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A b s t r a c t  

We describe the design of LINETOOL, a geometric ed- 
itor. Researchers in the areas of computational  geometry, 
robotics and algebraic computat ion need a graphical editor 
for composing geometric objects which does more than sim- 
ply turn pixels on and off on the screen. This system will 
be a tool to help researchers make and demolish conjectures, 
and to experiment with ideas. Our editor will allow users 
to define geometric scenes by declaring geometric objects 
built up from constants, dependent and independent vari- 
ables, and geometric constraints. The system will solve for 
the constraints, and display the resulting scene. The user 
may then make queries about spatial relationships between 
components of geometric objects in the scene, which will be 
answered correctly, that  is, without errors due to numerical 
approximations. 

1 I n t r o d u c t i o n  

We have been working on a graphical editing system that  we 
hope will have an impact  in computational  geometry. The 
target audience for this system are researchers in compu- 
tational geometry, robotics and algebraic computation,  who 
often would like tools to help them visualize constructions in 
proofs, examples and conjectures. In this kind of research, 
there is a need for a graphical editor to compose geometric 
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objects (not just  turning pixels on/off  on the screen) which 
satisfy specific constraints. In other words, these are ab- 
stract objects that  have existence independent of their vi- 
sual representation. One will be able to vary the parameters 
of the objects and see how they change. The system will 
maintain  user-specified relationships among the objects (e.g. 
this line is always at distance 2 from the intersection of that  
pair of lines). The user may  request comparisons of object 
component  values (e.g. is this point above that  line?). Com- 
parisons shall be ezact, not l imited by the resolution of the 
screen. Objects shall be represented exactly internally, with 
the visual representation (at user specified resolutions) be ing '  
derived from their internal representation. 

As Forrest has pointed out [20], the numerical instability 
of geometric algorithms is a well-known problem, with the 
stabili ty of solutions depending on such artifacts as the near- 
ness of the scene being processed to the origin of the coordi- 
nate  system, and proposed solutions ranging from lazy eval- 
uation, to fixed increases in numerical precision and clever 
a t tent ion to the order of expression evaluation, to systems 
of geometric operations which keep a measure of the uncer- 
tainty of the result. However, it seems that  there is only one 
sure solution to such problems: the use of algebraic compu- 
tati0ns founded on ezact precision arithmetic. 1 Our system 

is an a t t empt  at an 'existence proof '  of the feasibility of such 
an approach and to bring to relief the appropriate algebraic 
tools. Perhaps the algebraic tools are self-evident once the 
exact precision goal is clearly delineated, but  to our knowl- 
edge the set of tools we propose has not been used in any 
extant  system. 

Our exact approach solves, as a corollary, the problem of 
maintaining topological correctness [19]. Note that  the pa- 
pers Yao and Greene [44], Segal and Sequin [35] and Milen- 
kovic [26] have topological correctness (a.k.a. consistent cal- 
culations) as their goal; the fundamental  assumption in these 
papers is that  of fixed precision ari thmetic.  Of course, our 
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1 We choose this terminology over tile alternative of'infinite precision 
arithmetic' which may be misleading because our number representa- 
tion remains finite precision at every step of the computation. Perhaps 
'arbitrary precision arithmetic' is acceptable but we wish to emphasize 
that it is not really the precision tl~at matters (since infinite precision 
does not imply no error) but the fact that no loss of information occurs 
throughout the intermediate computation. 
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approach is fundamentally different. However, their assump- 
tion is very important in the context of computer graphics; 
moreover this seems to be a necessary assumption if real-time 
computation is a goal. 

It seems evident that in general, if we seek exact preci- 
sion arithmetic then we must give up the hope of real-time 
operation. This is a situation that can be tolerated in the 
kinds ot! application we envision: as a tool for geometers to 
construct exact geometric objects for the purposes of testing 
hypotheses. The sketches that computational geometers of- 
ten perform on paper in trying out ideas can often be done 
exactly using such a system. Several hours of background 
computation on the machine is often preferable to a fraction 
of the computational geometer's time doing the same con- 
struction imprecisely. Just as human sketches often evolve, 
we will see that our algebraic tools allow an evolving and 
interactive use of the system: each construction need not be 
a 'one-shot' computation, but contains intermediate results 
that  can speed up incremental modifications in a construc- 
tion. For other potential uses for such a system, see [2]. 

Prior graphical editing systems in which scenes are de- 
scribed by geometric constraints include Nelson's JUNO graph- 
ical editor [29], Borning's THINGLAB simulation system [4], 
and Sutherland's SKETCHPAD graphical editor [39]. These 
systems all fall back on numerical relaxation methods [15,36] 
to solve non-linear systems of equations which arise from the 
geometric constraints of the given scene. Borning's system is 
also in the line of work in Artificial Intelligence on program- 
ming languages based on the propagation and retraction of 
constraints on domains of discrete values, through the nodes 
of constraint relationship graphs. Such work is exemplified 
by Steele's thesis [37]. Gosling's MAGRITTE geometric edi- 
tor [22] and van Wyk's  IDEAL graphical typesetting language 
[42], on the other hand, use algebraic methods such as iter- 
ative elimination (IDEAL) and term-rewriting (MAGRITTE). 

A problem domain slightly tangential to our intended ap- 
plication is that  of geometric modelling. Although there are 
numerous efforts here, we mention one that seems closest 
to ours especially in its deployment of algebraic techniques. 
A 'geometric algebra system', using symbolic algebra tech- 
niques to reduce the cost (compared to ray casting and nu- 
merical techniques) of constructing geometric models built up 
from parameterized surfaces, is being designed at the Uni- 
versity of Bath [5]. The algebraic techniques employed in the 
Bath system include root isolation via Sturm sequences, al- 
gebraic intersection of lines with surfaces, surface intersection 
via elimination via resultants, and 'generic rays',  a technique 
analogous to the Collins cell decomposition method [14] used 
by Aruon to compute surface intersection [3]. 

Yet another related problem domain is that of automatic 
geometry theorem provers (e.g. [12]). Without elaboration, 
one might say that our system lies somewhere halfway be- 
tween such geometry provers and the geometric modellers. 

2 Steps in the geometric editing 
process 

The geometric editor we are implementing works as follows: 

1. The user declares independent [l = ul ,u2. . .urn and 
dependent variables X = x l , x 2 . . . x , .  This declares 
our intention to work in the polynomial ring Q((/)[-~I- 
with rational function coefficients. 

2. Primitive geometric objects, such as points, fines, half 
lines and line segments, and circles and circular arcs 
can be declared. The objects may have painting at- 
tributes such as solid or dashed, labels, etc. These ob- 
jects are parameterized by the variables U.,~ and may 
involve numerical constants. 

3. Geometric relationships between objects can be de- 
dared.  Although convenient short hand is provided, 
these are ultimately translated into systems of equa- 
tions in Q(~r)[X]. We call these constraints. 

4. Kinds (parameterized collections of geometric objects 
and relations) are defined by the user. A kind can be 
instantiated (by substituting for parameters). Thus it 
provides a macro facility. 

5. The dependent variables may be partitioned into group§ 
such that  a dependency graph can be specified. The 
graph is constructed by specifying its edges (i.e. the 
dependency of one group of variables upon another). 
There are restrictions on this graph (for instance, it 
must be acyclic). 

6. The primitive objects, instantiated kinds, constraints 
and dependency graph are collected in frames. A frame 
can be thought of as a sheet of paper on which a geo- 
metric construction is being drawn. Provided the frame 

is properly defined, it may be displayed and relation- 
ships among objects in the frame may be queried. The 
user may save a frame in a file or generate a set of 
POSTSCRIPT and I~TF.tX files which draw a picture of 
the currently-displayed scene. 

7. Let us now see what happens behind the scenes during 
a define-display-query cycle above. Note that the order 
of definitions leaves a considerable amount of freedom. 
There is the obvious bookkeeping task of keeping track 
of variables, constraints, objects, kinds and dependen- 
cies. In the definition of a kind, we must verify that the 
system of constraint equations within a kind is consis- 
tent. This amounts to computing the GrSbner basis of 
the equations. In the case of a frame, we verify that  
the dependency graph satisfies some requirements to 
be described later. Then, based on this graph, we con- 
struct a GrSbner basis. Inconsistent constraints will 
be detected here. If the GrSbner basis has dimension 
greater than 0 or has no solutions, we complain to the 
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8. 

user that there are insufficient constraints. (More gen- 
erally, we may analyze the dimension of the constraint 
system.) 

An assignment procedure is constructed which for any 
assignment of values to the independent variables yields 
corresponding values for the dependent variables. Us- 
ing this procedure~ the user can rapidly vary the in- 
dependent variables and change the display. Graphical 
tools (such as sliding scales or mouse) can help in spec- 
ifying the values of the independent variables. The user 
can also scale the display to any desired degree of fine 
detail. 

9. The user can query the display on the relationships 
among the objects. The answers are always correct, 

since the computations are based on exact algebraic 
number arithmetic[25]. 

10. Based on the display and query answers, the user can 
repeat the above process of defining frames, display- 
ing and querying. The user may add and delete con- 
straints, objects and painting properties. The system 
may be able to exploit intermediate results to speed 
up such incremental computations. 

3 Editor language 

A version of LINETOOL was implemented as a sublanguage 
of Yale's T dialect of Lisp [32]. A subsequent version in 
progress will be based on the MAPLE computer algebra sys- 
tem of the University of Waterloo [45]. The sections below 
give an impression of the editing language. 

3.1 D e p e n d e n t  a n d  i n d e p e n d e n t  v a r i a b l e s  

Independent variables may be declared directly, for example 
by saying 

independent xl, x2, x3; 

We assume that variables are dependent if they axe not 
independent. As a pragmatic matter, it seems more natural 
for a user to begin by constructing objects (primitive objects 
or instantiated kinds) before deciding on the set of indepen- 
dent variables. LINETOOL only insists that all declarations 
be completed before the frames are analyzed. 

3 . 2  D e p e n d e n c y  d e c l a r a t i o n s  

Among the dependent variables we allow the user to declare 
a more elaborate structure, an acyclic directed graph whose 
nodes represent groups of variables. The user may say 

iX, Y, Z} depends-on {A, B}; 

to mean that set of variables {x,y,z} depends on the set 
of variables {a, b}. Of course we can  specify any number 
of variables in these sets. The totality of such declarations 

must satisfy certain requirements to be specified in the next 
section. 

These dependency relations are to be regarded as 'ad- 
vice' for the Grbbner basis algorithm: using them we expect 
the algorithm to exploit certain structure in the system of 
equations to be solved. Using the dependency information, 
the system of equations can be solved in parts. For instance, 
if the above declaration were the only declaration, then in- 
tuitively, we can separately solve those equations involving 
only the variables a, b. The burden of providing dependency 
information is on the user. But usually the user can provide 
such information since the user knows the semantics of the 
variables. 

3 . 3  P r i m i t i v e  O b j e c t s  

The primitive geometric objects of the language are numbers, 
angles, points, lines, circular arcs and circles. (We avoid 
more general algebraic curves in the present design.) 

Numbers are either arbitrary-precision integers, ratio- 
nals, or real algebraic numbers defined using isolation inter- 
vals on the roots of polynomials with integer coefficients. For 
instance, 

algebraic-number(x'2 - 2, [1,2]) ; 

gives the root of x 2 - 2  in the interval (1, 2), i.e. the positive 
squareroot of 2. 

Angles are algebraic as well: an algebraic angle is one 
whose sine is a real algebraic number. An angle can be spec- 
ified in (only) one of the forms q,x where cI, is one of arcsine, 
arccosine or arctangent and z is a rational or algebraic num- 
ber. For instance, to get 30 °, we write 

algebraic-angle (Arcsine, 1/2) ; 

For 210 ° we write 

algebraic-angle (Arcsine, 1/2, reflex) ; 

where the keyword reflex denotes that we want the non- 
principal quadrant. If one wishes to compare two algebraic 
angles, then we can compare them to any degree of accu- 
racy. In analogy to algebraic numbers, we store an interval 
to bound the angle. This interval can be refined as much as 
desired. 

Lines are subdivided into line segments, half lines and full 
lines. Each line also has an optional paint property, such as 
solid (the default) or dashed or i n v i s i b l e .  For example, 

add point: A(0,0); 
add point: C(x2,x3); 
add line-segment: AC(A,C) ; 
add point. D(xb,x4) ; 
add line-segment AD(A,D,longdash); 

A circle is defined by its center and radius, and a circular 
arc is specified as a circle together with its 'left' and 'right' 
endpoints (represented as angles). 
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3 . 4  C o n s t r a i n t s  

Geometric constraints establish relationships such as that 
a point is on a line, that a point is at the intersection of 
two lines, that two lines are perpendicular, etc. It is well 
known that these can be expressed as polynomial equations. 
(Schwartz [33, §31 and Chou [12] give some common con- 
straints, together with their algebraic translations.) In gen- 
eral, a constraint is simply a polynomial equation or inequal- 
ity or inequation. 

For example, the constraint that p = (xp, yp) is the mid- 
point between q = (xq, yq) and r = (x, ,  yr) is expressible as 
the single vector equation q + r = 2p, or as the system of 

equations {xq + x, = 2xp, yq + yr = 2yp}. Many standard 
constraints are given convenient forms in LINETOoL, for ex- 
ample: 

# DC and AB are line segments 
add relation RI: Paraliei(DC,AB); 

# A, 0 and C are points 
add relation R2: Collinear(A,O,C); 

# P is a point and L a line 
add relation: Incident(P,L); 

Note that we can name a constraint (R1, R2) or let it 
be anonymous. In general, the user may ~eely specify con- 
straints as equations, inequations and inequalities: 

add relation Pl: X*Y = U,V; 
add relation P2: X*Y /= O; 

add relation P3: U >= O; 
add relation: V'3 - 4 < O; 

3 . 5  P r i m i t i v e  f u n c t i o n s  

Another feature is the use of primitive functions. For in- 
stance, if P1, P1 are points, rather than writing the expression 

(PI.X - P2.X) ~ + (P1.Y - P2.Y)~2 

we write Distance(PI,P2). The function is extended to 

describe the distance between a point and a line for instance: 

Distance(P1 ,L). 
Another useful function gives the intersection between 

two lines Intersect (LI ,L2) (if the lines are coincident, the 
result is the line itself, and if they are only parallel, the result 

is a point at infinity). 
Such expressions may bc composed and used in constraint 

relations. Thus the following constraint says that two lines 
intersect at unit distance from the origin: 

add relation: Distance((0,0),Intersect(Li,L2)) = 1; 

We can define an algebraic angle with Angle(P,Q,R) 
where P, Q and R are points (with algebraic coordinates). 

Another function which returns an angle is slope(L) 

where L is a line or line segment. 

3 . 6  K i n d s  a n d  F r a m e s  

A kind is a composite object with (optionally): 

• External parameters given by a parameters  clause. 

• Geometric objects within the object given by an l o c a l s  
clause. 

• Geometric constraints between objects, parameters and 
constants given by a r e l a t i o n s  clause. 

• Inheritance of attributes from another kind given by an 
of clause. The of clauses gives the name of another 
kind, followed by actual parameters from the environ- 
ment of the kind being defined. When an instance of 
kind A is created, effectively, an instance of the kind B 
that it is of is also created, and any parameters, locals 
or relations of the instance of kind B are accessible and 
utilized as if they appeared directly in the declaration 
of kind A. This notion of inheritance is related to the 
notion as developed in 'object-oriented programming' 
[38]. 

For example, the following kind declarations define tri- 
angles and equilateral triangles, respectively: 

(kind Triangle 
(parameters point: A, B, C) 

(local line-segment: AB(A, B), BC(B,C), AC(A,C))) 

(kind Equilat sralTriangle 
(of Triangle(A,B,C)) 
(parameters point: A, B, C) 

(relations Lsngth(AB) = Length(BC); 
Length(AC) = Length(BC))) 

In order to use a kind, we instantiate it. This is done by 
invoking the name of the kind and supplying values for the 
external parameters. Thus: 

add Triangle:  Ti (Pl ,P2 , (0 ,0) )  ; 

yields an instance of the triangle with vertices at P1, P2 
and the origin (0, 0). We may now refer to the vertices of 
the triangle T1 using the dot convention, thus the three ver- 
tices of this triangle instance are T1.A, Ti .B,  T1 .C. (The 
coordinates of T1 .A are T1 .A.X, T1 .A.Y, etc.) 

A frame is a collection of primitive objects, instantiated 
kinds, independent variable declarations, dependency con- 
straints, and relations (see §3.4), together with a coordinate 
transformation matrix as defined in PosTSCRIPT [1]. The 
user creates or enters a frame by saying open-:frame F1. 
From then until  the user says c lose-frame,  all declarations 
of primitive objects, etc, will be put into the frame named 
F1. Note that the declaration of kinds are global and do 
not get put into the currently opened frame. When a frame 
is closed, it can be checked and its equations solved by in- 
voking ana lyze  F1. This process is explained in more detail 
below. This is the most sophisticated part of the engine and 
errors in the definition of the frame will be detected during 
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this solution process. In particular, if the frame is non-zero 
dimensional, i.e., it is unsolvable or has infinitely many solu- 
tions, this will be reported and the user must edit the frame, 
that is, add and delete relations and objects, etc. 

Assuming the frame is successfully analyzed, the user 
may display the frame by saying d i sp l ay  F1. Recall that 
the frame has in general several independent variables. The 
user will be provided with several sliders, one for each inde- 
pendent variable, on the display screen. Using a mouse or the 
keyboard, the user is able to freely vary these independent 
variables and the display will transform accordingly. 

Recall too that a frame has a coordinate transformation, 
which is initialized to the identity matrix. This transforma- 
tion may be changed freely during display. In particular, the 
user may zoom into detailed parts of the figure by scaling up 
and changing the focus (center point) of the display. This 
scaling up is in principal unlimited. 

Finally, the user may query object relationships in frame 
F1 by saying query F1 : followed by any valid relation, for 
example: 

# For point P and line L in Fi; Answer is Y/N 

query Fi: on(P,L) ; 

# Lines are always directed 

query Fi: right-of(P,L); 

There is also a command l i s t - f r a m e  F1 for listing the 
objects and relations of a frame and information about its 
solution. The user may inspect the current value for the com- 
ponents of an object in the current frame by simply giving 
the name of the object. 

4 Dependency 

In this section we outline our method for treating dependent 
and independent variables. We believe their correct treat- 
ment would be critical to the practicality of LINETOOL, espe- 
cially in efficiency. This is because non-trivial geometric con- 
structions easily involve over 10 variables, which is normally 
beyond the scope of current algorithms for solving such sys- 
tems (whether one uses Grbbner basis or other techniques). 
On the other hand, one can exploit structural properties in 
systems of equations arising from geometric constructions. 
These properties are little understood and hence their ex- 
ploitation requires user cooperation. We provide a mecha- 
nism by which the user can advise our algorithm. 

Recall that among the (number and angle) variables in 
a frame, we classify certain of them as independent. These 
are meant to be the freely varying variables. 2 It is the users' 
responsibility to ensure that their independent variables are 
meaningful since our system is not equipped to detect such 
irregularities. For instance, it is clear that there must not be 
any constraints involving only independent variables. While 
it is easy to check for this (syntactic) restriction, it is not a 
sufficient test. In illustration, if u, v are independent and x 
is dependent, the three constraints 

( u - z )  2 + v  2 = 0 

( u + x ) = + v  ~ = 0 
x > 0 

together imply u must be identically zero. On the other 
hand, as pointed out in [24], there is a simple method based 
on Grbbner bases to check if a set of variables is truly inde- 
pendent. 

Among the dependent variables, the semantics of a geo- 
metric construction can often tell us that one group of vari- 
ables depends upon another group. To illustrate this, suppose 
that we want to construct the three squares on the sides of a 
right triangle T, as in a well-known proof of Pythagoras' the- 
orem. Suppose the vertices of T are (0,0), (0, x) and (y,0), 
and the other two vertices of the square on the hypotenuse 
are (a, b), (c, d). Then it is natural to let the independent 
variables be x, y and declare that a, b depends on x, y and 
also c, d depends on x, y. 

Each dependency declaration (see §3.1) is a relationship 
between two groups of dependent variables. We impose two 
requirements on these declarations: 

1. The dependency declarations are used to decompose 
the set of dependent variables into groups. To do this, 
we form a set S of subsets of dependent variables: for 
each dependency declaration, we get two sets of vari- 
ables (one depending on the other). Both of these sets 
are put into S. All those dependent variables that are 
not mentioned in any dependency declaration also form 
a set which is again put in S. Now we repeatedly co- 
alesce each pair of sets in S that have some common 
element. The final set S forms a partition of the set 
of dependent variables; members of this partition are 
called groups of dependent variables. We construct a 
directed graph G whose nodes are labelled by these 
groups of dependent variables. If U, V are two groups 
of variables, then the edge (U, V) is in G if and only 
if there exists some dependency declaration which says 
some subset of U is dependent on some subset of V. 
We require the graph G to be acyclic; G is called the 
dependency graph. 

2. Let E be the set of equations that occur as constraints 
in the frame. (For the time being, let us ignore in- 
equations and inequalities.) For each node (associated 
with a group of dependent variables U), we associate 
a subset E(U) of E as follows: E(U) consists of those 
equations in E which involve one or more variables in 
U. For each equation e E E(U) we require that any 
variable in e must either be independent or be in some 
group V that is reachable by a path from U. 

2Actually, it is sufficient that each of these number (resp. angle) 
variables can freely vary over some interval (resp. angular range), si- 
multaneously. A more sophisticated system might allow this refinement. 
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5 Translat ion from geometr i c  to al- 
gebraic  t e r m s  

As noted in §3.4, geometric constraints may ultimately be 
translated into polynomial relations of the form P o 0, where 
o 6 {=, # ,  <, >, _<, >}, and P 6 Q(U)[.,Y]. The manipula- 
tions to get a constraint into this form are standard. Note 

that the original constraint may involve primitive functions 
such as the distance between two points or between a point 
and a line. These expressions involve the radical extraction 
which can be removed by repeated squaring, etc. 

In principle, the treatment of inequations and inequali- 
ties can be reduced to equations. For each such constraint, 
we introduce a new (dependent) variable x0 and write a cor- 
responding equation: 

• We reduce the inequality P < 0 to P + x~ = 0. 

• We reduce the strict inequality P < 0 to X2o P + 1 = O. 

• We reduce the inequation P # 0 to xo2P 2 - 1 = O. 

Despite its conceptual simplicity, the introduction of new 
variables x0 seems to be a bad idea. This is because all known 
algorithms for solving systems of equations have complexity 
that grows exponentially in the number of variables. One 
heuristic for reducing the complexity is to specify the de- 
pendency: x0 depends on the set of all dependent variables 
occurring in P. Another method of dealing with these in- 
equation/inequalities will be discussed later. 

It is well known that in general, the transcendental func- 
tions lead to undecidability for such basic questions as root 
isolation and elimination of variables (see Buchberger [10, 
§5]). To get a decidable subset, we restrict ourselves to the 
algebraic angles and only allow terms involving angles which 

• Add two angle terms. 

• Take an integer multiple of an angle term. 

• Apply a trigonometric function to an angle term. 

Thus, we allow the expression tan(58 - 12¢) where 8, ¢ are 
algebraic angles. 

Note that a set of geometric constraints is thus translated 
into a system of equations Ui = 0 on dependent variables 
and independent variables ~, which represents the logical 
assertion 

( w ) ( ~ )  A~ C~ = 0 

Such assertions (involving only conjuncts in the matrix of 
the sentence) are sufficient to declare a wide variety of planar 
geometric scenes. However, there may be situations that call 
for disjunction or negation. 

6 GrSbner  bases and related ques- 
t ions  

The system of equations ~ into which a set of constraints 
is translated generates a polynomial ideal I. The GrSbner 
basis of E (with respect to the pure lexicographic ordering) 
is a basis for I that is well-suited to elimination [7]. Our 
basic computational tool will be such a GrSbner basis of ~. 
Although the fine-tuning of the algorithm is a continuing 
matter of experimentation, we will use a number of ideas to 
speed up the so-called Basic algorithm[27]: 

1. Buchberger's Improved algorithm [7]. 

2. The use of head-reduction (this means that the nor- 
real form algorithm does not attempt to further reduce 
a polynomial whose head term is irreducible). For 
this purpose, we have developed some efficient data- 
structures that make this particularly effective (see be- 
low). 

3. The polynomials in the GrSbner basis will be generated 
in order of non-decreasing (total) degree to ensure a 
minimum degree GrSbner basis [21]. 

4. Exploiting the dependency structure (see below). 

5. Exploiting the fact that many geometric constructions 
may have simple identification of variables (i.e. con- 
straints of the form x = y). We can use a union-find 
data structure to keep track of equivMent variables. 

6. More generally, it seems that many geometric construc- 
tions involve only linear equations. In this case, Gaus- 
sian elimination techniques suffice. 

Hierarchical construction off Griibner basis. The depen- 
dency structure is exploited in the following manner. We 
process the nodes of the dependency graph in a topologi- 
cally sorted fashion, beginning at those minimal nodes (i.e., 
nodes with outdegree zero). A node of the graph is identified 
with the group U of dependent variables associated with it. 
Let D(U) denote the set of all variables in nodes V that can 
be reached with zero or more edges starting from U. Induc- 
tively assume that at each node U that has been processed, we 
have already computed the GrSbner basis G(U) of all equa- 
tions that involve at least one equation in D(U). Suppose we 
are now processing a node V and let V1,.. . ,  Vm be the nodes 
which are reachable from U along a single edge. (We may 
omit any V~ that is reachable from some other Vj). Then 
we may compute the GrSbner basis of the set of equations 
E(U) U G(V,) U . . . U G(Vm). 

In computing the GrSbner basis of E(U)  O G(16) U . . .  U 
G(V~), we exploit the fact that the G(V~)'s are already GrSb- 
ner bases. For instance, we do not have to compute the S- 
polynomial of pairs of polynomials in each G(V~). We will 
refer to this as the hierarchical method for computing the 
GrSbner basis. 
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Data structures. 
We are designing data structures for various operations 

related to GrSbner bases computation. One particularly use- 
ful one is after the GrSbner basis G is constructed, subsequent 
reductions of polynomials modulo G can be rapidly carried 
out using the following data structure D: given a power 

product p, we can decide ifp is divisible by some head power 
product of a polynomial in G. For instance, with n vari- 
ables and IG] = m, we can achieve a space-time bound of 
O(m "-1, n log m) or O(2"m, log "-1 m). 

Dimensionality analysis. The dimension of a system of 
equations is the dimension of the algebraic variety of the 
polynomials in system. An important requirement of LINE- 
TOOL is that the system of constraint equations must be zero 
dimensional, i.e., determine only a finite number of solu- 
tions to the system. 3 Note the independent variables, already 
transferred to the coefficient domain, do not participate in 
dimensionality analysis. It seems desirable to inform a user 
of the dimensionality of the system of constraints; in our 
current implementation, we only give one of three answers: 
zero dimensional, unsolvable ( -1  dimensional), or positive 
dimensional (infinitely many solutions). Schwartz [33, §2] 
gives a probabilistic implementation of a method of van der 
Waerden for determining dimensionaiity [41]. Alternatively, 
the dimension can be obtained from the Hilbert function of 
the ideal of the system of equations; the GrSbner bases can 
be used to compute the Hilbert function [28]. 

Complexity. We should remark that the worst case com- 
plexity of computing GrSbner basis is double exponential. 
However it is now known (following recent work of Brow- 
nawell and Caniglia [6,11]) that solving a system of polyno- 
mial equations that has a finite set of solutions (as in our 
case) can be done in single exponential time using the GrSb- 
her bases method. Such a complexity bound matches the 
bounds (due to John Canny of U.C. Berkeley) recently ob- 
tained for certain classical resultant methods. Hence it seems 
that the GrSbner bases method is just as competitive. More- 
over, the GrSbner bases approach seems to be more versatile 
(applicable to many related computational problems, as well 

as amenable to incremental modification of the generator 
set). 

7 El iminat ion  and display 

We now discuss the computational work necessary for obtain- 
ing a solution to a system of equations from its GrSbner basis 
G C Q(~r)[.~]. In order to do elimination of variables, it is 
simplest to use the pure lexicographical ordering of power 
products in the GrSbner basis algorithm [7,27]. This is in 
fact what we assume. The GrSbner basis G is then a system 
of polynomials in triangular form which permits one to find 
some or all (as the user may specify) solutions to the system 
via successive root isolations. 

3Really we care about  real zeroes, but it is useful enough to know 
about the c o m p l e x  zeroes,  which is what the theory gives us. 

If there are no independent variables (~" is empty) then 
the solution of the triangular form G proceeds in the usual 
manner. In general, we must solve for G for arbitrary values 
of the independent variables. In one mode of operation, the 
user will successively specify values for Cr (using the sliders 
provided for each independent variable). After substituting 
for these values (which we restrict to be rational), we get a 
new system G t C Q[.,Y]. Unfortunately, this system need no 
longer be triangular. There are two ways to handle this: we 
can either call the GrSbner basis algorithm on G I again (and 
hope that G ~ is almost triangular so that the result is rapidly 
obtained) or we can simply ignore this system G'. The latter 
needs explanation: the likelihood of G ~ not being triangular 
has geometric probability zero. So we can either randomly 
perturb the chosen values of UO to regain a triangular form or 
we can request that the user pick another set of substitutions. 

Previously we alluded to an alternative method of treat- 
ing polynomial ineqnations/inequalities. Basically, we do not 
include such constraints directly into the system of polyno- 
mial equations to be solved for in the GrSbner basis. Instead, 
these are set aside until the stage when we find actual solu- 

tions of the system of equations: then as solutions axe gen- 
erated, each is tested to see if they satisfy the polynomial 
inequations/inequalities. We thus need to evaluate polyno- 
mials at algebraic arguments and compare algebraic numbers 
wit h zero; both of these can be done with known algorithms. 

One important special case which we would like to take 
advantage of is when the system turns out to be linear in the 
.~; then standard Gaussian elimination techniques suffice. In 
this case, we can 'precompile' an assignment procedure which 
rapidly computes an assignment for 5~ given any value for ft. 
In experiments, we have also found that the GrSbner basis 
algorithm converges very quickly in this case, usually just a 
few iterations. 

Even if the system is non-linear, full exploitation of the 
subset of linear constraints seems preferable. 

8 Evaluat ing  object queries 
The availability of a GrSbner basis G can be exploited here. 
Many geometric queries can be expressed as asking if a poly- 
nomial P evaluates to 0. A sufficient (but not necessary) 
condition for satisfaction of this query is that P belongs to 
the ideal of G, that is, P reduces to 0 modulo G (cf. [24]). 
In general, we would have to compute a basis for the radical 
of the ideal. 

Queries of the form P > 0 requires root separation and 
algebraic number comparison methods [25,34]. 

9 E x a m p l e  

The Connecticut Do Nothing Machine is a small toy that 
can be purchased at highway gift shops in Connecticut. It 
is a square wooden block, on one surface of which has been 
drilled two open wooden tracks which are perpendicular to 
and pass through each other. Inserted in these tracks are 
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Figure 1: The Connecticut Do Nothing Machine 

bevelled wooden rod segments, one for each track. In the 
midpoint of each of the two rod segments is a screw. Via 
these two screws, a straight bar is attached, with one screw 
at one end and in the middle, and a knob at the other end. 
When the bar is pushed in the plane by pressure on the 
knob end, the bar rotates and the knob traces an ellipse. 
(See Figure 1.) 

This machine may be described in LINETooL as follows. 
The basic block has four edge midpoints, Top, Bottom, L e f t  
and Right ,  and two tracks, Lx and Ly, represented by line 
segments. As parameters, it also takes a length for the sliders 
and for the handle. The sliders and handle are attached by 
passing common reference points for the attachment: 

# Connecticut Do-Nothing Machine 

(kind CDNM 
(parameters 

point: Top, Bottom, Left, Right; 
number: SliderLength, HandleLength) 

(local 
point : VSAttach, HSAttach; 
line-segment: Lx(Left, Right), Ly(Top, Bottom); 
slider: VSlider(SliderLenEth, VSAttach, Ly), 

HSlider(SliderLength, HSAttach, Lx); 
handle : Handle (HandleLength, VSAttach, HSAttach))) 

A slider has a certain width and center, and slides along 
the track defined by a given line segment. Locally it defines 
two endpoints for itself, and it attaches its center to the track 
by a relation. 

(kind slider 
(parameters 

number: $Width; 
point : Center; 
line-segment : Track) 

(local 
point: Left, Right) 

(relations 
On(Center, Track) ; 
Distance(Left, Center) = SWidth/2; 
Distance(Right, Center) = SWidth/2; 
Collinear(Center, Left, Right))) 

A handle has a width and two attachment points and a 
knob. The knob is collinear with the attachment points. 

(kind Handle 
(parameters 

number: HWidth; 
point: AttachV, AttachH) 

(local 
point : Knob ; 
line-se~nent: Bar(AttachH, Knob)) 

(relations 
Collinear(Knob, AttachV, AttachH); 
Distance(Knob, AttachV) = HWidth; 
Distance(Knob, AttachH) = HWidth/2)) 

We create an instance of the machine and place it in a 
frame as follows: 

open-frame FI; 
add CDNM: X((0,2),(0,0),(-I,i),(1,1), 2, 4); 

It turns out that the knob traces out an ellipse. It is clear 
in any case that the motion of the knob is not entirely free. 
But we would like to experiment, to move the handle. So 
we add an angle to the frame, and relate it to the slope of 
the bar. Then we close the frame, analyze it, and display 
(the display is automatically parameterized by the only free 
variable in the frame): 

add angle: t = slope(X.Handle.Bar); 
independent t ; 
close-frame F1 ; 
analyze F1 ; 
display F1 ; 

10 R e m a i n i n g  and future  w o r k  

In T, we have written code for rings (polynomial, extension 
field and rational function); polynomials (sparse and power- 
product form), polynomial arithmetic, derivative, GCD, fac- 
toring by multiplicity and resultant calculations; rational func- 
tions; root isolation via Sturm sequences, isolation intervals, 
sign sequences and algebraic numbers; the Improved algo- 
ri thm for Gr5bner bases, substitutions and assignments, and 
lexical-order elimination; angles, points, lines, circles and 
frames; kinds with inheritance but without equational rela- 
tionships; window graphics; and a rudimentary editor 1an- 
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guage. Most of these facilities already exist in MAPLE, which 
is widely available, thus we have chosen to re-implement 
LINETOOL in the MAPLE system. 

More code needs to be written for automatic domain in- 
terconversion; kinds with equational relationships; arbitrary 
admissible-order GrSbner basis elimination; algorithms for 

the hierarchical GrSbner basis computation; dimensionality 
analysis via Hilbert polynomials; faster algorithms for poly- 
nomial GCD, resultant and Sturm's series calculation (e.g. 
[34]); dimensionality analysis via probabilistic techniques such 
as those of Schwartz [33]; code to handle algebraic angles and 
related expressions; treatment of inequations/inequalities. 

Given the geometric editor design that we have presented, 
it seems that it would be easy to extend it to handle non- 
Euclidean geometries such as the Lobachevsky [31] or Min- 
kowski [43] geometries. One needs to provide: 

• A slightly different set of geometric constraints with a 
(in certain cases) different translation into polynomial 
equations, e.g. a different metric for distance. 

• Display routines with a different model of the plane, 
e.g. as a circle in which lines are diameters or arcs of 
orthogonal circles. 

Acknowledgement 
Lars Ericson thanks Thomas Dub~ and Professor Bhfibanes- 
war Mishra of Courant Institute for stimulating conversations 
regarding methods in algebraic geometry, and Dennis Arnon 
of Xerox PARC for helpful comments. 

References 
[1] Adobe Systems Incorporated. PosTSCRIPT Language 

Tutorial and Cookbook. Addison-Wesley, 1985. 

[2] Varol Akman. Geometry and graphics applied to 
robotics. In [18], pages 619-638. 

[3] Dennis S. Arnon. Geometric reasoning with logic and 
algebra. In [23]. 

[4] Alan Borning. Thinglab: A constraint-oriented simula- 
tion laboratory. PhD Thesis, Stanford University. Also 
available as Technical Report STAN-CS-79-746, Com- 
puter Science Department, Stanford University, July, 
1979. 

[5] Adrian Bowyer, James Davenport, Philip Milne, Julian 
Padget and Andrew Wallis. A geometric algebra sys- 
tem. Draft, December 1987, Schools of Mechanical Engi- 
neering and Mathematical Sciences~ University of Bath, 
Bath, Avon BA2 7AY, UK. 

[6] D. Brownawell. Bounds for the degrees in the Nullstel- 
lensatz. Annals of Math. Second Series, 126 (3) 1987, 
pages 577-591. 

[7] Bruno Buchberger. GrSbner bases: An algorithmic 
method in polynomial ideal theory. In N.K. Bose, ed- 
itor, Multidimensional Systems Theory, pages 184-232. 
D. Reidel, 1985. 

[8] Bruno Buchberger. What can GrSbner bases do for com- 
putational geometry and robotics? In [23]. 

[9] Bruno Buchberger, G. E. Collins, R. Loos, editors, with 
R. Albrecht. Computer Algebra: Symbolic and Algebraic 
Computation Springer-Verlag, second edition 1983. 

[10] Bruno Buchberger and R. Loos. Algebraic simplifica- 
tion. In [9], pages 11-43. 

[11] L. Caniglia, A. Galligo and J. Heintz. Some new effec- 
tivity bounds in computational geometry. Preliminary 
version, 1988. Working Group Noai Fitchas, Instituto 
Argentino de Mathem£tica, Viamonte 1636, ler cuerpo, 
ler piso, (1055) Buenos Aires, Argentina. 

[12] Shang-Ching Chou. Proving elementary geometry the- 
orems using Wu's algorithm. Contemporary Mathemat- 
ics 29, pages 243-286. American Mathematical Society, 
1984. 

[13] George Collins. The calculation of multivariate polyno- 
mial resultants. Journal of the Association for Comput- 
ing Machinery 18 (4), October 1971, pages 515-522. 

[14] George Collins. Quantifier elimination for real closed 
fields by cylindrical algebraic decomposition..Second 
GI Conference on Automata, Theory and Formal Lan- 
guages, pages 134-183, Springer-Verlag Lecture Notes in 
Computer Science 33, 1975. 

[15] S. D. Conte and Carl de Boor. Elementary Numerical 
Analysis. McGraw-Hill, 1980. 

[16] Thomas DubS. A survey of methods for bounding GrSb- 
ner bases. NYU Computer Science Department, Febru- 
ary 9, 1987. Courant Institute of Mathematical Sciences, 
251 Mercer St., New York, NY 10012. 

[17] Thomas DubS, Bhubaneswar Mishra and Chee-Keng 
Yap. Admissible orderings and bounds on GrSbner 
normal form algorithm. NYU Computer Science De- 
partment Technical Report 258, Robotics Report 88, 
Courant Institute of Mathematical Sciences, New York, 
December, 1986. 

[18] R.A. Earnshaw. Theoretical Foundations of Computer 
Graphics and CAD. NATO ASI Series Volume F40, 
Springer-Verlag, Berlin, 1988. 

[19] Lars Warren Ericson. Topologically correct graphical 
editing in the plane. Robotics Research Technical Re- 
port No. 97, Computer Science Division, Courant In- 
stitute of Mathematical Sciences, New York University, 
January, 1987. 

91 



[20] A.R. Forrest. Geometric computing environments: some 
tentative thoughts. In [18], pages 185-197. 

[21] M. Giusti. Some effectivity problems in polynomial ideal 
theory. EUROSAM '84, pages 159-171. Springer-Verlag 
Lecture Notes in Computer Science 174, 1984. 

[22] James Gosling. Algebraic Constraints. PhD Thesis, Car- 
negie-Mellon University. Also available as Technical Re- 
port CMU-CS-83-132, Computer Science Department, 
CMU, May, 1983. 

[23] D. Kapur and J.L. Mundy, editors. Geometric Reason- 
ing, a special issue of Artiticial Intelligence, contents se- 
lected from a Workshop On Geometric Reasoning, Keble 
College, Oxford University, June 30 - July 3, 1986. 

[24] B. Kutzler and S. Stiffer. Automated geometry theorem 
proving using Buchberger's Algorithm. SYMSAC '86, 
Waterloo, Canada. 

[25] R. Loos. Computing in algebraic extensions. In [9], 
pages 173-187. 

[26] Victor Milenkovic. Verifiable implementations of geo- 
metric algorithms using finite precision arithmetic. In 
[23]. 

[27] B. Mishra and C.K. Yap. Notes on GrSbner basis. Tech- 
nical Report 257, Computer Science Department, New 
York University, September 1986. 

[28] H.M. MSller and F. Mora. The computation of the 
Hilbert function. EUROCAL '83. Springer-Verlag Lec- 
ture Notes in Computer Science 162 (1983), pages 157- 
167. 

[29] Greg Nelson. Juno, a constraint-based graphics system. 
ACM SigGraph 19(3):235-243, 1985. 

[30] A.C. Norman. Computing in transcendental extensions. 
In [9], pages 169-172. 

[31] A. V. Pogorelov. Lectures on the Foundations of Geom- 
etry. Noordhoff, 1966. 

[32] Jonathan A. Rees, Norman I. Adams and James R. Mee- 
han. The T Manual. Computer Science Department, 
Yale University, 1984. 

[33] Jacob T. Schwartz. Fast probabilistic algorithms for ver- 
ification of polynomial identities. Journal of the Associ- 
ation for Computer Machinery 27 (4), October 1980, 
pages 701-717. 

[34] Jacob T. Schwartz and Micha Sharir. On the "Piano 
Movers" problem. II. General techniques for computing 
topological properties of real algebraic manifolds. Ad- 
vances in Applied Mathematics 4, 298-351. Academic 
Press, 1983. 

[35] Mark Segal and Carlo H. Sequin. Consistent calcula- 
tions for solids modeling. A CM SigGraph, pages 29-38, 
1986. 

[36] R. V. Southwell. Relaxation Methods in Engineering 
Science. Oxford University Press, 1940. 

[37] Guy Lewis Steele Jr. The definition and implementa- 
tion of a computer programming language based on con- 
straints. PhD Thesis, Massachusetts Institute of Tech- 
nology. Also available as Technical Report AI-TR-595, 
Artificial Intelligence Laboratory, MIT, August, 1980. 

[38] Mark Stefik and  Daniel G. Bobrow. Object-oriented 
programming: themes and variations. The AI  Magazine 
??:40-62, 1985?. 

[39] Ivan Edward Sutherland. Sketchpad: A Man-Machine 
Graphical Communication System. PhD Thesis, Mas- 
sachusetts Institute of Technology, January 1963. 

[40] J.V. Uspensky. Theory of Equations. McGraw-Hill, 
1948. 

[41] B.L. van der Waerden. Einfiihrung in die Algebraische 
Geometric. Second edition, Springer-Verlag. New York, 
1973. 

[42] Christopher John Van Wyk. A Language for Typesetting 
Graphics. PhD thesis, Stanford University. Also avail- 
able as Technical Report STAN-CS-80-803, Computer 
Science Department, Stanford University, June, 1980. 

[43] I.M. Yaglom. A Simple Non-Euclidean Geometry and 
its Physical Basis. Heidelberg Science Library. Springer- 
Verlag, 1979. 

[44] Francis Yao and Daniel H. Greene. Finite-resolution 
computational geometry. 27th Annual Symposium on 
Foundations of Computer Science, October 27-29, 1986, 
IEEE, pages 143-152. 

[45] Symbolic Computation Group, University of Waterloo. 
Maple 4.0 Reference ManuM. Waterloo, Canada, 1985. 

92 


