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I. INTRODUCTION 

The mutual exclusion problem-guaranteeing mutually exclusive access to a crit- 
ical section among a number of competing processes-is well known, and many 
solutions have been published. The original version of the problem, as presented 
by Dijkstra [2], assumed a shared memory with atomic read and write operations. 
Since the early 19709, solutions to this version have been of little practical interest. 
If the concurrent processes are being time-shared on a single processor, then mutual 
exclusion is easily achieved by inhibiting hardware interrupts at crucial times. On 
the other hand, multiprocessor computers have been built with atomic test-and- 
set instructions that permitted much simpler mutual exclusion algorithms. Since 
about 1974, researchers have concentrated on finding algorithms that use a more 
restricted form of shared memory or that use message passing instead of shared 
memory. Of late, the original version of the problem has not been widely studied. 

Recently, there has arisen interest in building shared-memory multiprocessor 
computers by connecting standard processors and memories, with as little modifica- 
tion to the hardware as possible. Because ordinary sequential processors and mem- 
ories do not have atomic test-and-set operations, it is worth investigating whether 
shared-memory mutual exclusion algorithms are a practical alternative. 

Experience gained since shared-memory mutual exclusion algorithms were first 
studied seems to indicate that the early solutions were judged by criteria that are 
not relevant in practice. A great deal of effort went into developing algorithms that 
do not allow a process to wait longer than it “should” while other processes are 
entering and leaving the critical section [1,3,6]. However, the current belief among 
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operating system designers is that contention for a critical section is rare in a well- 
designed system; most of the time, a process will be able to enter without having 
to wait [5]. Even an algorithm that allows an individual process to wait forever (be 
“starved”) by other processes entering the critical section is considered acceptable, 
since such starvation is unlikely to occur. This belief should perhaps be classified as 
folklore, since there does not appear to be enough experience with multiprocessor 
operating systems to assert it with great confidence. Nevertheless, in this paper it 
is accepted as fact, and solutions are judged by how fast they are in the absence of 
contention. Of course, a solution must not take much too long or lead to deadlock 
when there is contention. 

With modern high-speed processors, an operation that accesses shared memory 
takes much more time than one that can be performed locally. Hence, the number of 
reads and writes to shared memory is a good measure of an algorithm’s execution 
time. All the published N-process solutions that I know of require a process to 
execute O(N) operations to shared memory in the absence of contention. This 
paper presents a solution that does only five writes and two reads of shared memory 
in this case. An even faster solution is also given, but it requires an upper bound 
on how long a process can remain in its critical section. An informal argument is 
given to suggest that these algorithms are optimal. 

2. THE ALGORITHMS 

Each process is assumed to have a unique identifier, which for convenience is taken 
to be a positive integer. Atomic reads and writes are permitted to single words 
of memory, which are assumed to be long enough to hold a process number. The 
critical section and all code outside the mutual exclusion protocol are assumed not 
to modify any variables used by the algorithms. 

Perhaps the simplest possible algorithm is one suggested by Michael Fischer, 
in which process number i executes the following algorithm, where z is a word 
of shared memory, angle brackets enclose atomic operations, and await 6 is an 
abbreviation for while 4 do skip: 

repeat await ( x = 0 ) ; 
[“d ;=J; 

until (x fi”,; 
critical section; 
x := 0 

The delay operation causes the process to wait sufficiently long so that, if another 
process j had read the value of x in its await statement before process i executed 
its x := i statement, then j will have completed the following x := j statement. It 
is traditional to make no assumption about process speeds because, when processes 
time-share a processor, a process can be delayed for quite a long time between 
successive operations. However, assumptions about execution times may be per- 
missible in a true multiprocessor if the algorithm can be executed by a low-level 
operating system routine with hardware interrupts disabled. Indeed, an algorithm 
with busy waiting should never be used if contending processes can share a proces- 
sor, since a waiting process i could be tying up a processor needed to run the other 
process that i is waiting for. 
ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987. 



A Fast Mutual Exclusion Algorithm l 3 

The algorithm above appears to require a total of only five memory access times 
in the absence of contention, since the delay must wait for only a single memory 
access to occur. However, the delay must be for the worst case access time. Since 
there could be N - 1 processes contending for access to the memory, the worst 
case time must be at least O(N) times the best case (most probable) time needed 
to perform a memory access. r Moreover, in computer systems that use a static 
priority for access to memory, there may not even be an upper bound to the time 
taken by a memory access. Therefore, an algorithm that has such a delay in the 
absence of contention is not acceptable. 

Before constructing a better algorithm, let us consider the minimum sequence 
of memory accesses needed to guarantee mutual exclusion starting from the initial 
state of the system. The goal is an algorithm that requires a fixed number of 
memory accesses, independent of N, in the absence of contention. The argument 
is quite informal, some assertions having such flimsy justification that they might 
better be called assumptions, and the conclusion could easily be wrong. But even if 
it should be wrong, the argument can guide the search for a more efficient algorithm, 
since such an algorithm must violate some assertion in the proof. 

Delays long enough to ensure that other processes have done something seem 
to require O(N) time because of possible memory contention, so we may assume 
that no delay operations are executed. Therefore, only memory accesses need be 
considered. Let Si denote the sequence of writes and reads executed by process i 
in entering its critical section when there is no contention-that is, the sequence 
executed when every read returns either the initial value or a value written by an 
earlier operation in Si. 

There is no point having a process write a variable that is not read by another 
process. Any access by Si to a memory word not accessed by Sj can play no part 
in preventing both i and j from entering the critical section at the same time. 
Therefore, in a solution using the minimal number of memory references, all the 
S; should access the same set of memory words. (Remember that Si consists of 
the accesses performed in the absence of contention.) Since the number of memory 
words accessed is fixed, independent of N, by increasing N we can guarantee that 
there are arbitrarily many processes i for which Si consists of the identical sequence 
of writes and reads-that is, identical except for the actual values that are written, 
which may depend upon i. Therefore, by restricting our attention to those pro- 
cesses, we may assume with no loss of generality that every process accesses the 
same memory words in the same order. 

There is no point making the first operation in Si a read, since all processes could 
execute the read and find the initial value before any process executes its next step. 
So, the first operation in Si should be a write of some variable z. It obviously 
makes no sense for the second operation in Si to be another write to x. There is 
also no reason to make it a write to another variable y, since the two writes could 
be replaced by a single write to a longer word. (In this lower bound argument, 
no limit on word length need be assumed.) Therefore, the second operation in Si 
should be a read. This operation should not be a read of x because the second 
operation of each process could be executed immediately after its first operation, 

‘Memory contention is not necessarily caused by processes contending for the critical section; 
it could result from processes accessing other words stored in the same memory module as z. 
Memory contention may be much more probable than contention for the critical section. 
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start: (x := i); 
if ( y # 0) then goto start 8; 
( y := i); 
if (x # i) then delay; 

if ( y # i ) then goto start 8 R; 
critical section; 
(y:=O) 

Fig. 1. Algorithm l-process i’s program. 

with no intervening operations from other processes, in which case every process 
reads exactly what it had just written and obtains no new information. 

Therefore, each process must perform a write to x followed by a read of another 
variable y. There is no reason to read a variable that is not written or write a 
variable that is not read, so Si must also contain a read of z and a write of y. 

The last operation in Si, which is the last operation performed before entering 
the critical section in the absence of contention, should not be a write because that 
write could not help the process decide whether or not to enter the critical section. 
Therefore, the best possible algorithm is one in which S; consists of the sequence 
write x, read y, write y, read x-a sequence that is abbreviated as w-x, r-y, w-y, 
r-z. Let us assume that Si is of this form. Thus each process first writes x, then 
reads y. If it finds that y has its initial value, then it writes y and reads x. If it 
finds that x has the value it wrote in its first operation, then it enters the critical 
section. 

After executing its critical section, a process must execute at least one write 
operation to indicate that the critical section is vacant, so processes entering later 
realize there is no contention. The process cannot do this with a write of x, since 
every process writes x as the first access to shared memory when performing the 
protocol. Therefore, a process must write y, resetting y to its initial value, after 
exiting the critical section. 

Thus, the minimum sequence of memory accesses in the absence of contention 
that a mutual exclusion algorithm must perform is: w-x, r-y, w-y, r-x, critical 
section, w-y. This is the sequence of memory accesses performed by Algorithm 1 
in Figure 1, where y is initially zero, the initial value of x is irrelevant, and the 
program for process number i is shown. It is described in this form, with goto 
statements, to put the operations performed in the absence of conflict at the left 
margin. 

The delay in the second then clause must be long enough so that, if another 
process j read y equal to zero in the first if stat,ement before i set y equal to i, 
then j will either enter the second then clause or else execute the critical section 
and reset y to zero before i finishes executing the delay statement. (This delay is 
allowed because it is executed only if there is contention.) It is shown in Section 3 
that this algorithm guarantees mutual exclusion and is deadlock free. However, an 
individual process may be starved. 

Algorithm 1 requires not only an upper bound on the time required to perform 
an individual operation such as a memory reference, but also on the time needed 
to execute the critical section. While such an upper bound may exist and be rea- 
sonably small in some applications, this is not usually the case. In most situations, 
an algorithm that does not require this upper bound is needed. Let us consider 
ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987. 
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start: (b[i] := true); 
(x := i); 
if (y # 0) then (b[i] := false); 

await (y = 0); 
got0 start A; 

(y := i); 
if (x # i) then (b[i] := false); 

for j := 1 to IV do await (-b[j]) od; 
if (y#i) thenawait (y=O); 

got0 start A %; 
critical section; 
(y := 0); 
(b(i] := false) 

Fig. 2. Algorithm 2-process i’s program. 

how many memory accesses such an algorithm must perform in the absence of 
contention. 

Remember that the minimal protocol to enter the critical section had to be of the 
form w-x, r-y, w-y, T-X. Consider the following sequence of operations performed 
by processes 1, 2, and 3 in executing this protocol, where subscripts denote the 
process performing an operation: 

W‘J-x, w1-5, ?-1-y, ?-2-y, WI-y, w2-y, ?-1-x, w3-5, 72-x 

At this point, process 1 can enter its critical section. However, the values that 
process 1 wrote in x and y have been overwritten without having been seen by 
any other process. The state is the same as it would have been had process 1 not 
executed any of its operations. Process 2 has discovered that there is contention, but 
has no way of knowing that process 1 is in its critical section. Since no assumption 
about how long a process can stay in its critical section is allowed, process 1 must 
set another variable to indicate that it is in its critical section, and must reset 
that variable to indicate that it has left the critical section. Thus, an optimal 
algorithm must involve two more memory accesses (in the case of no contention) 
than Algorithm 1. Such an algorithm is given in Figure 2, where b[i] is a Boolean 
variable initially set to false. Like Algorithm 1, this algorithm guarantees mutual 
exclusion and is deadlock free, but allows starvation of individual processes. 

In private correspondence, Gary Peterson has described a modified version of 
Algorithm 2 that is starvation free. However, it requires one additional memory 
reference in the absence of contention. 

3. CORRECTNESS PROOFS 

There are two properties of the algorithms to be proved: mutual exclusion and 
deadlock freedom, the latter meaning that, if a process is trying to enter its critical 
section, then some process (perhaps a different one) eventually is in its critical 
section. 

The proofs for both algorithms are based upon the “generic” algorithm of Fig- 
ure 3, where the program for process i is shown. This program differs from Algo- 
rithm 1 in the following ways: (i) labels have been added, (ii) assertions, enclosed 
in curly braces, have been attached, (iii) the critical section is enclosed in square 
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a: (x := i); 
@: if(y#O)thengotoafi; 
7: (y:=i); 

{P/} 6: if (x # i) then achieve Pt; 
{P~}c if(y#i)thengotoafi 8; 

{Pi”“} [$: critical section]; 
{Pi”“} r): (y := 0) 

Fig. 3. A generic algorithm-process i’s program. 

brackets, whose meaning is explained below, and (iv) the delay has been replaced 
by an achieve statement. The achieve statement represents some unspecified code 
to guarantee that, if and when it is finished executing, the assertion P: is true. 
More precisely, it represents a sequence of atomic operations that, if finite, includes 
one operation that makes Pi’ true and no later operations that make Pi’ false. 

It is clear that this generic algorithm represents Algorithm 1 if the achieve state- 
ment is implemented by the delay. For the purpose of proving mutual exclusion, it 
also adequately represents Algorithm 2 if the achieve statement is implemented by 
the for loop in the second then clause. This is because, to enter its critical section, 
a process executes the same sequence of reads and writes of z and y in the generic 
algorithm as in Algorithm 2. The await y = 0 statements and the reads and writes 
of the b[i] in Algorithm 2 can be viewed as delays in the execution of the generic 
algorithm. Adding delays to a program, even infinite delays, cannot invalidate a 
safety property such as mutual exclusion. Hence, the mutual exclusion property of 
the generic algorithm will imply the same property for Algorithm 2. The adequacy 
of the generic algorithm for proving deadlock freedom of Algorithm 2 is discussed 
below. 

3.1 Mutual Exclusion 

Mutual exclusion is a safety property, and safety properties are usually proved by 
assertional reasoning-for example, with the Owicki-Gries method [8]. However, 
since Algorithm 1 is based upon timing considerations, it cannot be proved correct 
with ordinary assertional methods, so a hybrid proof is given. 

The assertions in Figure 3 are for a proof with the Owicki-Gries method, as 
described by us in [7] and Owicki and Gries in [8]. As explained below, a slight 
generalization of the usual Owicki-Gries method is used. Each assertion is attached 
to a control point, except that the square brackets surrounding the critical section 
indicate that the assertion Pf” is attached to every control point within the critical 
section. Let ffi denote the assertion that is true if and only if process i is at a 
control point whose attached assertion is true, where the trivial assertion trve is 
attached to all control points with no explicit assertion. One proves that Ai ffi is 
always true by proving that it is true of the initial state and that, for every i: 

Sequential Correctness. Executing any atomic action of process i in a state with 
Aj Ai true leaves Ai true. This is essentially a Floyd-style proof (41 of process i, 
except that one can assume, for all j # i, that Aj is true before executing an action 
of i. (The assumption that Aj is true provides a more powerful proof method than 
the standard Owicki-Gries method, in the sense that simpler assertions may be 
used.) 
ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987. 
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Interference Freedom. For each j # i: executing any atomic action of process j 
in a state in which Ai and Aj are true leaves Ai true. This proves that executing 
an action of process j cannot falsify an assertion attached to process i. 

The assertions are chosen so that the truth of Ai A Aj implies that processes i and 
j are not both in their critical sections. That is, the intersection of the assertions 
attached to points in the critical sections of i and j equals false. 

Assertions explicitly mention process control points, as in [7], instead of encoding 
them with dummy variables as Owicki and Gries did in [8]. The assertion at(&) is 
true if and only if control in process i is just before the statement labeled X. The 
assertion in(csi) is true if and only if control in process i is at the beginning of the 
critical section, within it, or right after it (and at the beginning of statement q). 
The assertions in Figure 3 are defined as follows: 

Pf : x=i>y#O 
Pi’ : 9 = i 3 Vj: l(at(yj) V d(bj) V in(CSj)) 

PC8 : ?/ # 0 A Vj # i: [7in(CSj)] A [(ai? V at(6j)) 3 X # j] I 

Note that Pf” A Pi” E false, so proving that Ai Ai is always true establishes the 
desired mutual exclusion property. 

Since no assertions are attached to the entry point of the algorithm, or to the rest 
of a process’s program, Ai Ai is true initially. The proof of sequential correctness 
for process i requires the following verifications: 

-Executing 7 leaves Pf true. This is obvious, since 7 sets y equal to i, and i # 0. 
-If the test in statement 6 finds x = i, causing i to enter the critical section, then 

Pf” is true. The assumed truth of P,” before the test implies that y > 0. It is 
obvious that, for any j # i, (at(7j) V at($)) > x # j is true, since x = i implies 
that x # j. The truth of Tin(csj) is proved as follows. We may assume that Aj is 
true before i executes the test, which, since at(bi) is true, implies that if in(csj) 
is true, then Pj”” is true, so x # i. Hence, if in(csj) is true before executing 
the test, then the test must find x # i and not enter the critical section. (The 
assumption that Aj is true is crucial; a more complicated program annotation is 
needed for a standard Owicki-Gries style proof.) 

-Upon termination of the achieve Pi’ statement, Pi’ is true. This is the assumed 
semantics of the achieve statement. 

-If the test in statement 6 finds y = i, causing i to enter the critical section, then 
Pt” is true. Since i # 0, the first conjunct (y # 0) of Pt” is obviously true if 
executing 6 causes i to enter its critical section. The assumed truth of P,? before 
executing e implies that, if y = i, then for all j # i: l(at(7j) V at(6j) V in(csj)) 
is true. This in turn implies the truth of the second conjunct of Pf” before the 
execution of E, which, since executing the test does not affect control in any other 
process, implies the truth of that conjunct after the execution of E. 

-Executing any step of the critical section leaves Py true. This follows from the 
implicit assumption that a process does not modify x or y while in the critical 
section, and the fact that executing one process does not affect control in another 
process. 

The second part of the Owicki-Gries method proof, showing noninterference, 
requires proving that no action by another process j can falsify any of the assertions 
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attached to process i. Note that the implication A > B can be falsified only by 
making A true or B false. 

P,“: Process i is the only one that sets x to i, so process j can falsify Pf only by 
setting y to zero. It does this only by executing statement 7. However, the 
assertion Pt", which is assumed to be true when j executes q, states that, if 
process i is at control point 6, then x # i, in which case setting y to zero does 
not falsify Pf . 

P{: Only process i sets y to i, so j can falsify this assertion only by reaching 
control point 7 or S or by entering its critical section when y = i. However, it 
cannot reach 6 without being at 7, it can reach 7 only by executing the test 
at p and finding y = 0, and, if it is not at 6, it can enter its critical section 
only by executing the test at E and finding y = j, none of which are possible 
when y = i. 

Pt’: Since Pf” asserts that no other process is at control point 9, no other process 
can make y # 0 become false. To show that no other process j can make 
in(csj) become true, observe that it can do so only in two ways: (i) by 
executing the test at statement 6 with z = j, or (ii) by executing c and 
finding y = j. The first is impossible because Pt” asserts that if j is at 6 
then x # j, and the second is impossible because P;, which is assumed to be 
true at that point, asserts that if y = j then in(cs;) is false, contrary to the 
hypothesis. 
Finally, we must show that process j cannot falsify (at(7j) V at(6j)) > x # j. 
It could do this only by reaching control point 7, which it can do only by 
executing the test in statement p and finding y equal to zero. However, this 
is impossible because Pf” asserts that y # 0. 

This completes the proof of the mutual exclusion property for the generic algo- 
rithm of Figure 3. To prove that Algorithms 1 and 2 satisfy this property, it is nec- 
essary to prove that the program for process i correctly implements the achieve Pi’ 
statement. In these proofs, control points in the two algorithms will be labeled by 
the same names as the corresponding control points in the generic algorithm. Thus, 
E is the control point just before the if test in the second then clause. 

Let 7-q denote the set of control points consisting of 7, 6, all control points in 
the critical section, and Q. For Algorithm 1, we must show that, if at the end of 
the delay y = i, then no other process j has control in 7-q. Since no other process 
can set y to i, if y equals i upon completion of the delay, then it must have equaled 
i at the beginning of the delay. If process j has not yet entered 7-v by the time 
i began executing the delay statement, then it cannot enter before the end of the 
delay statement, because the only way j can enter 7-q is by executing ,0 when 
y = 0 or E when y = j, both of which are impossible with y = i. By assumption, 
the delay is chosen to be long enough so that any process in 7-n at the beginning 
of the delay will have exited before the end of the delay. Hence, at the end of the 
delay, no process is in 7-v, so Pi’ is true. 

This completes the proof of mutual exclusion for Algorithm 1. Note how behav- 
ioral reasoning was used to prove that Pi’ holds after the delay. An assertional proof 
of this property would be quite difficult, requiring the introduction of an explicit 
clock and complicated axioms about the duration of operations. 
ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987 
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It is not difficult to convert the proof for the generic algorithm into a completely 
assertional proof for Algorithm 2, and this will be left as an exercise for the reader 
who wants a completely rigorous proof. A less formal behavioral proof is given 
here. Once again, we must prove that, if y = i when control reaches E, then no 
other process j is in 7-q. As in Algorithm 1, if y equals i when process i reaches c, 
then it must have equaled i throughout the execution of the for statement. Hence, 
if process j is outside 7-q some time during the execution of i’s for statement, then 
it is not in 7-v when i reaches c. However, bb] is true when process j is in 7-n. To 
reach E, process i must find b[j] false when executing the for loop, so j was not in 
7-q at that time and is thus not in it when i reaches c. This completes the proof 
of mutual exclusion for Algorithm 2. 

3.2 Deadlock Freedom 

Deadlock freedom means that, if a process tries to enter the critical section, then it 
or some other process must eventually be in the critical section. This is a liveness 
property, which can be proved formally using temporal logic-for example, with 
the method of Owicki and Lamport [9]. However, only an informal sketch of the 
proof will be given. The reader who is well versed in temporal logic will be able to 
flesh out the informal proof into a formal one in the style of Owicki and Lamport. 

Once again, correctness is proved first for the generic algorithm of Figure 3. Let 
;n(Si) be true if and only if control in process i is at the beginning of or within the 
statement 6, but not within the then clause of E. Deadlock freedom rests upon the 
following safety property: 

s. y = i # 0 3 (ZqSi) v ifz(CS~)) 

It is a simple matter to show that this assertion is true initially and is left true by 
every program action, so it is always true. 

For convenience, the proof will be expressed in terms of some simple temporal 
assertions-assertions that are true or false at a certain time during the execution. 
For any temporal assertions P and Q, the assertion UP (read henceforth P) is true 
at some instant if and only if P is true then and at all later times, and P w Q 
(read P leads to Q) is true at some instant if P is false then or Q is true then or 
at some future time. A precise semantics of the temporal operators •I and u can 
be found in [9]. 

Deadlock freedom is expressed by the formula &(a;) w 3~’ : in( csj), which is 
proved by assuming that at(ai) and q (Vj : +n(cai)) are true and obtaining a 
contradiction. (This is a proof by contradiction, based upon the temporal logic 
tautology ‘(P u Q) G (P A O-Q).) The proof is done by demonstrating a 
sequence of u relations (Al w AZ, A2 w AJ, etc.) leading to false, which is 
the required contradiction. Note that when one of these relations is of the form 
P * Q A OR, we can assume that OR is true in all the subsequent proofs. (Once 
OR becomes true, it remains true forever.) Also note that P > Q implies P - Q. 

The proof requires the following assumption about the achieve statement: 

T. If process i executes the achieve statement with q (y = i A Vj: +n(csj)) true, 
then that statement will terminate. 

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987. 
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The sequence of w relations is given below. 

at(cri) u y # 0. Process i either finds y # 0 in statement /3 or else sets y to i in 
the following statement. 

y # 0 > Oy # 0. Once y is nonzero, it can be set to zero only by some process 
executing statement n. However, this cannot happen since we are assuming OVj: 
+n( CSj). 

(Oy#O)-3j:Oy=j. Once y becomes and remains forever nonzero, no pro- 
cess can reach statement 7 that has not already done so. Eventually, all the pro- 
cesses that are at 7 will execute 7, after which the value of y remains the same. 

(Oy = j) - d(q). By the invariant S, y = j implies in(csj) V in(&). Since we 
have assumed q +n(csi), this implies that control in process j is within S and, if 
it is at the beginning of 6, must find 5 # j. By Assumption T, this implies that 
control in process j must eventually reach c. 

(Oy = j A at(q)) - false. Process j must eventually execute the test in state- 
ment c, find y = j, and enter the critical section, contradicting the assumption 
q lqcsj). 

This completes the proof of deadlock freedom for the generic algorithm. Since 
Assumption T is obviously true for Algorithm 1, this proves deadlock freedom for 
Algorithm 1. For Algorithm 2, observe that the proof for the generic’ algorithm 
remains valid even if the two goto’s can be delayed indefinitely. Thus, the proof 
holds for Algorithm 2 even though a process can remain forever in an await (y = 0) 
statement. To prove the deadlock freedom of Algorithm 2, it suffices to prove 
Assumption T, that q (y = i A Vj : +n( csi)) implies that process i’s for loop 
eventually terminates. This is easy to see, since b[j] must eventually become false 
and remain forever false for every process j. A more formal proof, in the style of 
Owicki and Lamport [9], is left as an exercise for the reader. 
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