EXPRESSIBILITY OF BOURDED-ARITY FIXED-POINT QUERY HIERARCEIES

Pratul Dublish
Dept. of Conputer Science Engg.
I.I.T. Kanpur, Kanpur, India-208016

S.N. Maheshwari
Dept. of Computer Science \& Engg., I.I.T. Delhi, New Delhi, India - 110016

Abstract

ASSIAMT

The expressibility of bounded-arity query hierarchies resulting from the extension of firstorder logic by the least fixed-point, inductive fixed-point and generalized fixed-point operators is studied. In each case, it is shown that increasing the arity of the predicate variable from k to $k+1$ always allows some more k-ary predicates to be expressed. Further, k-ary inductive fixed-points are shown to be more expressive than k-ary least fixed-points and k-ary generalized fixed-points are shown to be more expressive than k-ary inductive fixed-points.

1. Introduction

The failure of query languages based on first-order logic (FO) to express several queries of interest, like transitive closure, is well known [AU]. This has led to the development of query languages based on the extension of FO by several fixed-point operators like least fixed-point (LFP) [AU,CH,Im2], inductive fixed-point (IFP) [GS] and generalized fixed-point (GFP) [Im2]. Each fixed-point operator enables the computation of some fixed-point of FO formulae $g\left(P, x_{1}, \ldots, x_{k}\right)$ where P is a k-ary predicate variable and $x_{1} s$ are the free variables of g.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

Abstract

We study the expressibility of bounded-arity fixed-point query hierarchies obtained by restricting the arity of the predicate variable P in formulae g. The $k^{t h}$ level in each hierarchy, $k \geq 1$, is the query language resulting frow restricting the arity of the predicate variable P to exactly k. Chandra and Harel [CH] were the first to express an interest in the study of such a hierarchy for F0+LFP. They had proved that certain k-ary predicates were not expressible in the $k^{\text {th }}$ level of the FO+LFP hierarchy. It had been shown in [Im2] that these predicates were expressible in the $2 k+3^{\text {th }}$ level of the FO+LFP hierarchy. Thus it appeared that the arity of the predicate variable had to be more than doubled before some more k-ary predicates could be expressed. They left it as an open problem to decide whether increasing the arity by one enables some more k-ary predicates to be expressed. We resolve this problem by showing the existence of k-ary predicates which are not expressible in the $k^{\text {th }}$ level of the FO+LFP hierarchy but are expressible in its $k+1^{\text {th }}$ level. Similar results are also shown for the FO+IFP and FO+GFP hierarchies. These results are then extended for the case when a valid successor predicate on the database domain is available to the query language.

The k-ary hierarchies can also be used to obtain a better idea of the relative expressive powers of FO+LFP, FO+IFP and FO+GFP. Although it is known that FO+LFP and FO+IFP have the same expressive power [GS], we show the existence of predicates which are expressible in the $k^{\text {th }}$ level of the FO+IFP hierarchy but are not expressible in the $k^{\text {th }}$ level of the FO+LFP hierarchy. A query in the $k^{\text {th }}$ level of the FO+IFP hierarchy takes atmost n^{k} iterations, $\mathrm{n}=$ size of the database domain, for its evaluation. However, a query in the $k^{\text {th }}$ level of the FO+GFP hierarchy may take $2 P, p=n k$, iterations for its evaluation. At present it is not known whether FO+GFP, restricted to queries
that take polynomial number of iterations for their evaluation, is equivalent to FO+IFP. However, we show that there exist k-ary predicates which are not expressible in the $k^{\text {th }}$ level of the FO+IFP hierarchy but are expressible in the $k^{\text {th }}$ level of the FO+GFP hierarchy. Further the FO+GFP queries used to express these predicates take atmost n iterations for their evaluation. These results are shown to hold even in the presence of a successor predicate on the database domain.

2. Definitions

A finite structure (or a relational database) S with a vocabulary $v=\left\langle\bar{R}_{1}, \ldots, \bar{k}_{k}, \bar{c}_{1}, \ldots, \bar{c}_{m}\right\rangle$ can be regarded as a tuple $S=\left\langle D, R_{1}, \ldots, R_{k}, c_{1}, \ldots, c_{m}\right\rangle$ consisting of a finite domain D, predicates (or relations) R_{1}, \ldots, R_{k} on D corresponding to the predicate-symbols $\vec{R}_{1}, \ldots, \bar{R}_{k}$ of v and constants c_{1}, \ldots, c_{m}, which are elements of D, corresponding to the constant-symbols $\bar{c}_{1}, \ldots, \bar{c}_{m}$ from v. In future we shall of ten use the same symbol to denote a predicate (constant) and its predicatesymbol (constant-symbol) relying on the context to resolve the ambiguity.

Two structures $s=\left\langle D, R_{1}, \ldots, R_{k}, c_{1}, \ldots, c_{m}\right\rangle$ and $S^{-}=\left\langle D^{-}, R_{i}^{i}, \ldots, R_{k}^{\prime}, c_{1}^{1}, \ldots, C_{m}^{-}\right\rangle$, with the same vocabulary, are isomorphic if there exists a oneone onto mapping $h: D \rightarrow D^{-}$such that $R_{i}=$ $h\left(R_{i}\right), 1 \leq 1 \leq k$, and $c_{i}=h\left(c_{i}\right), 1 \leq 1 \leq m$.

Given a vocabulary v, a query Q is a function which maps each structure S, with vocabulary v, to a k-ary predicate R^{k} defined over the domain of S, i.e., $Q: S \rightarrow \mathbb{R}^{k}$. In addition, a query Q must result in isomorphic predicates on isomorphic structures [CH], i.e, if h is an isomorphism from s to S^{-}then $Q\left(s^{-}\right)=h(Q(s))$.

The first-order language of a vocabulary v, $\mathrm{FO}(\mathrm{v})$, is the set of all formulae of first-order logic with equality [En] built using the symbols of v. The query language FO is the union of the languages $F O(v)$ for all possible vocabularies, i.e, $F O=\bigcup_{v} F O(v)$.

Let $\mathbf{g}_{\mathbf{v}}(\mathrm{P}, \overline{\mathrm{x}})$ be a first-order formula built using the symbols from some vocabulary v (in future we shall omit the subscript v) and an additional k-ary predicate symbol P which is not in v. Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be the sequence of free variables occuring in g. Given a structure S, with vocabulary v, on domain D, we can use g to
compute P in an iterative fashion until a fixed-point is reached, i.e.,
$P(\bar{x})=g^{i}(\emptyset, \bar{x})=g^{i+1}(\emptyset, \bar{x}) \quad$ where
$g^{i}(\phi, \bar{x})=g\left(g^{i-1}(\emptyset, \bar{x}), \bar{x}\right)$ and $g^{1}(\emptyset, \bar{x})=g(\emptyset, \bar{x})$.
We emphasize that the length of g is fixed, i.e., its length is independent of the size of D, but the number of iterations needed to reach a fixed-point may depend on the size of D. There exist formulae for which the above iterative computation never terminates, e.g.,

$$
f(P, x)=\quad[\forall y \neg P(y) \wedge x=x] .
$$

In the following we only consider those formulae for which the iterative computation terminates on all valid input structures. In general, it is undecidable to check this property.

A k-ary predicate $P_{f p}$ is a fixed-point ($f p$) of $g(P, \bar{x})$ if $P_{f_{p}}(\bar{x})=g\left(P_{f p}, \bar{x}\right)$ and $P_{l_{f p}}$ is the least fixed-point ($1 \mathrm{f} p$) of g if it is contained in every fixed-point of g. The iteratively computed f_{p} of g is called the generalized fixed-point (gfp) of g. If g is positive in P, i.e., each occurence of P ing is under an even number of negations, then the $\mathbf{l f p}$ of g is guaranteed to exist and it is the same as its gfp [CH]. The inductive fixed-point (ifp) of g is the $g f p$ of $h(P, \bar{x})=P(\bar{x}) \quad V g(P, \bar{x})$. If g is positive in P then the lfp of g is the same as its ifp [GS].

It has been shown in [GS] that computation of ifp (lifp) proceeds monotonically. Hence, if $|D|=n$ then the ifp (1fp) of g can be computed in atmost n^{k} iterations where k is the arity of P. However, in general, the iterative computation of the gfp need not proceed monotonically. Thus the gfp computation may take upto $2 P, p=n k$, iterations.

The LFP operator accepts an FO formula $g(P, \bar{x})$, positive in P, and computes its lfp. Similarly, the IFP (GFP) operator computes the Ifp (gfp) of a given formula. The query languages based on the extension of FO by the above fixed-point operators are defined as follows :

FO+LFP $=\{\operatorname{LFP} g(P, \bar{X}): g$ is positive in $P\}$,
PO+IFP $=\{\operatorname{IFP} g(P, \bar{x})\}$ and
FO+GPP $=\{\operatorname{GFP} \mathbf{g}(P, \overline{\mathrm{x}})\}$.
The query languages PO+LPPk, FO+IFPk and FO+GPPk, $k \geq 1$, are obtained from FO+LFP, F0+IFP
and $F O+G F P$ respectively by restricting the arity of the iteratively defined predicate P to exactly k. Since LFP $g(P, \bar{x})=$ IFP $g(P, \bar{x})$, if g is positive in P, and IFP $g(P, \bar{x})=G F P \quad h(P, \bar{x}), F O+L F P k \subset$ FO+IFPk and FO+IFPk \subseteq FO+GFPk. A query Q which defines a j-ary predicate R^{j} over structures with vocabulary v is said to be expressible in FO+LFPk, $k>j$, iff there exists a formula $g(P, \bar{x})$ in FO+LFPk such that on all structures with vocabulary v
$\left(d_{1}, \ldots, d_{j}\right) \in R j \Leftrightarrow=\Rightarrow\left(d_{1}, \ldots, d_{j}, d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{m}^{\prime}\right) \in P$ where $m=k-j$ and each $d_{i}^{\prime}, 1 \leq i \leq m, i s$ either an element of the set $\left\{d_{1}, \ldots, \bar{d}_{j}\right\}$ or is a constant. Similar definitions of expressibility can be given for the FO+IFP and FO+GFP hierarchies.

It was pointed out in [CH] that even FO+GFP failed to express some simple queries, e.g., checking whether a given predicate has an even number of tuples. Immerman [Im2] pointed out that this query could be expressed by adding a successor predicate $\operatorname{Suc}(x, y)$, which enforces a total ordering on D, to FO+LFP. In fact the availability of Suc enables FO+LFP (FO+IFP) to express all queries computable in polynomial time [Im2,GS] and enables FO+GFP to express all queries computable in polynomial space (in the size of the structure) [Im2].

If Suc is available then we can construct formulae $g(P, S u c, \bar{x})$ by using the symbols from some vocabulary ∇ and the predicate-symbol Suc. Given a structure S with vocabulary $v, g(P, S u c, \bar{x})$ is evaluated by augmenting S with some predicate Suc $_{p, D}$, where if $D=\left\{d_{1}, \ldots, d_{n}\right\}$ and p is some permutation on $\{1,2, \ldots, n\}$ then $\operatorname{Suc}_{p, D}=$ $\left\{\left(d_{p}(i), d_{p(i+1)}\right): 1 \leq i \leq n-1\right\}$. The tuples of $S u c_{p, D}$ give us a total ordering on D as follows. Each tuple $\left(d_{p}(i), d_{p(i+1)}\right) \in S u c_{p, D}$ is interpreted to mean that $d_{p(i)}$ is the immediate successor of $d_{p}(i+1)$. The minimum element is $d_{p}(n)$ and the maximum element is $d_{p}(1)$.

Unfortunately, the availability of Suc allows one to write formulae where the value of the defined predicate depends on the particular $\operatorname{Suc}_{p, D}$ substituted for Suc, e.g.,

$$
\max (x) \Leftrightarrow \nLeftarrow z[z \neq x \Rightarrow \neg \operatorname{Suc}(z, x)]
$$

Such formulae are not queries since they do not assign a unique predicate to a given structure. Therefore we shall only consider formulae $g(P, S u c, \bar{x})$ which are Suc-invariant, i.e., on all input structures the value of P computed is independent of the particular $\operatorname{Suc}_{\mathrm{P}, \mathrm{D}}$ substituted
for the predicate-symbol Suc in g. It has been shown in [Du] that Suc-invariant formulae are queries.

Thus, if we restrict ourselves to Suc-invariant formulae, the addition of Suc to FO+LFP, FO+IFP and FO+GFP leads to the following query languages :

FOHFP+Suc $=\{$ LFP g $(P, S u c, \bar{x})\}$,
FO+IPP+Suc $=\{$ IFP $g(P$, Suc, $\bar{x})\}$ and FOHGPP+Suc $=\{$ GFP $g(P$, Suc, $\bar{x})\}$.

The query languages PO+LPPk+Suc, FO+IFPk+Suc and FO+GPPl+Suc are obtained from FO+LFP+Suc, FO+IFP+Suc and FO+GFP+Suc respectively by restricting the arity of predicate variable P to exactly $k, k \geqslant 1$.

3. Higher Arity Leads to More Expressive Power

In this section we show that for each fixed-point operator increasing the arity of the predicate variable P from k to $k+1, k \geqslant 1$, always allows some more k-ary predicates to be expressed. We first show that there exist k-ary predicates which are not expressible in $F O+I F P^{k}+$ Suc but are expressible in FO+LFPk+1. Since FO+LFPk \subseteq F $0+L P P^{k}+$ Suc \subseteq FO+IFPk + Suc, $F 0+$ IFPk \subseteq FO+IFPk $+\overline{\text { Suc }}$ and $\mathrm{FO}+\mathrm{LFPk} \subset$ FO+IFPk, we immediately obtain the desired results for the FO+LFP, FO+IFP, FO+LFP+Suc and FO+IFP+Suc hierarchies. We then show that there exist k-ary predicates which are not expressible in FO+GFPk+Suc but are expressible in FO+IFPk+1. Since $\mathrm{FO}+\mathrm{GFP} \subseteq \mathrm{FO}^{\mathrm{k}} \subseteq \mathrm{FO} \mathrm{GF}^{\mathrm{k}}+\mathrm{Suc}$ and $\mathrm{FO}+\mathrm{IFP}^{\mathrm{k}} \subseteq \mathrm{FO}+\mathrm{GFPk}$, we immediately obtain the desired results for the FO+GFP and FO+GFP+Suc hierarchies.

Consider a query on digraphs which defines the following k-ary predicate, $k \geq 2$:

$$
\begin{aligned}
& R^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)\langle=m\rangle \\
& \\
& \text { indegree }\left(x_{1}\right)=0, \text { outdegree }\left(x_{k}\right)=0, \\
& \\
& \\
& E\left(x_{i}, x_{i+1}\right), 1 \leq i \leq k-2, x_{1} \neq x_{j}, 1 \leq i \neq j \leq k, \text { and } \\
& \\
& \text { there exists a path from } x_{1} \text { to } x_{k} .
\end{aligned}
$$

To show that R^{k} is not expressible in FO+IFPk + Suc we make use of digraphs G_{n} and H_{n} shown in Figure 1. G_{n} and H_{n} are structures with vocabulary $v=\langle E, s, d, L 1, R 1, L 2, R 2\rangle$ where E is the edge predicate and $s, d, L 1, R 1, L 2$ and $R 2$ are constants. We augment G_{n} and H_{n} with the successor predicate $S_{n}=\left\{\left(v_{i}, v_{i+1}\right): 1 \leq 1 \leq 3 m+5\right\}$.

The Graph $\mathbf{G}_{\mathbf{n}}$

The Graph $\mathbf{H}_{\mathbf{n}}$

Figure 1

We now introduce a tool which will be used to show that R^{k} is not expressible in $F O+I F P^{k}+S u c$. First we introduce a technical definition. The quantifier rank (Q R) of an $F O$ sentence is the maximum depth of nesting of quantifiers in it. An Ehrenfeucht-Fraisse (EF) game [Eh,Fr] is played by two players, Pl and P 2 , on a pair of structures G and H with the same vocabulary. Pl tries to show that the two structures are different whereas $P 2$ tries to keep them looking alike. Formally the M move game is defined as follows :

At the $i^{\text {th }}$ move, $1 \leq i \leq M, P l$ chooses an element g_{i} (h_{i}) from $G(H)$ and $P 2$ responds with an element h_{i} (g_{i}) from H (G). $P 2$ is said to win the M move game if the map which sends constants from G to constants from H and maps g_{i} to $h_{i}, l \leq i \leq M$, is an isomorphism of the induced substructures, i.e., the substructures obtained from G and H by restricting their respective domains to the constants and the elements chosen by both the players. The usefulness of EF games results from
the following theorem :

Theorem [Eh,Fr]: P2 has a winning strategy for the M move game on G and H iff G and H satisfy the same set of $F O$ sentences of $Q R$ M. I

We show that $P 2$ wins the $\log m$ move $E F$ game played on the augmented structures $G_{n}+S_{V}{ }_{V}$ and $H_{n}+$ Sucv. Hence $G_{n}+S u C_{V}$ and $H_{n}+S u c_{V}$ agree on all FO sentences of $Q R \log m, m=n / 3-2$. Therefore, no fixed-length FO sentence can distinguish $G_{n}+S u V_{V}$ from $H_{n}+S_{V}$. We then show that this is contradicted if R^{k} is expressible in $F O+I F P^{k}+S u c$.

Lema 1 : P2 wins the $\log m$ move EF game played on structures $\mathbf{G}_{\mathbf{n}}$ and H_{n} augmented with SucV.

Proof (Sketch) : We define a few terms before proceeding with the proof. Let $d_{E}\left(v_{i}, v_{j}\right)$ denote the E -distance, $\mathrm{i} . \mathrm{e}$. , the length of the path, from v_{i} to v_{j} in $G_{n}\left(H_{n}\right)$. Let $d_{S u c}\left(v_{i}, v_{j}\right)$ denote the Suc-distance from v_{i} to v_{j}, i.e., the length of the path from v_{i} to v_{j} in the graph constructed on V by using the tuples of Sucv as directed edges. Note that if $j=i+r, r \geq 1$, then $d_{S u c}\left(v_{i}, v_{j}\right)=r$ and $d_{\text {Suc }}\left(v_{j}, v_{i}\right)=\infty$. However $d_{E}\left(v_{i}, v_{j}\right)=r$ if $j=i+r$ and v_{i} and v_{j} lie in the same row of $G_{n}\left(H_{n}\right)$. If v_{i} and v_{j} lie in different rows then $d_{E}\left(v_{i}, v_{j}\right)=d_{E}\left(v_{j}, v_{i}\right)=\infty$. An r-chain, $r \leq m$, is a sequence of vertices $g_{1}, g_{2}, \ldots, g_{p}$ such that $d_{E}\left(g_{i}, g_{i+1}\right)=d_{S u c}\left(g_{i}, g_{i+1}\right) \leq r, \quad 1 \leq i \leq p-1$. Note that this definition ensures that all the vertices in a chain must be from the same row of $G_{n}\left(H_{n}\right)$. Two chains $\quad g_{1}, g_{2}, \ldots, g_{p}$ and $h_{1}, h_{2}, \ldots, h_{p}$ are isomorphic iff $d_{E}\left(g_{i}, g_{i+1}\right)=d_{E}\left(h_{i}, h_{i+1}\right)$ and $d_{\text {Suc }}\left(g_{i}, g_{i+1}\right)=d_{\text {Suc }}\left(h_{i}, h_{i+1}\right), \quad 1 \leq 1 \leq p-1, \quad$ and some g_{i} is a constant iff h_{i} is also the same constant. Two chains $g_{1}, g_{2}, \ldots, g_{p}$ and $h_{1}, h_{2}, \ldots, h_{q}$ are r_{1}, r_{2}-disjoint if
(i) $d_{E}\left(g_{i}, h_{j}\right)>r_{1}$ and $d_{E}\left(h_{j}, g_{i}\right)>r_{1}, 1 \leq 1 \leq p$ and $1 \leq j \leq q$, and
(ii) $d_{\text {Suc }}\left(g_{1}, h_{j}\right)>r_{2}$ and $d_{S u c}\left(h_{j}, g_{i}\right)>r_{2}, \quad l \leq i \leq p$ and $1 \leq j \leq q$.

A vertex v_{j} is said to be r-free from a chain if $\mathrm{d}_{\mathrm{E}}\left(\mathrm{g}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)>\mathrm{r}$ and $\mathrm{d}_{\mathrm{E}}\left(\mathrm{v}_{\mathrm{j}}, \mathrm{g}_{\mathrm{i}}\right)>\mathrm{r}$ for each g_{i} belonging to the chain.

P2 wins the $\log m$ move game by the following strategy. At the first move any vertex chosen by Pl from $G_{n}\left(H_{n}\right)$ is at an E-distance of $r, r \leq m / 2$, of exactly one constant from $G_{n}\left(H_{n}\right)$. $P 2$ responds with a vertex from $H_{n}\left(G_{n}\right)$ which is also at an E-distance of r of the same constant from $H_{n}\left(G_{n}\right)$. Inductively, with j moves remaining the vertices from $G_{n}\left(H_{n}\right)$ chosen by both the players and also
the constants $s, d, L 1, R 1, L 2$ and R2 (even if these are not chosen) can be partitioned into 2^{j}-chains $\bar{g}_{1}, \ldots, \bar{g}_{p}\left(\bar{h}_{1}, \ldots, \bar{h}_{p}\right)$ such that
(i) $\overline{\mathrm{g}}_{1}$ is isomorphic to $\bar{h}_{1}, 1 \leq i \leq p$,
(ii) \bar{g}_{i} and $\bar{g}_{\mathrm{x}}\left(\bar{h}_{i}\right.$ and $\left.\bar{h}_{\mathrm{x}}\right), \overline{\mathrm{i} \neq \mathrm{j}}$, are mutually either $2^{\mathrm{j}}, 2^{j}$-disjoint or $2^{\mathrm{j}}, 1$-disjoint, and
(iii) \bar{g}_{i} and \bar{g}_{x}, $1 \neq \mathrm{x}$, are mutually $2^{\mathrm{j}}, 2^{\mathrm{j}}$-disjoint ($2 \mathrm{j}, 1$-disjofnt) iff \bar{h}_{i} and $\overline{\mathrm{h}}_{\mathrm{X}}$ are mutually $2^{j}, 2^{j}$-disjoint ($2^{j}, 1^{1-d i s j o i n t)}$.

Now, suppose $P 1$ picks up a vertex v_{g} from G_{n} at the next, i.e., $\log m-j+1^{\text {th }}$, move. Then the following cases are possible :

Case 1 : v_{g} is at an E-distance $r, r \leq 2^{j-1}$, of exactly one chain $\overline{\mathbf{g}}_{1}$.

Case $2: v_{g}$ is 2^{j-1}-free from each $\bar{g}_{1}, 1 \leq i \leq p$.

It can be shown that in case 1, $P 2$ can respond with a vertex v_{h} frow H_{n} which is at an E-distance of r from the chain \bar{h}_{i}. Similarly, in case 2 P2 can respond with a vertex v_{h} which is also 2^{j-1}-free from each chain \bar{h}_{i}. The details are given in [Du].

The case when $P l$ chooses a vertex from H_{n} can be similarly handled. At the end of the above move, the chains \bar{g}_{1} and $\bar{K}_{1}, 1 \leq i \leq p$, and the chosen points v_{g} and v_{h} can be split into isomorphic $\mathbf{2 j}^{-1}$-chains which are mutually either $2^{j-1}, 2^{j-1}$-disjoint or $2^{j-1}, 1$-disjoint. Thus the induction hypothesis is true with $j-1$ moves remaining. At the end, with no moves remaining, i.e., $j=0$, P2 wins the EF game. I

Lema 2 : R^{k} is not expressible in $F O+I F P^{k}+S u c$, $k \geq 2$ 。

Proof: Suppose that $R^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is expressible in FO+IFP ${ }^{k}+$ Suc. Let $g(P, S u c, \bar{x})$ be a formula such that ifp of g is R^{k}. If G_{n} is the input structure then the ifp of g must contain the tuple $\left(s, v_{2}, \ldots, v_{k-l}, d\right)$ but if H_{n} is the input structure then the ifp of g contains the tuple $\left(s, v_{2}, \ldots, v_{k-1}, R 1\right)$. Note that on both the structures the ifp of g contains exactly three tuples, one for each row of vertices. Therefore the ifp will be computed in atmost three iterations. Hence the sentence

$$
\exists x_{2}, \ldots, x_{k-1} \quad g^{3}\left(\emptyset, \text { Suc }, s, x_{2}, \ldots, x_{k-1}, d\right)
$$

is true on the augmented structure $G_{n}+$ Suc $_{G}$ and false on the augmented structure $H_{n}+S_{H} H_{H}$ where Suc $_{G}$ and $S u c h_{H}$ are any two (maybe even same) valid
succesor predicates on V (recall that g is; Suc-invariant). This contradicts Lemma 1 and hence our initial assumption was incorrect.

I

Lema $3: R^{k}$ is expressible in $F 0+L F P^{k+1}, k \geq 2$.
Proof : We use a $k+l$-ary predicate variable to iteratively traverse the paths originating at zero-indegree vertices. When the path originating at x_{1}, indegree $\left(x_{1}\right)=0$, traverses a vertex $z, z \neq x_{1}$, the tuple $\left(x_{1}, \ldots, x_{1}, z\right)$ is added to P. If at any stage a tuple ($x_{1}, \ldots, x_{1}, x_{k}$), outdegree $\left(x_{k}\right)=0$, is found in P then ($x_{1}, x_{2}, \ldots, x_{k}, x_{k}$) is added to P iff ($x_{1}, x_{2}, \ldots, x_{k}$) $\in R^{k}$. The following formula accomplishes this task :

$$
\begin{aligned}
& g\left(P, x_{1}, x_{2}, \ldots, x_{k+1}\right)= \\
& {\left[E\left(x_{k}, x_{k+1}\right) \wedge \forall z \neg E\left(z, x_{k}\right) \wedge x_{k} \neq x_{k+1}\right.} \\
& \left.\wedge \bigwedge_{i=1}^{k-1} \quad x_{i}=x_{k}\right] \\
& V\left[\exists z P\left(x_{k}, \ldots, x_{k}, z\right) \wedge E\left(z, x_{k+1}\right)\right. \\
& \left.\Lambda x_{k} \neq x_{k+1} \Lambda \bigwedge_{i=1}^{k-1} x_{i}=x_{k}\right] \\
& V\left[P\left(x_{1}, \ldots, x_{1}, x_{k}\right) \wedge \not \forall z \neg E\left(x_{k}, z\right) \Lambda\right. \\
& \mathrm{k}-2 \\
& \bigwedge_{i=1}^{k-2} E\left(x_{i}, x_{i+1}\right) \wedge \bigwedge_{1 \leq i \neq j \leq k} x_{i} \neq x_{j} \\
& \left.\wedge \quad x_{k}=x_{k+1}\right] \quad .
\end{aligned}
$$

Since g is positive in P, its lfp is well defined. In the first and each subsequent iteration, the first disjunct adds a tuple (x_{1}, \ldots, x_{1}, y) to P for each edge $E\left(x_{1}, y\right), x_{1} \neq y$, in the input graph such that indegree $\left(x_{1}\right)=0$. Since P is empty during the first iteration, the other two disjuncts do not add any tuples to P.

The second disjunct traverses paths starting at vertices whose indegree is zero. For each such path, its first edge has already been added to P by the first disjunct. In the $i^{\text {th }}$ iteration, $i>1$, for each tuple $\left(x_{1}, \ldots, x_{l}, y\right)$ in p, the second disjunct checks if there is an edge $E(y, z), z \neq x_{1}$, and adds the tuple $\left(x_{1}, \ldots, x_{1}, z\right)$ to P. Thus at the end of the $i^{\text {th }}$ iteration P contains a tuple $\left(x_{1}, \ldots, x_{1}, y\right), x_{1} \neq y$, iff indegree $\left(x_{1}\right)=0$ and there is a path of length $\leq i$ from x_{1} to y. If there is a path from x_{1}, indegree $\left(x_{1}\right)=0$, to x_{k}, outdegree $\left(x_{k}\right)=0$, then the tuple $\left(x_{1}, \ldots, x_{1}, x_{k}\right)$ will be added to P in atmost $n-1$ iterations. The third disjunct checks if the tuple (x_{1}, \ldots, x_{k}) satisfies R^{k} and adds the tuple ($x_{1}, \ldots, x_{k}, x_{k}$) to P. Since the tuples added by the first two
disjuncts always have distinct $\mathrm{k}^{\text {th }}$ and $\mathrm{k}+\mathrm{l}^{\text {th }}$ components，it follows that
$\left(x_{1}, \ldots, x_{k}\right) \in R^{k} \Leftrightarrow\left(x_{1}, \ldots, x_{k}, x_{k}\right) \in \operatorname{LFP} g \cdot I$
Lema 4 ：There exists a unary predicate which is not expressible in $\mathrm{FO}_{\mathrm{H}} \mathrm{IFP}^{1}+\mathrm{Suc}$ but is expressible in $\mathrm{FO}+\mathrm{LFP}{ }^{2}$ ．

Proof ：Consider digraphs which are structures with vocabulary＜E，s，d，L1，R1，L2，R2＞．Consider a query on digraphs which defines the following unary predicate ：
$R^{1}(x) \Leftrightarrow \begin{aligned} & \text { outdegree }(x)=0 \\ & \text { from } s \text { to } x .\end{aligned}$ and there is a path
By arguments similar to those used in Lemmas 1 and 2 we can show that R^{1} is not expressible in PO＋IFP ${ }^{1}+$ Suc．However R^{1} can be expressed in FO＋LFP ${ }^{2}$ as shown below ：

```
\(g\left(P, x_{1}, x_{2}\right)=\)
    \(\left[x_{1}=s \wedge E\left(x_{1}, x_{2}\right) \wedge x_{1} \neq x_{2}\right]\)
```

 \(\vee\left[\exists z P\left(x_{1}, z\right) \wedge P\left(z, x_{2}\right) \wedge x_{1} \neq x_{2}\right]\)
 \(\vee\left[\exists z P\left(z, x_{1}\right) \wedge \forall y\left(E\left(x_{1}, y\right) \Longrightarrow y=x_{1}\right) \wedge\right.\)
 \(\mathrm{x}_{1}=\mathrm{x}_{2}\) 〕.
 Since FO＋LFPk \subseteq FO＋IFPk and FO＋LFPk + Suc \subseteq FO＋IFPk + Suc，Lemmas 1－4 give us

Theorem 1 ：For $k \geq 1$ ，there exist k－ary predicates （i）which are not expressible in FO＋LFPk （FO＋LFPk + Suc）but are expressible in $\mathrm{FO}+\mathrm{LFP}^{\mathrm{k}+1}\left(\mathrm{FO}_{\mathrm{L}}+\mathrm{LFP}^{\mathrm{k}+1}+\mathrm{Suc}\right)$ and
（ii）which are not expressible in FO＋IFPk （ $\mathrm{FO} 0+1 F P^{k}+\mathrm{Suc}$ ）but are expressible in FO + IFP ${ }^{k+1}\left(\right.$ FO $^{2}+$ IFP $^{k+1}+$ Suc $)$ ．

We now show that there exist k－ary predicates which are not expressible in $F 0+G F P^{k}+$ Suc but are expressible in $F 0+I F P^{k+1}$ ，$k \geq 1$ ． Consider the set of digraphs which are structures with the vocabulary $\langle E, s, d\rangle$ ．We require that the digraphs be free from self－loops，indegree（s）$=$ outdegree（ d ）$=0$ ，outdegree（ s ）$=$ indegree $(\mathrm{d})=1$ ， and all other vertices must have an indegree and outdegree of one．Let F_{1} be an FO sentence which checks if a given digraph satisfies these conditions．The following query defines a k－ary predicate，$k \geq 1$ ，on structures which satisfy F_{1} ：

$$
\begin{aligned}
R^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \Leftrightarrow & \text { path length from } s \text { to } x_{1}= \\
& \text { path length from } x_{k} \text { to } d \\
& \text { and } E\left(x_{i}, x_{i+1}\right), 1 \leq i \leq k-1 .
\end{aligned}
$$

Lema 5 ： R^{k} is not expressible in $\mathrm{FO}_{\mathrm{G}} \mathrm{GFP}^{\mathrm{k}}+\mathrm{Suc}, \mathrm{k} \geq 1$ ．
Proof：Consider structures $S_{n}=\left\langle V_{n}, \operatorname{Suc}_{n}, v_{1}, v_{n}\right\rangle$ and $S_{n+1}=\left\langle V_{n+1}, \operatorname{Suc}_{n+1}, v_{1}, v_{n+1}\right\rangle$ with the vocabulary 〈Suc，s，d〉 where $v_{t}=\left\{v_{i}: 1 \leq 1 \leq t\right\}$ and $\operatorname{Suc}_{t}=\left\{\left(v_{i}, v_{i+1}\right): 1 \leq 1 \leq t-1\right\}$ ．Using the structure $S_{n}\left(S_{n+1}\right)$ we can define，by an Fo formula，a digraph $G_{n}\left(G_{n+1}\right)$ whose edges are the tuples of $\operatorname{Suc}_{\mathrm{n}}\left(\right.$ Suc $\left._{\mathrm{n}+1}\right)$（see Figure 2）．Note that both G_{n} and G_{n+1} satisfy the sentence F_{1} ．W1g we assume that n is even．

The Graph $\mathbf{G}_{\mathbf{n}}$

The Graph $\mathbf{G}_{\mathbf{n}+1}$

Figure 2

If k is even（odd）then R^{k} contains exactly one tuple when evaluated on $G_{n+1}\left(G_{n}\right)$ and is empty when evaluated on $G_{n}\left(G_{n+1}\right)$ ．Suppose that R^{k} is expressible in $F 0+G P^{k}+S u c$ ．Let R^{k} be the gfp of $g\left(P\right.$, Suc $\left., x_{1}, \ldots, x_{k}\right)$ ．If k is even then the $g f_{p}$ of g is empty when G_{n} is the input structure and contains a single tuple when G_{n+1} is the input structure．Thus the sentence
$\exists x_{1}, x_{2}, \ldots, x_{k} g\left(\emptyset\right.$, Suc $\left., x_{1}, x_{2}, \ldots, x_{k}\right)$
is true on G_{n+1} ．We claim that this sentence is false on G_{n} ．This is so for the following reason． Suppose that $g\left(\emptyset, x_{1}, \ldots, x_{k}\right) \neq \emptyset$ on G_{n} ．Since the gfp of g is empty on $G_{n}, g^{i}(\phi, \bar{x})=\emptyset, \quad i>1$ ．Thus $\mathbf{g}(\emptyset, \overline{\mathrm{x}}) \neq \mathbf{g}^{\mathbf{i}}(\emptyset, \overline{\mathrm{x}})$ and $\mathbf{g}(\emptyset, \overline{\mathrm{x}})=\mathbf{g}^{\mathbf{i + 1}}(\emptyset, \overline{\mathrm{x}})$ ．Hence the iterative computation of the gfp will never terminate on G_{n} ，a contradiction．Thus we have a fixed－length FO sentence which distinguishes S_{a} from S_{n+1} ．The case when k is odd can be handled similarly．

However，it is shown in［Gu］that P2 wins the $\log n-1$ move EF game played on the structures S_{n} and S_{n+l} ．Thus no fixed－length sentence can
distinguish these structures, a contradiction. I
Lema $6: R^{k}$ is expressible in $F 0+\mathrm{IFP}^{k+1}, k>1$.

Proof : Since the input structure satisfies F_{1}, it has a unique path which originates at s and terminates at d. Our strategy is to simultaneously traverse this path, one edge at a time, in the forward and reverse direction starting from s and d respectively. Each step of this traversal yields vertices x_{1} and x_{k} such that the distance of x_{1} from s equals the distance of d from x_{k}. If the distance of x_{k} from x_{1} is $k-1$ then we are done.

The following formula uses a $k+1$-ary predicate variable to keep track of the paths traversed :

$$
\begin{aligned}
& g\left(P, x_{1}, \ldots, x_{k}\right)=F_{1} \wedge g l\left(P, x_{1}, \ldots, x_{k}\right) \text { where } \\
& g l\left(P, x_{1}, \ldots, x_{k+1}\right)= \\
& {\left[E\left(s, x_{k+1}\right) \wedge \wedge_{i=1}^{k} x_{i}=s\right]} \\
& \vee\left[E\left(x_{k}, d\right) \wedge x_{k+1}=d \bigwedge_{i=1}^{k-1} x_{i}=x_{k}\right]
\end{aligned}
$$

$$
V\left[\exists z P(s, \ldots, s, z) \wedge E\left(z, x_{k+1}\right) \wedge\right.
$$

$$
\left.\bigwedge_{i=1}^{k} \quad x_{i}=s\right]
$$

$\vee\left[\exists z \mathrm{P}(z, \ldots, z, d) \wedge E\left(x_{k}, z\right) \wedge\right.$ $\mathrm{k}-1$

$$
\left.\bigwedge_{i=1} \quad x_{i}=x_{k} \quad \wedge x_{k+1}=d\right]
$$

$V\left[P\left(s, \ldots, s, x_{1}\right) \wedge P\left(x_{k}, \ldots, x_{k}, d\right) \wedge\right.$ $\bigwedge_{i=1}^{k-1} E\left(x_{i}, x_{i+1}\right) \wedge \quad x_{k}=x_{k+1} \wedge$

$$
\left.\bigwedge_{i=2}^{k-2} \neg\binom{P\left(s, \ldots, s, x_{i}\right) V}{P\left(x_{i}, \ldots, x_{i}, d\right)}\right]
$$

The conjunct F_{1} ensures that if the input structure does not satisfy F_{1} then the gfp computation terminates at the first iteration with an empty predicate. In the first iteration, when P is empty, only the first two disjuncts of gl add tuples to P. The first (second) disjunct adds a tuple (s, \ldots, s, x) ((x, \ldots, x, d)) for each edge $E(s, x)(E(x, d))$ in the input graph.

The third disjunct traverses the path starting from s, in the forward direction, while the fourth disjunct traverses the path terminating at d in the reverse direction. In the ith iteration, $1>1$, the third (fourth) disjunct adds a tuple (s, \ldots, s, x) ((x, \ldots, x, d)) to P iff the path length from s to x (x d) is exactly i. Thus the tuples (s, \ldots, s, x_{l}) and ($\left.x_{k}, \ldots, x_{k}, d\right)$ are added to P in the same iteration iff the length of the path from s to x_{1} is equal to the length of the path from x_{k} to d.

If $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in R^{k}$ then there are exactly $k-2$ vertices $x_{i}, 2 \leq i \leq k-2$, lying between x_{1} and x_{k}. Further for each x_{i} lying between x_{1} and x_{k} neither (s, \ldots, s, x_{i}) nor (x_{i}, \ldots, x_{i}, d) would have been added to P. The last disjunct uses this fact to check whether the tuple $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ satisfies R^{k}. If the check is successful it adds the tuple ($x_{1}, x_{2}, \ldots, x_{k}, x_{k}$) to P. Note that the computation of the gfp proceeds monotonically (even though P occurs under an odd number of negations in gl) and therefore termination is guaranteed on all valid input structures. Further the gfp computation remains unchanged even if we replace $g(P, \bar{x})$ by $P(\bar{x}) V g(P, \bar{x})$. Since the tuples added to P by the first four disjuncts of gl have distinct $k^{\text {th }}$ and $k+1^{\text {th }}$ components, we have
$\left(x_{1}, \ldots, x_{k}\right) \in R^{k} \Leftrightarrow\left(x_{1}, \ldots, x_{k}, x_{k}\right) \in \operatorname{IFP} g$. I

Since $F 0+G F P k \subseteq F O+G F P^{k}+$ Suc and FO+IFPk \subseteq F0+GFPk, Lemmas 5 and 6 give us the following theorem :

Theorem 2 : There exist k-ary predicates, $k>1$, which are not expressible in FO+GFPk (FO+GFPk+Suc) but are expressible in $F O+G F P^{k+1}\left(F O+G F P^{k+1}+S u C\right)$.

4. k-ary IFPs are More Powerful than k-ary LFPs

Consider structures with vocabulary $\left\langle\mathrm{E}^{\mathrm{k}}, \mathrm{s}, \mathrm{d}\right\rangle$ where E^{k} is a k-ary predicate-symbol. For $\mathrm{k}=2$ such structures can be considered as digraphs and for $k>2$ they can be interpreted as directed hypergraphs [Be] in which each hyperedge has exactly k vertices. A hyperedge is an ordered tuple $\bar{e}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ where x_{1} is the head of $\bar{e}, \quad x_{k}$ is the tail of \bar{e} and $x_{1} s, \quad 2 \leq i \leq k-1$, are the internal vertices. The indegree (outdegree) of a vertex is r iff it is the tail (head) of exactly r hyperedges. If a vertex is not the tail (head) of any hyperedge then its indegree (outdegree) is zero. We only consider structures with the following properties :
(1) Outdegree(s) $=2$ and indegree (s) $=0$.
(ii) Outdegree(d) $=0$ and indegree(d) $=2$.
(iii) Each non-internal vertex, besides s and d, has an outdegree and indegree of one.
(iv) All vertices in a hyperedge are distinct.
(v) If a vertex is an internal vertex in some hyperedge then it appears in no other hyperegde.

Let F_{k} be an $F 0$ sentence such that a structure with vocabulary $\left\langle E^{k}, s, d\right\rangle$ satisfies F_{k} iff properties (1)-(v) are true for that structure. Note that the concept of a path in digraphs can be easily generalized for hypergraphs which satisfy F_{k}. Further, there are exactly two vertex disjoint paths from s to d in each structure which satisfies F_{k}. Consider a query which defines the following k-ary predicate :

```
Rk}(\mp@subsup{x}{1}{},\ldots,\mp@code{x
    if the input structure satisfies F}\mp@subsup{F}{k}{
    then
        if the two paths from s to d contain the
            same number of hyperedges
        then
            Rk}\mathrm{ contains all the hyperedges from
            the two s-d paths
        else
            Rk}\mathrm{ contains all the hyperedges on
            the shorter s-d path and all but
            the last hyperedge on the longer
            s-d path
    else R R is empty ; I
```

To show that $\mathrm{R}^{\mathbf{k}}$ is not expressible in FO+LFPk+Suc, we use structures $G_{k, n}$ and $H_{k, n+k-1}$ with vocabulary $\left\langle\mathrm{E}^{\mathrm{k}}, \mathrm{s}, \mathrm{d}\right\rangle$. For $\mathrm{k}=2$, the graphs $\mathrm{G}_{2, \mathrm{n}}$ and $H_{2, n+1}$ are shown in Figure 3. The structure $G_{k, n} \quad\left(H_{k, n+k-1}\right)$ can be obtained from $G_{2, n}$ $\left(\mathrm{H}_{2}, \mathrm{n}+1\right)$ by replacing each edge by a hyperedge having k vertices. Formally, $G_{k, n}$ is the structure $\left\langle\mathrm{V}_{\mathrm{n}}, \mathrm{E}^{\mathrm{k}}, \mathrm{v}_{\mathrm{l}}, \mathrm{v}_{\mathrm{m}}(\mathrm{k}-1)+1\right\rangle, \mathrm{n}=2 \mathrm{~m}(\mathrm{k}-1)$, where

```
\(v_{n}=\left\{v_{1}, v_{m}(k-1)+1\right\} \cup v_{n, t} \cup v_{n, b}\),
\(v_{n, t}=\left\{v_{i}: 2 \leq i \leq m(k-1)\right\}\),
\(v_{n, b}=\left\{v_{i}: m(k-1)+2 \leq i \leq n\right\} \quad\) and
\(\mathrm{E}^{\mathrm{k}}=\)
    \(\left\{\left(v_{1}, v_{n}, v_{n-1}, \ldots, v_{n-k+2}\right)\right\} \cup\)
    \(\left\{\left(v_{i}, \ldots, v_{i+k-1}\right): i=j k-(j-1)\right.\) and \(\left.0 \leq j \leq m-1\right\} \cup\)
    \(\left\{\left(v_{i+k-1}, \ldots, v_{i}\right): i \neq j k-(j-1)\right.\) and \(\left.m \leq j \leq 2 m-2\right\}\).
        Similarly \(\quad H_{k, n+k-1}\) is the structure
\(\left\langle\mathrm{V}_{\mathrm{n}+\mathrm{k}-1}, \mathrm{E}^{\mathrm{k}}, \mathrm{v}_{\mathrm{l}}, \mathrm{v}_{\mathrm{m}(\mathrm{k}-1)+1}\right\rangle\) where
\(v_{\mathrm{n}+\mathrm{k}-\mathrm{l}}=\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{m}}(\mathrm{k}-1)+1\right\} \cup \mathrm{v}_{\mathrm{n}+\mathrm{k}-\mathrm{l}, \mathrm{t}} \bigcup \mathrm{v}_{\mathrm{n}+\mathrm{k}-\mathrm{l}, \mathrm{b}}\),
\(v_{\mathrm{n}+\mathrm{k}-1, \mathrm{t}}=\left\{\mathrm{v}_{\mathrm{i}}: 2 \leq \mathrm{i} \leq \mathrm{m}(\mathrm{k}-1)\right\}\),
```


The Graph $\mathrm{B}_{2, \mathrm{n}+1}$

Figure 3

$v_{n+k-1, b}=\left\{v_{i}: m(k-1)+2 \leq 1 \leq n+k-1\right\}$ and
$\mathrm{E}^{\mathbf{k}}=$
$\left\{\left(v_{1}, v_{n+k-1}, \ldots, v_{n+1}\right)\right\} \cup$
$\left\{\left(v_{1}, \ldots, v_{i+k-1}\right): i=j k-(j-1)\right.$ and $\left.0 \leq j \leq m-1\right\} \cup$
$\left\{\left(v_{i+k-1}, \ldots, v_{i}\right): i=j k-(j-1)\right.$ and $\left.m \leq j \leq 2 m-1\right\}$.
Note that the both the $s-d$ paths in $G_{k, n}$ have m hyperedges. However, $H_{k, n+k-1}$ has m hyperedges on the top path from s to d but the bottom path from s to d contains $m+1$ hyperedges. We augment $G_{k, n}$ and $H_{k, n+k-1}$ with successor predicates $S_{k_{n}}$ and $S u c_{n+k-1}$ respectively where Suc $_{t}=\left\{\left(v_{i}, v_{i+1}\right): 1 \leq i \leq t-1\right\}$.

Lema 7 : P2 wins the log m-2 move EF game played on $\mathrm{G}_{\mathrm{k}, \mathrm{n}}$ and $\mathrm{H}_{\mathrm{k}, \mathrm{n}+\mathrm{k}-1}$ augmented with $\mathrm{Suc}_{\mathrm{n}}$ and $\mathrm{Suc}_{\mathrm{n}+\mathrm{k}-1}$ respectively.

Proof (Sketch) : We can consider a hyperedge $\left(g_{1}, \ldots, g_{k}\right)$ in $G_{k, n}\left(H_{k, n+k-1}\right)$ as an ordered sequence of k binary edges $\left(g_{1}, g_{2}\right)$, $\left(g_{2}, g_{3}\right), \ldots,\left(g_{k-1}, g_{k}\right)$. If v_{x} is the $i^{\text {th }}$ component and v_{y} the $j^{\text {th }}$ component, $j>i$, of some hyperedge \bar{e} then $d_{E}\left(v_{x}, v_{y}\right)=j-i$. If v_{x} is the $i^{\text {th }}$ component of hyperedge $\overline{\mathbf{e}}_{1}$ and v_{y} is the $\mathrm{j}^{\text {th }}$ component of $\overline{\mathrm{e}}_{2}$
and there are p hyperedges on the path from the tail of \bar{e}_{1} to the head of \bar{e}_{2}, then $d_{E}\left(v_{x}, v_{y}\right)=$ $(k-i+1)+p k+(j-1)$. However, in both cases $d_{E}\left(v_{y}, v_{x}\right)$ $=\infty$. Note that in $G_{k, n}\left(H_{k, n+k-1}\right)$ if v_{x} and v_{y} lie in different rows then $d_{E}\left(v_{x}, v_{y}\right)=\infty$. We define $d_{S u c}\left(v_{x}, v_{y}\right)$ as in Lemma 1 .

A top r-chain is a sequence of vertices g_{1}, \ldots, g_{p} such that $d_{E}\left(g_{i}, g_{i+1}\right)=d_{S u c}\left(g_{i}, g_{i+1}\right) \leq r$, $1 \leq 1 \leq p^{-1}$. A botton r-chain is a sequence of vertices g_{l}, \ldots, g_{p} such that $d_{E}\left(g_{i}, g_{i+1}\right)=d_{\text {Suc }}\left(g_{i+1}, g_{i}\right) \leq r, \quad 1 \leq i \leq p-1$. The notion of isomorphism for top (bottom) chains, r_{1}, r_{2}-disjoint chains and r-free vertices carry over from Lema 1.

Inductively, with f moves remaining, the vertices chosen by both the players from $G_{k, n}$ and the constants s and d can be partitioned into top $2^{\mathbf{j}}$-chains (bottom $\mathbf{2 f}^{\mathbf{j}}$-chains) $\overline{\mathrm{g}}_{\mathrm{tg}}, \overline{\mathrm{g}}_{\mathrm{td}}, \overline{\mathrm{g}}_{\mathrm{I}}, \ldots, \overline{\mathbf{g}}_{\mathrm{p}}$ ($\bar{g}_{b s}, \bar{g}_{b d}, \overline{\mathbf{g}}_{p+1}, \ldots, \bar{g}_{q}$). These top (bottom) chains are mutually $2^{\mathbf{j}}, 2^{j}$-disjoint. Further the chains $\bar{g}_{x}, \quad 1 \leq x \leq p$, and $\bar{g}_{y}, \quad p+1 \leq y \leq q$, are mutually $2^{j}, 2^{j}$-disjoint. Since the chains $\bar{g}_{t s}$ and $\overline{\mathrm{g}}_{\mathrm{bs}}$ ($\overline{\mathrm{g}}_{\mathrm{td}}$ and $\bar{g}_{b d}$) contain the constant s (d), they are mutually $2 j, 0$-disfoint. Similarly the chosen vertices from $H_{k, n+k-1}$ and the constants s and d can be partitioned into top (bottom) $2 \boldsymbol{j}$-chains $\bar{h}_{\mathrm{ts}}, \overline{\mathrm{h}}_{\mathrm{td}}, \overline{\mathrm{h}}_{1}, \ldots, \overline{\mathrm{~h}}_{\mathrm{p}} \quad\left(\overline{\mathrm{h}}_{\mathrm{bs}}, \overline{\mathrm{h}}_{\mathrm{bd}}, \overline{\mathrm{h}}_{\mathrm{p}+1}, \ldots, \overline{\mathrm{~h}}_{\mathrm{q}}\right.$) with the same properties as the corresponding chains in $G_{k, n}$. The chains \vec{g}_{i} and $\bar{h}_{1}, 1 \leq 1 \leq q, \bar{g}_{t s}$ and $\bar{h}_{t s}$, $\bar{g}_{b s}$ and $\overline{\mathrm{h}}_{\mathrm{bs}}, \overline{\mathrm{g}}_{\mathrm{td}}$ and $\overline{\mathrm{h}}_{\mathrm{td}}$, and $\overline{\bar{g}}_{\mathrm{bd}}$ and $\overline{\mathrm{h}}_{\mathrm{bd}}$ are isomorphic.

At the next, $i . e ., \log m-(j+1)^{\text {th }}$, move if $P 1$ chooses a constant from $G_{k, n}$ then $P 2$ responds with the same constant from $H_{k, n+k-1}$. Otherwise suppose that $P 1$ chooses $v_{g} \in V_{n, t}$ such that v_{g} is the $q^{\text {th }}$ component of some hyperedge. Then either v_{g} is not 2^{j-1}-free from some top chain \bar{g}_{1} or v_{g} is 2^{j-1}-free from all top chains. In either case, we can show that $P 2$ can respond with a vertex $v_{h} \in$ $V_{n+k-1}, \quad V_{h}$ is also the $q^{\text {th }}$ component of some hyperedge, such that the inductive assertion remains true at the end of this move. The case when $v_{g} \in V_{n, b}$ or when Pl chooses a vertex from $\mathrm{H}_{\mathrm{k}, \mathrm{n}+\mathrm{k}-1}$ can be handled similarly. |

Lema 8 : R^{k} is not expressible in $F 0+L F P^{k}+S u c$, $k \geq 2$.

Proof : Suppose that R^{k} is expressible in FO+LFPk ${ }^{k}$ Suc. Then there exists a formula $g\left(P\right.$, Suc $\left., x_{1}, \ldots, x_{k}\right)$, positive in P, such that its lfp is R^{k}. Thus the Ifp of g evaluated on $G_{k, n}+$ Suc $_{n}$ contains a tuple (x_{1}, \ldots, x_{k}) for each hyperedge (x_{1}, \ldots, x_{k}) in $G_{k, n}$. However, the lfp of
g evaluated on $H_{k, n+k-1}+\mathrm{Suc}_{n+k-1}$ contains all the hyperedges of $H_{k, n+k-1}$ except the hyperedge on the bottom row whose tail is d. Since the lfp of g evaluated on $G_{k, n}+S u c_{n}$ is E^{k}, no proper subset of E^{k} can be a fixed-point of g when $G_{k, n}+\operatorname{Suc}_{n}$ is the input structure.

Let T be a $2 k$-ary predicate defined as follows :
$\begin{aligned} & T\left(u_{1}, \ldots, u_{k}, x_{1}, \ldots, x_{k}\right)= \\ & E^{k}\left(u_{1}, \ldots, u_{k}\right) \wedge E^{k}\left(x_{1}, \ldots, x_{k}\right) \wedge\end{aligned} \bigwedge_{i=1}^{k} x_{i} \neq u_{i}$.

The k-ary predicate $\left.T\left(u_{1}, \ldots, u_{k}, \ldots, \ldots,\right)^{\prime}\right)$ evaluated on a hypergraph contains all its hyperedges except the hyperedge (u_{1}, \ldots, u_{k}). Hence, the following sentence

$$
\begin{aligned}
\exists u_{1}, \ldots, u_{k} & {\left[\forall x_{1}, \ldots, x_{k}\right.} \\
& g\left(T\left(u_{1}, \ldots, u_{k},, \ldots, \ldots\right), \operatorname{Suc}, x_{1}, \ldots, x_{k}\right) \\
& \left\langle=m T\left(u_{1}, \ldots, u_{k}, x_{1}, \ldots, x_{k}\right)\right]
\end{aligned}
$$

is true for $H_{k, n+k-1}+$ Suc $_{n+k-1}$ but false for $\mathbf{G}_{\mathrm{k}, \mathrm{n}} \mathbf{S U C}_{\mathrm{n}}$ for all valid succesor predicates $\mathrm{Suc}_{\mathrm{n}}$ and $S u c_{n+k-1}$ (recall that g is Suc-invariant). This contradicts Lemma 8 and hence our initial assumption was incorrect.

Lema $9: \mathrm{R}^{\mathrm{k}}$ is expressible in $F 0+\mathrm{IFPk}, \mathrm{k} \geq 2$.

Proof : We use a k-ary predicate variable P to store the hyperedges occuring on the two s-d paths. Initially, the two hyperedges out of s are placed in P. In each subsequent iteration one more hyperedge from each path is added to P. If the two s-d paths have the same number of hyperedges then the two hyperedges, whose tails are d, will be added to P in the same iteration. If the number of hyperedges on the two s-d paths are not equal, we make use of the above fact to avoid adding the last hyperedge on the longer path to P. The following formula accomplishes this task :

$$
\begin{aligned}
& g\left(P, x_{1}, \ldots, x_{k}\right)=F_{k} \wedge \operatorname{gl}\left(P, x_{1}, \ldots, x_{k}\right) \quad \text { where } \\
& g 1\left(P, x_{1}, \ldots, x_{k}\right)= \\
& {\left[x_{1}=s \wedge E^{k}\left(x_{1}, \ldots, x_{k}\right)\right]} \\
& \vee\left[\underset{y_{1}}{\exists}, \ldots, y_{k-1} P\left(y_{1}, \ldots, y_{k-1}, x_{1}\right) \wedge\right. \\
& E^{k}\left(x_{1}, \ldots, x_{k}\right) \wedge\left(x_{k}=d==>\right. \\
& \left.\left.\forall \quad z_{1}, \ldots, z_{k-1} \neg P\left(z_{1}, \ldots, z_{k-1}, d\right)\right)\right] .
\end{aligned}
$$

The conjunct F_{k} ensures that the fixed-point computation terminates in the first iteration with an empty predicate if the input hypergraph does not satisfy F_{k}. The first disjunct inftializes P to contain the two hyperedges out of s . The second
disjunct traverses the two s-d paths adding an extra hyperedge at each iteration. Note that this disjunct checks that P does not already contain a hyperedge whose tall is d before it adds such a hyperedge to P. Thus it ensures that the last hyperedge on the longer s-d path will not be added to P. The computation of the fixed-point of g proceeds monotonically even though P occurs negated in g. Thus the Ifp of g is the same as the gfp of g. Therefore it follows that
$\left(x_{1}, \ldots, x_{k}\right) \in R^{k} \Leftrightarrow\left(x_{1}, \ldots, x_{k}\right) \in \operatorname{IFP} g$. I
Lemmas 7-9 give us the following theorem :
Theorem 3 : There exist k-ary predicates, $k \geq 2$, which are not expressible in $\mathrm{FO}+\mathrm{LFPk}$ ($\mathrm{FO}+\mathrm{LFP}{ }^{\mathrm{k}}+\mathrm{Suc}$) but are expressible in FO+IFPk (FO+IFP ${ }^{k}+S U C$).

5. k-ary GFPs are More Powerful than k-ary IFPs

In this section we show that there exist k-ary predicates, $k>1$, which are not expressible in FO+IFPk but are expressible in FO+GFPk [n^{k}] where FO+GFPk[n^{k}] contains only those formulae of FO+GFPk for which the $\mathbf{f p}$ computation takes atmost n^{k} iterations ($n=s i z e$ of the domain). A similar result is also shown for $F 0+1 F^{k}+$ Suc and FO $+\mathrm{GFP}^{\mathrm{k}}+\mathrm{Suc}\left[\mathrm{n}^{\mathrm{k}}\right]$. Our proof strategy is to show the existence of k-ary predicates which are not expressible in $\mathrm{FO}_{\mathrm{H}}+\mathrm{IFP}^{\mathrm{k}}+\mathrm{Suc}$ but are expressible in FO $0+\mathrm{GFP}^{\mathrm{k}}$. Since $\mathrm{FO}+\mathrm{IFP}^{\mathrm{k}} \subseteq \mathrm{FO}_{\mathrm{F}}+\mathrm{IFP}^{\mathrm{k}}+\mathrm{Suc}$ and FO + GFPk $\left[\mathrm{n}^{\mathrm{k}}\right] \subseteq \mathrm{FO}+\mathrm{GFP}^{\mathrm{k}}+\mathrm{Suc}\left[\mathrm{n}^{\mathrm{k}}\right]$, we immediately obtain the desired results.

Consider digraphs with the following properties :
(i) there are no self-loops,
(ii) the indegree of any vertex is atmost one and
(iii) the outdegree of any vertex is atmost one.

Let F_{3} be an FO sentence such that a digraph satisfies F_{3} iff it satisfies properties (i)(iii). Consider a query on such digraphs which defines the following k-ary predicate, $k>2$:
$R^{k}\left(x_{1}, \ldots, x_{k}\right)<=>$ indegree $\left(x_{1}\right)=0$, outdegree $\left(x_{k}\right)=0$, $E\left(x_{i}, x_{i+1}\right), 1 \leq i \leq k-2$, and there exists a path from x_{1} to x_{k}.

It has been shown in Section 3, using Lemmas 1 and 2, that R^{k} is not expressible in

FO+IFPk ${ }^{+}$Suc. Note that the digraphs G_{n} and H_{n} used in Lemma 1 satisfy the sentence F_{3}. Thus it follows that R^{k} is not expressible in $\mathrm{FO}_{\mathrm{H}}+\mathrm{IFP}{ }^{\mathrm{k}}+\mathrm{Suc}$ even if the input structures are restricted to those satisfying F_{3}.

Lema 10 : R^{k} is expressible in FO+GFPk[n], $k>2$, when the input structures are restricted to those satisfying F_{3}.

Proof : The following formula uses a k-ary predicate variable to compute $\mathrm{R}^{\mathbf{k}}$:

$$
\begin{aligned}
& g\left(P, x_{1}, \ldots, x_{k}\right)=F_{3} \wedge g l\left(P, x_{1}, \ldots, x_{k}\right) \text { where } \\
& g l\left(P, x_{1}, \ldots, x_{k}\right)= \\
& {\left[\forall y_{1}, \ldots, y_{k} \neg P\left(y_{1}, \ldots, y_{k}\right) \wedge\right.} \\
& \forall z \neg E\left(z_{1} x_{1}\right) \wedge \exists z_{1}, \ldots, x_{k} \quad z_{1}=x_{1} \wedge \\
& \left.\bigwedge_{i=1}^{k-1} E\left(z_{i}, z_{i+1}\right) \wedge z_{k}=x_{k} \wedge \bigwedge_{i=2}^{k-1} x_{i}=x_{1}\right] \\
& V\left[\exists z P\left(x_{1}, \ldots, x_{1}, z\right) \wedge E\left(z, x_{k}\right) \wedge\right. \\
& \left.\bigwedge_{i=2}^{k-1} x_{i}=x_{1}\right] \\
& V\left[P\left(x_{1}, \ldots, x_{1}, x_{k}\right) \wedge \forall z \neg E\left(x_{k}, z\right) \wedge\right. \\
& \left.\bigwedge_{i=1}^{k-2} E\left(x_{i}, x_{i+1}\right)\right] \\
& V\left[P\left(x_{1}, x_{2}, \ldots, x_{k}\right) \wedge x_{1} \neq x_{2}\right] .
\end{aligned}
$$

The conjunct F_{3} ensures that if the input structure does not satisfy F_{3} then the gfp computation terminates at the first iteration with an empty predicate. The gfp computation is actually carried out by gl. The first disjunct of gl checks if P is empty (which it will be in the first iteration) and initializes it to contain tuples (x_{1}, \ldots, x_{1}, y), indegree $\left(x_{1}\right)=0$, such that the path length from x_{1} to y is exactly $k-1$. Note that digraphs which satisfy F_{3} are free from selfloops and vertices with indegree greater than one. Hence if a tuple is added to P in the first iteration then the input digraph is guaranteed to contain vertices x_{1}, \ldots, x_{k} such that (x_{1}, \ldots, x_{k}) \in R^{k}. Since P is empty during the first iteration, the other three disjuncts do not contribute any tuples. If no vertex in the input graph has an indegree of zero the gfp computation terminates at the first iteration with an empty predicate.

If P is non-empty at the end of the first iteration, the first disjunct will not add any tuples to P in any subsequent iteration since (as
shown below) P will never be empty again. The function of the second disjunct is to traverse the paths originating at zero-indegree vertices. Note that for each such path, its first k-1 edges have already been traversed by the first disjunct and the corresponding tuple added to P. In the $i^{\text {th }}$ iteration, $i \geq 2$, for each tuple (x_{1}, \ldots, x_{1}, y) in P, the second disjunct checks if there is an edge from y to z and adds (x_{1}, \ldots, x_{1}, z) to P if the check succeeds. Note that the absence of selfloops and vertices with indegree greater than one ensures that the tuple (x_{1}, \ldots, x_{1}, z) was not added to P in any previous iteration. Hence at the end of the $1^{\text {th }}$ iteration, $i \geq 2$, P contains a tuple ($x_{1}, \ldots x_{1}, z$) iff the path length from x_{1} to z is exactly $k+i-2$. We emphasize that the tuples added to P, by the first two disjuncts, in an iteration are dropped from P in the next iteration. This ensures that the gfp does not contain tuples which do not belong to $\mathrm{R}^{\mathbf{k}}$.

The third disjunct keeps on checking whether p contains a tuple ($x_{1}, \ldots, x_{1}, x_{k}$) where outdegree $\left(x_{k}\right)=0$. Such a tuple is guaranteed to be added to P in atmost $n-1$ iterations. If P contains such a tuple then the input digraph also contains the vertices x_{2}, \ldots, x_{k-1} such that t $=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in R^{k}$. The third disjunct finds the vertices $x_{1}, 2 \leq i \leq k-1$, and adds the tuple to P. Note that if $\left(x_{1}, \ldots, x_{1}, x_{k}\right)$, which caused t to be added to P, was added to P in the $i^{\text {th }}$ iteration then it will be dropped from P in the next iteration. Thus we must ensure that t does not drop out of P in any future iteration. Note that the tuples added to P by the third disjunct have distinct values in all the k components (this follows from the fact that the input graph satisfies F_{3}) but the tuples added by the first two disjuncts have the same value in the first $k-1$ components. The fourth disjunct uses this property to maintain the R^{k} tuples in P. Finally when the gfp computation terminates, the tuples in P are exactly the tuples of R^{k}, i.e.,
$\left(x_{1}, \ldots, x_{k}\right) \in R^{k} \Leftrightarrow\left(x_{1}, \ldots, x_{k}\right) \in \operatorname{GFP} g$.
We now show that the above gfp computation will terminate in atmost n iterations. Consider any two vertices x_{1}, indegree $\left(x_{1}\right)=0$, and x_{k}, outdegree $\left(x_{k}\right)=0$, such that there is a path from x_{1} to x_{k} of length i, $i>k-1$. Hence the tuple $\left(x_{1}, \ldots, x_{1}, x_{k}\right)$ will be added to P in the $1-k+2^{t h}$ iteration by first disjunct, if $i=k-1$, or by the second disjunct, if $i>k-1$. Therefore the third disjunct will add the tuple $\left(x_{1}, \ldots, x_{k}\right)$ to P in the $i-k+3^{\text {th }}$ iteration. Since $i \leq n-1$, each such tuple will be added to P by the end of the
$n-k+2^{\text {th }}$ iteration. Since $k \geq 2$, the gfp computation will always terminate in n iterations. !

For the case when $k=1$ consider digraphs with vocabulary $\langle E, s, d, L 1, R 1, L 2, R 2\rangle$ which satisfy $F_{4}=$ $F_{3} \wedge \forall z \neg E(z, s)$, i.e., in addition to satisfying F_{3} the indegree of s is zero. Lemma 4 shows that a unary predicate R^{1} is not expressible in $\mathrm{FO}+\mathrm{IFP}{ }^{1}+$ Suc on digraphs satisfying F_{4}. However, for digraphs which satisfy F_{4}, arguments similar to those in Lemma 10 can be used to show that R^{1} is expressible by the following FO+GFPl [n] formula

$$
\begin{aligned}
& g(P, x)= F_{4} \wedge g l(P, x) \text { where } \\
& g l(P, x)= {[x=s \wedge \forall z \neg P(z)] } \\
& V[\exists z P(z) \wedge E(z, x)] \\
& \vee {[P(x) \wedge \forall y \neg E(x, y)] . }
\end{aligned}
$$

Leman 10 and the above discussions yield :
Theore 4 : For $k>1$, there exist k-ary predicates which are not expressible in FO+IFPk (FO+IFPk + Suc) but are expressible in FO+GFPk[n^{k}] (F0+GFPk + Suc $\left[n^{k}\right]$).

I

References

[AU] A.V.Aho and J.D.Ullman, Universality of Data Retrieval Languages, Proc. 6th ACM-POPL, 1979.
[Be] C.Berge, Graphs and Hypergraphs, NorthHolland, 1974.
[CH] A.Chandra and D.Harel, Structure and Complexity of Relational Queries, JCSS, Vol 25, No 1, 1982.
[Du] P.Dublish, Optimization and Expressibility of Relational Queries, Ph.D. Thesis, Dept. of Computer Science \& Engg., IIT Delhi, July 1988.
[Eh] A.Ehrenfeucht, An Application of Games to the Completeness Problem for Formalized Theories, Fundamenta Mathemaricae, Vol 49, 1961.
[En] H.Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.
[Fr] R.Fraisse, Sur les Classifications des Systems de Relations, Publ. Sci. Univ. Alger I, 1954.
[Gu] Y.Gurevich, Towards Logic Tailored for Computational Complexity, Computation and Proof Theory, Lec. Notes in Mathematics, Vol 1104,

Springer-Verlag, 1984.
[GS] Y.Gurevich and S.Shelah, Fixed-Point Extensions of First-Order Logic, Proc. of 26 th IEEE-FOCS, 1985.
[Iml] N.Immerman, Number of Quantifiers is Better than Number of Tape Cells, JCSS, Vol 22, No 3, 1981.
[Im2] N. Immerman, Relational Queries Computable in Polynomial Time, Information and Control, Vol 68, 1986.

