
Unidraw: A Framework for Building
Domain-Specific Graphical Editors

John M. Vlissides and Mark A. Linton
Center for Integrated Systems

Stanford University
Stanford, California 94305

Abstract

Unidraw is a framework for creating object-oriented graphical ed-
itors in domains such as technical and artistic drawing, music
composition, and CAD. The Unidraw architecture simplifies the
construction of these editors by providing programming abstrac-
tions that are common across domains. Unidraw defines four
basic abstractions: components encapsulate the appearance and
behavior of objects, tools support direct manipulation of compo-
nents, commands define operations on components, and external
representations define the mapping between components and a
file or database. Unidraw also supports multiple views, graphi-
cal connectivity, and dataflow between components. This paper
presents Unidraw and three prototype domain-specific editors we
have developed with it: a schematic capture system, a user in-
terface builder, and a drawing editor. Experience indicates a sub-
stantial reduction in implementation time and effort compared with
existing tools.

Keywords: object-oriented graphical editors, direct manipula-
tion user interfaces, graphical constraints

1 Introduction

Graphical editors represent familiar objects visually and allow a
user to manipulate the representations directly. Unfortunately,
these editors are difficult to build with general user interface tools
because of the special requirements of graphical editors. For ex-
ample, user interface toolkits provide buttons, scroll bars, and
ways to assemble them into a specific interface, but they do not of-
fer primitives for building drawing editors that produce PostScript
or schematic capture systems that produce netlists. Higher-level
abstractions are required to make such editors easier to implement.

We use the term graphical object editor for an application that
lets users manipulate graphical representations of domain-specific

This research has been supported by the NASA CASK project under
Contract NAGW 419 and by the Quantum project through a gift from
Digital Equipment Corporation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1989 ACM O-89791-335-3/89/001 l/O158 $1.50

objects and generates one or more static representations. Most
graphical object editors also feature

l non-interactive operations, usually invoked from menus, that
affect objects’ state;

l structuring techniques for building hierarchies of objects;

l mechanisms for propagating information and maintaining
graphical constraints between objects;

l and a persistent representation to store objects in non-volatile
form.

Unidraw is a collection of programming abstractions that simpli-
fies the construction of graphical object editors. Unidraw reduces
the time it takes to produce an editor for a domain by providing
functionality characteristic of graphical object editors; it does not
offer toolkit features (it is used in conjunction with a toolkit), nor
does it assume the role of a program development environment
(it provides objects that are used within an existing environment).
In this paper we present the Unidraw architecture and discuss our
prototype implementation, including a brief description of three
editors we have built with the Unidraw prototype: a schematic
capture system. a direct-manipulation user interface builder, and
an object-oriented drawing editor similar to MacDraw.

2 Related Work
We can divide current systems that support graphical object editing
into three categories: domain-specific editors, multi-domain sys-
tems, and graphical programming environments. Domain-specific
editors are stand-alone applications designed for editing in a par-
ticular domain. Object-oriented drawing editors such as MacDraw
are the most common example. Other examples are

l computer-aided design (CAD) tools that provide a direct ma-
nipulation metaphor for producing design specifications, such
as VLSI layout editors for creating chip masks and schematic
capture systems for generating netlists;

l diagram editors [4, 61 that specify, model, and document
physical or mathematical processes with graphical notations
such as finite-state diagrams and petri nets;

l and user interface editors that let nonprogrammers assemble
a user interface by direct manipulation and then generate the
source code for the interface.

“Multi-domain” is a catch-all term for systems that are neither
tied to a particular domain nor designed to supplant traditional

158

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73660.73680&domain=pdf&date_stamp=1989-11-13

programming languages, as graphical programming environments
are. Examples of multi-domain systems include user interface
toolkits such as Interviews [S] and GROW [l] that support defi-
nition and manipulation of an editor’s graphical data; simulation
systems [3, 71 that provide a direct-manipulation metaphor for
representing and analyzing real-world processes in areas such as
data acquisition, manufacturing, and decision support; and gen-
eral constraint-based graphical editors such as Sketchpad [9] and
ThingLab [2], which can theoretically support graphical editing in
any domain given enough constraints.

Graphical programming environments [S] let users program by
drawing pictures. Experienced programmers often use graphical
notations to diagram their algorithms before turning them into
code. Novices often find programming difficult because they are
uncomfortable with the rigid syntax of textual languages. By spec-
ifying programs in graphical terms that closely match the program-
mer’s mental pictures, the expert can simply draw his algorithms;
the novice can show the computer how to perform its task. Graph-
ical programming environments would thus make programming
easier for everyone, and creating domain-specific editors would
be a natural extension of their capabilities.

Our work with Unidraw focuses on production-quality domain-
specific editors for a broad range of domains. Each of the ap-
proaches described above falls short of this goal. Domain-specific
editors are designed to support a single domain only. Existing
multi-domain systems have at least one of the following short-
comings:

They provide relatively few abstractions for building domain-
specific editors. For example, one toolkit might offer struc-
tured graphics but not graphical constraints, while another
supports constraints but not static representations, and so on.

They require a large run-time environment or are embedded
in a larger system. Thus they cannot be used to create stand-
alone editors.

The extension mechanism for multiple domains is not ef-
ficient enough to be practical. For example, a fast general
constraint solver is hard to implement. Developing a domain-
specific editor that has acceptable performance is therefore
difficult when constraints are the only extension mechanism.

Graphical programming environments have proven inadequate as
well. Though many such environments have been developed, none
has succeeding in supplanting textual programming. Graphical
languages generally lack efficiency of expression. They are ad-
equate for describing simple algorithms and data structures but
quickly become unwieldy for specifying more sophisticated con-
structs. Moreover, most graphical programming systems are inter-
pretive and must deal with considerable overhead associated with
pictorial representations. Thus, performance is acceptable only for
simple programs.

3 Unidraw Architecture
Unidraw is &signed to span the gap between traditional user in-
terface toolkits and the implementation requirements of graphical
object editors. An editor for a particular domain relies on Unidraw
for its graphical editing capabilities, on the toolkit for the “look
and feel” of the user interface, and on the window and operating
systems for managing workstation resources.

Figure 1 depicts the dependencies between the layers of soft-
ware that underlie a domain-specific editor based on Unidraw. At

Domainqecific editor
I I I 1 1

i i

i\ Window aptem I
I I
I I

I
\ \

Operating l yatem I

Figure 1: Layers of software underlying a domain-specific
editor

the lowest levels are the operating and window systems. Above the
window system level are the abstractions provided by the toolkit,
including buttons, scroll bars, menus, and techniques for compos-
ing them into generic interfaces. Unidraw stands at the highest
level of system software, providing abstractions that are closely
matched to the requirements of graphical object editors. In theory,
a domain-specific editor can access any of these layers; in prac-
tice, minimizing the number of software interfaces the programmer
must use dramatically reduces complexity.

3.1 Overview

Unidraw partitions the common attributes of domain-specific ed-
itors into an object-oriented architecture having four class hierar-
chies:

Components are graphical representations of elements in a
domain. Examples include geometric shapes in technical
drawing, electronic parts in circuit layout, and notes in writ-
ten music. Components encapsulate the appearance and be-
havior of these elements. A domain-specific editor’s purpose
is to allow the user to arrange components to convey infor-
mation in the domain of interest.

Tools support direct manipulation of components. Tools em-
ploy animation and other visual effects for immediate feed-
back to reinforce the user’s perception that he is dealing with
real objects. Examples include tools for selecting compo-
nents for subsequent editing, for applying coordinate trans-
formations such as translation and rotation, and for connect-
ing components.

Commands &fine operations on components and other ob-
jects. Commands are similar to messages in traditional
object-oriented systems, except they are stateful and can be
executed as well as interpreted by objects. Commands can
also be reverse-executed, allowing rollback to a previous
state. Examples include commands that change component
attributes, duplicate components, and group several compo-
nents into a composite component.

External representations are used to convey domain-
specific information outside the editor. Each component can

159

define one or more external representations of itself. For ex-
ample, a transistor component can define both a PostScript
representation for printing and a netlist representation for
circuit simulation.

The Unidraw architecture provides base classes for component,
command, tool, and external representation objects. Subclasses
implement the behavior of their instances according to the seman-
tics of the protocol defined by their base class. For example,
components support operations that define how commands affect
their internal state.

3.1.1 Subjects and Views

A well-established user interface concept is the distinction be--
tween (1) the state and operations that characterize objects and
(2) the way the objects are presented in a particular context. In
Unidraw this distinction is manifest in the separation of compo-
nents into subject and view objects. A subject defines the context-
independent state and operations of a component. A view supports
a context-dependent presentation of the subject. A component
subject may have one or more component views, each offering a
different representation of and interface to the subject. A subject
notifies its views whenever its state is modiEed to allow them to
change their state or appearance to reflect the modification.

A component subject maintains information that characterizes
the component; in the case of a logic gate component, for example,
the subject might contain information about what is connected
to the gate and its current input values. Different views of the
subject can reflect this information in distinctive ways and can
provide additional information as well. One view can depict the
gate graphically by drawing the appropriate logic symbol, and it
might also define what it means to manipulate the gate with a tool.
Another view can provide the external representation of the gate
by generating a netlist from the connectivity information in the
subject.

3.1.2 Application Framework

Figure 2 shows the general structure of a domain-specific edi-
tor based on Unidraw. At the bottom level in the diagram are
two component subjects, the leftmost containing subcomponent
subjects. An entire domain-specific drawing is represented by a
composite component subject that can be incorporated into a larger
work. At the second level from the bottom are the corresponding
views of the subjects. Note that the right-hand subject has two
views attached. Each component view is placed in a viewer at the
third level. A viewer displays a graphical component view, most
often the root view in a hierarchy. A viewer provides a framework
for displaying the view, supporting such “non-semantic” manipu-
lations as scrolling and zooming. Viewers also take raw window
system or toolkit events and translate them to conform to standard
Unidraw protocols.

An editor associates tools and user-accessible commands with
one or more viewers and combines them into a coherent user in-
terface. An editor also maintains a selection object that manages
component views in which the user has expressed interest. A
Unidraw-based application can create any number of editor ob-
jects, allowing the user to work on multiple views of components.
Operations requiring inter-editor communication or coordination
access the unidraw object, a one-of-a-kind object maintained by
the application. For example, commands that allow the user to

Figure 2: General sbucture of a domain-specific editor
based on Unidraw

open and close editors and quit the application must access this
object. The unidraw object also maintains logs of commands that
have been executed and reverse-executed to support arbitrary-level
undo and redo. Not shown in the diagram is the catalog object,
which manages a database of components, commands, and tools.
At minimum, a domain-specik editor uses the catalog to name,
store, and retrieve components that represent user drawings. An
editor could also access unused commands and tools and incorpo-
rate them into its interface at run-time.

This structure provides a standard framework for building
domain-specific editors, yet it allows substantial latitude for cus-
tomized interfaces. Nothing in this architecture dictates, for ex-
ample, a particular look and feel for a given editor object. A
domain-specific editor may define editor objects that use sepa-
rate windows for their commands, tools, and viewers. The ar-
chitecture only specifies how the editor mediates communication
between components and the commands, tools, and viewers that
affect them.

3.2 Components
A component defines the appearance and behavior of a domain-
specific object. A component’s behavior has three aspects: (1)
how it responds to commands and tools, (2) its connectivity, and
(3) how it communicates with other components. This section
describes the protocols and abstractions that support component
semantics.

3.2.1 Subject and View Protocols

The Unidraw architecture defines separate protocols for compo-
nent subjects and views. Tables 1 and 2 list the protocols’ basic
operations, Component subjects &fine Attach and Detach opera-
tions to establish or destroy a connection with a component view.
Notify alerts the subject’s views to the possibility that their state
is inconsistent with the subject’s. Upon notification, a view recon-
ciles any inconsistencies between the subject’s state and its own.
The Update operation is used to notify the subject that some state
upon which it depends has changed. The subject is responsible
for updating its state in response to an Update message.

160

return values

transfer fn.

graphic

mobility

operation
Attach
Detach
Notify
update
Interpret
Uninterpret
GetTransferFunction
{child iteration
and manipulation
operations}
GetGraphic
SetMobility
GetMobiliW

arguments
Comp. view
Comp. view

command
command

mobility

Table 1: Component subject protocol

return values

graphic

manipulator
command

operation arguments
update
Interpret command
Uninterpret command
{child iteration
and manipulation
operations}
GetGraphic
Highlight
Unhighlight
CreateManipulator tool, event
InterpretManipulator manipulator

Table 2: Component view protocol

A component subject can be passed a command to interpret
via the Interpret operation. The semantics of this operation are
component-speciEc; the subject typically retrieves information
from the command for internal use or executes the command. The
Uninterpret operation allows the component to negate the effects
of a command; the subject might undo internal state changes based
on information in the command, or it might simply reverse-execute
the command. Components can also define a transfer function,
described in Section 3.2.4, that can be accessed via the GetTrans-
ferFunction operation. Finally, a component subject can contain
other component subjects, allowing hierarchies of domain-speciEc
components. Component subjects therefore define a family of op-
erations for iterating through their child subjects (if any) and for
reordering them.

The component view protocol duplicates some of the subject
protocol’s operations, namely Update, Interpret, Uninterpret, and
those for child iteration and manipulation. A subject’s Notify op-
eration usually calls Update on each of its views. Interpret and
Uninterpret are deEned on views because some objects manipulate
component views rather than their subjects. Thus it may be con-
venient to send a command to a view for (un)interpretation, which
may in turn send it to its subject. A component view may have
a subcomponent view structure, which may or may not reflect its
subject’s structure, so the view protocol also defines child iteration
and manipulation operations.

Graphical components are specialized components that use
graphic objects in both their subjects and views to define their
appearance. A graphic contains graphics state and geometric in-
formation and uses this information to draw itself and to perform
hit detection. By definition, graphical component subjects store
their geometric and graphics state in a graphic, providing a stan-
dard interface for retrieving this information. The GetGraphic
operation returns the information in the subject’s graphic. Graph-
ical component subjects can also have a mobility attribute and
define operations for assigning and retrieving it. Later we show
how mobility is used to deEne the component’s connectivity se-
mantics.

Several operations augment the basic component view proto-
col to support graphical component views. These views main-
tain a graphic that defines their appearance, so they provide a
GetGraphic operation. Highlight and Unhighlight operations let
views distinguish themselves graphically, for example, when they
are selected. CreateManipulator and InterpretManipulator define
how a graphical component view reacts when it is manipulated by
a tool and how the tool affects the component after manipulation.
Both operations use a manipulator to characterize the manipu-
lation. Manipulators abstract and encapsulate the mechanics of
direct manipulation; they are discussed further in Section 3.4.

3.2.2 Connectors

Unidraw supports connectivity and confinement semantics with
the connector graphical component subclass. Since connectors
are components, each consists of a subject and zero or more views
and can be manipulated directly. Often, however, connectors are
embedded in larger components that use connector subjects to
define their own connectivity semantics but do not incorporate the
corresponding connector views in their own views.

A connector can be connected to one or more other connectors.
Once connected, two connectors can affect each other’s position in
specific ways, as deEned by the semantics of the connection. Con-
nector subclasses support different connection semantics. A pin
contributes zero degrees of freedom to a connection. A degree of
freedom is an independent variable along a particular dimension,
which for connectors is a Cartesian coordinate. Slots and pads
provide one and two degrees of freedom within certain bounds,
respectively.

Figure 3 shows how different connectors behavein several con-
nections, using the connectors’ default graphical representations.
The centers of two connected pins must always coincide (Fig-
ure 3a). A pin connected to a slot (Figure 3b) is free to move
along the slot’s major axis until it reaches either end of the slot;
the pin cannot move in the transverse dimension. Two connected
slots (Figure 3c) can move relative to each other as long as the
center lines of their major axes share a point. Finally, Figure 3d
shows how a pad-pin connection constrains the pin to stay within
the confines of the pad.

The connectors’ mobilities characterize how each connector
moves to satisfy the connection constraints. A mobility attribute
can have one of three values: fixed, floating, or undefined. In
general, a fixed component’s position cannot be affected by a con-
nection regardless of the connection’s semantics, while a floating
component will move to satisfy the connection’s semantics. The
behavior of a connector with undefined mobility is indeterminate.
Composite components often have undefined mobility to avoid
overriding their children’s mobilities.

161

Figure 3: Several connections and their semantics

Figure 4: Possible composition of an inverter component

Mobility specifications disambiguate the semantics of a connec-
tion. In Figure 3b. for example, it is unclear which connector (the
pin or the slot) actually moves. If, however, the slot’s mobility is
fixed and the pin’s is floating, then the pin will always move to
satisfy the connection constraints. If the slot is moved explicitly,
then the pin will move to stay within it. An attempt to explicitly
move the pin beyond the slot’s bounds will fail; in fact, if the pin
is also connected to another, orthogonal slot, any attempt to move
it explicitly will fail. As a corollary, a connection can have no
effect on two Exed connectors.

3.2.3 Domain-Specific Connectivity

Domain-specific components use connectors to define their con-
nectivity semantics. For example, consider an inverter schematic
component whose wires remain connected when the user moves
it. Figure 4 shows how the inverter subject and view can be com-
posed with polygon, circle, and pin subjects and views. Note that

the pins are treated as any other component in the composition, but
they have a special responsibility to define the inverter’s connec-
tivity semantics. The inverter gives its pins Exed mobility so that
their positions are unaffected by any connections to them. When
the inverter is moved, it moves all its components. Since the pins
are Exed, they will not be affected by their connections; rather,
any floating connectors that are connected to the pins will move
as the connection permits. One such floating connector might be
a pin subcomponent of a wire component whose shape is deter-
mined by the position of the pin; the wire therefore deforms to
maintain the connection. Graphical components can thus extend
the connectivity behavior of primitive connectors to define their
own connectivity semantics.

3.2.4 Dataflow

Communication between components is often tied closely to their
connectivity. Unidraw provides a standard way for components to
communicate via dataflow and for associating dataflow with their
connectivity.

Component subjects often maintain state on which other sub-
jects depend or state that must be accessible to the user. Unidraw
defines a set of objects called state variables that provide a stan-
dard way to represent and access this state. State variables are
commonly used to allow user modification of component attributes
and to support dataflow between components. Like components,
state variables are partitioned into subjects and views. The state
variable subject represents a typed datum, and views provide a
graphical interface that lets a user examine and modify the sub-
ject. A component can make its state variables available externally
by providing access operations as necessary.

A state variable can be bound to a connector like an actual pa-
rameter is bound to a formal parameter in a procedure call. Con-
nectors define “parameter passing” semantics for any bound state
variable, one of in, out, or inout. When connected, two connec-
tors with bound state variables will pass their values accordingly;
for example, an in connector’s state variable will receive the value
of an out connector’s variable. Passing a value between incom-
patible connectors (such as two out connectors) is an error; such
connections should be disallowed by the tool or command making
the connection.

Transfer functions complete the dataflow model by participating
in the propagation of state variable values. A transfer function
defines a relationship between state variables, modifying one set
of variables based on the values of another set. For example,
the inverter could use an Invert transfer function to establish a
dependency between the logic level state variables bound to its in
and out pins: Invert assigns the inverse value of the input variable
to the output variable. Thus transfer functions describe how values
change as they flow horn one component to another.

3.3 Commands
Commands are analogous to messages because they can be inter-
preted by components. Commands are also like methods in that
they are stateful and can be executed, and they resemble trans-
actions because they can be reverse-executed to a previous state.
Some commands may be directly accessible to the user as menu
operations, while others are only used by the editor internally. In
general, any undoable operations should be carried out by com-
mand objects.

162

return values I bveration I armmmts

boolean

clipboard

Execute
Unexecute
Reversible
Store
Recall
SetClipboard
GetClipboard
{child iteration
and manipulation
oDerafions1

Comp. subj., any
Comp. subj.
clipboard

Table 3: Command protocol

Table 3 shows the basic operations defined by the command
protocol. Execute performs computation to carry out the com-
mand’s semantics. Unexecute performs computation to reverse the
effects of a previous Execute, based on whatever internal state the
command maintains. A command is responsible for maintaining
enough state to reverse one Execute operation; repeated Unexe-
cute operations will not undo the effects of more than one Execute.
Multilevel undo can be implemented by keeping an ordered list of
commands to reverse-execute. It may not be meaningful or appro-
priate, however, for some commands to reverse their effect. For
example, it is probably not feasible to undo a command that gener-
ates an external representation. The Reversible operation indicates
whether or not the command is unexecutable and uninterpretable.
If the command is not reversible, then it can be ignored during
the undo process.

Since a command can affect more than one component, the
command protocol must allow components that interpret the com-
mand to store information in it that they can later use to reverse its
effects. The Store operation allows a component to store informa-
tion in the command as part of its Interpret operation. The compo-
nent can retrieve this information later with the Recall operation
if it must uninterpret the command. Furthermore, commands that
operate on selected or otherwise distinguished components must
maintain a record of the component subjects they affected and the
order in which they were affected. Commands therefore store a
clipboard object, which can be assigned and retrieved with the
SetClipboard and GetClipboard operations. A clipboard keeps a
list of component subjects and provides operations for iterating
through the list and manipulating its elements. Typically, the clip-
board is initialized with the component subjects whose views are
currently selected when the command is ftrst executed. Purely
interpretive commands should &fine their Execute and Unexecute
functions to invoke Interpret and Uninterpret on the components
in their clipboard.

It is often convenient to create “macro” commands, that is,
commands composed of other commands. The command proto-
col includes operations for iterating through and manipulating its
children, if any. By default, (un)executing or (un)interpreting a
macro command is semantically identical to performing the cor-
responding operations on each of its children.

3.4 Tools

By definition, a graphical object editor supports the direct ma-
nipulation model of interaction. Unidraw-based editors use tool

Table 4: Tool protocol

objects to allow the user to manipulate components directly. The
user grasps and wields a tool to achieve a desired effect. The effect
may involve a change to one or more components’ internal state,
or it may change the way components are viewed, or there may
be no effect at all (if the tool is used in an inappropriate context,
for example). Tools often use animated graphical effects as they
are wielded to suggest how they will affect their environment.

3.4.1 Tool Protocol

The basic tool protocol is shown in Table 4. Conceptually, tools
work within viewers, in which graphical component views are dis-
played and manipulated. Whenever a viewer receives an event,
it in turn asks the current tool (defined by the enclosing editor
object) to produce a manipulator object. A tool implements its
CreateManipulator operation to create and initialize an appropriate
manipulator, which encapsulates the tool’s manipulation semantics
by defining the three phases (grasp, wield, effect) of the manip-
ulation. A tool may modify the contents of the current selection
object (also defined by the enclosing editor) based on the event.
Moreover, a tool can delegate manipulator creation to one or more
graphical component views (usually among those in the editor’s
selection object) to allow component-specific interaction. A tool’s
InterpretManipulator operation analyzes information in the ma-
nipulator that characterizes the manipulation and then creates a
command that carries out the desired effect. If the tool delegated
manipulator creation to a graphical component view, then it must
delegate its interpretation to the same view.

The GetPrototype operation is defined by the graphical com-
ponent tool subclass. Graphical component tools maintain a pro-
totype component and detine how that component is created and
added to the component hierarchy in the viewer. The prototype
consists of both a graphical component subject and a view. The
tool copies the prototype, modifies it to conform to the direct ma-
nipulation, and inserts it into the component hierarchy using an
appropriate command.

3.4.2 Manipulator Protocol

The manipulator protocol (Table 5) is designed to reflect the grasp-
wield-effect behavior of tools. The Grasp operation takes a win-
dow system event (such as a mouse click or key press) and ini-
tializes whatever state is needed for the direct manipulation (such
as animation objects). During direct manipulation, the Manipu-
lating operation is called repeatedly until the manipulator decides
that manipulation has terminated (based on its own termination
criteria) and indicates this by returning a false value. The Ef-
fect operation gives the manipulator a chance to perform any final
actions following the manipulation.

Some kinds of direct manipulation may require several sub-
manipulations to progress simultaneously (for instance, the editor
may allow the user to manipulate more than one component at a

163

return values operation arguments
I Grasp I event

Table 5: Manipulator protocol

Figure 5: Communication between objects during direct
manipulation

time). A manipulator can therefore have children, and the ma-
nipulator protocol includes operations for iterating through and
manipulating them.

This simple protocol is sufficient to describe direct manipula-
tions ranging from text entry and rubberbanding effects to sim-
ulating real-world dynamics such as imparting momentum to an
object. Unidraw implementations can predefine manipulators for
the most common kinds of manipulation. Since manipulators must
maintain information that characterizes the final outcome of a ma-
nipulation, subclasses usually augment the protocol with opera-
tions for retrieving state that determines this outcome. For exam-
ple, a manipulator that supports dragging the mouse to translate
a graphical component will &fine an operation for retrieving the
distance moved.

3.4.3 Object Communication during
Direct Manipulation

Figure 5 diagrams the communication between objects during di-
rect manipulation. The numeric labels in the diagram correspond
to the transmission sequence:

1. The viewer receives an input event, such as the press of a
mouse button.

2. The viewer asks the current tool to CreateManipulator based
on the event.

3. Manipulator creation: the tool either

(a) creates a manipulator itself (based on the selection or

other information), or

(b) asks the component view(s) to create the manipula-
tor(s) on its behalf. The tool must combine multiple
manipulators into a composite manipulator. Each class
of component view is responsible for creating an ap-
propriate manipulator for the tool.

4. Direct manipulation: the viewer

(a) invokes Grasp on the manipulator, supplying the initi-
ating event;

(b) loops, reading subsequent events and sending them
to the manipulator in a Manipulating operation (loop-
ing continues until the Manipulating operation returns
false);

(c) invokes Effect on the manipulator, supplying the event
that terminated the loop.

5. The viewer asks the current tool to InterpretManipulator.

6. Manipulator interpretation: the tool either

(a) interprets the manipulator itself, creating the appropri-
ate command, or

(b) asks the component view(s) to interpret the manipu-
lator(s) on its behalf. The view(s) then create(s) the
appropriate command(s). The tool must combine mul-
tiple commands into a composite (macro) command.

7. The viewer executes the command.

8. The command carries out the intention of the direct manip-
ulation.

To illustrate this process, consider the following example of
direct manipulation in a drawing editor. Suppose the user clicks
on an rectangle component view (Rectangle view) in the drawing
area (viewer) with the MoveTool. The viewer receives a “mouse-
button-went-down” event and asks the current tool (the MoveTool,
as provided by the enclosing editor) to CreateManipulator based
on the event. MoveTool’s CreateManipulator operation determines
from the event which component view was hit and adds it to the
selection. More precisely, the selection object provided by the
enclosing editor appends the view to its list.

If the selection object contains only one component view, then
MoveTool’s CreateManipulator operation calls CreateManipulator
on that component view. This gives the component view a chance
to create the manipulator it deems appropriate for the MoveTool
under the circumstances. Since the user clicked on a Rectan-
gleView, the component view will create a DragManipulator, a
manipulator that implements an downclick-drag-upclick style of
manipulation. DragManipulators animate the dragging portion of
the manipulation by drawing a particular shape in slightly differ-
ent ways in each successive call to their Manipulating operation.
The definition of DragManipulator parameterizes the shape so that
subclasses of DragManipulator are not needed to support dragging
different shapes.

Once the viewer obtains the DragManipulator from the Move-
Tool, the viewer creates the illusion that the user is “grasping” and
“wielding” the tool. First the viewer calls Grasp on the manipu-
lator, which allows the manipulator to initialize itself and perhaps
draw the first “frame” of the animation. Then the viewer loops,
forwarding ail subsequent events to the manipulator’s Manipulat-
ing operation until it returns false. Successive calls to Manipu-
lating produce successive frames of the animation. Once manip-
ulation ia complete, the viewer invokes the manipulator’s Effect

164

operation, which gives the DragManipulator a chance to finalize
the animation and the state it maintains to characterize the ma-
nipulation. The viewer then asks the tool to InterpretManipulator;
in this case, the MoveTool in turn asks the RectangleView to In-
terpretManipulator. In response, RectangleView constructs and
returns a MoveCommand, which specifies a translation transfor-
mation. The RectangleView initializes the amount of translation
in the MoveCommand to the distance between the initial and final
frames of the animation, which it obtains from the DragManipu-
lator.

3.5 External Representations

An external representation of a component is simply a non-
graphical view of the corresponding component subject. Domain-
specific external representations are derived from the external
view subclass of component view.

The external view protocol defines two operations, Emit and
Definition, that generate a stream of bytes constituting the external
representation. Emit initiates external representation generation,
and Definition is called recursively by Emit. Emit normally calls
the external view’s own Definition operation first. Then if the
external view contains subviews, Emit must invoke the children’s
Definition operations in the proper order to ensure a syntactically-
correct external representation.

Emit is often used to generate “header” information that appears
only once in the external representation, while DeGnition produces
component-specific, context-independent information. For exam-
ple, a drawing editor might define a PosLScriptViewextemal view
subclass that defines Emit to generate global procedures and def-
initions. Component-specific subclasses of PostScriptView then
need only define Definition to externalize the state of their corre-
sponding component. Thus when Emit is invoked on an instance
of any PostScriptView subclass, a stand-alone PostScript repre-
sentation (known as “encapsulated” PostScript) will be generated.
When the same instance is buried in a larger PostScriptView, only
its definition will be emitted.

The architecture predefines preorder, inorder, and postorder
external views. These subclasses manage subviews and support
one of three common traversals of the external view hierarchy.

4 Prototype Implementation
Our Unidraw prototype is a library of C++ classes containing about
20,000 lines of source. It runs on top of Interviews and the X
Window System. The prototype uses Interviews’ object-oriented
structured graphics [lo] to support graphical components and its
persistent object facility for implementing catalog semantics.

C++ is an attractive language for our purposes because of its
efficiency and true object-oriented semantics, but it does not al-
low sending arbitrary messages to objects. Messages are sent via
strongly-typed procedure calls, so a class must declare all accept-
able messages at compile-time. Thus, component operations such
as Interpret and Uninterpret cannot be implemented by accepting
untyped messages from commands. In lieu of this capability, com-
ponents must query the command to determine its class, but C++
cannot provide this information at run-time. We solved this prob-
lem in our implementation by using the ISA operation defined for
InterViews persistent objects, but ideally me language would pro-
vide either run-time class resolution or untyped (or dynamically-
typed) method lookup.

voidUpdateViewStructure () {

iteratorsubj = SubjectsFirstChildO;

iteratorview = ViewsFirstChild();

DeleteSubjectlessViews();

do I
if (*subj != *view) {

UpdateCurrent(subj, view);

Advance(subj);

Advance(view);

} until (Done(subj) 11 Done(view));

UpdateExcessSubjects(subj);

DeleteExcessViews(view);

Figure 6: View structure update algorithm

The remainder of this section discusses two significant aspects
of the implementation followed by a brief description of the three
domain-specific editors we have implemented with the Unidraw
prototype.

4.1 View Consistency

A component view must reconcile its internal state with its sub-
ject’s when Update is called. This is usually trivial for leaf com-
ponents, but components with children must be prepared to re-
structure themselves to conform to their subject’s structure. To
accomplish this, the view could assume that all its children are in-
consistent with their subjects’ and just rebuild them from scratch
based on the subject’s structure. This approach is simple but po-
tentially expensive. Moreover, the subject’s structure usually stays
the same or changes only slightly, so an incremental approach in
which the view reuses most of its children is preferable. Our im-
plementation supports the common case where the view’s child
structure is identical to the subject’s. Components with differ-
ing subject and view structures must implement their own update
algorithm.

Figure 6 shows the algorithm. On Update, any children that no
longer have a subject are destroyed. Then the list of child views
is compared to the list of child subjects. If there is a subject-view
mismatch, the UpdateCurrent operation is called. UpdateCurrent
performs two searches through the remaining views and subjects.
If it does not find a view corresponding to the current subject, it
creates one and inserts it before the current view; otherwise, it
moves the corresponding view to its proper position. If it does
not find the current view’s subject among the remaining subjects,
it deletes the view; otherwise, if the corresponding subject does
not follow the current subject, it moves the view to the end of the
list of child views for repositioning in subsequent iterations. The
main iteration loop continues until either the subject or me view
runs out of children. Finally, views are created for any remaining
subjects, and unused views are destroyed.

165

Figure 7: Recursive solution of connection network

4.2 Connector Implementation

Connectivity semantics are enforced by a csolver object that man-
ages connection networks, or disjoint sets of connections. A con-
nection consists of two connectors and a piece of connector glue.
Connector glue is characterized by a natural size, elasticity, and
deformation limits. Elasticity is specified in terms of independent
shrinkability and stretchability parameters. Deformation limits are
expressed as independent limits on the total amount the glue can
stretch and shrink. A connection uses connector glue to define
the relationship between connectors’ centers, thus defining their
connectivity semantics. For example, connector glue of zero nat-
ural size and elasticity is used to implement pin-pin connection
semantics. Pin-pad semantics are modeled with a piece of glue of
infinite elasticity within limits that keep the pin inside the pad.

The csolver is responsible for solving constraint networks that
have been perturbed meaning it must position the connectors to
satisfy all connection semantics. The csolver stores each conneo-
tion network as a list of connections. It solves each network by
recursively identifying primitive combinations of connections and
replacing them with equivalent connections. The two most com-
mon primitive combinations are series and parallel connections.
Figure 7 depicts the process of recursive substitution on a net-
work having three connections. Connectors are shown as circles,
and connector glue is represented by resistor symbols. The shaded
connectors have fixed mobility, while the others are floating. On
the initial recursion, the csolver identifies the parallel combination
of G2 and G3 and replaces it with an equivalent connection. It
replaces the resulting series combination with another equivalent
connection on the second recursion, leaving a single connection.
Recursion terminates whenever a single connection remains or all
connectors are fixed, at which point the connectors’ positions are
determinate. The csolver then unwinds the recursion, apportioning
the amount of stretch or shrink applied to each equivalent connec-
tion to the connections they replaced until the original network is
obtained. Then the csolver issues move commands to the affected
connectors.

4.3 Three Domain-Specific Editor
Prototypes

We have built three domain-specific editors with our prototype
Unidraw library: a schematic capture system (see Figure 8), a
user interface builder (Figure 9), and a drawing editor (Figure 10).

Figure 8: Schematic capture system prototype

Figure 9: User interface builder prototype

I

I I

Figure 10: Drawing editor prototype

166

All provide a direct-manipulation, multi-view editing environment.
The schematic capture system lets the user wire-up circuit ele-
ments (such as gates, latches, and pass transistors) and generates
a netlist of the resulting circuit. The system supports hierarchical
composition of circuit elements and maintains graphical connec-
tivity between them. The user interface builder lets the user com-
pose a user interface. in terms of Interviews toolkit absbractions
and generates C++ source code to be incorporated into the target
application. Finally, the drawing editor provides MacDraw-like
functionality (with the added benefits of multiple views) and gen-
erates PostScript. The prototype schematic capture system and
user interface builder are less than 5000 lines each, while the
drawing editor is less than 2500 lines.

5 Conclusion

Unidraw greatly facilitated the implementation of our three pro-
totype domain-specific editors. Though these editors do not yet
represent production-quality systems, they have proven to be use-
ful tools for their intended purposes. Unidraw narrowed the de-
sign space for each editor significantly, obviating basic design
decisions that are independent of the domain. The prototype li-
brary provided reusable functionality in the form of predefined
components, commands, and tools. Debugging time was reduced
because much less code was written. Our experience is that de-
veloping domain-specific editors with Unidraw is mainly a matter
of choosing, designing, and implementing the required domain-
specific components. Significantly less effort is spent defining
new commands, while specialized tools are needed the least of-
ten.

The architecture is undergoing continuous refinement as we ex-
periment with the prototype. Fertile ground for future research
involves additional support for external representations, which is
a difficult problem in general. We would like to go beyond the
current predefined external view traversals to develop a more pow-
erful model that includes support for interpreting external repre-
sentations. This capability would let a domain-specific editor read
in existing representations, including those not generated by the
editor itself. For example, a schematic editor could read in an
existing netlist, allow the user to edit it graphically, and generate
a new netlist. A logic simulator could then give the user feedback
about the modified circuit’s behavior, which might prompt him
to edit the circuit again. The ability to read as well as write ex-
ternal representations permits iterative design by closing the loop
between specification and analysis, making Unidraw-based tools
even more useful.

References

[l] P.S. Barth. An object-oriented approach to graphical inter-
faces. ACM Transactions on Graphics, 5(2):142-172, April
1986.

[2] Alan H. Borning. ThingLab - a constraint-oriented sim-
ulation laboratory. Technical Report SSL-79-3, Xerox Palo
Alto Research Center, July 1979.

[3] Steven H. Gutfreund. ManiplIcons in ThinkerToy. In ACM
OOPSLA ‘87 Conference Proceedings, pages 307-317, Or-
lando, FL, October 1987.

143 R.J.K. Jacob. A state transition diagram language for visual
programming. Computer, 18(8):51-59. August 1985.

[5] Mark A. Linton, John M. Vlissides, and Paul R. Calder.
Composing user interfaces with Interviews. Computer,
22(2):8-22, February 1989.

[6] M.K. Molloy. A CAD tool for stochastic petri nets. In
Proceedings of the 1986 Fall Joint Computer Conference,
pages 1082-1091, Dallas, TX, November 1986.

[7] National Instruments Corp. LabVIEW Manual, 1987.

[8] Nan C. Shu. visual Programming. Van Nostrand Reinhold,
New York, 1988.

[9] I.E. Sutherland. Sketchpad: A Man-Machine Graphical
Communication System. PhD thesis, MIT, 1963.

[lo] John M. Vlissides and Mark A. Linton. Applying object-
oriented design to structured graphics. In Proceedings of the
1988 USEhTXC++ Conference, pages 81-94, October 1988.

167

