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The expressibility of bounded-arity query 
hierarchies resulting from the extension of first- 
order logic by the least fixed-point, Inductive 
fixed-point and generalized fixed-point operators 
Is studied. In each case, It is shown that 
increasing the arity of the predicate variable 
from k to k+l always allows some more k-ary 
predicates to be expressed. Further, k-ary 
inductive fixed-points are shown to be more 
expressive than k-ary least fixed-points and k-ary 
generalized fixed-points are shown to be more 
expressive than k-ary inductive fixed-points. 

1. Introduction 

The failure of query languages based on 
first-order logic (PO) to express several queries 
of interest, like transitive closure, Is well 
known [AU]. This has led to the development of 
query languages based on the extension of FO by 
several fixed-point operators like least 
fixed-point (LFP) [AU,CH,I~l, inductive 
fixed-point (HP) [GS] and generalized fixed-point 
(GFP) [IsQ]. Each fixed-point operator enables the 
computation of some fixed-point of FO formulae 
lo 9x1 ,...,Xk) where P is a k-ary predicate 
variable and xis are the free variables of g. 
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We study the expressibility of bounded-arlty 
fixed-point query hierarchies obtained by 
restricting the arlty of the predicate variable P 
in formulae g. The kth level in each hierarchy, 
kll, is the query language resulting from 
restricting the arfty of the predicate variable P 
to exactly k. Chandra and Hare1 [CH] were the 
first to express an interest in the study of such 
a hierarchy for FO+LFP. They had proved that 
certain k-ary predicates were not expressible in 
the kth level of the FO+LFP hierarchy. It had 
been shown in [Im2] that these predicates were 
expressible in the 2k+3th level of the FO+LFP 
hierarchy. Thus it appeared that the arity of the 
predicate variable had to be more than doubled 
before some more k-ary predicates could be 
expressed. They left It as an open problem to 
decide whether increasing the arity by one enables 
some more k-ary predicates to be expressed. We 
resolve this problem by showing the existence of 
k-ary predicates which are not expressible in the 
k t h level of the FO+LFP hierarchy but are 
expressible in its k+lth level. Similar results 
are also shown for the FO+IFP and FO+GFP 
hierarchies. These results are then extended for 
the case when a valid successor predicate on the 
database domain is available to the query 
language. 

The k-ary hierarchies can also be used to 
obtain a better idea of the relative expressive 
powers of FO+LFP, FO+IPP and FO+GFP. Although it 
is known that FO+LFP and FO+IFP have the same 
expressive power [GS], we show the existence of 
predicates which are expressible in the kth level 
of the FO+IFP hierarchy but are not expressible in 
the kth level of the FO+LFP hierarchy. A query in 
the kth level of the FO+IFP hierarchy takes atmost 
nk iterations, n = size of the database domain, 
for its evaluation. However, a query in the kth 
level of the FO+GFP hierarchy may take 2P, p=nk, 
iterations for its evaluation. At present it is 
not known whether FO+GFP, restricted to queries 
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that take polynomial number of iterations for 
their evaluation, is equivalent to FO+IFP. 
However, we show that there exist k-ary predicates 
which are not expressible in the kth level of the 
FO+IFP hierarchy but are expressible in the kth 
level of the FOIGFP hierarchy. Further the FOffiFP 
queries used to express these predicates take 
atmost n iterations for their evaluation. These 
results are shown to hold even in the presence of 
a successor predicate on the database domain. 

2. Definitions 

A finite structure (or a relational database) S 
with a vocabulary v = <81,...,Rk,el,...,~~> can be 
regarded as a tuple S = <D,R l,...,Rk,Cl,...,Cm > 
consisting of a finite domain D, predicates (or 
relations) Rl,...,Rk on D corresponding to the 
predicate-symbols i?l,...,Ek of v and constants 
Cl,..*,Cm, which are elements of D, corresponding 
to the constant-symbols El,...,Zm from v. In 
future we shall often use the same symbol to 
denote a predicate (constant) and its predicate- 
symbol (constant-symbol) relying on the context to 
resolve the ambiguity. 

TWO structures S = <D,Rl ..*..Rk,Cl,-a.,%> 
and S' = <D',Ri,...,R1;,ci,...,c&>, with the same 
vocabulary, are isomorphic if there exists a one- 
one onto mapping h : D -W D' such that Ri = 
h(Ri), l<i<k, and ci = h(ci), l<i<m. -- -- 

Given a vocabulary v, a query Q is a function 
which maps each structure S, with vocabulary v, to 
a k-ary predicate Rk defined over the domain of S, 
i.e., Q : S --t Rk. In addition, a query Q must 
result in isomorphic predicates on isomorphic 
structures [CH], i.e, if h is an isomorphism from 
S to S' then Q(S*) = h(Q(S)). 

The first-order language of a vocabulary v, 
FO(v), is the set of all formulae of first-order 
logic with equality [En] built using the symbols 
of V. The query language PO is the union of the 
languages FO(v) for all possible vocabularies, 
i.e, FO = U FO(v). 

V 

Let g,(P,st) be a first-order formula built 
USbIg the symbols from some vocabulary v (in 
future we shall omit the subscript v) and an 
additional k-ary predicate symbol P which is not 
in v. Let Z = (x1,x2, . . ..Xk) be the sequence of 
Eree variables occuring in g. Given a structure S, 
vith vocabulary v, on domain D, we can use g to 

compute P in an iterative fashion until a 
fixed-point is reached, i.e., 

P(Z) = gi(0,iz) = gi+‘(0,3 where 
gi(O,Z) = g($-'(O,i),Z) and g'(@,Z) = g(0.Z). 

We emphasize that the length of g is fixed, i.e., 
its length is independent of the size of D, but 
the number of iterations needed to reach a 
fixed-point may depend on the size of D. There 
exist formulae for which the above iterative 
computation never terminates, e.g., 

f(P,x) = [WYlP(Y) A x=x1 
v 13YPCY) A XZXI. 

In the following we only consider those formulae 
for which the iterative computation terminates on 
all valid input structures. In general, it is 
undecidable to check this property. 

A k-ary predicate Pfp is a fixed-point (fp) 
of g(P,R) if Pfp(i) = g(Pfp,R) and Plfp is the 
least fixed-point (lfp) of g if it is contained in 
every fixed-point of g. The iteratively computed 
fp of g is called the geaeralized fixed-point 
(gfp) of g. If g is positive in P, i.e., each 
occurence of P in g is under an even number of 
negations, then the lfp of g is guaranteed to 
exist and it is the same as its gfp [CH]. The 
inductive fixed-point (ifp) of g is the gfp of 
h(P,U = P(f) v gem. If g is positive in P 
then the lfp of g is the same as its ifp [GS]. 

It has been shown in [=I that 
t&0,%3 E hi+l(O,iZ), i.e., the iterative 
computation of ifp (lfp) proceeds monotonically. 
Hence, if IDI = n then the ifp (lfp) of g can be 
computed in atmost nk iterations where k is the 
arity of P. However, in general, the iterative 
computation of the gfp need not proceed 
monotonically. Thus the gfp computation may take 
upto 2p, p = n k, iterations. 

The LFP operator accepts an FO formula 
g(P.3, positive in P, and computes -its lfp. 
Similarly, the IFP (GFP) operator computes the ifp 
(gfp) of a given formula. The query languages 
based on the extension of FO by the above 
fixed-point operators are defined as follows : 

Fo+LFP = { LFP g(P,E) : g is positive in P } , 
Fo+IFF = i IFP g(P,P) I and 
FO+GFF = { GFP g(P,%) } . 

The query languages FO+LFPk, FO+IFPk and 
FO+GFPk, k,', are obtained from FO+LFP, FO+IFP 
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and FO+GFP respectively by restricting the arity 
of the iteratively defined predicate P to exactly 
k. Since LFP g(P,Z) = IFP g(P,Z), if g is positive 
in P, and IFP g(P,R) = GFP h(P,%), FO+LFPk C 
FO+IFPk and FO+IFPkC FO+GFPk. A query Q whit.. 
defines a j-ary predicate Rj over structures with 
vocabulary v is said to be expressible in FO+LFPk, 
k?j, iff there exists a formula g(P,%) in FO+LFPk 
such that on all structures with vocabulary v 

(dl ,...,dj) E Rj <==> (dl,...,dj,d;,d;,...,d;) 6 P 

where m-k-j and each d;, l<i<m, is either an -- 
element of the set {dl,..., dj} or is a constant. 
Similar definitions of expressibility can be given 
for the FO+IFP and FO+GFP hierarchies. 

It was pointed out in [GU] that even FG+GFP 
failed to express some simple queries, e.g., 
checking whether a given predicate has an even 
number of tuples. Iazaenuan [1m2] pointed out that 
this query could be expressed by adding a 
successor predicate Suc(x,y), which enforces a 
total ordering on D, to FO+LFP. In fact the 
availability of Sue enables FO+LFP (FO+IFP) to 
express all queries computable in polynomial time 
[Im2,GS] and enables FO+GFP to express all queries 
computable in polynomial space (in the size of the 
structure) [Im21. 

If Sue is available then we can construct 
formulae g(P,Suc,f) by using the symbols from some 
vocabulary v and the predicate-symbol Sue. Given a 
structure S with vocabulary v, g(P,Suc,R) is 
evaluated by augmenting S with some predicate 

sucp,D* where if D = {dl ,...,d,} and p is some 
permutation on Il.2 ,...,nl then s”cp,D = 
{(dp(i)Jp(i+l)) : _ _ l<i<n-1). The tuples of SUC~,D 

give us a total ordering on D as follows. Each 
tuple (dp(i),dp(i+l)) E SUC~,D is interpreted to 
mean that dp(i) is the Immediate successor of 

dp(i+l)- The minimum element is dp(n) and the 
maximum element is dp(l). 

Unfortunately, the availability of Sue allows 
one to write formulae where the value of the 
defined predicate depends on the particular SUC~,D 

substituted for Sue, e.g., 

max(x) <==> *z [ Z#X ==> lSUC(Z,X) I. 

Such formulae are not queries since they do not 
assign a unique predicate to a given structure. 
Therefore we shall only consider formulae 
g(P,Suc,i) which are Sue-invariant, i.e., on all 
input structures the value of P computed is 
independent of the particular SUC~,D substituted 

for the predicate-symbol Sue in g. It has bee:1 
shown in [Dul that Sue-invariant formulae are 
queries. 

Thus, if we restrict ourselves to 
Sue-invariant formulae, the addition of Sue to 
FO+LFP , FO+IFP and FO+GFP leads to the following 
query languages : 

FO+WP+gac = I LFP g(P,Suc,%) ) , 
Fo+IFP+suc= { IFP g(P,Suc,Z) } and 
FO+GFP+Suc = { GFP g(P,Suc,jz) }. 

The query languages F0+LFP&mc, FO+IFPRtSuc and 
Fo+GFP4Suc are obtained from FO+LFP+Suc, 
FO+fFP+Suc and FO+GFP+Suc respectively by 
restricting the arity of predicate variable P to 
exactly k, k?l. 

I 
3. Eigltar Arity Leads to More Expressiva Power 

In this section we show that for each fixed-point 
operator increasing the arity of the predicate 
variable P from k to k+l, k?l, always allows some 
more k-ary predicates to be expressed. We first 
show that there exist k-ary predicates which are 
not expressible in FO+IFPk+Suc but are expressible 
in FO+LFPk+l. Since FO+LFPk C FO+LFPk+Suc C 
FO+IFPk+Suc, FO+IFPk C FO+IFPk+%c and FO+LFPkC - 
FO+IFPk , we immediately obtain the desired results 
for the FO+LFP, FO+IFP, FO+LPP+Suc and FO+IFP+Suc 
hierarchies. We then show that there exist k-ary 
predicates which are not expressible in 
FO+GFPk+Suc but are expressible in FO+IFPk+l. 
Since FO+GFPkC FO+GFPk+Suc and FO+IFPkC FO+GFPk, 
we immediately obtain the desired results for the 
FO+GFP and FO+GFP+Suc hierarchies. 

Consider a query on digraphs which defines 
the following k-ary predicate, k)2 : 

indegree(xl)=O, outdegree(xk)=O, 
E(xi,xi+l), 1519-2, q#xj, li#jk, and 
there exists a path from xl to Xk. 

To show that Rk is not expressible in 
FO+IFPk+Suc we make use of digraphs G, and H, 
shown in Figure 1. G, and H, are structures with 
vocabulary v = <E,s,d,Ll,Rl,L2,R2> where E is the 
edge predicate and s,d,Ll,Rl,LZ and R2 are 
constants. We augment G, and H, with the successor 
predicate Sucv = { (vi,vi+l) : l<i<Sm+S 1 . -- 
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v1 v2 v3 V4 vm+l vm+2 

s . - - - : - . . . . . . .-. d 

vm+3 vm+4 ?a+5 %a+6 v2m+3 v2m+4 

Ll e-e . . . . . .j= Rl 

v2m+5 V2m+6 v2m+7 v2m+8 v3ln+5 v3m+6 

L2 , - : - ; . . . . . . . .-. R2 

the following theorem : 

Theorem [Eh,Fr] : P2 has a winning strategy for 
the M move game on G and H iff G and H satisfy the 
same set of FO sentences of QR M. I 

We show that P2 wins the log m move EF game 
played on the augmented structures G,+SucV and 
H,,+SucV. Hence G,+SucV and H,+SucV agree on all FO 
sentences of QR log m, m = n/3 - 2. Therefore, no 
fixed-length FO sentence can distinguish G,+SucV 
from H,+SucV. We then show that this is 
contradicted if Rk is expressible in FO+IFPkcSuc. 

The Graph Gn 
WI: P2 wins the log m move EF game played on 
structures G, and H, augmented with SucV. 

v1 "2 v3 V4 %+l vm+2 

s .-. . . . . . l -9 Rl 

vm+3 vm+4 vm+5 vm+6 v2m+3 v2m+4 

L2 . ) 2 = - ; . . . . . . .b. d 

v2m+5 v2m+6 v2m+7 v2da v3m+5 v3m+6 

Ll .- - - - - = . . . . . .- R2 

The Graph I& 

Figure 1 

We now introduce a tool which will be used to 
show that Rk is not expressible in FO+IFPk+Suc. 
First we introduce a technical definition. The 
quantifier rank (QR) of an FO sentence is the 
maximum depth of nesting of quantifiers in it. 
An Ehrenfeucht-Fraisse (EF) game [Eh,Fr] is played 
by two players, Pl and P2, on a pair of structures 
G and H with the same vocabulary. Pl tries to show 
that the two structures are different whereas P2 
tries to keep them looking alike. Formally the M 
move game is defined as follows : 

At the ith move, l<i(M, Pl chooses an element gi 
(hi) from G (H) and-P? responds with an element hi 
(pi) from H (G). P2 is said to win the M move game 
if the map which sends constants from G to 
constants from H and maps gi to hi, l<iRi, is an -- 
isomorphism of the induced substructures, i.e., 
the substructures obtained from G and H by 
restricting their respective domains to the 
constants and the elements chosen by both the 
players. The usefulness of EF games results from 

Proof (Sketch) : We define a few terms before 
proceeding with the proof. Let dS(vi,vj) denote 
the E-distauca, i.e., the length of the path, from 
vi to vj in G, (H,). Let dS,,,(vi,vj) denote the 
Suc-distauce from vi to vj, i.e., the length of 
the path from vi to vj in the graph constructed on 
V by using the tuples of SucV as directed edges. 
Note that if j=i+r, r?l, then dSUC(vi,vj)=r and 
dSuc(vj,vi)= 00. However dE(vi,vj)=r if j=i+r and 

Vi and vj lie in the same row of G, (H,). If vi 
and vj lie in different rows then 
dE(vi,vj)=dg(vj,vi)= 00. An r-chain, r<m, is a 
sequence of vertices gl,g2,...,gp such that 
dS(gi,gi+l)=dS,,Jgi,gi+l)(r, 1519-l. Note that 
this definition ensures that all the vertices in a 
chain must be from the same row of G, (El,). Two 
chains g19g2,*..*gp and hl,h2,---,hp are 
isoDorphic iff de(gi,gi+l)=dE(hi,hi+l) and 
dS,,Jgi.gi+l) = dsucOq,hi+l), Iii+1, and some 
gi is a constant iff hi is also the same constant. 
Two chains gl,g2,...,gp and hl,h2,...,hq are 
rl,r2-disjoint if 

(I) dE(gi,hj) > rl and dE(hj,gi) > rl, liiip and 
l<j<q, and 

(11) dSuc(gi,hj)>r2 and dsu& ,gih-2, l<i<p and _ _ 
l<j<q. -- 

A vertex vj is said to be r-free from a chain if 
dR(gi,vj)>r and dE(Vj,gi)>r for each gi belonging 
to the chain. 

P2 wins the log m move game by the following 
strategy. At the first move any vertex chosen by 
Pl from G, (H,) is at an E-distance of r, r<m/2, 
of exactly one constant from G, (H,). P2 responds 
with a vertex from H, (G,) which is also at an 
E-distance of r of the same constant from H, (Gn). 
Inductively, with j moves remaining the vertices 
from G, (Hn) chosen by both the players and also 
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the constants s,d,Ll,Rl,LZ and R2 ( even if these 
are not chosen ) can be partitioned into Zj-chains 
21 s...,!sp - (El ,...,:,I such that 

(I) pi is isomorphic to iii, 1512, 
(ii) ii and 2, (iii and xx), i#x, are mutually 

either 2j,2j-disjoint or 2j,l-disjoint, and 
(iii) Ei and zx, i#x, are mutually 2j,2j-disjoint 

(2j,l-disjoint) iff iii and Kx are mutually 
Zj,Zj-disjoint (2j,l-disjoint). 

Now, suppose Pl picks up a vertex vg from G, 
at the next, i.e., log P -jilt", move. Then the 
following cases are possible : 

cam? 1: vg is at an E-distance r, r<2j'l, of 
exactly one chain &. 

case2: vg is Zj-l-free from each ii, 1Ailp. 

It can be shown that in case 1, P2 can respond 
with a vertex vh from Hn which is at an E-distance 
of r from the chain hi. Similarly, in case 2 P2 
can respond with a vertex q, which is also 
Zj-l-free from each chain xi. The details are 
given in [Du]. 

The case when Pl chooses a vertex from H, can 
be similarly handled. At the end of the above 
move, the chains si and Ki, l<i<p, and the chosen -- 
points vg and vh can be split into isomorphic 
Zj-l-chains which are mutually either 
2j-1,2j-1-disjoint or 2j-1,1-disjoint. Thus the 
induction hypothesis is true with j-l moves 
remaining. At the end, with no moves remaining, 
i.e., j-0, P2 wins the EF game. 1 

Lera 2: Rk is not expressible in FO+IFPk+Suc, 
k)2. 

Proof : Suppose that Rk(Xl,X2,...,Xk) iS 

expressible in FO+IFPk+Suc. Let g{P,Suc,R) be a 
formula such that ifp of g is Rk. If G, is the 
input structure then the ifp of g must contain the 
tuple (S,q,...,Vk-l,d) but if H, is the input 
structure then the ifp of g contains the tuple 

(s,v2, . . ..Vk-1.Rl). Note that on both the 
structures the ifp of g contains exactly three 
tuples, one for each row of vertices. Therefore 
the ifp will be computed in atmost three 
iterations. Hence the sentence 

3 X2,..‘,Xk-1 g3(0,Suc,s,x2,...,Xk-l,d) 

is true on the augmented structure G,+SUCG and 
false on the augmented structure H,+SUCH where 
SUCG and SUCH are any two (maybe even same) valid 

succesor predicates on V (recall that g i:i 
Sue-invariant). This contradicts Lemma 1 and hence 
our initial assumption was incorrect. I 

-3 : Rk is expressible in FO+LFPkil, k>2. - 

Proof : We use a k+l-ary predicate variable to 
iteratively traverse the paths originating at 
zero-indegree vertices. When the path originating 
at xl, indegree(0, traverses a vertex z, z#xl, 
the tuple (xl,...,xl,z) is added to P. If at any 
stage a tuple (xl,...,xl,xk), outdegree(xk)=O, is 
found in P then (xlrx2,...,xk,xk) is added to P 
iff (xl,x2,...,xk) < Rk. The following formula 
accomplishes this task : 

g(P,xlrx2r***.xk+l) = 
[ E(q+k+l) h ++ Z 1 E(zsxk) A xk#xk+l 

Xi-xl, 1 

v [ 3z p(xk,...,Xk,Z) ,, E(z,Xk+l) 

k-l 

A Xk+=%+l /\ A xi=Xk 1 
i-1 

v 1 p(xl,.*.,X1,Xk) l\+Z 1 E(Xk,Z) A 
k-2 

A E(xi,xi+l) A A X&j 
i-1 l(i#j(k 

A Xk=Xk+l 1 l 

Since g is positive in P, its lfp is well 
defined. In the first and each subsequent 
iteration, the first disjunct adds a tuple 
(xl,...,xl,y) to P for each edge E(xl,y), xl#y, in 
the input graph such that indegree(xl)=O. Since P 
is empty during'the first iteration, the other two 
disjuncts do not add any tuples to P. 

The second disjunct traverses paths starting 
at vertices whose indegree is zero. For each such 

path, its first edge has already been added to P 
by the first disjunct. In the ith iteration, 121, 
for each tuple (xl,...,xl,y) in P, the second 
disjunct checks if there is an edge E(y,z), z#xl, 
and adds the tuple (xl,...,xl,z) to P. Thus at the 
end of the ith iteration P contains a tuple 
(Xlr*..,Xl,Y), xl#y, iff indegree( and there 
is a path of length i from xl to y. If there is a 
path from x1* indegree(xl)=O, to Xkr 
OUtdegree(Xk)=o, then the tuple (Xl, . . ..Xl.Xk) 
will be added to P in atmost n-l iterations. The 
third disjunct checks if the tuple (Xl, . . ..Xk) 
satisfies Rk and adds the tuple (xl,...,Xk,Xk) to 
P. Since the tuples added by the first two 
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disjuncts always have distinct kth and k+lth 
components, it follows that 

(xl,.*..xk) <Rk <==> (xl,...,xk,xk) E LFP g . 1 

Lela4: There exists a unary predicate which is 
not expressible in FO+IFPl+Suc but is expressible 
in FO+LFP*. 

Proof : Consider digraphs which are structures 
with vocabulary <E,s,d,Ll,Rl,L*.R2>. Consider a 
query on digraphs which defines the following 
"nary predicate : 

R1(x) <=I> outdegree(x)=O and there is a path 
from s to x. 

By arguments similar to those used in Lemmas 1 and 
2 we can show that ~1 is not expressible in 
FC+IFP1+Suc. However R1 can be expressed in 
FO+LFP* as shown below : 

dP,q,x*) - 
t xl-” A %q,q) A xl#x21 

v 13 2 P(Xl,Z) A P(z,x*) A XlfX2 I 
v r3 2 P(Z,Xl) AY y ( E(Xl,Y) ==> y-x1 ) A 

q-q I l I 

Since FO+LFPk c FO+IFPk and 
FO+IFPk+Suc, Lemmas 1 - 4 give us 

FO+LFPk+Suc c 

Thaorem I : For k,l. there exist k-ary predicates 
(i) which are not expressible in Fo+LFr'k 

(FO+LFPk+Su~) but are expressible in 
FO+LFP~+~ (FO+LFPk+l+Suc) and 

(ii) which are not expressible in FO+IFPk 
(Fo+I&+SUC) but are expressible in 
FO+IFPk+l (FO+IFPk+l+Suc). I 

We now show that there exist k-ary 
predicates which are not expressible in 
FO+GFPk+Suc but are expressible in FO+IFPk+l, k>l. - 
Consider the set of digraphs which are structures 
with the vocabulary <E,s,d>. We require that the 
digraphs be free from self-loops, indegree = 
outdegree = 0, outdegree = indegree - 1, 
and all other vertices must have an indegree and 
outdegree of one. Let Fl be an FO sentence which 
checks iE a given digraph satisfies these 
conditions. The following query defines a k-ary 
predicate, k,l, on structures which satisfy Fl : 

&x, ,x2 ,...,xk) <==> path length from s to xl = 
path length from Xk to d 
and E(xi,xi+l), l<i<k-1. -- 

Lelas: Rk is not expressible in FO+GFPk+Suc, k>l. 

Proof : Consider structures S, = <V,,Suc,,v1,v,> 
and sn+l = <Vn+l~Su~~+l~vl~vn+l~ with the 
vocabulary <Suc,s,d> where Vt - {vi: 1<i<t } 
and Suet - { (vi,vi+l) : 1<i<t-1 }. Using-the 
structure S, csn+l) we can-define. by an FO 
formula, a digraph G, (Gn+l) whose edges are the 
tuples of Sue, (Suc,+l) (see Figure 2). Note that 
both G, and G,+l satisfy the sentence Fl. Wlg we 
assume that n is even. 

"1 "2 "3 "n-1 "n 

8 .v. . . . . . .-. d 

Ths Graph Go 

"1 "2 "3 "n "n+l 

s .-. . . . . . a... d 

2 Plgmre 

If k is even (odd) then Rk contains exactly 
one tuple when evaluated on G,+l (Gn) and is empty 
when evaluated on G, (G,+l). Suppose that Rk is 
expressible in FO+GFPk+Suc. Let Rk be the gfp of 
g(P,sUC,Xl,...,Xk). If k is even then the gfp of g 
is empty when G, is the input structure and 
contains a single tuple when G,+l is the input 
structure. Thus the sentence 

3 Xl,X2,**‘,Xk g(0,s”C,Xl,X2....,Xk) 

is true on Gn+l. We claim that this sentence is 
false on G,. This is so for the following reason. 
Suppose that g(@,xl,...,xk) f 0 on G,. Since the 
gfp of g is empty on G,, gi(O,Z) = 0, i>l. Thus 
g(Q,E) f$(@,Z) and g((b,E) - gi+l(O,Z). Hence the 
iterative computation of the gfp will never 
terminate on G,, a contradiction. Thus we have a 
fixed-length FO sentence which distinguishes S, 
from S,+l. The case when k is odd can be handled 
similarly. 

However, it is shown in [GUI that P2 wins the 
log n - 1 move EF game played on the structures S, 
and sn+l* Thus no fixed-length sentence can 
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distinguish these structures, a contradiction. 1 

Lemra6 : Rk is expressible in FO+IFPk+l, k,l. 

Proof : Since the input structure satisfies Fl, 
it has a unique path which originates at s and 
terminates at d. Our strategy is to simultaneously 
traverse this path, one edge at a time, in the 
forward and reverse direction starting from s and 
d respectively. Each step of this traversal yields 
vertices x1 and xk such that the distance of x1 
from s equals the distance of d from Xk- If the 
distance of xk from xl is k-l then we are done. 

The following formula uses a k+l-ary 
predicate variable to keep track of the paths 
traversed : 

,...,Xk) = F1 A gl(P,xl,...rxk) where l3(P 9x1 

gl(P,x 

I 

:l,...,Xk+l) = 
k 

E(S,Xk+l) h A xi=s I 

i-1 

k-l 
v [ E&d) A xk+l’d /\ A Xi = Xkl 

i-l 

v [ 3 2 P(s ,..., 8,s) h E(z,Xk+l) h 
k 

A xi-s I 
I=1 

v [ 3 2 P(s,..., z,d) A E(Xk,Z) A 
k-l 

A Xi’Xk A xk+l-d 1 
I=1 

v [ PCS,..., s,xl) A P(Xk,...,Xkd A 
k-l 
/\ E(q,xi+l) A xk’xk+l A 
i=l 

k-2 

A 7 ( P(S,...,S,Xi) v 
I=2 P(xj,...,xi,d) ) 1 . 

The conjunct Fl ensures that if the input 
structure does not satisfy F1 then the gfp 
computation terminates at the first iteration with 
an empty predicate. In the first iteration, when P 
is empty, only the first two disjuncts of gl add 
tuples to P. The first (second) disjunct adds a 
tuple (s,...,s,x) ( (x,...,x,d) ) for each edge 
E(s,x) (E(x,d)) in the input graph. 

The third disjunct traverses the path 
starting from s, in the forward direction, while 
the fourth disjunct traverses the path terminating 
at d in the reverse direction. In the it11 
iteration, i>l, the third (fourth) disjunct adds a 
tuple (s,...,s,x) ( (x,...,x,d) > to P iff the 
path length from s to x (x to d) is exactly i. 
Thus the tuples (s,...,s,xl) and (Xk,...,Xk,d) 
are added to P in the same iteration iff the 
length of the path from s to xl is equal to the 
length of the path from xk to d. 

If (x1,x* ,...,xk) E Rk then there are exactly 
k-2 vertices xi, 2<i<k-2, lying between x1 and Xk. -- 
Further for each xi lying between x1 and Xk 

neither (s,...,s,xi) nor (xi,...,xi,d) would have 
been added to P. The last disjunct uses this fact 
to check whether the tuple ( Xl,X*,...,Xk 1 
satisfies Rk. If the check is successful it adds 
the tUpk! (Xl,X2,...,Xk,Xk) t0 P. Note that the 
computation of the gfp proceeds monotonically 
(even though P occurs under an odd number of 
negations in gl) and therefore termination is 
guaranteed on all valid input structures. Further 
the gfp computation remains unchanged even if we 
replace g(P,E) by P(E) V go,%). Since the 
tuples added to P by the first four disjuncts of 
gl have distinct kth and k+lth components, we have 

(Xl, . . ..Xk) E d‘ <==> (Xl,...,Xk,xk) c IFP g . 1 

Since FO+GFPk C FO+GFPk+Suc and FO+IFPk C 
FO+GFPk, Lemmas 5 and 6 give us the following 
theorem : 

Theorem 2 : There exist k-ary predicates, kll, 
which are not expressible in FO+GFPk (FO+GFPk+Suc) 
but are expressible in FO+GFPk+l (FO+GFPk+l+Suc). 

4. k-ary IPPs are More Powerful than k-ary LFPs 

Consider structures with vocabulary <Ek,s,d> where 
Ek is a k-ary predicate-symbol. For k=2 such 
structures can be considered as digraphs and for 
k>2 they can be interpreted as directed 
hypergraphs [Be] in which each hyperedge has 
exactly k vertices. A hyperedge is an ordered 
tuple B = (Xl,X2,...,Xk) where x1 is the head of 

B, Xk is the tail of E and xis, 2<i<k-1, are the -- 
internal vertices. The indegree (outdegree) of a 
vertex is r iff it is the tail (head) of exactly r 
hyperedges. If a vertex is not the tail (head) of 
any hyperedge then its indegree (outdegree) is 
zero. We only consider structures with the 
following properties : 
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(1) Outdegree(s)=Z and indegree(s)=O. 
(ii) Outdegree(d)=O and indegree(d)=2. 
(iii) Each non-internal vertex, besides s and d, 

has an outdegree and indegree of one. 
(iv) All vertices in a hyperedge are distinct. 
(v) If a vertex is an internal vertex in some 

hyperedge then it appears in no other 
hyperegde. 

Let Fk be an FO sentence such that a 
structure with vocabulary <Ek,s,d> satisfies Fk 
iff properties (i)-(v) are true for that 
structure. Note that the concept of a path in 
digraphs can be easily generalized for hypergraphs 
which satisfy Fk. Further, there are exactly two 
vertex disjoint paths from s to d in each 
structure which satisfies Fk. Consider a query 
which defines the following k-ary predicate : 

R k (Xl,... ,xk) <==> 
if the input structure satisfies Fk 
then 

if the two paths from 8 to d contain the 
same number of hyperedges 

then 
Rk contains all the hyperedges from 
the two s-d paths 

elm? 
Rk contains all the hyperedges on 
the shorter s-d path and all but 
the last hyperedge on the longer 
s-d path 

else Rk IS empty i I 

To show that Rk is not expressible in 
FO+LFPk+Suc, we use structures %,n and Hk,n+k-L 
with vocabulary <Ek,s,d>. For k-2, the graphs Gz,~ 
and H2,n+l are shown in Figure 3. The structure 
Gk,n (Hk,n+k-l) can be obtained from G2,n 
(Hz,~+~) by replacing each edge by a hyperedge 
having k vertices. Formally, Gk,n is the structure 
<Vn,Ek,vl,vm(k-l)+l>, n=2m(k-I), where 

vn = t vlrvm(k-l)+l 1 IJ Vn,t U vn,b * 

Vn,t = { vi : Z<i<m(k-1) 1 , 

vn,b = { vi : m(k-1)+2<i<n 1 and -- 

Ek = Ek = 

I (Vl I (Vl ,vn,vn-l,***,vn-k+2) 1 U ,vn,vn-l,***,vn-k+2) 1 U 
J (Vi, J (Vi, . . ..Vi+k-1) . . ..Vi+k-1) : i=jk-(j-l) and O<jLm-1) U : i=jk-(j-l) and O<jLm-1) U 

{ (Vi+k-l,***,vi) { (Vi+k-l,***,vi) : i=jk-(j-l) and m<j<2m-2) . : i=jk-(j-l) and m<j<2m-2) . -- -- 

Similarly Wk,n+k-1 is the structure 

<Vn+k-l,hk,vl,vm(k-l)+l> where 

Vntk-1 = 1 "lrvm(k-l)+l 1 u Vn+k-l,t UVn+k-1,b 9 
V,+k-1,t = { Vi : 2ii<m(k-l) 1 9 

v2 v3 v4 Vrn 

v2m v2m-1 v2m-2 vm+2 

The Graph G2,n 

v2 v3 v4 Vrn 

v2m+l v2m v2m-1 vm+2 

3 Plgllre 

Vn+k-1,b = ( vi : m(k-1)+2<i<n+k-1 1 and -- 

( (Vl,Vn+k-l,***sVn+l) IlJ 
1 (vi,...,vi+k-1) : i= jk-(j-l) and O<j<m-1 }u 
{ (Vi+k-l,...,Vi) : i= jk-(j-l) and m<j?2m-1 } . -- 

Note that the both the s-d paths in Gk,n have 
m hyperedges. However, Hk,n+k-l has m hyperedges 
on the top path from s to d but the bottom path 
from s to d contains m+l hyperedges. We augment 

Gk,n and Wk,n+k-1 with successor predicates 
Sue, and Suc,+k-1 respectively where 
Suet = { (Vi,Vi+1) : 1<i<t-1 } . -- 

-7: P2 wins the log m - 2 move EF game 
played on Gk,n and Hk,n+k-l augmented with Sue, 
and sUCn+k-1 respectively. 

Proof (Sketch) : We can consider a hyperedge 

(g1 ,...,a) in Gk,n (Hk,n+k-1) as an ordered 
sequence of k binary edges (glrgp), 
k2983) ,..*,(&-l,gk)* If vx is the ith component 
and vy the jth component, j>i, of some hyperedge Z 
then dg(vx,vy)=j-i. If vx is the ith component 
of hyperedge gl and vy is the jth component of E2 
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and there are p hyperedges on the path from the 
tail of 81 to the head of 82, then dR(vx,vy) = 
(k-i+l)+pk+(j-1). However, in both cases dR(vy,vx) 
= 00. Note that in Sk,n (Hk,n+k-1) if vx and vy 
lie in different rows then dg(vx,vy)= 00. We 
define dSuc(vx,vy) as in Lemma 1. 

A top r-chain is a sequence of vertices 
g1,**.rgp such that dE(gi,gi+l)=dsuc(gi,8i+1)<r. 
l<i<p-1. -- A hotta r-cum is a sequence of 
vertices gl9”*9gp such that 
dE(8i,gi+1)dsuc(gi+l,gi)~r, llfLe-1. The notion 
of isomorphism for top (bottom) chains, 
rl,r2-disjoint chains and r-free vertices carry 
over from Lelna 1. 

Inductively, with j moves remaining, the 
vertices chosen by both the players from Gk,,, and 
the constants s and d can be partitioned into top 
Zj-chains (bottom 2j-chains)&, gtd, pl...., BP 

(gbs, %d, Hp+l,**.*Hq ). These top (bottom) chains 
are mutually 2j,2j-disjoint. Further the chains 
‘;x, l<x<p, 
2j,2j-d:87oint. 

and ifyy, __ e+l<y<q, are mutually 
Since the chains gts and gbs (&d 

and &d) contain the constant s (d), they are 
mutually Zj,O-disjoint. Similarly the chosen 
vertices from Hk,n+k-l and the constants 8 and d 
can be partitioned into top (bottom) Zj-chains 
lits,~td,%l,...,%p (iibs,~bd,bp+l,...,iiq) with the 
same properties as the corresponding chains in 

Sk,n* The chains & and fii, l<i<q, gts and %ts, -- 
zbs and hbs, &d and&d, and jjbd and hbd are 
isomorphic. 

At the next, i.e., log m -(j+l)th, move if Pl 
chooses a constant from Gk,n then P2 responds with 
the same constant from Hk,n+k-1. Otherwise suppose 
that Pl chooses vg C Vn,t such that vg is the qth 
component of some hyperedge. Then either vg IS not 
23-l -free from some top chain pi or vg is 
2j-l-free from all top chains. In either case, 
we can show that P2 can respond with a vertex vh E 

vn+k-1, Vh is also the qth component of some 
hyperedge, such that the inductive assertion 
remains true at the end of this move. The case 
when vg E vn,b or when Pl chooses a vertex from 
Hk,n+k-l can be handled Similarly. I 

Lem 8: Rk is not expressible in FO+LFPk+Suc, 
k)2. 

Proof : Suppose that Rk is expressible in 
Po+LFPk+Suc. Then there exists a formula 
g(P,Suc,q, . . ..Xk). positive in P, such that its 
lfp is gk. Thus the lfp of g evaluated on 
Gk,.,+sUCn contains a tuple (xl,...,xk) for each 
hyperedge (Xl,...,Xk) in Gk,n. However, the 1fP of 

g evaluated on Hk,n+k-l+Sucn+k-1 contafns all the 
hyperedges of Hk,n+k-l except the hyperedge on the 
bottom row whose tail is d. Since the lfp of g 
evaluated on Gk,n+Sucn is Rk, no proper subset of 
Ek can be a fixed-point of g when Gk,n+Suc, is the 
input structure. 

Let T be a 2k-ary predicate defined as 
follows : 
T(Ul,.~.,uk,Xl,...,Xk) = 

Ekhl,...,uk) A Ek(xl,...,s )A if\ xizui . 
I=1 

The k-ary predicate T(uI,...,uk,-,...,-) evaluated 
on a hypergraph contains all its hyperedges except 
the hyperedge (~1,. . . ,Uk). Hence, the following 
sentence 

3 Ul,...,Uk [tt Xl,...,Xk 
dT(ul .*.*.Uk,_,.*.,- ),suc,xl,.**,xk 1 
<=-> T(Ul,...,Uk,Xl,...,Xk) ] 

is true for Hk,n+k.ml+SUCn+k-l but false for 

Gk , n+Sucn for all valid succesor predicates Sue, 
and Sucn+k-1 ( recall that g is Sue-invariant ). 
This contradicts Lemma 8 and hence our initial 
assumption was incorrect. I 

Lem9 : Rk is expressible in FO+IFPk, k>2. 

Proof : We use a k-ary predicate variable P to 
store the hyperedges occuring on the two s-d 
paths. Initially, the two hyperedges out of s are 
placed in P. In each subsequent iteration one more 
hyperedge from each path is added to P. If the two 
s-d paths have the same number of hyperedges then 
the two hyperedges, whose tails are d, will be 
added to P in the same iteration. If the number of 
hyperedges on the two s-d paths are not equal, we 
make use of the above fact to avoid adding the 
last hyperedge on the longer path to P. The 
following formula accomplishes this task : 

g(P,Xl,....Xk I= Fk A fXl(p,Xl,...,Xk) where 

gl(p,Xl,...,Xk I= 
[ x1-S h Ek(xl,...,Xk) 1 

v [3Yl ,***,Yk-1 P(Y1,...,Yk-l,xl) A 
Ek(Xl ,...,Xk) /i ( Xk'd ==> 

* Zl,...,Zk-1 1 P(zl,...,=+l.d) 11. 

The conjunct Fk ensures that the fixed-point 
computation terminates in the first iteration with 
an empty predicate if the input hypergraph does 
not Satisfy Fk- The first disjunct initializes P 
to contain the two hyperedges out of s. The second 
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disjunct traverses the two s-d paths adding an 
extra hyperedge at each iteration. Note that this 
disjunct checks that P does not already contain a 
hyperedge whose tail is d before it adds such a 
hyperedge to P. Thus it ensures that the last 
hyperedge on the longer s-d path will not be added 
to P. The computation of the fixed-point of g 
proceeds monotonically even though P occurs 
negated in g. Thus the ifp of g is the same as the 
gfp of g. Therefore it follows that 

(Xl,...,Xk) E Rk <--> (Xl,...,Xk) c IFP g . 1 

Lenxnas 7-9 give us the following theorem : 

Theorem 3 : There exist k-ary predicates, kL2, 
which are not expressible in FO+LFPk (FO+LFPktSuc) 
but are expressible in FO+IFPk (FO+IFPk+Suc). 

5. k-ax-y GPPs are More Powerful than k-ary IPPs 

In this section we show that there exist k-ary 
predicates, kll, which are not expressible in 
FO+IFPk but are expressible in FO+GFPk[nk] where 
FO+GFPk[nkJ contains only those formulae of 
FO+GFPk for which the fp computation takes atmost 
nk iterations ( n - size of the domain ). A 
similar result is also shown for FO+IFPk+Suc and 
FO+GFPk+Suc[nk]. Our proof strategy is to show the 
existence of k-ary predicates which are not 
expressible in FO+IFPk+Suc but are expressible in 
FO+GFPk. Since Fo+IFPk c Fo+IFPk+suc and 
FO+GFPk[nk] c FO+GFPk+Suc[nkT, we immediately 
obtain the desired results. 

Consider digraphs with the following 
properties : 

(1) there are no self-loops , 
(ii) the indegree of any vertex is atmost one 

and 
(iii) the outdegree of any vertex is atmost one. 

Let F3 be an FO sentence such that a digraph 
satisfies F3 iff it satisfies properties (I)- 
(iii). Consider a query on such digraphs which 
defines the following k-ary predicate, k)2 : 

Rk(q ,...,Xk) <==> 
indegree(xl)=O, outdegree(xk)=O, 
E(xi,xi+1), l<i<k-2, and there exists a path -- 
from X1 to xk. 

It has been shown in Section 3, using Lemmas 
1 -Id 2, that Rk is not expressible in 

FO+IFPk+Suc. Note that the digraphs G, and H, used 
in Lemma 1 satisfy the sentence F3. Thus it 
follows that Rk is not expressible in FO+IFPk+Suc 
even if the input structures are restricted to 
those satisfying F3. 

Lera 10 : Rk is expressible in FO+GFPk[n], k)2, 
when the input structures are restricted to those 
satisfying F3. 

Proof : The following formula uses a k-ary 
predicate variable to compute Rk : 

dp,xl,***,Xk) - F3 A gl(p,xl,...,Xk) where 

gl(p,xl,...,Xk) - 
[+ Yl,“*,Yk 1 p(Yl,***,Yk) A 

+ 2 1 E(z,xl) A 3 Zl,.*.,Zk 21-X1 A 

k-l k-l 

A E(zi,~i+l) A =k'xk /\ A Xi'xll 
i-1 i-2 

v [ 3 2 P(q,***,q,z) A E(z,Xk) A 
k-l 

A xi-q 1 
i-2 

if [ p(xl,.*.,xl,xk) A + 2 1 E&Z) A 
k-2 

A ‘Nxi,xi+l) 1 
i-l 

v [ p(Xl ,X2,. . . ,Xk) A X1+2 1 . 

The conjunct F3 ensures that if the input 
structure does not satisfy F3 then the gfp 
computation terminates at the first iteration with 
an empty predicate. The gfp computation is 
actually carried out by gl. The first disjunct of 
gl checks if P is empty (which it will be in the 
first iteration) and initializes it to contain 
tueles (x~,~~~,x~,Y), indegree(xl)=O, such that 
the path length from x1 to y is exactly k-l. Note 
that digraphs which satisfy F3 are free from self- 
loops and vertices with indegree greater than one. 
Hence if a tuple is added to P in the first 
iteration then the input digraph is guaranteed to 
contain vertices xl,...,xk such that (xl,...,Xk) I$ 
Rk. Since P is empty during the first iteration, 
the other three disjuncts do not contribute any 
tuples. If no vertex in the input graph has an 
indegree of zero the gfp computation terminates at 
the first iteration with an empty predicate. 

If P is non-empty at the end of the first 
iteration, the first disjunct will not add any 
tuples to P in any subsequent iteration since ( as 
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shown below ) P will never be empty again. The 
function of the second disjunct is to traverse the 
paths originating at zero-indegree vertices. Note 
that for each such path, its first k-l edges have 
already been traversed by the first disjunct and 
the corresponding tuple added to P. In the ith 
iteration, 122, for each tuple (xI,...,xl,y) in P, 
the second disjunct checks if there is an edge 
from y to z and adds (xl,...,xl, z)toP if the 
check succeeds. Note that the absence of self- 
loops and vertices with indegree greater than one 
ensures that the tuple (xl,...,xl,z) was mot added 
to P in any previous iteration. Hence at the end 
of the ith iteration, 122, P contains a tuple 
(Xl, . ..xl.z) iff the path length from xl to z is 
exactly k+i-2. We emphasize that the tuples added 
to P, by the first two disjuncts, in an iteration 
are dropped from P in the next iteration. This 
ensures that the gfp does n6t contain tuples which 
do not belong to Rk. 

The third disjunct keeps on checking whether 
P contains a tuple (x1, l **,XlrqJ where 
outdegree(xk)=D. Such a tuple is guaranteed to be 
added to P in atmost n-l iterations. If P contains 
such a tuple then the input digraph also contains 
the vertices q,***sqp1 such that t 
-( x1,x2 ,..., q) E Rk. The third disjunct finds 
the vertices xi, 2<i<k-1, and adds the tuple t to -- 
P. Note that if (Xl,.r.,Xl,Xk), which caused t to 
be added to P, was added to P in the ith iteration 
then it will be dropped from P in the next 
iteration. Thus we must ensure that t does not 
drop out of P in any future iteration. Note that 
the tuples added to P by the third disjunct have 
distinct values in all the k components (this 
follows from the fact that the input graph 
satisfies F3) but the tuples added by the first 
two disjunct8 have the same value in the first k-l 
components. The fourth disjunct uses this property 
to maintain the Rk tuples in P. Finally when the 
gfp computation terminates, the tuples in P are 
exactly the tuples of Rk, i.e., 

(Xl. k . . ..q) E R <--> (xl,...,xk) E GFP g. 

We now show that the above gfp computation 
will terminate in atmost n iterations. Consider 

any two vertices xl, indegree(0, and xk, 
outdegree(0, such that there is a path from xl 
to Xk of length I, i>k-1. Hence the tuple 
(xl,...,xl,xk) will be added to P in the i-k+2th 
iteration by first disjunct, if i=k-1, or by the 
second disjunct, if i>k-1. Therefore the third 
disjunct will add the tuple (xl,...,xk) to P in 
the i-k+3tb iteration. Since i<n-1, each such 
tuple will be added to P by the end of the 

n-k+2th iteration. Since k22, the gfp computation 
will always terminate in n iterations. I 

For the case when k=l consider digraphs with 
vocabulary (E,s,d,Ll,Rl,L2,R2> which satisfy F4 = 
F3 A w z 1 E(z,s), i.e., in addition to 
satisfying F3 the indegree of s is zero. Lemma 4 
shows that a unary predicate R1 is not expressible 
in FO+IFP1+Suc on digraphs satisfying F4. However, 
for digraphs which satisfy F4, arguments similar 
to those in Lemma 10 can be used to show that R1 
is expressible by the following FOffiFPl[n] formula 

8(P,x) - F4 A gl(P,x) where 
gl(P,x) - [ x-s A + z 7 P(Z) 1 

v r 3 z P(z) A E(z,x) 1 
V 1 P(x) A hf Y 1 E(X,Y) 1 . 

Lezzza 10 and the above discussions yield : 

m-4: For kll, there exist k-ary predicates 
which are not expressible in FO+IFPk (FO+IFPk+Suc) 
but are expressible in FO+GFPk[nk] 
(PO+GFPk+Suc[nk]). I 
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