
A framework for construction and evaluation of high-level specifications for

program analysis techniques

G A Venkatesh

University of Wisconsin - Madison

venky@cs.wisc.edu

Abstract

Abstract interpretation introduced the notion of formal

specification of program analyses. Denotational frameworks are
convenient for reasoning about such specifications. However,

implementation considerations make denotational specifications

complex and hard to develop. We present a framework that facili-

tates the construction and understanding of ¬ational
specifications for program analysis techniques. The framework is

exemplified by specifications for program analysis techniques

from the literature and from our own research. This approach
allows program analysis techniques to be incorporated into

automatically generated program synthesizers by including their
spec&3tions with the language definition.

1. Introduction

Recent developments in programming environments have
blurred the distinction between language editors and

compilers/iiterpreters. Modem program synthesizers carry out

many tasks that were once traditionally considered as compiler
functions. These tasks include syntax checking, type checking,

type inference, and various data flow analyses. The interactive
nature of these synthesizers exploits these techniques to provide

an effective program synthesis environment. The growing

This work was supported by National Science Foundation under grant
CCR 8746329.

Author’s address: Computer Sciences Department, University of Wiscon-
sin, 1210 W.Dayton. Madison, WI 53706

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0-89791-306-X/89/0006/0001 $1.50

sophistication of these analysis techniques necessitates a struc-
tured approach to their design to ease their development as well as

to ensure their correctness.

Most flow analysis techniques are currently developed as

algorithms in which implementation details are combined with the

technique itself. This has several disadvantages. First, the design

process is complicated by the need to handle low-level implemen-
tation details. The design of flow analysis techniques is heavily

dependent on the application. Generally, flow analysis techniques

provide approximate information about the dynamic behavior of

programs. There is always a trade-off between the effort involved
in the analysis and the precision with which information is

obtained from the analysis. The application sets the requirements
for precision and efficiency. Low-level development of an

analysis technique makes it difficult to prevent duplication of
effort in developing techniques that are closely related.

Second, the presence of implementation details makes it

harder to understand the algorithms in order to maintain or

improve existing ones. Last, correctness proofs are difficult to
derive for algorithms with too much detail. To gain confidence

about an analysis, it is necessary to establish certain desirable pro-

pertie of the analysis. Three essential properties are:

(1) Consistency with the semantics of the language:

Program analysis techniques are designed to make asser-

tions about properties (static and/or dynamic) of the pro-
gram. Since such properties are determined by the seman-
tics of the language, it is important to ensure that the

analysis techniques are consistent with the language
semantics. This becomes Crucial as the analyses become

more sophisticated.

(2) Termination:
Static analysis algorithms must terminate for any program.

It is useful to provide formal reasoning that guarantees ter-
mination.

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73141.74819&domain=pdf&date_stamp=1989-06-21

(3)Safety:

A compile-time analysis usually provides an approxima-

tion to the actual execution of the program either due to
inherent limits such as unknown input values or due to

implementation considerations that trade-off precision for

efficiency and/or termination. The analysis is designed to
err on the conservative side. The actual runtime property of

the program (that is being approximated) must imply the

information gathered from the analysis.

1.1. High-level specifications

The seminal paper on abstnzct inferpretufion [2] intro-
duced the notion that a wide variety of program analysis tech-

niques could be specified formally as interpretations over abstract

domains. These formal specifications can then be used to derive
the required correctness proofs. Although the original work

involved operational sp&fications for flow-chart languages, most

of the later studies based on abstract interpretation [lo, 8,6.4,
etc.] have used denotational specifications.

A denotational specification of a program analysis can be
considered as an alternate semantics for the language. Most of the

techniques developed for providing standard semsntics of a
language can be used to provide an alternate semantics. The struc-

tural and compositional nature of denotational specifications ease

the development of correctness proofs through the use of well

understood methods such as structural induction, fixed-point
induction, etc. Consistency with standard semantics can be esta-

blished easily with respect to the ¬ational semantics of the

language. Studies such as [ll, 12,1,15] demonstrate the possibil-
ity of providing efficient evaluators for ¬ational
spec*cations.

1.2. Problems with denotational frameworks

The use of denotational frameworks for specification of

program analysis techniques tends to be less than ideal since the
denotational functions make assertions only about the relationship

between the input and output values. However, program analysis

often requires information at various program points that
correspond to results from partial evaluations of the denotational

function representing the meaning of the program. To make this

possible one must explicitly introduce parameters to these func-
tions to cache the intermediate values [10,5]. This results in

messy specifications that are difficult to understand. It also

requires a wasteful duplication of effort in maintaining the cache

parameter. This problem is analogous to the use of copy attributes

in attribute grammar frameworks to propagate information

between nodes in the abstract syntax tree.

Moreover, the use of caching makes definite assumptions
about the evaluation schemes for the specifications. It is no longer
sufficient to show the correctness of the evaluator through its con-

sistency with the relationship between inputs and outputs. For the

information obtained from an evaluation to be meaningful, the

evaluator must also be consistent with the assumptions made

about the intermediate states possible in the evaluations. It is
necessary to formalize such assumptions to prove the correctness

of the analysis.

13. solutiolls

This paper describes a framework that facilitates the

development of program analysis techniques through denotational
specifications. Features that are common to most analysis tech-

niques are incorporated into the framework to avoid duplication of

effort. For example, a facility is provided to specify collection of
results of partial evaluations in an implicit fashion. The operators

used in the specification language are delined formally in an
axiomatic framework. This allows formal reasoning about results
from partial evaluations without over-specification of possible

evaluation schemes for the denotational specifications.

Cur approach allows multiple analysis specifications for

any language and a single interpretation model. All application

dependent techniques used in a particular analysis for efficiency

considerations (including termination) must be included in the

specification for that analysis. The interpretation model is
independent of the analysis as well as the language in which the

programs to be analyzed are written. An implementation for the

model may include efficient evaluation techniques such as incre-
mental evaluation. The correctness of the interpretation model is
proved independent of any particular specification.

2. The framework

The program analysis specifications are written in a fashion

similar to denotational specification of standard semantics. A

specification consists of domain declarations and semantic func-
tions over these domains. Several features are included in the

specification language to support the techniques required in most

flow analysis designs. This section provides a brief description of
such features. For clarity. we will use symbols that are tradition-

ally used in denotational semantics although the concrete syntax

for the specifications would have direct translations for those sym-
bols for machine readability.

2

2.1. Domain declarations

Domains

primitive domain ::=

integer I boolean I ordinal I syntactic I label

domain :: = primitive domain

1 domain x domain

1 domain + domain
1 lifted domain

1 topped domain

1 powerset of domain
1 [recursive] store domain += domain

I function function type

function type ::=

[[strict] domin[*] (+ [strict] domain I]

+ domain

[collect [powerset of] domain [J n]]
[merge cache]

The Iified domain introduces a special element I as the

least element into the base domain. The topped domain introduces
a special element T as the greatest element into the base domain.

Lookup and update functions are predefined for a store domain.
The lookup is denoted by S[X] while the update is denoted by

S[Y,h, ---I y&J. An update for all elements horn a set is

denoted by s[foreach x in S f(x)/x]. In a recursive store, the store

can bc stored as a value in itself. I, denotes the least element of a
rifted dare domain S. IS[] denotes an empty store from the
domain S.

A function can bc declared as strict in any of its arguments.

Assuming that the least elements exist in the comspondig

domains (including the result domain), the framework will inter-

nally add a prefix to the function definition to make it strict in

those arguments.

A major goal of the framework is to avoid the explicit

caching of intermediate values (“states”) in the semantic function

definitions. The collect option for a semantic function associates
with the function an extra argument and an additional component
to the result. Both of them have the type store label 3 domain.

All syntactic objects are automatically provided with labels by the

framework. Depending on whether the flow analysis requires an

input state or an output state to be associated with the syntactic
object, the corresponding domain is specified in the collect option.
Whenever a semantic function is evaluated, the value of the
speciiied argument (or result) is joined with the previous value in

the cache using the join operator (V) for that domain. The power-
set of option changes the type of cache to store label + power-
set of domain. The intermediate values are converted into sets

before the join (V) operator in the powerset domain is applied.

For a function for which the collect option is not specified,

the user may define how the output cache is to be obtained if any

of the arguments to the function have implicit caches associated

with them. However, in many cases the output cache is merely a
join of all the input caches and a possible cache from the evalua-

tion of the function. The merge cache option specifies that this is
to be the default. The cache associated with argument i can be

explicitly accessed as cache%. In a semantic function definition

$.cache refers to the implicit cache argument.

All the primitive domains except ordinal me flat domains.

ordinal has a total ordering induced by the arithmetic I relation.

The standard operations induce orderings on the compound
domains. However, a user may explicitly define an ordering to be
used for a domain. The framework will not check whether the

ordering definition produces a partial ordering. It may be neces-

sary to use equivalence classes with respect to the defined order-
ing. The representative declaration specifies the representative for
the equivalence class to be used in the implementation.

Ordering

primitive ordering ::=

subset I flat I arithmetic

ordering ::=

Representative

representative ::=

primitive ordering
I logical expression

convex-closure
I expression

I any

2.2. Function detinitions

Functions are de&-ted as expressions in the language

described below. The cache option in the fixed-point expression

denotes that the functional is monotonic in the implicit cache

argument (but not necessarily in other arguments). The user must

ensure that the least fixed point is finitely computable.

expression ::= primitive fun&m
1 id 1 constant

1 storefunction

1 Aidxxpression

1 expression k constant
1 expression expression

1 (expression , expression)

1 expression 0 eqression

1 [expression] V expression

1 expression + expression, expression

1 fix [cache] expression

1 let id = expression

(and id = expression) in expression

23. Interpretation model

The semantics of the specification language is provided

through a formalism based on axiomatic rules. Any evaluation

scheme used to provide an interpreter for the specifications must

be consistent with these definitions. These rules also provide a

formal definition for the collection of results of partial evaluations

and can be used to reason about the correctness of the intermedi-

ate states. The choice of an axiomatic system allows such a formal

definition while avoiding over-specification of possible evaluation

schemes. A sample of such definitions are provided below. The

complete specification of the interpretation model can be found in

W-3

(1) defines the evaluation of a semantic function for which

the collect option has been specified. The cache parameter is

invisible in the specifications but can be implemented as an addi-

tional parameter to the function that is maintained automatically.

(2) defines the composition operator for a function that does not

require collection of intermediate results. However, it defines the

existence of the intermediate value t. (3) defines the join (V)

operator for functions when the collect option is used. F denotes

the environment of function bindings under which the evaluation

is carried out. T denotes the predicates for type checking that is

carried out statically.

(1)

(2)

(3)

T, F +fx =s y, t---c’ = c[(x x y)hf.label] V c
F + fxco * ycc’>

T, Fl-fpx=s t, F+f, t* y
F+f, 0 fpx* y

T, F t-f, x -cc> + tl <cl>, F +f, x <o * tz <q>,
ky=t, vtp, kd=c, vc;!
FF-1, Vfpx<cs+ y-e’>

An evaluation scheme for the model can use techniques

such as incremental evaluation to provide an efficient interpreter

for the specifications. Incremental evaluation of functions using

caching has been proposed in [13]. However, use of aggregate

values as inputs to functions can reduce the effectiveness of incre-

mental evaluations. To allow for cases in which analysis depen-

dent information can be used to provide better incremental evahra-

tions. a feature is provided in the framework to mark instances of

syntactic objects (and hence the semantic functions associated

with them) as must-be-evuluuted. If the analysis can dynamically

mark the functions that need to be evaluated, then the functions.

while unmarked, will be evaluated only once. The use of this

feature is demonstrated in the first example specification.

3. Example specifications

The example specifications in this section have been

selected to illustrate various features of the framework as well ss

to demonstrate the ease with which issues of precision and

efficiency can be handled in the construction of program analysis

specibcations. The first example was motivated by the conditional

constant propagation algorithms discussed by Wegman and

Zadeck in {18]. The second example is for integer range analysis.

The range analysis technique was motivated by research to extend

type inferencing to automatically select type implementations for

a given program. The correctness proofs for these specifications

are beyond the scope of this paper. The formalism to express

correctness of the range analysis specification can be found in

[17]. The third example demonstrates the use of our framework

in formulating the collecting interpretation model developed by

Hudak and Young in [5] for an abstract functional language.

4

3.1. Abstract Syntax and Standard Semantics

For the first two examples we will use a small imperative

language that will he sufficient to demonstrate the various issues.

Fig. 1 provides the abstract syntax for the language. The language

includes as base values integers and booleans. The identifiers can

only he of integer types. For brevity, we will omit the syntactic

domain of declarations. The standard semantics for the language

is expressed in our framework in Fig. 2. In the following

specifications, the conversions between base values in the

language and their denotations are implicit.

i E Id Identifiers

=EExp Expressions

b E B-Exp Boolean Expressions

s E stat statements

p E Prog Program

Domains:

Id, Exp, B-Exp, Stat, Prog = syntactic;

L-Integer = lifted integer ;

L-Boo1 = lifted boolean;

Prog-Store = store [Id]l -+ L-Integer;

Function Declarations:

E[Ex~~ : Prog-Store * L-Integer;

BI[B-Ex~] : ProgStore + L-Bool;

SuStatjj : Prog-Store + Prog-Store;

P[Progl : Prog-Store * Prog-Store;

Function Definitions:

P[(Prog s)n = b. susnx;
P

..- ..- Prog 9)

s ::= (Assign i e)

I (If b SI 92)

1 (While b s)

I (Camp s1 92)

Assignment statement

Conditional Statement

Loop statement

Statement Composition

e ::= (Id id) 1 (Int-Lit n)

I (Add et ed

b **= . . (Bool-Lit 1)

1 (And bl W I (Equal el e2)

Figure 1. Abstract Syntax

S[(Assign i e)n = 31x. x[(E[elx) / I[in];

Sl[(lf b S1 an)] = hx. (B[b] + sI[Sd , Susan) X;

SU(Whlle b s)n = fix&f. hx. (B([bl--*

(f 0 susn), LY.Y) ~1;
S[(Comp s1 s2)] = kx.(sl[s211 0 sbn)x;

EU(ld id)J = lix.x[[idl];

EU(lnt-Lit n)] = Ax.4Integerl[nJ;

E[(Add el e2)] = Lx.Add EI[e,nx El[e2nx;

BU(BOol-Lit l)n = k.L-Bool[ln;

B[(And bt b2)] = Lx-And BI[b,nx B[bdX;

B[(Equal el e2)J = luc.Equal El[e,nx El[ennx;

Figure 2. Standard Semantics

3.2. Conditional Constant Propagation

Conditional constant propagation algorithms can poten-

tially discover more constants than the simple constant propaga-

tion algorithm developed by Kildall [9] by evaluating all condi-

tional branches with all constant operands. Parts of the program

that are never executed are ignored. Hence, assignments in those

parts cannot hill potential constants. For example, consider the

code segment below:

i := 1; if i = 1 then j := 1 else j := 2

Evaluation of the conditional can show that j is never assigned

the value 2 and cannot affect the consideration of j as a potcn-

tial constant.

We will first provide a specification (Fig. 3) that does a

naive version of the conditional constant propagation. The

specification corresponds to an analysis that essentially simulates

the execution of the program in a simple domain.

&tore provides a map between identifiers and values

from the usual three-level lattice of constants, Con. I in this lat-

tice denotes that the identifier may or may not be a constant, while

T denotes that the identifier is not a constant. The input to the

Domains:
Id, Exp, B-Exp, Stat, Prog = syntactic;

Con = topped lifted integer;

Cstore = litted store [Idn +D Con;

Function Declarations:

E[Ex~~ : Strict Cstore + Con;

Bd[B-EXP~ : Strict Cstore + Cstore;

BA[B-EX~] : Strict Cstore + Cstore;
SI[Statl : Strict Cstore * Cstore;

flProgjj : 4 Cstore:

Function Definitions:

Pa(Prog s)II = SUsD ktidl;

SI[(Asslgn i e)] =

Xx. let n = E[el]x in x[(x[[il]Vn) / [in];

S[(if b s1 se)1 =

k~. let bt = B,[bl x and bf = Bf[bl x in

S[s,j bt V S[ssl bf:
SI[(WhiIe b s)D =

6x&f. k~. let bt = BJbl x and

bf = Bf[bl x in

((f 0 S[s]) bt) V bf;

SlIwmP Sl 52)P = 3.x. (Sl[s2] o SI[s,D) x;

E[(ld id)1 = ilx.X[[idjj];

El[(lnt-Lit n)J = h.conUn]l;

E[(Add el en)] =

X.X. let nl = EI[ejl x and n2 = E[eJ x in

(1)

(2)

(3)

(4)

(nl = T) or (n2= T) + T , Add nl n2;

B,[(Bool-Lit l)] = kboolean[ll + x , I ;

Bg(And b, b2)JJ =

Xx. let btl = B,[b,j x and bt2 = B,[b,J x in

(btl = l)or(bt2= I)+= I ,x;

BJ(Equal el e2)l =

k. let nl = E[elj x and n2 = EaezJj x in

(nl = T) or (n2 = T) or (nl = n2)

4x,1;

Figure 3. Conditional Constant Propagation (Naive)

programis auemptystore. Identifiersmappedto T inthe output
are not constants. An identifier mapped to an integer is a constant

with that value. Identifiers are not mapped to I unless they were

used before their definition in the program.

The least element (I) of Cstore denotes an unreachable

state. As all the semantic functions are declared to be strict in their

arguments, information from program parts that are unreachable

are never propagated. Unreachable states arise from the evalua-

tion of the semantic functions for boolean expressions. The

semantic function & outputs I if the boolean expression contains

all constant operands and evaluates to false. For all other expres-

sions, it is an identity function. The semantic function & is similar

but outputs I when the expression evaluates to the constant true.

The specification of & is very similar to that of & and has been

left out.

33.1. Improving Precision

As explained in 93.2, although this analysis can potentially

detect more constants than Kildall’s. it does not use information

from conditions that contain identifiers that are constants locally

but not globally. For example consider the code segment below:

i :- 1; i := 2; if i-2 then j := 1 else j := 2;

The analysis does not use the fact that i is locally a constant in

the conditional and assumes that both the branches are executed.

To improve this analysis to handle local constants. only the four

numbered lines in Fig.3. need to he modified. The modifications

are shown in Fig.4.

The semantic function S is modified to output the current

assignments to the identifiers rather than a join of all previous

assignments. The implicit cache option is used to form a join of

all previous states at each program structure. (1) provides a

modified declaration for S. (3) provides the mod&d definition

for the assignment. The join with the previous value associated

with the identifier has been removed. The modified definition for

the while statement is in (4).

(2) provides the modified definition for the program. As S

returns the output at the end of the program and is included in the

cache. the value of c is not required. However, it is used in the let

clause to force evaluation of the semantic function for the state-

ment that forms the body of the program. The cache associated

with the lxxiy of the program contains a map from labels for

instsuces of statements to the local Cstores. The uuary V

operator forms a join of Cstores over all labels and provides

the required mapping.

6

The specification for obtaining Use-Def information is in Fig. 5.

(1) Sl[Statj : Strict Cstorel -+ Cstore2
collect Cstorep;

(2) PUProg -4 = let c = S[sl LtitOre[] in V[sjj .cache;
-- c is used to force the evaluation of S

(3) S[(Assign i e)jj =

Lx. let n = EI[enx in x[n / [in];

(4) S[(Whlle b s)] =

6x&f. J.x. let bt = B*I[bn x and

bf= Bll[bj Xh
(f ((SUsn bt) V x)) V bf;

Figure 4. Modifications to Figure 3.

3.2.2. Improving efficiency

The sparse conditional constant algorithm proposed in [181

improves efficiency by traversing a data structure called the static

single ussigrwmt graph. The structural nature of our framework

forces the evaluation of the specification to be equivalent to a

traversal of the program flow graph. The incremental nature of the

interpreter may provide some improvements in efficiency by

avoiding the re-evaluation of portions of the program. However,

the use of aggregate values, such aa the values from the domain

Cstore. as inputs to functions results in unnecessary re-

evaluation of many functions. For example, a re-definition of an

identifier is considered as a change in the entire Cstore and a
function is re-evaluated even if its output does not depend on the

value associated with that identifier.

In this section, we describe the use of Def-Use information

to avoid such unnecessary evaluations. First, we provide

specifications for an analysis that produces Def-Use information

and then modify the constant propagation specification in the pe-

vious section to use thii information to result in a more efficient

analysis.

3.2.2.1. Use-DeC analysis

As the denotational nature of the framework is more suited

to forward-flow analysis techniques than backward-flow analysis.

the Def-Use information is obtained through separate passes. The

first pass provides Use-Def information and the second inverts it.

Domains:

Id, Exp, B-Exp, Stat, Prog = syntactic;

Label-Set - powerset of label;

Def-Store = store [IdI +W Label-Set;

UD-Store = store label + Label-Set;

Result-Domain - Def-Store x Label-Set:

Function Declarations:

E[Expjj : Def-Store +D Label-Set;

B[B-EX~] : Def-Store + Label-Set;

SI[stat] : Def-Store + Result-Domain
collect Result-Domain 1 2;

Bprogn : + UD Store;

Function Definitions:

Pt[(Prog a)] = let x = sI[sn ~~~-.s~&] in [s&cache;
-- x is used to force evaluation of S

S[(Assign i e)Jj =

Ax. let L = EI[e]x in (x[{$.label} I [in] , L);

su(H b 91 s2)n =
Ax. let Lb = B[bj x and

Lsl = S[s,j x and Ls2 = S[S~ x in

(Lsl &l V Ls241 , Lb V Lsl&2 V Ls242);
S[(Whlle b s)n =

6x&f. kxx. let Lb = B[bn x and

Ls = SI[s] x in
(f Ldl) V (x , Lb V L&2);

SI[(Comp s1 s2)jl = Lx. let Lsl = sus,n x in
SUsd Lsl11 v (I , Lsl J2);

E[(ld id)] = Ax.x[[idn];

E([(lnt-Lit n)J = Xx. I~til_~et;

E[(Add et e2)jj = Lx. (EI[e,n V EUed) x;

Figure 5. UD-Chain

The result of the semantic function S consists of two com-

ponents. Thefirstcomponcntisa map fromtheidentiliersde6ned
within the statement to the label at which it is defined. The second

component is the set of labels of current definition sites for all

identifiers used in the statement. The implicit cache collects the

latter component and provides a map between each statement and

7

the definition sites for all identifiers used within the statement.

The definitions for B are very similar to the one for E.

3.2.2.2. Def-Use analysis

The specification to create the Def-Use information from

the Use&f information is provided in Fig. 6. For each statement,

S inverts the Use-Def store and outputs a Def-Use store.

Domains:
Id, Exp, B-Exp, Stat, Prog = syntactic;
Label-Set = powersetof label;

DU-Store = store label e Label Set; -
UD-Store = store label + Label-Set;

Function Declarations:

S[Statl : UD-Store + DU-Store;
P[Progjl : + DU-Store;

Function Definitions:

e(Prog s)n = let ud = &Prog s)] in
spjj ud;

SI[(Assign i e)n =
Ax. l.[foreach I in x[$.label] {$.label} / I];

S[(lf b S1 +)I =

Ax. let du = l.[foreach I in x[$.label] {&label} / I]
and Lsl = Sl[s,n x and Ls2 = SI[s2] x in

du V Lsl V Ls2;

SI[(While b s)] =

Ax. let du = I[foreach I in x[$.label] {$.label} /I]

and Ls = S[sJ x in

du V Ls;

SUWmp SI ~211 =
Ax. let du = I[foreach I in x[$.label] {$.label} /I] in

duv edsdwb,n)x;
Figure 6. DU-Chain

3.2.23. Using Def-Use information

The modifications to the conditional constant propagation

specification are in Fig. 7. The Def-Use store created by the pre-

vious specification is passed as an extra argument to the semantic
function S. For an assignment statement, if an identifier is

assigned a value different from the last assignment (if any), then

the predefined function MustEval is used to mark the labels for

the use-sites for evaluation. MustEval returns the second argu-

ment and performs the marking as a side-effect. This is the only

departure in the framework from a purely functional model.

(a) S[stat]l :
Strict Cstorel --f DU-Store j Cstorez

collect Cstore2;

(b) P[(Prog a)] = let du = @(Prog s)j and
c = Susn .I.~~~,,,~[] du in V[s] .cache;
-- c is used toforce evaluation of S

(c) S[(Asslgn i e)n =

Ax. ky. let n = E[e]x in

(n=x[I[i.]])* x,
MustEval y[$.label] x[n / [i.J];

Figure 7. Modifications to use Def-Use information

Initially, all labels are marked for evaluation. The inter-

preter erases the mark whenever the corresponding semantic func-
tion is evaluated. While a label is unmarked, the corresponding
semantic function is not reevaluated even if the input to the func-

tion has changed. The output from the previous evaluation is
assumed to be still valid. The input is checked with the previous

evaluation even for functions corresponding to marked labels

since an update may not propagate changes to all marked fuuc-

tiOnS.

3.23. Precision and efficiency

The use of Def-Use information improves efficiency

without affecting the precision (i.e. the number of constants

discovered). Although the Def-Use analysis considers unexecut-
able paths. only semantic functions corresponding to statements

on executable paths are considered for evaluation in the constant

propagation analysis. Markiig of program parts on unexecutable

paths has no effect on the precision. Hence, the objections raised
by Wegman and Zadeck in [18] to the use of Def-Use chains do

not apply here.

As the semantic functions are monotonic in their argument

and the variables can change value only twice. each semantic
function is evaluated, in the worst case, 2V+l times where V is

8

the number of variables in the program. Hence, the analysis has

the asymptotic complexity of A x V where A is the number of

nodes in the abstract syntax tree. With respect to a flow graph

model, this translates to a complexity of E x V where E is the
number of edges in the corresponding flow graph. For the

language used in our exampIes. it can be shown that the number

of edges in the flow graph is linearly proportional to N. the

number of nodes in the flow graph. Hence, this analysis has the

same asymptotic complexity as the Sparse Conditional Constant

algorithm proposed by Wegman and Zadeck [181.

33. Integer Range Analysis

The specification for integer range analysis is shown in

Fig. 8. The function definitions for P and S are the same as for the

specification for constant propagation. The domain on which they

are defined is, however, different. The definitions for E, fit and

fif can be defined in a fashion similar to the constant propagation

specification and have been left out. The goal of this example is to

demonstrate the derivation of a specification to incorporate. a spe-

cialized technique to improve the precision of inference.

As in the conditional constant propagation specification, a

lifted domain is used for the program store to avoid collecting

information from unreachable paths. The least element of

Int-Range denotes unknown range information at reachable

points. The ordering defined is a partial order in the domain of

equivalence classes induced by the ordering. An equivalence class

contains all sets of integer bounded by the same two integers (e.g.

(1.2.10} and [1,3,5,7.10) belong to the same equivalence class).

The equivalence class is represented by the convex-closure which

contains all the elements within the two bounds. A formal

definition of the ordering can be found in [171.

The semantic function & approximates the standard seman-

tic function E by defining the arithmetic operations over integer

ranges. The semantic functions fit and kf together approximate

the standard semantic function B. However, they dc not return

boolean values. Since we would like to make the analysis flow-

sensitive and use the information in boolean expressions, they act

as filters. Bt provides an approximation to the input states in

which B on the same expression would evaluate to true while 6f

provides an approximation to the input states in which B would

evaluate to f&se. The precision of such an approximation depends

on the nature of the expression and the complexity of the algo-

rithm used. In the worst case, both fit and BP are identity func-

tiOllS.

Domains:
Id, Exp, B-Exp, Stat, Prog = syntactic;

Int-Range - powerset of integer
ordered by range-order

represented by convex-closure;

Istore - lifted&ore [IdI -+ Int-Range;

Function Declarations:
E[EXP~ : Strict Istore + Int-Range:

B&3-Expj : Strict Istore + Istore;

B@-Ex~~ : Strict Istore + Istore;

SflStatl : Strict Istore, 9 Istore

collect Istorej;

PI[Progl : --* Istore;

Function Definitions:
pupr0g s)n = let r = SI[sn I [] in (V I[sl.cache) V r;

S[(Assign i e)J =

2.x. let n = EI[e& in x[n /[in];
su(u b 91 sz)n =

Ax. let bt = Bt[bjJ x and bf = Bf1[bl x in

SI[s,lj bt V S[sJ bf;
S[(VVhlle b s)n =

fix&f. Lx. let bt = &l[bll x and
bf = Bf[bn X in

(f ((Sl[sn bt) V X)) V bf;

s[I(Comp s1 s2)n = hx. (sus2n 0 susa x;

Figure 8. Integer Range Analysis

33.1. Increasing precision

The analysis in this specification is similar in precision of

inference to the one described in [2]. However, the use of

“independent” attributes method [7] results in some crude approx-

imations. For example, consider the two code fragments below:

(a) a:=l;while a<4 do a:=a + a od

(W a:=l;b:=l;while a<4 do a:=a + l;b:=b + 1 od

The value of a at the end of the code segment (a) will be approx-

imated by the range [4,6 1, while the value of b at the end of

the code segment (b) will be. approximated by I. 1, -1. Although

the approximation in (a) may not look particularly poor, the

9

approximation in (b) is not very useful. Rather than using the

inefficient “relational” attribute method [7], we provide a variation

that increases the precision of the range inference at the cost of
slightly decreased efficiency compared to the original

specification.

The imprecision in the above examples arises from the use
of the join operator in the semantic equation for the while loop to
ensure termination. The join operator introduces imprecision

since it takes the least upper bound of two approximations which,

in general, results in the introduction of some states that may

never occur in the standard interpretation. One could avoid this by
keeping every range that occurs separate. However, from an

implementation standpoint this would be very inefficient. The

gain in precision is totally offset by the space requirements and
the computational costs involved in evaluating the semantic func-
tions separately over each of the ranges.

The difference in the specifications for the standard and
approximation semantics for the while loop suggests a comprom-

ise solution. In the standard semantics, the boolean condition in

the while loop is evaluated for each possible state at the beginning

of the loop. In the approximation semantics. the boolean condi-
tion is evaluated on the least upper bound of all the previous

approximations to the state at the beginning of the loop. We will
approximate the sequence of approximations that occur at a point

with two values. The intnitive interpretation for the two values is
that the first value is the approximation correspondiig to the most

recent evaluation while the second is the least upper bound of all
the previous approximations at that point. We use the observation

that the second value is always available in the cache.

To express this in our formalism, we will use the domain

Int-Tuple = Int-Range X Int-Range
rather than just Xnt-Range. The modified semantic equation
for the while loop is given in Fig. 9. The rest of the semantic

equations are modified slightly to compute over a pair of integer

ranges. The required information is obtained by using the cache

associated with the current evaluation instance of the semantic

function 6 to get the state at the label corresponding to the syntac-
tic object S. The value in the cache always lags one evaluation
behind and is used to collect the approximations of the previous

evaluations. For simplicity, we have assumed in this modification,
that programs do not have nested loops. In the presence of nested

loops we can either bound the depth of nesting to some level d

and use a domain of cross-product of d+l ranges or evaluate the

fixed point separately for each element in the tuple.

This modified analysis provides the very sharp approxima-
tions a : [4,4] and b : [4,4] at the end of the example
code segments above.

S([(While b s)l =
fix(M. lx. let bt = B,ubJ x and

bf = B$bJ x and
c = $.cache[(ts].label] in

f (S[sl(bt V (I&&l V cJ2))) V bf;

Figure 9. Modifications to increase precision

3.4. Collecting Interpretation of expressions

A model for a collecting interpretation for functional

languages has been developed by Hudsk and Young in [5]. This
model was designed to avoid the use of power domains by effec-

tively separating the specification of an analysis and the

specification for the collection of information from the analysis.

We demonstrate below how the implicit caching feature of our

framework can be adopted to express this model. The

specification for collecting applicative order (call-by-value)

semantics of a first-order functional language whose abstract syn-

tax is in Fig. 10 is given in Fig. 11. For brevity, the specification
uses some notation (e.g. ellipses) that is not currently supported

by the framework. They can be easily added to the framework.

x E Bv Bound variables

f E Fv Function Variables

k,p E con constants

eEExp Expressions

pr E Prog mm-

P ..- ..- {e; fhh, x,) = ei)

e ::= k

I x
I p (et, en)

I f (el, e,)

Figure 10. Abstract Syntax

10

Domains:
exp, prog, id, con : syntactic;

values : Wed (integer+boolean);

functions : function values* + values

merge cache;

VarStore : store [id] w values;

FuncStore : recursivestore [id]l + functions;

Function Declarations:

Enexpl : VarStore +

collect powerset of

PI[ProgJl : -9 values;

FuncStore --+ values

values:

K[conB : values* -+ values:

Function Definitions:

EUkD = hs.xfs. K[kn:

Euxn = xvs.~fs. vs[uxnl;

Elk+1 4ll =
lLVs.hfs. KI[p] E[[e,]vs fs E[eJvs fs;

EUf(el 4 =
hve.hfe. fsufn E[e,Jvs fs . . . , E[e&s fs;

me; fi(xt xn) = ed =

let fs - I[strict(h(d,, 44. EbJl 1 [dfql fs)/fJ

and v = fixcache E[eg I fs

in [e&cache;

Kuif] = hb.ht.hf. b --9 t,f

[b +s. cache$l V cache$2 , cache$l V cache$3 } ;

KU+D = kdl.hd2. Add dl d2

1 cache$l V cache$2} :

Figure 11. Collecting Interpretation

4. A prototype implementation

A prototype for the framework has been implemented for

use in conjunction with the Synthesizer Generator [14]. The

specification of an analysis can be coupled with a synthesizer

specification to generate an editor that performs that analysis. The

framework was implemented mostly in SSL, an applicative

language supported by the synthesizer generator. It consists of

about 1500 lines of source code of which roughly 350 lines con-

stitute the interpreter for the specifications. The rest of the code

provides the support features that may be used for specific

analysis techniques. The simple and concise nature of the inter-

preter eases formal verification of the consistency of the inter-

preter with the axiomatic delinition of the denotational

specification language.

The denotational functions are maintained as attributes in

the abstract syntax tree. The incremental evaluation scheme avail-

able in the synthesizer generator [3] aids in the construction of

the denotational function correspondmg to the program. The

evaluation of the function itself cannot be expressed in the at&i-

bute framework since the fixed-point evaluation would result in

cyclic attributes that are not currently supported by the synthesizer

generator. The interpreter, written as a function in SSL. maintains

its own cache of input and output values for each of the semantic

functions. This cache is used to avoid re-evaluation of semantic

functions for the same inputs.

The improved range analysis specification provided in the

previous section has been incorporated in an editor for a subset of

Pascal that provides automatic declaration of variables with

subrange types specified for integer variables. The complexity of

the analysis varies linearly with the number of statements in the

program in the worst case. However, the complexity of evaluation

of fixed-point solutions for loop constructs can increase exponen-

tially in the number of nested loops in the worst case. This does

not pose a problem in analyses where the length of any non-

decreasing chain in the domain of approximations is bounded by a

small number. In range analysis. we trade off some precision and

use a domain that bounds the length of any chain which essen-

tially determines the number of times a loop must be unwound

before the most general approximation is made. We use a bound

of 50 for the generated editor.

5. Summary

We have developed and implemented a framework that can

be used to construct concise high-level specifications of program

analysis techniques. Use of such a framework in a system such as

the Synthesizer Generator allows program analysis techniques to

be incorporated into program development environments without

a need to supply implementation details. This aids in rapid

development of new program analysis techniques as well as tech-

niques that share common features but are customized for specific

applications. The choice of a denotational framework to express

these specifications allows formal proofs of correctness to be esta-

blished for each of these analysis techniques. The facilities pro-

vided by the framework result in clear and concise specifications

that aid in the understsnding of the corresponding analysis tech-

niques.

11

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

A. W. Appel, “Semantics-Directed Code Generation,” pp.

315-324 in Proc. 12th ACM Symp. on Principles of Pro-
pmming Lmguuges, (January 1985).

P. Cousot and R. Cousot, “Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints,” pp. 238-252
in Proc. 4th ACM Symp. on Principles of Programming

Lunguuges, (January 1977).

Allan Demers, Thomas Reps, and Tim Teitelbaum, ‘Tncre-

mental evaluation for atfribute grammars with application

to syntax-directed editors.,” pp. 105-l 16 in Proc. 8th ACM
Symp. on Principles ofProgramming Languages, (1981).

P. Hudak, “A semantic model of reference counting and its

absQaction,” pp. 45-62 in Abstract Interpretation of

Declarative Languages, ed. S. Abramsky, C. Hankin,Ellis

Horwood, West Sussex (1987).

P. Hudak and J. Young, ‘A Collecting Interpretation of
ExPressions (Without Powerdomains),” pp. 107-118 in

Proc. 15th ACM Symp. on Principles of Programming
Languages, (January 1988).

J. Hughes, “Analysing strictness by abstract interpretation
of continuatio~~~,” pp. 63-102 in Abstract Interpretation of
Declarative LMguages, ed. S. Abramsky, C. Hank&Ellis

Honvood, West Sussex (1987).

N. D. Jones and S. S. Muchnik, “Complexity of flow

analysis, inductive assertion synthesis and a language due

to DijksQa,” pp. 380-393 in Progrrunfrow analysis: Theory

and opplicutionr. Prentice-Hall (198 1).

N. D. Jones and A. Mycroft, “Data flow analysis of appli-
cative programs using minimal function graphs.,” pp. 296-

306 in Proc. 13th ACM Symp. on Principles of Progrom-

ming Languages. (January 1986).

G. A. Kildall. ‘A Unified Approach to Global Program
Optimization,” ACM Symp. on Principles of Programming

Languages. pp. 196206 (1973).

F. Nielson, “A denotational framework for data flow

analysis,” Actu Inj&nutica 18 pp. 265-287 (1982).

A. Pal, “Generating Execution Facilities for Integrated Pro-
gramming Environments,” Tech. Report 676, University

of Wisconsin-Madison (1986). Ph.D. thesis

U. F. Pleban, “Compiler Prototyping Using Formal Seman-
tics,” pp. 94-105 in Proceedings of the SIGPLAN ‘84 Sym-

posium on Compiler Construction, , Montreal, Canada

16.

18.

(June 1984).

W. W. Pugh, ‘Incremental computation and the incremen-

tal evaluation of function programs,” Tech. Report 88-936,
Cornell University (1988). Ph.D. thesis

T. Reps and T. Teitelbaum, The Synthesizer Generator

Reference Munuul, Springer-Verlag. New York (Third Edi-

tion. 1988).

R. Sethi, ‘Control Flow Aspects of Semantics-Directed

Compiling,” ACM Transacrionr on Progrwnming

Languages wad Systems 5(4X1983).

G. A. Venkatesh and C. N. Fischer, “A framework for

denotational specification of program analysis techniques,”

Tech. Report in preparation, University of Wisconsin-

Madison (1989).

G. A. Venkatesh and C. N. Fischer, “Construction of pro-
gram analysis techniques for use in program development

environments,” Tech. Report #811, University of

Wisconsin-Madison (1989).

M. N. Wegman and F. K. Zadeck. “Constant propagation

with conditional branches.” Tech. Report #CS-88-02.
Brown University (1988).

12

