
A Fast Mutual Exclusion Algorithm

LESLIE LAMPORT

Digital Equipment Corporation

A new solution to the mutual exclusion problem is presented that, in the absence of contention,
requires only seven memory accesses. It assumes atomic reads and atomic writes to shared regis-
ters.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management-rnuti
mlti

General terms: Algorithms

Additional Key Words and Phrases: Critical section, multiprocessing

I. INTRODUCTION

The mutual exclusion problem-guaranteeing mutually exclusive access to a crit-
ical section among a number of competing processes-is well known, and many
solutions have been published. The original version of the problem, as presented
by Dijkstra [2], assumed a shared memory with atomic read and write operations.
Since the early 19709, solutions to this version have been of little practical interest.
If the concurrent processes are being time-shared on a single processor, then mutual
exclusion is easily achieved by inhibiting hardware interrupts at crucial times. On
the other hand, multiprocessor computers have been built with atomic test-and-
set instructions that permitted much simpler mutual exclusion algorithms. Since
about 1974, researchers have concentrated on finding algorithms that use a more
restricted form of shared memory or that use message passing instead of shared
memory. Of late, the original version of the problem has not been widely studied.

Recently, there has arisen interest in building shared-memory multiprocessor
computers by connecting standard processors and memories, with as little modifica-
tion to the hardware as possible. Because ordinary sequential processors and mem-
ories do not have atomic test-and-set operations, it is worth investigating whether
shared-memory mutual exclusion algorithms are a practical alternative.

Experience gained since shared-memory mutual exclusion algorithms were first
studied seems to indicate that the early solutions were judged by criteria that are
not relevant in practice. A great deal of effort went into developing algorithms that
do not allow a process to wait longer than it “should” while other processes are
entering and leaving the critical section [1,3,6]. However, the current belief among

Author’s address: System Research Center, Digital Equipment Corporation, 130 Lytton Ave.,
Palo Alto, CA 94301.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0734-2071/37/0200-0001$00.75

ACM Transactions on Computer Systems, Vol. 5 No. 1, February 1987, Pages l-11.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F7351.7352&domain=pdf&date_stamp=1987-01-05

2 l Leslie Lamport

operating system designers is that contention for a critical section is rare in a well-
designed system; most of the time, a process will be able to enter without having
to wait [5]. Even an algorithm that allows an individual process to wait forever (be
“starved”) by other processes entering the critical section is considered acceptable,
since such starvation is unlikely to occur. This belief should perhaps be classified as
folklore, since there does not appear to be enough experience with multiprocessor
operating systems to assert it with great confidence. Nevertheless, in this paper it
is accepted as fact, and solutions are judged by how fast they are in the absence of
contention. Of course, a solution must not take much too long or lead to deadlock
when there is contention.

With modern high-speed processors, an operation that accesses shared memory
takes much more time than one that can be performed locally. Hence, the number of
reads and writes to shared memory is a good measure of an algorithm’s execution
time. All the published N-process solutions that I know of require a process to
execute O(N) operations to shared memory in the absence of contention. This
paper presents a solution that does only five writes and two reads of shared memory
in this case. An even faster solution is also given, but it requires an upper bound
on how long a process can remain in its critical section. An informal argument is
given to suggest that these algorithms are optimal.

2. THE ALGORITHMS

Each process is assumed to have a unique identifier, which for convenience is taken
to be a positive integer. Atomic reads and writes are permitted to single words
of memory, which are assumed to be long enough to hold a process number. The
critical section and all code outside the mutual exclusion protocol are assumed not
to modify any variables used by the algorithms.

Perhaps the simplest possible algorithm is one suggested by Michael Fischer,
in which process number i executes the following algorithm, where z is a word
of shared memory, angle brackets enclose atomic operations, and await 6 is an
abbreviation for while 4 do skip:

repeat await (x = 0) ;
[“d ;=J;

until (x fi”,;
critical section;
x := 0

The delay operation causes the process to wait sufficiently long so that, if another
process j had read the value of x in its await statement before process i executed
its x := i statement, then j will have completed the following x := j statement. It
is traditional to make no assumption about process speeds because, when processes
time-share a processor, a process can be delayed for quite a long time between
successive operations. However, assumptions about execution times may be per-
missible in a true multiprocessor if the algorithm can be executed by a low-level
operating system routine with hardware interrupts disabled. Indeed, an algorithm
with busy waiting should never be used if contending processes can share a proces-
sor, since a waiting process i could be tying up a processor needed to run the other
process that i is waiting for.
ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

A Fast Mutual Exclusion Algorithm l 3

The algorithm above appears to require a total of only five memory access times
in the absence of contention, since the delay must wait for only a single memory
access to occur. However, the delay must be for the worst case access time. Since
there could be N - 1 processes contending for access to the memory, the worst
case time must be at least O(N) times the best case (most probable) time needed
to perform a memory access. r Moreover, in computer systems that use a static
priority for access to memory, there may not even be an upper bound to the time
taken by a memory access. Therefore, an algorithm that has such a delay in the
absence of contention is not acceptable.

Before constructing a better algorithm, let us consider the minimum sequence
of memory accesses needed to guarantee mutual exclusion starting from the initial
state of the system. The goal is an algorithm that requires a fixed number of
memory accesses, independent of N, in the absence of contention. The argument
is quite informal, some assertions having such flimsy justification that they might
better be called assumptions, and the conclusion could easily be wrong. But even if
it should be wrong, the argument can guide the search for a more efficient algorithm,
since such an algorithm must violate some assertion in the proof.

Delays long enough to ensure that other processes have done something seem
to require O(N) time because of possible memory contention, so we may assume
that no delay operations are executed. Therefore, only memory accesses need be
considered. Let Si denote the sequence of writes and reads executed by process i
in entering its critical section when there is no contention-that is, the sequence
executed when every read returns either the initial value or a value written by an
earlier operation in Si.

There is no point having a process write a variable that is not read by another
process. Any access by Si to a memory word not accessed by Sj can play no part
in preventing both i and j from entering the critical section at the same time.
Therefore, in a solution using the minimal number of memory references, all the
S; should access the same set of memory words. (Remember that Si consists of
the accesses performed in the absence of contention.) Since the number of memory
words accessed is fixed, independent of N, by increasing N we can guarantee that
there are arbitrarily many processes i for which Si consists of the identical sequence
of writes and reads-that is, identical except for the actual values that are written,
which may depend upon i. Therefore, by restricting our attention to those pro-
cesses, we may assume with no loss of generality that every process accesses the
same memory words in the same order.

There is no point making the first operation in Si a read, since all processes could
execute the read and find the initial value before any process executes its next step.
So, the first operation in Si should be a write of some variable z. It obviously
makes no sense for the second operation in Si to be another write to x. There is
also no reason to make it a write to another variable y, since the two writes could
be replaced by a single write to a longer word. (In this lower bound argument,
no limit on word length need be assumed.) Therefore, the second operation in Si
should be a read. This operation should not be a read of x because the second
operation of each process could be executed immediately after its first operation,

‘Memory contention is not necessarily caused by processes contending for the critical section;
it could result from processes accessing other words stored in the same memory module as z.
Memory contention may be much more probable than contention for the critical section.

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

4 l Leslie Lampot-t

start: (x := i);
if (y # 0) then goto start 8;
(y := i);
if (x # i) then delay;

if (y # i) then goto start 8 R;
critical section;
(y:=O)

Fig. 1. Algorithm l-process i’s program.

with no intervening operations from other processes, in which case every process
reads exactly what it had just written and obtains no new information.

Therefore, each process must perform a write to x followed by a read of another
variable y. There is no reason to read a variable that is not written or write a
variable that is not read, so Si must also contain a read of z and a write of y.

The last operation in Si, which is the last operation performed before entering
the critical section in the absence of contention, should not be a write because that
write could not help the process decide whether or not to enter the critical section.
Therefore, the best possible algorithm is one in which S; consists of the sequence
write x, read y, write y, read x-a sequence that is abbreviated as w-x, r-y, w-y,
r-z. Let us assume that Si is of this form. Thus each process first writes x, then
reads y. If it finds that y has its initial value, then it writes y and reads x. If it
finds that x has the value it wrote in its first operation, then it enters the critical
section.

After executing its critical section, a process must execute at least one write
operation to indicate that the critical section is vacant, so processes entering later
realize there is no contention. The process cannot do this with a write of x, since
every process writes x as the first access to shared memory when performing the
protocol. Therefore, a process must write y, resetting y to its initial value, after
exiting the critical section.

Thus, the minimum sequence of memory accesses in the absence of contention
that a mutual exclusion algorithm must perform is: w-x, r-y, w-y, r-x, critical
section, w-y. This is the sequence of memory accesses performed by Algorithm 1
in Figure 1, where y is initially zero, the initial value of x is irrelevant, and the
program for process number i is shown. It is described in this form, with goto
statements, to put the operations performed in the absence of conflict at the left
margin.

The delay in the second then clause must be long enough so that, if another
process j read y equal to zero in the first if stat,ement before i set y equal to i,
then j will either enter the second then clause or else execute the critical section
and reset y to zero before i finishes executing the delay statement. (This delay is
allowed because it is executed only if there is contention.) It is shown in Section 3
that this algorithm guarantees mutual exclusion and is deadlock free. However, an
individual process may be starved.

Algorithm 1 requires not only an upper bound on the time required to perform
an individual operation such as a memory reference, but also on the time needed
to execute the critical section. While such an upper bound may exist and be rea-
sonably small in some applications, this is not usually the case. In most situations,
an algorithm that does not require this upper bound is needed. Let us consider
ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

A Fast Mutual Exclusion Algorithm l 5

start: (b[i] := true);
(x := i);
if (y # 0) then (b[i] := false);

await (y = 0);
got0 start A;

(y := i);
if (x # i) then (b[i] := false);

for j := 1 to IV do await (-b[j]) od;
if (y#i) thenawait (y=O);

got0 start A %;
critical section;
(y := 0);
(b(i] := false)

Fig. 2. Algorithm 2-process i’s program.

how many memory accesses such an algorithm must perform in the absence of
contention.

Remember that the minimal protocol to enter the critical section had to be of the
form w-x, r-y, w-y, T-X. Consider the following sequence of operations performed
by processes 1, 2, and 3 in executing this protocol, where subscripts denote the
process performing an operation:

W‘J-x, w1-5, ?-1-y, ?-2-y, WI-y, w2-y, ?-1-x, w3-5, 72-x

At this point, process 1 can enter its critical section. However, the values that
process 1 wrote in x and y have been overwritten without having been seen by
any other process. The state is the same as it would have been had process 1 not
executed any of its operations. Process 2 has discovered that there is contention, but
has no way of knowing that process 1 is in its critical section. Since no assumption
about how long a process can stay in its critical section is allowed, process 1 must
set another variable to indicate that it is in its critical section, and must reset
that variable to indicate that it has left the critical section. Thus, an optimal
algorithm must involve two more memory accesses (in the case of no contention)
than Algorithm 1. Such an algorithm is given in Figure 2, where b[i] is a Boolean
variable initially set to false. Like Algorithm 1, this algorithm guarantees mutual
exclusion and is deadlock free, but allows starvation of individual processes.

In private correspondence, Gary Peterson has described a modified version of
Algorithm 2 that is starvation free. However, it requires one additional memory
reference in the absence of contention.

3. CORRECTNESS PROOFS

There are two properties of the algorithms to be proved: mutual exclusion and
deadlock freedom, the latter meaning that, if a process is trying to enter its critical
section, then some process (perhaps a different one) eventually is in its critical
section.

The proofs for both algorithms are based upon the “generic” algorithm of Fig-
ure 3, where the program for process i is shown. This program differs from Algo-
rithm 1 in the following ways: (i) labels have been added, (ii) assertions, enclosed
in curly braces, have been attached, (iii) the critical section is enclosed in square

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

6 l Leslie Lamport

a: (x := i);
@: if(y#O)thengotoafi;
7: (y:=i);

{P/} 6: if (x # i) then achieve Pt;
{P~}c if(y#i)thengotoafi 8;

{Pi”“} [$: critical section];
{Pi”“} r): (y := 0)

Fig. 3. A generic algorithm-process i’s program.

brackets, whose meaning is explained below, and (iv) the delay has been replaced
by an achieve statement. The achieve statement represents some unspecified code
to guarantee that, if and when it is finished executing, the assertion P: is true.
More precisely, it represents a sequence of atomic operations that, if finite, includes
one operation that makes Pi’ true and no later operations that make Pi’ false.

It is clear that this generic algorithm represents Algorithm 1 if the achieve state-
ment is implemented by the delay. For the purpose of proving mutual exclusion, it
also adequately represents Algorithm 2 if the achieve statement is implemented by
the for loop in the second then clause. This is because, to enter its critical section,
a process executes the same sequence of reads and writes of z and y in the generic
algorithm as in Algorithm 2. The await y = 0 statements and the reads and writes
of the b[i] in Algorithm 2 can be viewed as delays in the execution of the generic
algorithm. Adding delays to a program, even infinite delays, cannot invalidate a
safety property such as mutual exclusion. Hence, the mutual exclusion property of
the generic algorithm will imply the same property for Algorithm 2. The adequacy
of the generic algorithm for proving deadlock freedom of Algorithm 2 is discussed
below.

3.1 Mutual Exclusion

Mutual exclusion is a safety property, and safety properties are usually proved by
assertional reasoning-for example, with the Owicki-Gries method [8]. However,
since Algorithm 1 is based upon timing considerations, it cannot be proved correct
with ordinary assertional methods, so a hybrid proof is given.

The assertions in Figure 3 are for a proof with the Owicki-Gries method, as
described by us in [7] and Owicki and Gries in [8]. As explained below, a slight
generalization of the usual Owicki-Gries method is used. Each assertion is attached
to a control point, except that the square brackets surrounding the critical section
indicate that the assertion Pf” is attached to every control point within the critical
section. Let ffi denote the assertion that is true if and only if process i is at a
control point whose attached assertion is true, where the trivial assertion trve is
attached to all control points with no explicit assertion. One proves that Ai ffi is
always true by proving that it is true of the initial state and that, for every i:

Sequential Correctness. Executing any atomic action of process i in a state with
Aj Ai true leaves Ai true. This is essentially a Floyd-style proof (41 of process i,
except that one can assume, for all j # i, that Aj is true before executing an action
of i. (The assumption that Aj is true provides a more powerful proof method than
the standard Owicki-Gries method, in the sense that simpler assertions may be
used.)
ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

A Fast Mutual Exclusion Algorithm l 7

Interference Freedom. For each j # i: executing any atomic action of process j
in a state in which Ai and Aj are true leaves Ai true. This proves that executing
an action of process j cannot falsify an assertion attached to process i.

The assertions are chosen so that the truth of Ai A Aj implies that processes i and
j are not both in their critical sections. That is, the intersection of the assertions
attached to points in the critical sections of i and j equals false.

Assertions explicitly mention process control points, as in [7], instead of encoding
them with dummy variables as Owicki and Gries did in [8]. The assertion at(&) is
true if and only if control in process i is just before the statement labeled X. The
assertion in(csi) is true if and only if control in process i is at the beginning of the
critical section, within it, or right after it (and at the beginning of statement q).
The assertions in Figure 3 are defined as follows:

Pf : x=i>y#O
Pi’ : 9 = i 3 Vj: l(at(yj) V d(bj) V in(CSj))

PC8 : ?/ # 0 A Vj # i: [7in(CSj)] A [(ai? V at(6j)) 3 X # j] I

Note that Pf” A Pi” E false, so proving that Ai Ai is always true establishes the
desired mutual exclusion property.

Since no assertions are attached to the entry point of the algorithm, or to the rest
of a process’s program, Ai Ai is true initially. The proof of sequential correctness
for process i requires the following verifications:

-Executing 7 leaves Pf true. This is obvious, since 7 sets y equal to i, and i # 0.
-If the test in statement 6 finds x = i, causing i to enter the critical section, then

Pf” is true. The assumed truth of P,” before the test implies that y > 0. It is
obvious that, for any j # i, (at(7j) V at($)) > x # j is true, since x = i implies
that x # j. The truth of Tin(csj) is proved as follows. We may assume that Aj is
true before i executes the test, which, since at(bi) is true, implies that if in(csj)
is true, then Pj”” is true, so x # i. Hence, if in(csj) is true before executing
the test, then the test must find x # i and not enter the critical section. (The
assumption that Aj is true is crucial; a more complicated program annotation is
needed for a standard Owicki-Gries style proof.)

-Upon termination of the achieve Pi’ statement, Pi’ is true. This is the assumed
semantics of the achieve statement.

-If the test in statement 6 finds y = i, causing i to enter the critical section, then
Pt” is true. Since i # 0, the first conjunct (y # 0) of Pt” is obviously true if
executing 6 causes i to enter its critical section. The assumed truth of P,? before
executing e implies that, if y = i, then for all j # i: l(at(7j) V at(6j) V in(csj))
is true. This in turn implies the truth of the second conjunct of Pf” before the
execution of E, which, since executing the test does not affect control in any other
process, implies the truth of that conjunct after the execution of E.

-Executing any step of the critical section leaves Py true. This follows from the
implicit assumption that a process does not modify x or y while in the critical
section, and the fact that executing one process does not affect control in another
process.

The second part of the Owicki-Gries method proof, showing noninterference,
requires proving that no action by another process j can falsify any of the assertions

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

8 l Leslie Lamport

attached to process i. Note that the implication A > B can be falsified only by
making A true or B false.

P,“: Process i is the only one that sets x to i, so process j can falsify Pf only by
setting y to zero. It does this only by executing statement 7. However, the
assertion Pt", which is assumed to be true when j executes q, states that, if
process i is at control point 6, then x # i, in which case setting y to zero does
not falsify Pf .

P{: Only process i sets y to i, so j can falsify this assertion only by reaching
control point 7 or S or by entering its critical section when y = i. However, it
cannot reach 6 without being at 7, it can reach 7 only by executing the test
at p and finding y = 0, and, if it is not at 6, it can enter its critical section
only by executing the test at E and finding y = j, none of which are possible
when y = i.

Pt’: Since Pf” asserts that no other process is at control point 9, no other process
can make y # 0 become false. To show that no other process j can make
in(csj) become true, observe that it can do so only in two ways: (i) by
executing the test at statement 6 with z = j, or (ii) by executing c and
finding y = j. The first is impossible because Pt” asserts that if j is at 6
then x # j, and the second is impossible because P;, which is assumed to be
true at that point, asserts that if y = j then in(cs;) is false, contrary to the
hypothesis.
Finally, we must show that process j cannot falsify (at(7j) V at(6j)) > x # j.
It could do this only by reaching control point 7, which it can do only by
executing the test in statement p and finding y equal to zero. However, this
is impossible because Pf” asserts that y # 0.

This completes the proof of the mutual exclusion property for the generic algo-
rithm of Figure 3. To prove that Algorithms 1 and 2 satisfy this property, it is nec-
essary to prove that the program for process i correctly implements the achieve Pi’
statement. In these proofs, control points in the two algorithms will be labeled by
the same names as the corresponding control points in the generic algorithm. Thus,
E is the control point just before the if test in the second then clause.

Let 7-q denote the set of control points consisting of 7, 6, all control points in
the critical section, and Q. For Algorithm 1, we must show that, if at the end of
the delay y = i, then no other process j has control in 7-q. Since no other process
can set y to i, if y equals i upon completion of the delay, then it must have equaled
i at the beginning of the delay. If process j has not yet entered 7-v by the time
i began executing the delay statement, then it cannot enter before the end of the
delay statement, because the only way j can enter 7-q is by executing ,0 when
y = 0 or E when y = j, both of which are impossible with y = i. By assumption,
the delay is chosen to be long enough so that any process in 7-n at the beginning
of the delay will have exited before the end of the delay. Hence, at the end of the
delay, no process is in 7-v, so Pi’ is true.

This completes the proof of mutual exclusion for Algorithm 1. Note how behav-
ioral reasoning was used to prove that Pi’ holds after the delay. An assertional proof
of this property would be quite difficult, requiring the introduction of an explicit
clock and complicated axioms about the duration of operations.
ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987

A Fast Mutual Exclusion Algorithm l 9

It is not difficult to convert the proof for the generic algorithm into a completely
assertional proof for Algorithm 2, and this will be left as an exercise for the reader
who wants a completely rigorous proof. A less formal behavioral proof is given
here. Once again, we must prove that, if y = i when control reaches E, then no
other process j is in 7-q. As in Algorithm 1, if y equals i when process i reaches c,
then it must have equaled i throughout the execution of the for statement. Hence,
if process j is outside 7-q some time during the execution of i’s for statement, then
it is not in 7-v when i reaches c. However, bb] is true when process j is in 7-n. To
reach E, process i must find b[j] false when executing the for loop, so j was not in
7-q at that time and is thus not in it when i reaches c. This completes the proof
of mutual exclusion for Algorithm 2.

3.2 Deadlock Freedom

Deadlock freedom means that, if a process tries to enter the critical section, then it
or some other process must eventually be in the critical section. This is a liveness
property, which can be proved formally using temporal logic-for example, with
the method of Owicki and Lamport [9]. However, only an informal sketch of the
proof will be given. The reader who is well versed in temporal logic will be able to
flesh out the informal proof into a formal one in the style of Owicki and Lamport.

Once again, correctness is proved first for the generic algorithm of Figure 3. Let
;n(Si) be true if and only if control in process i is at the beginning of or within the
statement 6, but not within the then clause of E. Deadlock freedom rests upon the
following safety property:

s. y = i # 0 3 (ZqSi) v ifz(CS~))

It is a simple matter to show that this assertion is true initially and is left true by
every program action, so it is always true.

For convenience, the proof will be expressed in terms of some simple temporal
assertions-assertions that are true or false at a certain time during the execution.
For any temporal assertions P and Q, the assertion UP (read henceforth P) is true
at some instant if and only if P is true then and at all later times, and P w Q
(read P leads to Q) is true at some instant if P is false then or Q is true then or
at some future time. A precise semantics of the temporal operators •I and u can
be found in [9].

Deadlock freedom is expressed by the formula &(a;) w 3~’ : in(csj), which is
proved by assuming that at(ai) and q (Vj : +n(cai)) are true and obtaining a
contradiction. (This is a proof by contradiction, based upon the temporal logic
tautology ‘(P u Q) G (P A O-Q).) The proof is done by demonstrating a
sequence of u relations (Al w AZ, A2 w AJ, etc.) leading to false, which is
the required contradiction. Note that when one of these relations is of the form
P * Q A OR, we can assume that OR is true in all the subsequent proofs. (Once
OR becomes true, it remains true forever.) Also note that P > Q implies P - Q.

The proof requires the following assumption about the achieve statement:

T. If process i executes the achieve statement with q (y = i A Vj: +n(csj)) true,
then that statement will terminate.

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

10 l Leslie Lamporl

The sequence of w relations is given below.

at(cri) u y # 0. Process i either finds y # 0 in statement /3 or else sets y to i in
the following statement.

y # 0 > Oy # 0. Once y is nonzero, it can be set to zero only by some process
executing statement n. However, this cannot happen since we are assuming OVj:
+n(CSj).

(Oy#O)-3j:Oy=j. Once y becomes and remains forever nonzero, no pro-
cess can reach statement 7 that has not already done so. Eventually, all the pro-
cesses that are at 7 will execute 7, after which the value of y remains the same.

(Oy = j) - d(q). By the invariant S, y = j implies in(csj) V in(&). Since we
have assumed q +n(csi), this implies that control in process j is within S and, if
it is at the beginning of 6, must find 5 # j. By Assumption T, this implies that
control in process j must eventually reach c.

(Oy = j A at(q)) - false. Process j must eventually execute the test in state-
ment c, find y = j, and enter the critical section, contradicting the assumption
q lqcsj).

This completes the proof of deadlock freedom for the generic algorithm. Since
Assumption T is obviously true for Algorithm 1, this proves deadlock freedom for
Algorithm 1. For Algorithm 2, observe that the proof for the generic’ algorithm
remains valid even if the two goto’s can be delayed indefinitely. Thus, the proof
holds for Algorithm 2 even though a process can remain forever in an await (y = 0)
statement. To prove the deadlock freedom of Algorithm 2, it suffices to prove
Assumption T, that q (y = i A Vj : +n(csi)) implies that process i’s for loop
eventually terminates. This is easy to see, since b[j] must eventually become false
and remain forever false for every process j. A more formal proof, in the style of
Owicki and Lamport [9], is left as an exercise for the reader.

ACKNOWLEDGMENTS

I wish to thank Jeremy Dion and Michael Powell for bringing the problem to my at-
tention. Michael Powell independently discovered the basic write x, read y, write y,
read x mutual exclusion protocol used in the algorithms. I also wish to thank
Michael Fischer for his comments on the problem and on the manuscript.

REFERENCES

1. DEBRUIJN, N. G. Additional comments on a problem in concurrent programming control.
Commun ACM 8, 9 (Mar. 1967), 137-138.

2. DIJKSTRA, E. W. Solution of a problem in concurrent programming control. Commun ACM
8, 9 (Sept. 1965), 569.

3. EISENBERG, M. A., AND MCGUIRE, M. R. Further comments on Dijkstra’s concurrent
programming control problem. Commun. ACM 15, 11 (Nov. 1972), 999.

4. FLOYD, R. W. Assigning meanings to programs. In proceedings of the Syna~Um on Applied
Mat& vol. 19 (1967), American Mathematical Society, Providence, RI., pp. 1932.

5. JONES, A. K., AND SCHWARZ, P. Experience using multiprocessor systems-A status
report. ACM Cornput. Surv. 12, 2 (June 1980), 121-165.

6. KNUTH, D. E. Additional commments on a problem in concurrent program control. Corn
mun. ACM 9, 5 (May 1966), 321.

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

A Fast Mutual Exclusion Algorithm l 11

7. LAMPORT, L . Proving the correctness of multiprocess programs. IEEE lhw. So@, Eng. SE-S,
2 (Mar. 1977), 125-143.

8. OWICKI, S., AND GRIES, D. An axiomatic proof technique for parallel programs. Acta ZnJ.
6, 4 (1976), 319-340.

9. OWICKI, S., AND LAMPORT, L. Proving liveness properties of concurrent programs. ACM
lbw. Prqmm. Lang. S@. 4, 3 (July 1982), 455-495.

Received September 1985; revised September 1986; accepted September 1986

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

