version is available as Duke
University technical report CS-88-01.

P4

[251

PI

P71

J.H. Reif and L.G. Valiant. A logarithmic time sort
for linear size networks. Journal of the ACM, 34:60
- 76, 1987.

R. Reischuk. A fast probabilistic parallel sorting
algorithm. Proc. of the &&nd IEEE FOCS, pages
212 - 219, 1981.

M. Shamos and D. Hoey. Closest-point problems.
Proc. of the 7th ACM STOC, pages 224 - 233.

L.G. Valiant. A scheme for fast parallel commu-
nication. SIAM J. on Computing, 11:350 - 361,
1982.

A Appendix

We say a random variable X upper-bounds another ran-
dom variable Y (equivalently Y lower bounds X) if for
all x such that 0 5 z < 1, Prob(X < Z) < Prob(Y 5

4.
A Bernoulli trial is an experiment with two possible

outcomes viz. success and failure. The probability of
success is p.

A binomial variable X with parameters (n,p) is the
number of successes in n independent Bernoulli trials,
the probability of success in each trial being p. The
probability mass function of X can be easily seen to be

Prob(X 5 x) =

c&j (;) PV -PY
The tail end of the Binomial distribution can be

bounded by Chernofl bounds. In particular the follow-
ing approximations due to Angluin and Valiant are fre-
quently used:

Prob(X 2 m) 5 (z)mem-np (1)
Prob(X 5 m) 5 (z)me-np+m (2)

Prob(X 5 (1 - c)pn) < ezp(--E2np/2) (3)

Prob(X 2 (1 + e)np) 5 ezp(-e2np/3) (4)

403

for all 0 < c < 1. The last two bounds actually follow
from the Chernoff bounds which (for a discrete distri-
bution) can be stated as

Prob[A. + x] 5 zZ-“G1~(z) where GA(Z) is the
probabihty generating function.

To minimize the bound we substitute z = r0 that mini-
mizes the right side expression.

Similar bounds can be derived even if X is not strictly
a sum of independent Bernoulli variables but instead
consists of a sum of variables which are only Sk-way
independent i.e. any subset of 2k (or less) variables are
independent.

Lemma A.1 Let X be a sum of n &k-way independent
and identical Bernoulli random variables Xi, 1 5 i 5 n
each of which has a success probability p. Then for a
fixed k (chosen independently of n), Prob{lX - ~1 > p}
5 O(s) where p = np and p 5 O(n-p) for some 0 <
P< 1.

Proof: Consider the generalized Chebychev’s inequal-
ity Prob{]X] 1 t} 5 g*iF. Using 4(t) = t2k and
substituting X-E[X] for X, we get

Prob{lX - E[X](1 E[X]} 5 w
Let us focus on the numerator - we shall show
that it is O($) and the lemma follows, Since

WI = C;zl WA], we can write (X - E[X])2L as

(Cy=l xi - E[Xi])‘k

In the multinomial expansion, all the terms containing
Xi - E[Xi] (for any i) as a factor vanish because of the
2k-way independence property.
Note that E[n<zjj, #8(Xs)] = nigj, E[#,(X,)].

There are (z >’ (“,“I,’) terms which have c dis-

tinct non-unit product terms of the form (Xi - E[Xj])i
such that i > 0 and c i = 2k. Also note that
E[(Xj - E[Xj])i] = (1 - p)(-p)’ + p(1 - p)’
We can factor out p’ so that we can write the coefficient
of nc as p2k.f(p,c,k), h w ere f is a function independent
ofn and can be absorbed in the big-0 notation. From
our observation about the first-order terms (which van-
ish), the maximum value of c is k. Moreover from our
assumption about p 5 O(n-p), the numerator can be
bound by the asymptotically dominating term O(n’ .p’)
= O(p’). Since the denominator is p2k, the lemma fol-
lows. cl

Corollary A.1 Prob{IX-PJ > 0.~6) 2 0(&j where
a is a constant between 0 and 1.

Figure I: Lines 1 and k partition
the vertices differently and lie

in different regions of the dual
space arrangements of vertices.

(4

Figure 2:

(b)

(a) illustrates case (a). Line a is

completely dominated by line b.
(b) illustrates case (b). Line c is
not dominated by d or e alone but
by their combination. Clearly line
c will be eliminated from all other
cones by case (a).

404

