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Abstract 

Unidraw is a framework for creating object-oriented graphical ed- 
itors in domains such as technical and artistic drawing, music 
composition, and CAD. The Unidraw architecture simplifies the 
construction of these editors by providing programming abstrac- 
tions that are common across domains. Unidraw defines four 
basic abstractions: components encapsulate the appearance and 
behavior of objects, tools support direct manipulation of compo- 
nents, commands define operations on components, and external 
representations define the mapping between components and a 
file or database. Unidraw also supports multiple views, graphi- 
cal connectivity, and dataflow between components. This paper 
presents Unidraw and three prototype domain-specific editors we 
have developed with it: a schematic capture system, a user in- 
terface builder, and a drawing editor. Experience indicates a sub- 
stantial reduction in implementation time and effort compared with 
existing tools. 

Keywords: object-oriented graphical editors, direct manipula- 
tion user interfaces, graphical constraints 

1 Introduction 

Graphical editors represent familiar objects visually and allow a 
user to manipulate the representations directly. Unfortunately, 
these editors are difficult to build with general user interface tools 
because of the special requirements of graphical editors. For ex- 
ample, user interface toolkits provide buttons, scroll bars, and 
ways to assemble them into a specific interface, but they do not of- 
fer primitives for building drawing editors that produce PostScript 
or schematic capture systems that produce netlists. Higher-level 
abstractions are required to make such editors easier to implement. 

We use the term graphical object editor for an application that 
lets users manipulate graphical representations of domain-specific 
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objects and generates one or more static representations. Most 
graphical object editors also feature 

l non-interactive operations, usually invoked from menus, that 
affect objects’ state; 

l structuring techniques for building hierarchies of objects; 

l mechanisms for propagating information and maintaining 
graphical constraints between objects; 

l and a persistent representation to store objects in non-volatile 
form. 

Unidraw is a collection of programming abstractions that simpli- 
fies the construction of graphical object editors. Unidraw reduces 
the time it takes to produce an editor for a domain by providing 
functionality characteristic of graphical object editors; it does not 
offer toolkit features (it is used in conjunction with a toolkit), nor 
does it assume the role of a program development environment 
(it provides objects that are used within an existing environment). 
In this paper we present the Unidraw architecture and discuss our 
prototype implementation, including a brief description of three 
editors we have built with the Unidraw prototype: a schematic 
capture system. a direct-manipulation user interface builder, and 
an object-oriented drawing editor similar to MacDraw. 

2 Related Work 
We can divide current systems that support graphical object editing 
into three categories: domain-specific editors, multi-domain sys- 
tems, and graphical programming environments. Domain-specific 
editors are stand-alone applications designed for editing in a par- 
ticular domain. Object-oriented drawing editors such as MacDraw 
are the most common example. Other examples are 

l computer-aided design (CAD) tools that provide a direct ma- 
nipulation metaphor for producing design specifications, such 
as VLSI layout editors for creating chip masks and schematic 
capture systems for generating netlists; 

l diagram editors [4, 61 that specify, model, and document 
physical or mathematical processes with graphical notations 
such as finite-state diagrams and petri nets; 

l and user interface editors that let nonprogrammers assemble 
a user interface by direct manipulation and then generate the 
source code for the interface. 

“Multi-domain” is a catch-all term for systems that are neither 
tied to a particular domain nor designed to supplant traditional 
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programming languages, as graphical programming environments 
are. Examples of multi-domain systems include user interface 
toolkits such as Interviews [S] and GROW [l] that support defi- 
nition and manipulation of an editor’s graphical data; simulation 
systems [3, 71 that provide a direct-manipulation metaphor for 
representing and analyzing real-world processes in areas such as 
data acquisition, manufacturing, and decision support; and gen- 
eral constraint-based graphical editors such as Sketchpad [9] and 
ThingLab [2], which can theoretically support graphical editing in 
any domain given enough constraints. 

Graphical programming environments [S] let users program by 
drawing pictures. Experienced programmers often use graphical 
notations to diagram their algorithms before turning them into 
code. Novices often find programming difficult because they are 
uncomfortable with the rigid syntax of textual languages. By spec- 
ifying programs in graphical terms that closely match the program- 
mer’s mental pictures, the expert can simply draw his algorithms; 
the novice can show the computer how to perform its task. Graph- 
ical programming environments would thus make programming 
easier for everyone, and creating domain-specific editors would 
be a natural extension of their capabilities. 

Our work with Unidraw focuses on production-quality domain- 
specific editors for a broad range of domains. Each of the ap- 
proaches described above falls short of this goal. Domain-specific 
editors are designed to support a single domain only. Existing 
multi-domain systems have at least one of the following short- 
comings: 

They provide relatively few abstractions for building domain- 
specific editors. For example, one toolkit might offer struc- 
tured graphics but not graphical constraints, while another 
supports constraints but not static representations, and so on. 

They require a large run-time environment or are embedded 
in a larger system. Thus they cannot be used to create stand- 
alone editors. 

The extension mechanism for multiple domains is not ef- 
ficient enough to be practical. For example, a fast general 
constraint solver is hard to implement. Developing a domain- 
specific editor that has acceptable performance is therefore 
difficult when constraints are the only extension mechanism. 

Graphical programming environments have proven inadequate as 
well. Though many such environments have been developed, none 
has succeeding in supplanting textual programming. Graphical 
languages generally lack efficiency of expression. They are ad- 
equate for describing simple algorithms and data structures but 
quickly become unwieldy for specifying more sophisticated con- 
structs. Moreover, most graphical programming systems are inter- 
pretive and must deal with considerable overhead associated with 
pictorial representations. Thus, performance is acceptable only for 
simple programs. 

3 Unidraw Architecture 
Unidraw is &signed to span the gap between traditional user in- 
terface toolkits and the implementation requirements of graphical 
object editors. An editor for a particular domain relies on Unidraw 
for its graphical editing capabilities, on the toolkit for the “look 
and feel” of the user interface, and on the window and operating 
systems for managing workstation resources. 

Figure 1 depicts the dependencies between the layers of soft- 
ware that underlie a domain-specific editor based on Unidraw. At 
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Figure 1: Layers of software underlying a domain-specific 
editor 

the lowest levels are the operating and window systems. Above the 
window system level are the abstractions provided by the toolkit, 
including buttons, scroll bars, menus, and techniques for compos- 
ing them into generic interfaces. Unidraw stands at the highest 
level of system software, providing abstractions that are closely 
matched to the requirements of graphical object editors. In theory, 
a domain-specific editor can access any of these layers; in prac- 
tice, minimizing the number of software interfaces the programmer 
must use dramatically reduces complexity. 

3.1 Overview 

Unidraw partitions the common attributes of domain-specific ed- 
itors into an object-oriented architecture having four class hierar- 
chies: 

Components are graphical representations of elements in a 
domain. Examples include geometric shapes in technical 
drawing, electronic parts in circuit layout, and notes in writ- 
ten music. Components encapsulate the appearance and be- 
havior of these elements. A domain-specific editor’s purpose 
is to allow the user to arrange components to convey infor- 
mation in the domain of interest. 

Tools support direct manipulation of components. Tools em- 
ploy animation and other visual effects for immediate feed- 
back to reinforce the user’s perception that he is dealing with 
real objects. Examples include tools for selecting compo- 
nents for subsequent editing, for applying coordinate trans- 
formations such as translation and rotation, and for connect- 
ing components. 

Commands &fine operations on components and other ob- 
jects. Commands are similar to messages in traditional 
object-oriented systems, except they are stateful and can be 
executed as well as interpreted by objects. Commands can 
also be reverse-executed, allowing rollback to a previous 
state. Examples include commands that change component 
attributes, duplicate components, and group several compo- 
nents into a composite component. 

External representations are used to convey domain- 
specific information outside the editor. Each component can 
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define one or more external representations of itself. For ex- 
ample, a transistor component can define both a PostScript 
representation for printing and a netlist representation for 
circuit simulation. 

The Unidraw architecture provides base classes for component, 
command, tool, and external representation objects. Subclasses 
implement the behavior of their instances according to the seman- 
tics of the protocol defined by their base class. For example, 
components support operations that define how commands affect 
their internal state. 

3.1.1 Subjects and Views 

A well-established user interface concept is the distinction be-- 
tween (1) the state and operations that characterize objects and 
(2) the way the objects are presented in a particular context. In 
Unidraw this distinction is manifest in the separation of compo- 
nents into subject and view objects. A subject defines the context- 
independent state and operations of a component. A view supports 
a context-dependent presentation of the subject. A component 
subject may have one or more component views, each offering a 
different representation of and interface to the subject. A subject 
notifies its views whenever its state is modiEed to allow them to 
change their state or appearance to reflect the modification. 

A component subject maintains information that characterizes 
the component; in the case of a logic gate component, for example, 
the subject might contain information about what is connected 
to the gate and its current input values. Different views of the 
subject can reflect this information in distinctive ways and can 
provide additional information as well. One view can depict the 
gate graphically by drawing the appropriate logic symbol, and it 
might also define what it means to manipulate the gate with a tool. 
Another view can provide the external representation of the gate 
by generating a netlist from the connectivity information in the 
subject. 

3.1.2 Application Framework 

Figure 2 shows the general structure of a domain-specific edi- 
tor based on Unidraw. At the bottom level in the diagram are 
two component subjects, the leftmost containing subcomponent 
subjects. An entire domain-specific drawing is represented by a 
composite component subject that can be incorporated into a larger 
work. At the second level from the bottom are the corresponding 
views of the subjects. Note that the right-hand subject has two 
views attached. Each component view is placed in a viewer at the 
third level. A viewer displays a graphical component view, most 
often the root view in a hierarchy. A viewer provides a framework 
for displaying the view, supporting such “non-semantic” manipu- 
lations as scrolling and zooming. Viewers also take raw window 
system or toolkit events and translate them to conform to standard 
Unidraw protocols. 

An editor associates tools and user-accessible commands with 
one or more viewers and combines them into a coherent user in- 
terface. An editor also maintains a selection object that manages 
component views in which the user has expressed interest. A 
Unidraw-based application can create any number of editor ob- 
jects, allowing the user to work on multiple views of components. 
Operations requiring inter-editor communication or coordination 
access the unidraw object, a one-of-a-kind object maintained by 
the application. For example, commands that allow the user to 

Figure 2: General sbucture of a domain-specific editor 
based on Unidraw 

open and close editors and quit the application must access this 
object. The unidraw object also maintains logs of commands that 
have been executed and reverse-executed to support arbitrary-level 
undo and redo. Not shown in the diagram is the catalog object, 
which manages a database of components, commands, and tools. 
At minimum, a domain-specik editor uses the catalog to name, 
store, and retrieve components that represent user drawings. An 
editor could also access unused commands and tools and incorpo- 
rate them into its interface at run-time. 

This structure provides a standard framework for building 
domain-specific editors, yet it allows substantial latitude for cus- 
tomized interfaces. Nothing in this architecture dictates, for ex- 
ample, a particular look and feel for a given editor object. A 
domain-specific editor may define editor objects that use sepa- 
rate windows for their commands, tools, and viewers. The ar- 
chitecture only specifies how the editor mediates communication 
between components and the commands, tools, and viewers that 
affect them. 

3.2 Components 
A component defines the appearance and behavior of a domain- 
specific object. A component’s behavior has three aspects: (1) 
how it responds to commands and tools, (2) its connectivity, and 
(3) how it communicates with other components. This section 
describes the protocols and abstractions that support component 
semantics. 

3.2.1 Subject and View Protocols 

The Unidraw architecture defines separate protocols for compo- 
nent subjects and views. Tables 1 and 2 list the protocols’ basic 
operations, Component subjects &fine Attach and Detach opera- 
tions to establish or destroy a connection with a component view. 
Notify alerts the subject’s views to the possibility that their state 
is inconsistent with the subject’s. Upon notification, a view recon- 
ciles any inconsistencies between the subject’s state and its own. 
The Update operation is used to notify the subject that some state 
upon which it depends has changed. The subject is responsible 
for updating its state in response to an Update message. 
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return values 

transfer fn. 

graphic 

mobility 

operation 
Attach 
Detach 
Notify 
update 
Interpret 
Uninterpret 
GetTransferFunction 
{child iteration 
and manipulation 
operations} 
GetGraphic 
SetMobility 
GetMobiliW 

arguments 
Comp. view 
Comp. view 

command 
command 

mobility 

Table 1: Component subject protocol 

return values 

graphic 

manipulator 
command 

operation arguments 
update 
Interpret command 
Uninterpret command 
{child iteration 
and manipulation 
operations} 
GetGraphic 
Highlight 
Unhighlight 
CreateManipulator tool, event 
InterpretManipulator manipulator 

Table 2: Component view protocol 

A component subject can be passed a command to interpret 
via the Interpret operation. The semantics of this operation are 
component-speciEc; the subject typically retrieves information 
from the command for internal use or executes the command. The 
Uninterpret operation allows the component to negate the effects 
of a command; the subject might undo internal state changes based 
on information in the command, or it might simply reverse-execute 
the command. Components can also define a transfer function, 
described in Section 3.2.4, that can be accessed via the GetTrans- 
ferFunction operation. Finally, a component subject can contain 
other component subjects, allowing hierarchies of domain-speciEc 
components. Component subjects therefore define a family of op- 
erations for iterating through their child subjects (if any) and for 
reordering them. 

The component view protocol duplicates some of the subject 
protocol’s operations, namely Update, Interpret, Uninterpret, and 
those for child iteration and manipulation. A subject’s Notify op- 
eration usually calls Update on each of its views. Interpret and 
Uninterpret are deEned on views because some objects manipulate 
component views rather than their subjects. Thus it may be con- 
venient to send a command to a view for (un)interpretation, which 
may in turn send it to its subject. A component view may have 
a subcomponent view structure, which may or may not reflect its 
subject’s structure, so the view protocol also defines child iteration 
and manipulation operations. 

Graphical components are specialized components that use 
graphic objects in both their subjects and views to define their 
appearance. A graphic contains graphics state and geometric in- 
formation and uses this information to draw itself and to perform 
hit detection. By definition, graphical component subjects store 
their geometric and graphics state in a graphic, providing a stan- 
dard interface for retrieving this information. The GetGraphic 
operation returns the information in the subject’s graphic. Graph- 
ical component subjects can also have a mobility attribute and 
define operations for assigning and retrieving it. Later we show 
how mobility is used to deEne the component’s connectivity se- 
mantics. 

Several operations augment the basic component view proto- 
col to support graphical component views. These views main- 
tain a graphic that defines their appearance, so they provide a 
GetGraphic operation. Highlight and Unhighlight operations let 
views distinguish themselves graphically, for example, when they 
are selected. CreateManipulator and InterpretManipulator define 
how a graphical component view reacts when it is manipulated by 
a tool and how the tool affects the component after manipulation. 
Both operations use a manipulator to characterize the manipu- 
lation. Manipulators abstract and encapsulate the mechanics of 
direct manipulation; they are discussed further in Section 3.4. 

3.2.2 Connectors 

Unidraw supports connectivity and confinement semantics with 
the connector graphical component subclass. Since connectors 
are components, each consists of a subject and zero or more views 
and can be manipulated directly. Often, however, connectors are 
embedded in larger components that use connector subjects to 
define their own connectivity semantics but do not incorporate the 
corresponding connector views in their own views. 

A connector can be connected to one or more other connectors. 
Once connected, two connectors can affect each other’s position in 
specific ways, as deEned by the semantics of the connection. Con- 
nector subclasses support different connection semantics. A pin 
contributes zero degrees of freedom to a connection. A degree of 
freedom is an independent variable along a particular dimension, 
which for connectors is a Cartesian coordinate. Slots and pads 
provide one and two degrees of freedom within certain bounds, 
respectively. 

Figure 3 shows how different connectors behavein several con- 
nections, using the connectors’ default graphical representations. 
The centers of two connected pins must always coincide (Fig- 
ure 3a). A pin connected to a slot (Figure 3b) is free to move 
along the slot’s major axis until it reaches either end of the slot; 
the pin cannot move in the transverse dimension. Two connected 
slots (Figure 3c) can move relative to each other as long as the 
center lines of their major axes share a point. Finally, Figure 3d 
shows how a pad-pin connection constrains the pin to stay within 
the confines of the pad. 

The connectors’ mobilities characterize how each connector 
moves to satisfy the connection constraints. A mobility attribute 
can have one of three values: fixed, floating, or undefined. In 
general, a fixed component’s position cannot be affected by a con- 
nection regardless of the connection’s semantics, while a floating 
component will move to satisfy the connection’s semantics. The 
behavior of a connector with undefined mobility is indeterminate. 
Composite components often have undefined mobility to avoid 
overriding their children’s mobilities. 
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Figure 3: Several connections and their semantics 

Figure 4: Possible composition of an inverter component 

Mobility specifications disambiguate the semantics of a connec- 
tion. In Figure 3b. for example, it is unclear which connector (the 
pin or the slot) actually moves. If, however, the slot’s mobility is 
fixed and the pin’s is floating, then the pin will always move to 
satisfy the connection constraints. If the slot is moved explicitly, 
then the pin will move to stay within it. An attempt to explicitly 
move the pin beyond the slot’s bounds will fail; in fact, if the pin 
is also connected to another, orthogonal slot, any attempt to move 
it explicitly will fail. As a corollary, a connection can have no 
effect on two Exed connectors. 

3.2.3 Domain-Specific Connectivity 

Domain-specific components use connectors to define their con- 
nectivity semantics. For example, consider an inverter schematic 
component whose wires remain connected when the user moves 
it. Figure 4 shows how the inverter subject and view can be com- 
posed with polygon, circle, and pin subjects and views. Note that 

the pins are treated as any other component in the composition, but 
they have a special responsibility to define the inverter’s connec- 
tivity semantics. The inverter gives its pins Exed mobility so that 
their positions are unaffected by any connections to them. When 
the inverter is moved, it moves all its components. Since the pins 
are Exed, they will not be affected by their connections; rather, 
any floating connectors that are connected to the pins will move 
as the connection permits. One such floating connector might be 
a pin subcomponent of a wire component whose shape is deter- 
mined by the position of the pin; the wire therefore deforms to 
maintain the connection. Graphical components can thus extend 
the connectivity behavior of primitive connectors to define their 
own connectivity semantics. 

3.2.4 Dataflow 

Communication between components is often tied closely to their 
connectivity. Unidraw provides a standard way for components to 
communicate via dataflow and for associating dataflow with their 
connectivity. 

Component subjects often maintain state on which other sub- 
jects depend or state that must be accessible to the user. Unidraw 
defines a set of objects called state variables that provide a stan- 
dard way to represent and access this state. State variables are 
commonly used to allow user modification of component attributes 
and to support dataflow between components. Like components, 
state variables are partitioned into subjects and views. The state 
variable subject represents a typed datum, and views provide a 
graphical interface that lets a user examine and modify the sub- 
ject. A component can make its state variables available externally 
by providing access operations as necessary. 

A state variable can be bound to a connector like an actual pa- 
rameter is bound to a formal parameter in a procedure call. Con- 
nectors define “parameter passing” semantics for any bound state 
variable, one of in, out, or inout. When connected, two connec- 
tors with bound state variables will pass their values accordingly; 
for example, an in connector’s state variable will receive the value 
of an out connector’s variable. Passing a value between incom- 
patible connectors (such as two out connectors) is an error; such 
connections should be disallowed by the tool or command making 
the connection. 

Transfer functions complete the dataflow model by participating 
in the propagation of state variable values. A transfer function 
defines a relationship between state variables, modifying one set 
of variables based on the values of another set. For example, 
the inverter could use an Invert transfer function to establish a 
dependency between the logic level state variables bound to its in 
and out pins: Invert assigns the inverse value of the input variable 
to the output variable. Thus transfer functions describe how values 
change as they flow horn one component to another. 

3.3 Commands 
Commands are analogous to messages because they can be inter- 
preted by components. Commands are also like methods in that 
they are stateful and can be executed, and they resemble trans- 
actions because they can be reverse-executed to a previous state. 
Some commands may be directly accessible to the user as menu 
operations, while others are only used by the editor internally. In 
general, any undoable operations should be carried out by com- 
mand objects. 
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return values I bveration I armmmts 

boolean 

clipboard 

Execute 
Unexecute 
Reversible 
Store 
Recall 
SetClipboard 
GetClipboard 
{child iteration 
and manipulation 
oDerafions1 

Comp. subj., any 
Comp. subj. 
clipboard 

Table 3: Command protocol 

Table 3 shows the basic operations defined by the command 
protocol. Execute performs computation to carry out the com- 
mand’s semantics. Unexecute performs computation to reverse the 
effects of a previous Execute, based on whatever internal state the 
command maintains. A command is responsible for maintaining 
enough state to reverse one Execute operation; repeated Unexe- 
cute operations will not undo the effects of more than one Execute. 
Multilevel undo can be implemented by keeping an ordered list of 
commands to reverse-execute. It may not be meaningful or appro- 
priate, however, for some commands to reverse their effect. For 
example, it is probably not feasible to undo a command that gener- 
ates an external representation. The Reversible operation indicates 
whether or not the command is unexecutable and uninterpretable. 
If the command is not reversible, then it can be ignored during 
the undo process. 

Since a command can affect more than one component, the 
command protocol must allow components that interpret the com- 
mand to store information in it that they can later use to reverse its 
effects. The Store operation allows a component to store informa- 
tion in the command as part of its Interpret operation. The compo- 
nent can retrieve this information later with the Recall operation 
if it must uninterpret the command. Furthermore, commands that 
operate on selected or otherwise distinguished components must 
maintain a record of the component subjects they affected and the 
order in which they were affected. Commands therefore store a 
clipboard object, which can be assigned and retrieved with the 
SetClipboard and GetClipboard operations. A clipboard keeps a 
list of component subjects and provides operations for iterating 
through the list and manipulating its elements. Typically, the clip- 
board is initialized with the component subjects whose views are 
currently selected when the command is ftrst executed. Purely 
interpretive commands should &fine their Execute and Unexecute 
functions to invoke Interpret and Uninterpret on the components 
in their clipboard. 

It is often convenient to create “macro” commands, that is, 
commands composed of other commands. The command proto- 
col includes operations for iterating through and manipulating its 
children, if any. By default, (un)executing or (un)interpreting a 
macro command is semantically identical to performing the cor- 
responding operations on each of its children. 

3.4 Tools 

By definition, a graphical object editor supports the direct ma- 
nipulation model of interaction. Unidraw-based editors use tool 

Table 4: Tool protocol 

objects to allow the user to manipulate components directly. The 
user grasps and wields a tool to achieve a desired effect. The effect 
may involve a change to one or more components’ internal state, 
or it may change the way components are viewed, or there may 
be no effect at all (if the tool is used in an inappropriate context, 
for example). Tools often use animated graphical effects as they 
are wielded to suggest how they will affect their environment. 

3.4.1 Tool Protocol 

The basic tool protocol is shown in Table 4. Conceptually, tools 
work within viewers, in which graphical component views are dis- 
played and manipulated. Whenever a viewer receives an event, 
it in turn asks the current tool (defined by the enclosing editor 
object) to produce a manipulator object. A tool implements its 
CreateManipulator operation to create and initialize an appropriate 
manipulator, which encapsulates the tool’s manipulation semantics 
by defining the three phases (grasp, wield, effect) of the manip- 
ulation. A tool may modify the contents of the current selection 
object (also defined by the enclosing editor) based on the event. 
Moreover, a tool can delegate manipulator creation to one or more 
graphical component views (usually among those in the editor’s 
selection object) to allow component-specific interaction. A tool’s 
InterpretManipulator operation analyzes information in the ma- 
nipulator that characterizes the manipulation and then creates a 
command that carries out the desired effect. If the tool delegated 
manipulator creation to a graphical component view, then it must 
delegate its interpretation to the same view. 

The GetPrototype operation is defined by the graphical com- 
ponent tool subclass. Graphical component tools maintain a pro- 
totype component and detine how that component is created and 
added to the component hierarchy in the viewer. The prototype 
consists of both a graphical component subject and a view. The 
tool copies the prototype, modifies it to conform to the direct ma- 
nipulation, and inserts it into the component hierarchy using an 
appropriate command. 

3.4.2 Manipulator Protocol 

The manipulator protocol (Table 5) is designed to reflect the grasp- 
wield-effect behavior of tools. The Grasp operation takes a win- 
dow system event (such as a mouse click or key press) and ini- 
tializes whatever state is needed for the direct manipulation (such 
as animation objects). During direct manipulation, the Manipu- 
lating operation is called repeatedly until the manipulator decides 
that manipulation has terminated (based on its own termination 
criteria) and indicates this by returning a false value. The Ef- 
fect operation gives the manipulator a chance to perform any final 
actions following the manipulation. 

Some kinds of direct manipulation may require several sub- 
manipulations to progress simultaneously (for instance, the editor 
may allow the user to manipulate more than one component at a 
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return values operation arguments 
I Grasp I event 

Table 5: Manipulator protocol 

Figure 5: Communication between objects during direct 
manipulation 

time). A manipulator can therefore have children, and the ma- 
nipulator protocol includes operations for iterating through and 
manipulating them. 

This simple protocol is sufficient to describe direct manipula- 
tions ranging from text entry and rubberbanding effects to sim- 
ulating real-world dynamics such as imparting momentum to an 
object. Unidraw implementations can predefine manipulators for 
the most common kinds of manipulation. Since manipulators must 
maintain information that characterizes the final outcome of a ma- 
nipulation, subclasses usually augment the protocol with opera- 
tions for retrieving state that determines this outcome. For exam- 
ple, a manipulator that supports dragging the mouse to translate 
a graphical component will &fine an operation for retrieving the 
distance moved. 

3.4.3 Object Communication during 
Direct Manipulation 

Figure 5 diagrams the communication between objects during di- 
rect manipulation. The numeric labels in the diagram correspond 
to the transmission sequence: 

1. The viewer receives an input event, such as the press of a 
mouse button. 

2. The viewer asks the current tool to CreateManipulator based 
on the event. 

3. Manipulator creation: the tool either 

(a) creates a manipulator itself (based on the selection or 

other information), or 

(b) asks the component view(s) to create the manipula- 
tor(s) on its behalf. The tool must combine multiple 
manipulators into a composite manipulator. Each class 
of component view is responsible for creating an ap- 
propriate manipulator for the tool. 

4. Direct manipulation: the viewer 

(a) invokes Grasp on the manipulator, supplying the initi- 
ating event; 

(b) loops, reading subsequent events and sending them 
to the manipulator in a Manipulating operation (loop- 
ing continues until the Manipulating operation returns 
false); 

(c) invokes Effect on the manipulator, supplying the event 
that terminated the loop. 

5. The viewer asks the current tool to InterpretManipulator. 

6. Manipulator interpretation: the tool either 

(a) interprets the manipulator itself, creating the appropri- 
ate command, or 

(b) asks the component view(s) to interpret the manipu- 
lator(s) on its behalf. The view(s) then create(s) the 
appropriate command(s). The tool must combine mul- 
tiple commands into a composite (macro) command. 

7. The viewer executes the command. 

8. The command carries out the intention of the direct manip- 
ulation. 

To illustrate this process, consider the following example of 
direct manipulation in a drawing editor. Suppose the user clicks 
on an rectangle component view (Rectangle view) in the drawing 
area (viewer) with the MoveTool. The viewer receives a “mouse- 
button-went-down” event and asks the current tool (the MoveTool, 
as provided by the enclosing editor) to CreateManipulator based 
on the event. MoveTool’s CreateManipulator operation determines 
from the event which component view was hit and adds it to the 
selection. More precisely, the selection object provided by the 
enclosing editor appends the view to its list. 

If the selection object contains only one component view, then 
MoveTool’s CreateManipulator operation calls CreateManipulator 
on that component view. This gives the component view a chance 
to create the manipulator it deems appropriate for the MoveTool 
under the circumstances. Since the user clicked on a Rectan- 
gleView, the component view will create a DragManipulator, a 
manipulator that implements an downclick-drag-upclick style of 
manipulation. DragManipulators animate the dragging portion of 
the manipulation by drawing a particular shape in slightly differ- 
ent ways in each successive call to their Manipulating operation. 
The definition of DragManipulator parameterizes the shape so that 
subclasses of DragManipulator are not needed to support dragging 
different shapes. 

Once the viewer obtains the DragManipulator from the Move- 
Tool, the viewer creates the illusion that the user is “grasping” and 
“wielding” the tool. First the viewer calls Grasp on the manipu- 
lator, which allows the manipulator to initialize itself and perhaps 
draw the first “frame” of the animation. Then the viewer loops, 
forwarding ail subsequent events to the manipulator’s Manipulat- 
ing operation until it returns false. Successive calls to Manipu- 
lating produce successive frames of the animation. Once manip- 
ulation ia complete, the viewer invokes the manipulator’s Effect 
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operation, which gives the DragManipulator a chance to finalize 
the animation and the state it maintains to characterize the ma- 
nipulation. The viewer then asks the tool to InterpretManipulator; 
in this case, the MoveTool in turn asks the RectangleView to In- 
terpretManipulator. In response, RectangleView constructs and 
returns a MoveCommand, which specifies a translation transfor- 
mation. The RectangleView initializes the amount of translation 
in the MoveCommand to the distance between the initial and final 
frames of the animation, which it obtains from the DragManipu- 
lator. 

3.5 External Representations 

An external representation of a component is simply a non- 
graphical view of the corresponding component subject. Domain- 
specific external representations are derived from the external 
view subclass of component view. 

The external view protocol defines two operations, Emit and 
Definition, that generate a stream of bytes constituting the external 
representation. Emit initiates external representation generation, 
and Definition is called recursively by Emit. Emit normally calls 
the external view’s own Definition operation first. Then if the 
external view contains subviews, Emit must invoke the children’s 
Definition operations in the proper order to ensure a syntactically- 
correct external representation. 

Emit is often used to generate “header” information that appears 
only once in the external representation, while DeGnition produces 
component-specific, context-independent information. For exam- 
ple, a drawing editor might define a PosLScriptViewextemal view 
subclass that defines Emit to generate global procedures and def- 
initions. Component-specific subclasses of PostScriptView then 
need only define Definition to externalize the state of their corre- 
sponding component. Thus when Emit is invoked on an instance 
of any PostScriptView subclass, a stand-alone PostScript repre- 
sentation (known as “encapsulated” PostScript) will be generated. 
When the same instance is buried in a larger PostScriptView, only 
its definition will be emitted. 

The architecture predefines preorder, inorder, and postorder 
external views. These subclasses manage subviews and support 
one of three common traversals of the external view hierarchy. 

4 Prototype Implementation 
Our Unidraw prototype is a library of C++ classes containing about 
20,000 lines of source. It runs on top of Interviews and the X 
Window System. The prototype uses Interviews’ object-oriented 
structured graphics [lo] to support graphical components and its 
persistent object facility for implementing catalog semantics. 

C++ is an attractive language for our purposes because of its 
efficiency and true object-oriented semantics, but it does not al- 
low sending arbitrary messages to objects. Messages are sent via 
strongly-typed procedure calls, so a class must declare all accept- 
able messages at compile-time. Thus, component operations such 
as Interpret and Uninterpret cannot be implemented by accepting 
untyped messages from commands. In lieu of this capability, com- 
ponents must query the command to determine its class, but C++ 
cannot provide this information at run-time. We solved this prob- 
lem in our implementation by using the ISA operation defined for 
InterViews persistent objects, but ideally me language would pro- 
vide either run-time class resolution or untyped (or dynamically- 
typed) method lookup. 

voidUpdateViewStructure () { 

iteratorsubj = SubjectsFirstChildO; 

iteratorview = ViewsFirstChild(); 

DeleteSubjectlessViews(); 

do I 
if (*subj != *view) { 

UpdateCurrent(subj, view); 

Advance(subj); 

Advance(view); 

} until (Done(subj) 11 Done(view)); 

UpdateExcessSubjects(subj); 

DeleteExcessViews(view); 

Figure 6: View structure update algorithm 

The remainder of this section discusses two significant aspects 
of the implementation followed by a brief description of the three 
domain-specific editors we have implemented with the Unidraw 
prototype. 

4.1 View Consistency 

A component view must reconcile its internal state with its sub- 
ject’s when Update is called. This is usually trivial for leaf com- 
ponents, but components with children must be prepared to re- 
structure themselves to conform to their subject’s structure. To 
accomplish this, the view could assume that all its children are in- 
consistent with their subjects’ and just rebuild them from scratch 
based on the subject’s structure. This approach is simple but po- 
tentially expensive. Moreover, the subject’s structure usually stays 
the same or changes only slightly, so an incremental approach in 
which the view reuses most of its children is preferable. Our im- 
plementation supports the common case where the view’s child 
structure is identical to the subject’s. Components with differ- 
ing subject and view structures must implement their own update 
algorithm. 

Figure 6 shows the algorithm. On Update, any children that no 
longer have a subject are destroyed. Then the list of child views 
is compared to the list of child subjects. If there is a subject-view 
mismatch, the UpdateCurrent operation is called. UpdateCurrent 
performs two searches through the remaining views and subjects. 
If it does not find a view corresponding to the current subject, it 
creates one and inserts it before the current view; otherwise, it 
moves the corresponding view to its proper position. If it does 
not find the current view’s subject among the remaining subjects, 
it deletes the view; otherwise, if the corresponding subject does 
not follow the current subject, it moves the view to the end of the 
list of child views for repositioning in subsequent iterations. The 
main iteration loop continues until either the subject or me view 
runs out of children. Finally, views are created for any remaining 
subjects, and unused views are destroyed. 
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Figure 7: Recursive solution of connection network 

4.2 Connector Implementation 

Connectivity semantics are enforced by a csolver object that man- 
ages connection networks, or disjoint sets of connections. A con- 
nection consists of two connectors and a piece of connector glue. 
Connector glue is characterized by a natural size, elasticity, and 
deformation limits. Elasticity is specified in terms of independent 
shrinkability and stretchability parameters. Deformation limits are 
expressed as independent limits on the total amount the glue can 
stretch and shrink. A connection uses connector glue to define 
the relationship between connectors’ centers, thus defining their 
connectivity semantics. For example, connector glue of zero nat- 
ural size and elasticity is used to implement pin-pin connection 
semantics. Pin-pad semantics are modeled with a piece of glue of 
infinite elasticity within limits that keep the pin inside the pad. 

The csolver is responsible for solving constraint networks that 
have been perturbed meaning it must position the connectors to 
satisfy all connection semantics. The csolver stores each conneo- 
tion network as a list of connections. It solves each network by 
recursively identifying primitive combinations of connections and 
replacing them with equivalent connections. The two most com- 
mon primitive combinations are series and parallel connections. 
Figure 7 depicts the process of recursive substitution on a net- 
work having three connections. Connectors are shown as circles, 
and connector glue is represented by resistor symbols. The shaded 
connectors have fixed mobility, while the others are floating. On 
the initial recursion, the csolver identifies the parallel combination 
of G2 and G3 and replaces it with an equivalent connection. It 
replaces the resulting series combination with another equivalent 
connection on the second recursion, leaving a single connection. 
Recursion terminates whenever a single connection remains or all 
connectors are fixed, at which point the connectors’ positions are 
determinate. The csolver then unwinds the recursion, apportioning 
the amount of stretch or shrink applied to each equivalent connec- 
tion to the connections they replaced until the original network is 
obtained. Then the csolver issues move commands to the affected 
connectors. 

4.3 Three Domain-Specific Editor 
Prototypes 

We have built three domain-specific editors with our prototype 
Unidraw library: a schematic capture system (see Figure 8), a 
user interface builder (Figure 9), and a drawing editor (Figure 10). 

Figure 8: Schematic capture system prototype 

Figure 9: User interface builder prototype 

I 

I I 

Figure 10: Drawing editor prototype 
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All provide a direct-manipulation, multi-view editing environment. 
The schematic capture system lets the user wire-up circuit ele- 
ments (such as gates, latches, and pass transistors) and generates 
a netlist of the resulting circuit. The system supports hierarchical 
composition of circuit elements and maintains graphical connec- 
tivity between them. The user interface builder lets the user com- 
pose a user interface. in terms of Interviews toolkit absbractions 
and generates C++ source code to be incorporated into the target 
application. Finally, the drawing editor provides MacDraw-like 
functionality (with the added benefits of multiple views) and gen- 
erates PostScript. The prototype schematic capture system and 
user interface builder are less than 5000 lines each, while the 
drawing editor is less than 2500 lines. 

5 Conclusion 

Unidraw greatly facilitated the implementation of our three pro- 
totype domain-specific editors. Though these editors do not yet 
represent production-quality systems, they have proven to be use- 
ful tools for their intended purposes. Unidraw narrowed the de- 
sign space for each editor significantly, obviating basic design 
decisions that are independent of the domain. The prototype li- 
brary provided reusable functionality in the form of predefined 
components, commands, and tools. Debugging time was reduced 
because much less code was written. Our experience is that de- 
veloping domain-specific editors with Unidraw is mainly a matter 
of choosing, designing, and implementing the required domain- 
specific components. Significantly less effort is spent defining 
new commands, while specialized tools are needed the least of- 
ten. 

The architecture is undergoing continuous refinement as we ex- 
periment with the prototype. Fertile ground for future research 
involves additional support for external representations, which is 
a difficult problem in general. We would like to go beyond the 
current predefined external view traversals to develop a more pow- 
erful model that includes support for interpreting external repre- 
sentations. This capability would let a domain-specific editor read 
in existing representations, including those not generated by the 
editor itself. For example, a schematic editor could read in an 
existing netlist, allow the user to edit it graphically, and generate 
a new netlist. A logic simulator could then give the user feedback 
about the modified circuit’s behavior, which might prompt him 
to edit the circuit again. The ability to read as well as write ex- 
ternal representations permits iterative design by closing the loop 
between specification and analysis, making Unidraw-based tools 
even more useful. 
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