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Abstract 

Abstract interpretation introduced the notion of formal 

specification of program analyses. Denotational frameworks are 
convenient for reasoning about such specifications. However, 

implementation considerations make denotational specifications 

complex and hard to develop. We present a framework that facili- 

tates the construction and understanding of &notational 
specifications for program analysis techniques. The framework is 

exemplified by specifications for program analysis techniques 

from the literature and from our own research. This approach 
allows program analysis techniques to be incorporated into 

automatically generated program synthesizers by including their 
spec&3tions with the language definition. 

1. Introduction 

Recent developments in programming environments have 
blurred the distinction between language editors and 

compilers/iiterpreters. Modem program synthesizers carry out 

many tasks that were once traditionally considered as compiler 
functions. These tasks include syntax checking, type checking, 

type inference, and various data flow analyses. The interactive 
nature of these synthesizers exploits these techniques to provide 

an effective program synthesis environment. The growing 
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sophistication of these analysis techniques necessitates a struc- 
tured approach to their design to ease their development as well as 

to ensure their correctness. 

Most flow analysis techniques are currently developed as 

algorithms in which implementation details are combined with the 

technique itself. This has several disadvantages. First, the design 

process is complicated by the need to handle low-level implemen- 
tation details. The design of flow analysis techniques is heavily 

dependent on the application. Generally, flow analysis techniques 

provide approximate information about the dynamic behavior of 

programs. There is always a trade-off between the effort involved 
in the analysis and the precision with which information is 

obtained from the analysis. The application sets the requirements 
for precision and efficiency. Low-level development of an 

analysis technique makes it difficult to prevent duplication of 
effort in developing techniques that are closely related. 

Second, the presence of implementation details makes it 

harder to understand the algorithms in order to maintain or 

improve existing ones. Last, correctness proofs are difficult to 
derive for algorithms with too much detail. To gain confidence 

about an analysis, it is necessary to establish certain desirable pro- 

pertie of the analysis. Three essential properties are: 

(1) Consistency with the semantics of the language: 

Program analysis techniques are designed to make asser- 

tions about properties (static and/or dynamic) of the pro- 
gram. Since such properties are determined by the seman- 
tics of the language, it is important to ensure that the 

analysis techniques are consistent with the language 
semantics. This becomes Crucial as the analyses become 

more sophisticated. 

(2) Termination: 
Static analysis algorithms must terminate for any program. 

It is useful to provide formal reasoning that guarantees ter- 
mination. 
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(3)Safety: 

A compile-time analysis usually provides an approxima- 

tion to the actual execution of the program either due to 
inherent limits such as unknown input values or due to 

implementation considerations that trade-off precision for 

efficiency and/or termination. The analysis is designed to 
err on the conservative side. The actual runtime property of 

the program (that is being approximated) must imply the 

information gathered from the analysis. 

1.1. High-level specifications 

The seminal paper on abstnzct inferpretufion [2] intro- 
duced the notion that a wide variety of program analysis tech- 

niques could be specified formally as interpretations over abstract 

domains. These formal specifications can then be used to derive 
the required correctness proofs. Although the original work 

involved operational sp&fications for flow-chart languages, most 

of the later studies based on abstract interpretation [lo, 8,6.4, 
etc.] have used denotational specifications. 

A denotational specification of a program analysis can be 
considered as an alternate semantics for the language. Most of the 

techniques developed for providing standard semsntics of a 
language can be used to provide an alternate semantics. The struc- 

tural and compositional nature of denotational specifications ease 

the development of correctness proofs through the use of well 

understood methods such as structural induction, fixed-point 
induction, etc. Consistency with standard semantics can be esta- 

blished easily with respect to the &notational semantics of the 

language. Studies such as [ll, 12,1,15] demonstrate the possibil- 
ity of providing efficient evaluators for &notational 
spec*cations. 

1.2. Problems with denotational frameworks 

The use of denotational frameworks for specification of 

program analysis techniques tends to be less than ideal since the 
denotational functions make assertions only about the relationship 

between the input and output values. However, program analysis 

often requires information at various program points that 
correspond to results from partial evaluations of the denotational 

function representing the meaning of the program. To make this 

possible one must explicitly introduce parameters to these func- 
tions to cache the intermediate values [ 10,5]. This results in 

messy specifications that are difficult to understand. It also 

requires a wasteful duplication of effort in maintaining the cache 

parameter. This problem is analogous to the use of copy attributes 

in attribute grammar frameworks to propagate information 

between nodes in the abstract syntax tree. 

Moreover, the use of caching makes definite assumptions 
about the evaluation schemes for the specifications. It is no longer 
sufficient to show the correctness of the evaluator through its con- 

sistency with the relationship between inputs and outputs. For the 

information obtained from an evaluation to be meaningful, the 

evaluator must also be consistent with the assumptions made 

about the intermediate states possible in the evaluations. It is 
necessary to formalize such assumptions to prove the correctness 

of the analysis. 

13. solutiolls 

This paper describes a framework that facilitates the 

development of program analysis techniques through denotational 
specifications. Features that are common to most analysis tech- 

niques are incorporated into the framework to avoid duplication of 

effort. For example, a facility is provided to specify collection of 
results of partial evaluations in an implicit fashion. The operators 

used in the specification language are delined formally in an 
axiomatic framework. This allows formal reasoning about results 
from partial evaluations without over-specification of possible 

evaluation schemes for the denotational specifications. 

Cur approach allows multiple analysis specifications for 

any language and a single interpretation model. All application 

dependent techniques used in a particular analysis for efficiency 

considerations (including termination) must be included in the 

specification for that analysis. The interpretation model is 
independent of the analysis as well as the language in which the 

programs to be analyzed are written. An implementation for the 

model may include efficient evaluation techniques such as incre- 
mental evaluation. The correctness of the interpretation model is 
proved independent of any particular specification. 

2. The framework 

The program analysis specifications are written in a fashion 

similar to denotational specification of standard semantics. A 

specification consists of domain declarations and semantic func- 
tions over these domains. Several features are included in the 

specification language to support the techniques required in most 

flow analysis designs. This section provides a brief description of 
such features. For clarity. we will use symbols that are tradition- 

ally used in denotational semantics although the concrete syntax 

for the specifications would have direct translations for those sym- 
bols for machine readability. 
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2.1. Domain declarations 

Domains 

primitive domain ::= 

integer I boolean I ordinal I syntactic I label 

domain :: = primitive domain 

1 domain x domain 

1 domain + domain 
1 lifted domain 

1 topped domain 

1 powerset of domain 
1 [recursive] store domain += domain 

I function function type 

function type ::= 

[[strict] domin[*] ( + [strict] domain I] 

+ domain 

[ collect [ powerset of ] domain [J n] ] 
[ merge cache ] 

The Iified domain introduces a special element I as the 

least element into the base domain. The topped domain introduces 
a special element T as the greatest element into the base domain. 

Lookup and update functions are predefined for a store domain. 
The lookup is denoted by S[X] while the update is denoted by 

S[Y,h, ---I y&J. An update for all elements horn a set is 

denoted by s[foreach x in S f(x)/x]. In a recursive store, the store 

can bc stored as a value in itself. I, denotes the least element of a 
rifted dare domain S. IS[] denotes an empty store from the 
domain S. 

A function can bc declared as strict in any of its arguments. 

Assuming that the least elements exist in the comspondig 

domains (including the result domain), the framework will inter- 

nally add a prefix to the function definition to make it strict in 

those arguments. 

A major goal of the framework is to avoid the explicit 

caching of intermediate values (“states”) in the semantic function 

definitions. The collect option for a semantic function associates 
with the function an extra argument and an additional component 
to the result. Both of them have the type store label 3 domain. 

All syntactic objects are automatically provided with labels by the 

framework. Depending on whether the flow analysis requires an 

input state or an output state to be associated with the syntactic 
object, the corresponding domain is specified in the collect option. 
Whenever a semantic function is evaluated, the value of the 
speciiied argument (or result) is joined with the previous value in 

the cache using the join operator (V) for that domain. The power- 
set of option changes the type of cache to store label + power- 
set of domain. The intermediate values are converted into sets 

before the join (V) operator in the powerset domain is applied. 

For a function for which the collect option is not specified, 

the user may define how the output cache is to be obtained if any 

of the arguments to the function have implicit caches associated 

with them. However, in many cases the output cache is merely a 
join of all the input caches and a possible cache from the evalua- 

tion of the function. The merge cache option specifies that this is 
to be the default. The cache associated with argument i can be 

explicitly accessed as cache%. In a semantic function definition 

$.cache refers to the implicit cache argument. 

All the primitive domains except ordinal me flat domains. 

ordinal has a total ordering induced by the arithmetic I relation. 

The standard operations induce orderings on the compound 
domains. However, a user may explicitly define an ordering to be 
used for a domain. The framework will not check whether the 

ordering definition produces a partial ordering. It may be neces- 

sary to use equivalence classes with respect to the defined order- 
ing. The representative declaration specifies the representative for 
the equivalence class to be used in the implementation. 

Ordering 

primitive ordering ::= 

subset I flat I arithmetic 

ordering ::= 

Representative 

representative ::= 

primitive ordering 
I logical expression 

convex-closure 
I expression 

I any 



2.2. Function detinitions 

Functions are de&-ted as expressions in the language 

described below. The cache option in the fixed-point expression 

denotes that the functional is monotonic in the implicit cache 

argument (but not necessarily in other arguments). The user must 

ensure that the least fixed point is finitely computable. 

expression ::= primitive fun&m 
1 id 1 constant 

1 storefunction 

1 Aidxxpression 

1 expression k constant 
1 expression expression 

1 (expression , expression) 

1 expression 0 eqression 

1 [expression] V expression 

1 expression + expression, expression 

1 fix [cache] expression 

1 let id = expression 

(and id = expression) in expression 

23. Interpretation model 

The semantics of the specification language is provided 

through a formalism based on axiomatic rules. Any evaluation 

scheme used to provide an interpreter for the specifications must 

be consistent with these definitions. These rules also provide a 

formal definition for the collection of results of partial evaluations 

and can be used to reason about the correctness of the intermedi- 

ate states. The choice of an axiomatic system allows such a formal 

definition while avoiding over-specification of possible evaluation 

schemes. A sample of such definitions are provided below. The 

complete specification of the interpretation model can be found in 

W-3 

(1) defines the evaluation of a semantic function for which 

the collect option has been specified. The cache parameter is 

invisible in the specifications but can be implemented as an addi- 

tional parameter to the function that is maintained automatically. 

(2) defines the composition operator for a function that does not 

require collection of intermediate results. However, it defines the 

existence of the intermediate value t. (3) defines the join (V) 

operator for functions when the collect option is used. F denotes 

the environment of function bindings under which the evaluation 

is carried out. T denotes the predicates for type checking that is 

carried out statically. 

(1) 

(2) 

(3) 

T, F +fx =s y, t---c’ = c[(x x y)hf.label] V c 
F + fxco * ycc’> 

T, Fl-fpx=s t, F+f, t* y 
F+f, 0 fpx* y 

T, F t-f, x -cc> + tl <cl>, F +f, x <o * tz <q>, 
ky=t, vtp, kd=c, vc;! 
FF-1, Vfpx<cs+ y-e’> 

An evaluation scheme for the model can use techniques 

such as incremental evaluation to provide an efficient interpreter 

for the specifications. Incremental evaluation of functions using 

caching has been proposed in [13]. However, use of aggregate 

values as inputs to functions can reduce the effectiveness of incre- 

mental evaluations. To allow for cases in which analysis depen- 

dent information can be used to provide better incremental evahra- 

tions. a feature is provided in the framework to mark instances of 

syntactic objects (and hence the semantic functions associated 

with them) as must-be-evuluuted. If the analysis can dynamically 

mark the functions that need to be evaluated, then the functions. 

while unmarked, will be evaluated only once. The use of this 

feature is demonstrated in the first example specification. 

3. Example specifications 

The example specifications in this section have been 

selected to illustrate various features of the framework as well ss 

to demonstrate the ease with which issues of precision and 

efficiency can be handled in the construction of program analysis 

specibcations. The first example was motivated by the conditional 

constant propagation algorithms discussed by Wegman and 

Zadeck in {18]. The second example is for integer range analysis. 

The range analysis technique was motivated by research to extend 

type inferencing to automatically select type implementations for 

a given program. The correctness proofs for these specifications 

are beyond the scope of this paper. The formalism to express 

correctness of the range analysis specification can be found in 

[17]. The third example demonstrates the use of our framework 

in formulating the collecting interpretation model developed by 

Hudak and Young in [5] for an abstract functional language. 
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3.1. Abstract Syntax and Standard Semantics 

For the first two examples we will use a small imperative 

language that will he sufficient to demonstrate the various issues. 

Fig. 1 provides the abstract syntax for the language. The language 

includes as base values integers and booleans. The identifiers can 

only he of integer types. For brevity, we will omit the syntactic 

domain of declarations. The standard semantics for the language 

is expressed in our framework in Fig. 2. In the following 

specifications, the conversions between base values in the 

language and their denotations are implicit. 

i E Id Identifiers 

=EExp Expressions 

b E B-Exp Boolean Expressions 

s E stat statements 

p E Prog Program 

Domains: 

Id, Exp, B-Exp, Stat, Prog = syntactic; 

L-Integer = lifted integer ; 

L-Boo1 = lifted boolean; 

Prog-Store = store [Id]l -+ L-Integer; 

Function Declarations: 

E[Ex~~ : Prog-Store * L-Integer; 

BI[B-Ex~] : ProgStore + L-Bool; 

SuStatjj : Prog-Store + Prog-Store; 

P[Progl : Prog-Store * Prog-Store; 

Function Definitions: 

P[(Prog s)n = b. susnx; 
P 

..- ..- Prog 9) 

s ::= (Assign i e) 

I (If b SI 92) 

1 (While b s) 

I (Camp s1 92) 

Assignment statement 

Conditional Statement 

Loop statement 

Statement Composition 

e ::= (Id id) 1 (Int-Lit n) 

I (Add et ed 

b **= . . (Bool-Lit 1) 

1 (And bl W I (Equal el e2) 

Figure 1. Abstract Syntax 

S[(Assign i e)n = 31x. x[(E[elx) / I[in]; 

Sl[(lf b S1 an)] = hx. (B[b] + sI[Sd , Susan) X; 

SU(Whlle b s)n = fix&f. hx. (B([bl--* 

(f 0 susn), LY.Y) ~1; 
S[(Comp s1 s2)] = kx.(sl[s211 0 sbn)x; 

EU(ld id)J = lix.x[[idl]; 

EU(lnt-Lit n)] = Ax.4Integerl[nJ; 

E[(Add el e2)] = Lx.Add EI[e,nx El[e2nx; 

BU(BOol-Lit l)n = k.L-Bool[ln; 

B[(And bt b2)] = Lx-And BI[b,nx B[bdX; 

B[(Equal el e2)J = luc.Equal El[e,nx El[ennx; 

Figure 2. Standard Semantics 

3.2. Conditional Constant Propagation 

Conditional constant propagation algorithms can poten- 

tially discover more constants than the simple constant propaga- 

tion algorithm developed by Kildall [9] by evaluating all condi- 

tional branches with all constant operands. Parts of the program 

that are never executed are ignored. Hence, assignments in those 

parts cannot hill potential constants. For example, consider the 

code segment below: 

i := 1; if i = 1 then j := 1 else j := 2 

Evaluation of the conditional can show that j is never assigned 

the value 2 and cannot affect the consideration of j as a potcn- 

tial constant. 

We will first provide a specification (Fig. 3) that does a 

naive version of the conditional constant propagation. The 

specification corresponds to an analysis that essentially simulates 

the execution of the program in a simple domain. 

&tore provides a map between identifiers and values 

from the usual three-level lattice of constants, Con. I in this lat- 

tice denotes that the identifier may or may not be a constant, while 

T denotes that the identifier is not a constant. The input to the 



Domains: 
Id, Exp, B-Exp, Stat, Prog = syntactic; 

Con = topped lifted integer; 

Cstore = litted store [Idn +D Con; 

Function Declarations: 

E[Ex~~ : Strict Cstore + Con; 

Bd[B-EXP~ : Strict Cstore + Cstore; 

BA[B-EX~] : Strict Cstore + Cstore; 
SI[Statl : Strict Cstore * Cstore; 

flProgjj : 4 Cstore: 

Function Definitions: 

Pa(Prog s)II = SUsD ktidl; 

SI[(Asslgn i e)] = 

Xx. let n = E[el]x in x[(x[[il]Vn) / [in]; 

S[(if b s1 se)1 = 

k~. let bt = B,[bl x and bf = Bf[bl x in 

S[s,j bt V S[ssl bf: 
SI[(WhiIe b s)D = 

6x&f. k~. let bt = BJbl x and 

bf = Bf[bl x in 

((f 0 S[s]) bt) V bf; 

SlIwmP Sl 52)P = 3.x. (Sl[s2] o SI[s,D) x; 

E[(ld id)1 = ilx.X[[idjj]; 

El[(lnt-Lit n)J = h.conUn]l; 

E[(Add el en)] = 

X.X. let nl = EI[ejl x and n2 = E[eJ x in 

(1) 

(2) 

(3) 

(4) 

(nl = T) or (n2= T) + T , Add nl n2; 

B,[(Bool-Lit l)] = kboolean[ll + x , I ; 

Bg(And b, b2)JJ = 

Xx. let btl = B,[b,j x and bt2 = B,[b,J x in 

(btl = l)or(bt2= I)+= I ,x; 

BJ(Equal el e2)l = 

k. let nl = E[elj x and n2 = EaezJj x in 

(nl = T) or (n2 = T) or (nl = n2) 

4x,1; 

Figure 3. Conditional Constant Propagation (Naive) 

programis auemptystore. Identifiersmappedto T inthe output 
are not constants. An identifier mapped to an integer is a constant 

with that value. Identifiers are not mapped to I unless they were 

used before their definition in the program. 

The least element (I) of Cstore denotes an unreachable 

state. As all the semantic functions are declared to be strict in their 

arguments, information from program parts that are unreachable 

are never propagated. Unreachable states arise from the evalua- 

tion of the semantic functions for boolean expressions. The 

semantic function & outputs I if the boolean expression contains 

all constant operands and evaluates to false. For all other expres- 

sions, it is an identity function. The semantic function & is similar 

but outputs I when the expression evaluates to the constant true. 

The specification of & is very similar to that of & and has been 

left out. 

33.1. Improving Precision 

As explained in 93.2, although this analysis can potentially 

detect more constants than Kildall’s. it does not use information 

from conditions that contain identifiers that are constants locally 

but not globally. For example consider the code segment below: 

i :- 1; i := 2; if i-2 then j := 1 else j := 2; 

The analysis does not use the fact that i is locally a constant in 

the conditional and assumes that both the branches are executed. 

To improve this analysis to handle local constants. only the four 

numbered lines in Fig.3. need to he modified. The modifications 

are shown in Fig.4. 

The semantic function S is modified to output the current 

assignments to the identifiers rather than a join of all previous 

assignments. The implicit cache option is used to form a join of 

all previous states at each program structure. (1) provides a 

modified declaration for S. (3) provides the mod&d definition 

for the assignment. The join with the previous value associated 

with the identifier has been removed. The modified definition for 

the while statement is in (4). 

(2) provides the modified definition for the program. As S 

returns the output at the end of the program and is included in the 

cache. the value of c is not required. However, it is used in the let 

clause to force evaluation of the semantic function for the state- 

ment that forms the body of the program. The cache associated 

with the lxxiy of the program contains a map from labels for 

instsuces of statements to the local Cstores. The uuary V 

operator forms a join of Cstores over all labels and provides 

the required mapping. 
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The specification for obtaining Use-Def information is in Fig. 5. 

(1) Sl[Statj : Strict Cstorel -+ Cstore2 
collect Cstorep; 

(2) PUProg -4 = let c = S[sl LtitOre[] in V[sjj .cache; 
-- c is used to force the evaluation of S 

(3) S[(Assign i e)jj = 

Lx. let n = EI[enx in x[n / [in]; 

(4) S[(Whlle b s)] = 

6x&f. J.x. let bt = B*I[bn x and 

bf= Bll[bj Xh 
(f ((SUsn bt) V x)) V bf; 

Figure 4. Modifications to Figure 3. 

3.2.2. Improving efficiency 

The sparse conditional constant algorithm proposed in [ 181 

improves efficiency by traversing a data structure called the static 

single ussigrwmt graph. The structural nature of our framework 

forces the evaluation of the specification to be equivalent to a 

traversal of the program flow graph. The incremental nature of the 

interpreter may provide some improvements in efficiency by 

avoiding the re-evaluation of portions of the program. However, 

the use of aggregate values, such aa the values from the domain 

Cstore. as inputs to functions results in unnecessary re- 

evaluation of many functions. For example, a re-definition of an 

identifier is considered as a change in the entire Cstore and a 
function is re-evaluated even if its output does not depend on the 

value associated with that identifier. 

In this section, we describe the use of Def-Use information 

to avoid such unnecessary evaluations. First, we provide 

specifications for an analysis that produces Def-Use information 

and then modify the constant propagation specification in the pe- 

vious section to use thii information to result in a more efficient 

analysis. 

3.2.2.1. Use-DeC analysis 

As the denotational nature of the framework is more suited 

to forward-flow analysis techniques than backward-flow analysis. 

the Def-Use information is obtained through separate passes. The 

first pass provides Use-Def information and the second inverts it. 

Domains: 

Id, Exp, B-Exp, Stat, Prog = syntactic; 

Label-Set - powerset of label; 

Def-Store = store [IdI +W Label-Set; 

UD-Store = store label + Label-Set; 

Result-Domain - Def-Store x Label-Set: 

Function Declarations: 

E[Expjj : Def-Store +D Label-Set; 

B[B-EX~] : Def-Store + Label-Set; 

SI[stat] : Def-Store + Result-Domain 
collect Result-Domain 1 2; 

Bprogn : + UD Store; 

Function Definitions: 

Pt[(Prog a)] = let x = sI[sn ~~~-.s~&] in [s&cache; 
-- x is used to force evaluation of S 

S[(Assign i e)Jj = 

Ax. let L = EI[e]x in (x[{$.label} I [in] , L); 

su(H b 91 s2)n = 
Ax. let Lb = B[bj x and 

Lsl = S[s,j x and Ls2 = S[S~ x in 

(Lsl &l V Ls241 , Lb V Lsl&2 V Ls242); 
S[(Whlle b s)n = 

6x&f. kxx. let Lb = B[bn x and 

Ls = SI[s] x in 
(f Ldl) V (x , Lb V L&2); 

SI[(Comp s1 s2)jl = Lx. let Lsl = sus,n x in 
SUsd Lsl11 v (I , Lsl J2); 

E[(ld id)] = Ax.x[[idn]; 

E([(lnt-Lit n)J = Xx. I~til_~et; 

E[(Add et e2)jj = Lx. (EI[e,n V EUed) x; 

Figure 5. UD-Chain 

The result of the semantic function S consists of two com- 

ponents. Thefirstcomponcntisa map fromtheidentiliersde6ned 
within the statement to the label at which it is defined. The second 

component is the set of labels of current definition sites for all 

identifiers used in the statement. The implicit cache collects the 

latter component and provides a map between each statement and 
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the definition sites for all identifiers used within the statement. 

The definitions for B are very similar to the one for E. 

3.2.2.2. Def-Use analysis 

The specification to create the Def-Use information from 

the Use&f information is provided in Fig. 6. For each statement, 

S inverts the Use-Def store and outputs a Def-Use store. 

Domains: 
Id, Exp, B-Exp, Stat, Prog = syntactic; 
Label-Set = powersetof label; 

DU-Store = store label e Label Set; - 
UD-Store = store label + Label-Set; 

Function Declarations: 

S[Statl : UD-Store + DU-Store; 
P[Progjl : + DU-Store; 

Function Definitions: 

e(Prog s)n = let ud = &Prog s)] in 
spjj ud; 

SI[(Assign i e)n = 
Ax. l.[foreach I in x[$.label] {$.label} / I]; 

S[(lf b S1 +)I = 

Ax. let du = l.[foreach I in x[$.label] {&label} / I] 
and Lsl = Sl[s,n x and Ls2 = SI[s2] x in 

du V Lsl V Ls2; 

SI[(While b s)] = 

Ax. let du = I[foreach I in x[$.label] {$.label} /I] 

and Ls = S[sJ x in 

du V Ls; 

SUWmp SI ~211 = 
Ax. let du = I[foreach I in x[$.label] {$.label} /I] in 

duv edsdwb,n)x; 
Figure 6. DU-Chain 

3.2.23. Using Def-Use information 

The modifications to the conditional constant propagation 

specification are in Fig. 7. The Def-Use store created by the pre- 

vious specification is passed as an extra argument to the semantic 
function S. For an assignment statement, if an identifier is 

assigned a value different from the last assignment (if any), then 

the predefined function MustEval is used to mark the labels for 

the use-sites for evaluation. MustEval returns the second argu- 

ment and performs the marking as a side-effect. This is the only 

departure in the framework from a purely functional model. 

(a) S[stat]l : 
Strict Cstorel --f DU-Store j Cstorez 

collect Cstore2; 

(b) P[(Prog a)] = let du = @(Prog s)j and 
c = Susn .I.~~~,,,~[] du in V[s] .cache; 
-- c is used toforce evaluation of S 

(c) S[(Asslgn i e)n = 

Ax. ky. let n = E[e]x in 

(n=x[I[i.]])* x, 
MustEval y[$.label] x[n / [i.J]; 

Figure 7. Modifications to use Def-Use information 

Initially, all labels are marked for evaluation. The inter- 

preter erases the mark whenever the corresponding semantic func- 
tion is evaluated. While a label is unmarked, the corresponding 
semantic function is not reevaluated even if the input to the func- 

tion has changed. The output from the previous evaluation is 
assumed to be still valid. The input is checked with the previous 

evaluation even for functions corresponding to marked labels 

since an update may not propagate changes to all marked fuuc- 

tiOnS. 

3.23. Precision and efficiency 

The use of Def-Use information improves efficiency 

without affecting the precision (i.e. the number of constants 

discovered). Although the Def-Use analysis considers unexecut- 
able paths. only semantic functions corresponding to statements 

on executable paths are considered for evaluation in the constant 

propagation analysis. Markiig of program parts on unexecutable 

paths has no effect on the precision. Hence, the objections raised 
by Wegman and Zadeck in [18] to the use of Def-Use chains do 

not apply here. 

As the semantic functions are monotonic in their argument 

and the variables can change value only twice. each semantic 
function is evaluated, in the worst case, 2V+l times where V is 
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the number of variables in the program. Hence, the analysis has 

the asymptotic complexity of A x V where A is the number of 

nodes in the abstract syntax tree. With respect to a flow graph 

model, this translates to a complexity of E x V where E is the 
number of edges in the corresponding flow graph. For the 

language used in our exampIes. it can be shown that the number 

of edges in the flow graph is linearly proportional to N. the 

number of nodes in the flow graph. Hence, this analysis has the 

same asymptotic complexity as the Sparse Conditional Constant 

algorithm proposed by Wegman and Zadeck [ 181. 

33. Integer Range Analysis 

The specification for integer range analysis is shown in 

Fig. 8. The function definitions for P and S are the same as for the 

specification for constant propagation. The domain on which they 

are defined is, however, different. The definitions for E, fit and 

fif can be defined in a fashion similar to the constant propagation 

specification and have been left out. The goal of this example is to 

demonstrate the derivation of a specification to incorporate. a spe- 

cialized technique to improve the precision of inference. 

As in the conditional constant propagation specification, a 

lifted domain is used for the program store to avoid collecting 

information from unreachable paths. The least element of 

Int-Range denotes unknown range information at reachable 

points. The ordering defined is a partial order in the domain of 

equivalence classes induced by the ordering. An equivalence class 

contains all sets of integer bounded by the same two integers (e.g. 

(1.2.10} and [ 1,3,5,7.10) belong to the same equivalence class). 

The equivalence class is represented by the convex-closure which 

contains all the elements within the two bounds. A formal 

definition of the ordering can be found in [ 171. 

The semantic function & approximates the standard seman- 

tic function E by defining the arithmetic operations over integer 

ranges. The semantic functions fit and kf together approximate 

the standard semantic function B. However, they dc not return 

boolean values. Since we would like to make the analysis flow- 

sensitive and use the information in boolean expressions, they act 

as filters. Bt provides an approximation to the input states in 

which B on the same expression would evaluate to true while 6f 

provides an approximation to the input states in which B would 

evaluate to f&se. The precision of such an approximation depends 

on the nature of the expression and the complexity of the algo- 

rithm used. In the worst case, both fit and BP are identity func- 

tiOllS. 

Domains: 
Id, Exp, B-Exp, Stat, Prog = syntactic; 

Int-Range - powerset of integer 
ordered by range-order 

represented by convex-closure; 

Istore - lifted&ore [IdI -+ Int-Range; 

Function Declarations: 
E[EXP~ : Strict Istore + Int-Range: 

B&3-Expj : Strict Istore + Istore; 

B@-Ex~~ : Strict Istore + Istore; 

SflStatl : Strict Istore, 9 Istore 

collect Istorej; 

PI[Progl : --* Istore; 

Function Definitions: 
pupr0g s)n = let r = SI[sn I [] in (V I[sl.cache) V r; 

S[(Assign i e)J = 

2.x. let n = EI[e& in x[n /[in]; 
su(u b 91 sz)n = 

Ax. let bt = Bt[bjJ x and bf = Bf1[bl x in 

SI[s,lj bt V S[sJ bf; 
S[(VVhlle b s)n = 

fix&f. Lx. let bt = &l[bll x and 
bf = Bf[bn X in 

(f ((Sl[sn bt) V X)) V bf; 

s[I(Comp s1 s2)n = hx. (sus2n 0 susa x; 

Figure 8. Integer Range Analysis 

33.1. Increasing precision 

The analysis in this specification is similar in precision of 

inference to the one described in [2]. However, the use of 

“independent” attributes method [7] results in some crude approx- 

imations. For example, consider the two code fragments below: 

(a) a:=l;while a<4 do a:=a + a od 

(W a:=l;b:=l;while a<4 do a:=a + l;b:=b + 1 od 

The value of a at the end of the code segment (a) will be approx- 

imated by the range [ 4,6 1, while the value of b at the end of 

the code segment (b) will be. approximated by I. 1, -1. Although 

the approximation in (a) may not look particularly poor, the 
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approximation in (b) is not very useful. Rather than using the 

inefficient “relational” attribute method [7], we provide a variation 

that increases the precision of the range inference at the cost of 
slightly decreased efficiency compared to the original 

specification. 

The imprecision in the above examples arises from the use 
of the join operator in the semantic equation for the while loop to 
ensure termination. The join operator introduces imprecision 

since it takes the least upper bound of two approximations which, 

in general, results in the introduction of some states that may 

never occur in the standard interpretation. One could avoid this by 
keeping every range that occurs separate. However, from an 

implementation standpoint this would be very inefficient. The 

gain in precision is totally offset by the space requirements and 
the computational costs involved in evaluating the semantic func- 
tions separately over each of the ranges. 

The difference in the specifications for the standard and 
approximation semantics for the while loop suggests a comprom- 

ise solution. In the standard semantics, the boolean condition in 

the while loop is evaluated for each possible state at the beginning 

of the loop. In the approximation semantics. the boolean condi- 
tion is evaluated on the least upper bound of all the previous 

approximations to the state at the beginning of the loop. We will 
approximate the sequence of approximations that occur at a point 

with two values. The intnitive interpretation for the two values is 
that the first value is the approximation correspondiig to the most 

recent evaluation while the second is the least upper bound of all 
the previous approximations at that point. We use the observation 

that the second value is always available in the cache. 

To express this in our formalism, we will use the domain 

Int-Tuple = Int-Range X Int-Range 
rather than just Xnt-Range. The modified semantic equation 
for the while loop is given in Fig. 9. The rest of the semantic 

equations are modified slightly to compute over a pair of integer 

ranges. The required information is obtained by using the cache 

associated with the current evaluation instance of the semantic 

function 6 to get the state at the label corresponding to the syntac- 
tic object S. The value in the cache always lags one evaluation 
behind and is used to collect the approximations of the previous 

evaluations. For simplicity, we have assumed in this modification, 
that programs do not have nested loops. In the presence of nested 

loops we can either bound the depth of nesting to some level d 

and use a domain of cross-product of d+l ranges or evaluate the 

fixed point separately for each element in the tuple. 

This modified analysis provides the very sharp approxima- 
tions a : [4,4] and b : [ 4,4 ] at the end of the example 
code segments above. 

S([(While b s)l = 
fix(M. lx. let bt = B,ubJ x and 

bf = B$bJ x and 
c = $.cache[(ts].label] in 

f (S[sl( bt V (I&&l V cJ2))) V bf; 

Figure 9. Modifications to increase precision 

3.4. Collecting Interpretation of expressions 

A model for a collecting interpretation for functional 

languages has been developed by Hudsk and Young in [5]. This 
model was designed to avoid the use of power domains by effec- 

tively separating the specification of an analysis and the 

specification for the collection of information from the analysis. 

We demonstrate below how the implicit caching feature of our 

framework can be adopted to express this model. The 

specification for collecting applicative order (call-by-value) 

semantics of a first-order functional language whose abstract syn- 

tax is in Fig. 10 is given in Fig. 11. For brevity, the specification 
uses some notation (e.g. ellipses) that is not currently supported 

by the framework. They can be easily added to the framework. 

x E Bv Bound variables 

f E Fv Function Variables 

k,p E con constants 

eEExp Expressions 

pr E Prog mm- 

P ..- ..- {e; fhh, . . . . x,) = ei) 

e ::= k 

I x 
I p (et, . . . . en) 

I f (el, . . . . e,) 

Figure 10. Abstract Syntax 
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Domains: 
exp, prog, id, con : syntactic; 

values : Wed (integer+boolean); 

functions : function values* + values 

merge cache; 

VarStore : store [id] w values; 

FuncStore : recursivestore [id]l + functions; 

Function Declarations: 

Enexpl : VarStore + 

collect powerset of 

PI[ProgJl : -9 values; 

FuncStore --+ values 

values: 

K[conB : values* -+ values: 

Function Definitions: 

EUkD = hs.xfs. K[kn: 

Euxn = xvs.~fs. vs[uxnl; 

Elk+1 . . . . 4ll = 
lLVs.hfs. KI[p] E[[e,]vs fs . . . . E[eJvs fs; 

EUf(el . . . . 4 = 
hve.hfe. fsufn E[e,Jvs fs . . . , E[e&s fs; 

me; fi(xt . . . . xn) = ed = 

let fs - I[strict(h(d,, . . . . 44. EbJl 1 [dfql fs)/fJ 

and v = fixcache E[eg I fs 

in [e&cache; 

Kuif] = hb.ht.hf. b --9 t,f 

[b +s. cache$l V cache$2 , cache$l V cache$3 } ; 

KU+D = kdl.hd2. Add dl d2 

1 cache$l V cache$2} : 

Figure 11. Collecting Interpretation 

4. A prototype implementation 

A prototype for the framework has been implemented for 

use in conjunction with the Synthesizer Generator [14]. The 

specification of an analysis can be coupled with a synthesizer 

specification to generate an editor that performs that analysis. The 

framework was implemented mostly in SSL, an applicative 

language supported by the synthesizer generator. It consists of 

about 1500 lines of source code of which roughly 350 lines con- 

stitute the interpreter for the specifications. The rest of the code 

provides the support features that may be used for specific 

analysis techniques. The simple and concise nature of the inter- 

preter eases formal verification of the consistency of the inter- 

preter with the axiomatic delinition of the denotational 

specification language. 

The denotational functions are maintained as attributes in 

the abstract syntax tree. The incremental evaluation scheme avail- 

able in the synthesizer generator [3] aids in the construction of 

the denotational function correspondmg to the program. The 

evaluation of the function itself cannot be expressed in the at&i- 

bute framework since the fixed-point evaluation would result in 

cyclic attributes that are not currently supported by the synthesizer 

generator. The interpreter, written as a function in SSL. maintains 

its own cache of input and output values for each of the semantic 

functions. This cache is used to avoid re-evaluation of semantic 

functions for the same inputs. 

The improved range analysis specification provided in the 

previous section has been incorporated in an editor for a subset of 

Pascal that provides automatic declaration of variables with 

subrange types specified for integer variables. The complexity of 

the analysis varies linearly with the number of statements in the 

program in the worst case. However, the complexity of evaluation 

of fixed-point solutions for loop constructs can increase exponen- 

tially in the number of nested loops in the worst case. This does 

not pose a problem in analyses where the length of any non- 

decreasing chain in the domain of approximations is bounded by a 

small number. In range analysis. we trade off some precision and 

use a domain that bounds the length of any chain which essen- 

tially determines the number of times a loop must be unwound 

before the most general approximation is made. We use a bound 

of 50 for the generated editor. 

5. Summary 

We have developed and implemented a framework that can 

be used to construct concise high-level specifications of program 

analysis techniques. Use of such a framework in a system such as 

the Synthesizer Generator allows program analysis techniques to 

be incorporated into program development environments without 

a need to supply implementation details. This aids in rapid 

development of new program analysis techniques as well as tech- 

niques that share common features but are customized for specific 

applications. The choice of a denotational framework to express 

these specifications allows formal proofs of correctness to be esta- 

blished for each of these analysis techniques. The facilities pro- 

vided by the framework result in clear and concise specifications 

that aid in the understsnding of the corresponding analysis tech- 

niques. 
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