
EXPPESSIBILITY OF BOUUDBD-APITY FIXED-POINT QIJgKY HIERAPCEIBS

Pratul Dublish
Dept. of Computer Science & Engg.,

I.I.T. Kanpur, Kanpur, India - 208016

The expressibility of bounded-arity query
hierarchies resulting from the extension of first-
order logic by the least fixed-point, Inductive
fixed-point and generalized fixed-point operators
Is studied. In each case, It is shown that
increasing the arity of the predicate variable
from k to k+l always allows some more k-ary
predicates to be expressed. Further, k-ary
inductive fixed-points are shown to be more
expressive than k-ary least fixed-points and k-ary
generalized fixed-points are shown to be more
expressive than k-ary inductive fixed-points.

1. Introduction

The failure of query languages based on
first-order logic (PO) to express several queries
of interest, like transitive closure, Is well
known [AU]. This has led to the development of
query languages based on the extension of FO by
several fixed-point operators like least
fixed-point (LFP) [AU,CH,I~l, inductive
fixed-point (HP) [GS] and generalized fixed-point
(GFP) [IsQ]. Each fixed-point operator enables the
computation of some fixed-point of FO formulae
lo 9x1 ,...,Xk) where P is a k-ary predicate
variable and xis are the free variables of g.

Permission 10 copy without fee all or part of this material is granted provided that
the copies are not made 01 distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or fo republish, requires a fee and/or specific permission.

0 1989 ACM o-89791-308-6/89/ooO3/0324 $1.50

S.N. Naheshwarl
Dept. of Computer Science 6 Engg.,

I.I.T. Delhi, New Delhi, India - 110016

We study the expressibility of bounded-arlty
fixed-point query hierarchies obtained by
restricting the arlty of the predicate variable P
in formulae g. The kth level in each hierarchy,
kll, is the query language resulting from
restricting the arfty of the predicate variable P
to exactly k. Chandra and Hare1 [CH] were the
first to express an interest in the study of such
a hierarchy for FO+LFP. They had proved that
certain k-ary predicates were not expressible in
the kth level of the FO+LFP hierarchy. It had
been shown in [Im2] that these predicates were
expressible in the 2k+3th level of the FO+LFP
hierarchy. Thus it appeared that the arity of the
predicate variable had to be more than doubled
before some more k-ary predicates could be
expressed. They left It as an open problem to
decide whether increasing the arity by one enables
some more k-ary predicates to be expressed. We
resolve this problem by showing the existence of
k-ary predicates which are not expressible in the
k t h level of the FO+LFP hierarchy but are
expressible in its k+lth level. Similar results
are also shown for the FO+IFP and FO+GFP
hierarchies. These results are then extended for
the case when a valid successor predicate on the
database domain is available to the query
language.

The k-ary hierarchies can also be used to
obtain a better idea of the relative expressive
powers of FO+LFP, FO+IPP and FO+GFP. Although it
is known that FO+LFP and FO+IFP have the same
expressive power [GS], we show the existence of
predicates which are expressible in the kth level
of the FO+IFP hierarchy but are not expressible in
the kth level of the FO+LFP hierarchy. A query in
the kth level of the FO+IFP hierarchy takes atmost
nk iterations, n = size of the database domain,
for its evaluation. However, a query in the kth
level of the FO+GFP hierarchy may take 2P, p=nk,
iterations for its evaluation. At present it is
not known whether FO+GFP, restricted to queries

324

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73721.73753&domain=pdf&date_stamp=1989-03-29

that take polynomial number of iterations for
their evaluation, is equivalent to FO+IFP.
However, we show that there exist k-ary predicates
which are not expressible in the kth level of the
FO+IFP hierarchy but are expressible in the kth
level of the FOIGFP hierarchy. Further the FOffiFP
queries used to express these predicates take
atmost n iterations for their evaluation. These
results are shown to hold even in the presence of
a successor predicate on the database domain.

2. Definitions

A finite structure (or a relational database) S
with a vocabulary v = <81,...,Rk,el,...,~~> can be
regarded as a tuple S = <D,R l,...,Rk,Cl,...,Cm >
consisting of a finite domain D, predicates (or
relations) Rl,...,Rk on D corresponding to the
predicate-symbols i?l,...,Ek of v and constants
Cl,..*,Cm, which are elements of D, corresponding
to the constant-symbols El,...,Zm from v. In
future we shall often use the same symbol to
denote a predicate (constant) and its predicate-
symbol (constant-symbol) relying on the context to
resolve the ambiguity.

TWO structures S = <D,Rl ..*..Rk,Cl,-a.,%>
and S' = <D',Ri,...,R1;,ci,...,c&>, with the same
vocabulary, are isomorphic if there exists a one-
one onto mapping h : D -W D' such that Ri =
h(Ri), l<i<k, and ci = h(ci), l<i<m. -- --

Given a vocabulary v, a query Q is a function
which maps each structure S, with vocabulary v, to
a k-ary predicate Rk defined over the domain of S,
i.e., Q : S --t Rk. In addition, a query Q must
result in isomorphic predicates on isomorphic
structures [CH], i.e, if h is an isomorphism from
S to S' then Q(S*) = h(Q(S)).

The first-order language of a vocabulary v,
FO(v), is the set of all formulae of first-order
logic with equality [En] built using the symbols
of V. The query language PO is the union of the
languages FO(v) for all possible vocabularies,
i.e, FO = U FO(v).

V

Let g,(P,st) be a first-order formula built
USbIg the symbols from some vocabulary v (in
future we shall omit the subscript v) and an
additional k-ary predicate symbol P which is not
in v. Let Z = (x1,x2,Xk) be the sequence of
Eree variables occuring in g. Given a structure S,
vith vocabulary v, on domain D, we can use g to

compute P in an iterative fashion until a
fixed-point is reached, i.e.,

P(Z) = gi(0,iz) = gi+‘(0,3 where
gi(O,Z) = g($-'(O,i),Z) and g'(@,Z) = g(0.Z).

We emphasize that the length of g is fixed, i.e.,
its length is independent of the size of D, but
the number of iterations needed to reach a
fixed-point may depend on the size of D. There
exist formulae for which the above iterative
computation never terminates, e.g.,

f(P,x) = [WYlP(Y) A x=x1
v 13YPCY) A XZXI.

In the following we only consider those formulae
for which the iterative computation terminates on
all valid input structures. In general, it is
undecidable to check this property.

A k-ary predicate Pfp is a fixed-point (fp)
of g(P,R) if Pfp(i) = g(Pfp,R) and Plfp is the
least fixed-point (lfp) of g if it is contained in
every fixed-point of g. The iteratively computed
fp of g is called the geaeralized fixed-point
(gfp) of g. If g is positive in P, i.e., each
occurence of P in g is under an even number of
negations, then the lfp of g is guaranteed to
exist and it is the same as its gfp [CH]. The
inductive fixed-point (ifp) of g is the gfp of
h(P,U = P(f) v gem. If g is positive in P
then the lfp of g is the same as its ifp [GS].

It has been shown in [=I that
t&0,%3 E hi+l(O,iZ), i.e., the iterative
computation of ifp (lfp) proceeds monotonically.
Hence, if IDI = n then the ifp (lfp) of g can be
computed in atmost nk iterations where k is the
arity of P. However, in general, the iterative
computation of the gfp need not proceed
monotonically. Thus the gfp computation may take
upto 2p, p = n k, iterations.

The LFP operator accepts an FO formula
g(P.3, positive in P, and computes -its lfp.
Similarly, the IFP (GFP) operator computes the ifp
(gfp) of a given formula. The query languages
based on the extension of FO by the above
fixed-point operators are defined as follows :

Fo+LFP = { LFP g(P,E) : g is positive in P } ,
Fo+IFF = i IFP g(P,P) I and
FO+GFF = { GFP g(P,%) } .

The query languages FO+LFPk, FO+IFPk and
FO+GFPk, k,', are obtained from FO+LFP, FO+IFP

325

and FO+GFP respectively by restricting the arity
of the iteratively defined predicate P to exactly
k. Since LFP g(P,Z) = IFP g(P,Z), if g is positive
in P, and IFP g(P,R) = GFP h(P,%), FO+LFPk C
FO+IFPk and FO+IFPkC FO+GFPk. A query Q whit..
defines a j-ary predicate Rj over structures with
vocabulary v is said to be expressible in FO+LFPk,
k?j, iff there exists a formula g(P,%) in FO+LFPk
such that on all structures with vocabulary v

(dl ,...,dj) E Rj <==> (dl,...,dj,d;,d;,...,d;) 6 P

where m-k-j and each d;, l<i<m, is either an --
element of the set {dl,..., dj} or is a constant.
Similar definitions of expressibility can be given
for the FO+IFP and FO+GFP hierarchies.

It was pointed out in [GU] that even FG+GFP
failed to express some simple queries, e.g.,
checking whether a given predicate has an even
number of tuples. Iazaenuan [1m2] pointed out that
this query could be expressed by adding a
successor predicate Suc(x,y), which enforces a
total ordering on D, to FO+LFP. In fact the
availability of Sue enables FO+LFP (FO+IFP) to
express all queries computable in polynomial time
[Im2,GS] and enables FO+GFP to express all queries
computable in polynomial space (in the size of the
structure) [Im21.

If Sue is available then we can construct
formulae g(P,Suc,f) by using the symbols from some
vocabulary v and the predicate-symbol Sue. Given a
structure S with vocabulary v, g(P,Suc,R) is
evaluated by augmenting S with some predicate

sucp,D* where if D = {dl ,...,d,} and p is some
permutation on Il.2 ,...,nl then s”cp,D =
{(dp(i)Jp(i+l)) : _ _ l<i<n-1). The tuples of SUC~,D

give us a total ordering on D as follows. Each
tuple (dp(i),dp(i+l)) E SUC~,D is interpreted to
mean that dp(i) is the Immediate successor of

dp(i+l)- The minimum element is dp(n) and the
maximum element is dp(l).

Unfortunately, the availability of Sue allows
one to write formulae where the value of the
defined predicate depends on the particular SUC~,D

substituted for Sue, e.g.,

max(x) <==> *z [Z#X ==> lSUC(Z,X) I.

Such formulae are not queries since they do not
assign a unique predicate to a given structure.
Therefore we shall only consider formulae
g(P,Suc,i) which are Sue-invariant, i.e., on all
input structures the value of P computed is
independent of the particular SUC~,D substituted

for the predicate-symbol Sue in g. It has bee:1
shown in [Dul that Sue-invariant formulae are
queries.

Thus, if we restrict ourselves to
Sue-invariant formulae, the addition of Sue to
FO+LFP , FO+IFP and FO+GFP leads to the following
query languages :

FO+WP+gac = I LFP g(P,Suc,%)) ,
Fo+IFP+suc= { IFP g(P,Suc,Z) } and
FO+GFP+Suc = { GFP g(P,Suc,jz) }.

The query languages F0+LFP&mc, FO+IFPRtSuc and
Fo+GFP4Suc are obtained from FO+LFP+Suc,
FO+fFP+Suc and FO+GFP+Suc respectively by
restricting the arity of predicate variable P to
exactly k, k?l.

I
3. Eigltar Arity Leads to More Expressiva Power

In this section we show that for each fixed-point
operator increasing the arity of the predicate
variable P from k to k+l, k?l, always allows some
more k-ary predicates to be expressed. We first
show that there exist k-ary predicates which are
not expressible in FO+IFPk+Suc but are expressible
in FO+LFPk+l. Since FO+LFPk C FO+LFPk+Suc C
FO+IFPk+Suc, FO+IFPk C FO+IFPk+%c and FO+LFPkC -
FO+IFPk , we immediately obtain the desired results
for the FO+LFP, FO+IFP, FO+LPP+Suc and FO+IFP+Suc
hierarchies. We then show that there exist k-ary
predicates which are not expressible in
FO+GFPk+Suc but are expressible in FO+IFPk+l.
Since FO+GFPkC FO+GFPk+Suc and FO+IFPkC FO+GFPk,
we immediately obtain the desired results for the
FO+GFP and FO+GFP+Suc hierarchies.

Consider a query on digraphs which defines
the following k-ary predicate, k)2 :

indegree(xl)=O, outdegree(xk)=O,
E(xi,xi+l), 1519-2, q#xj, li#jk, and
there exists a path from xl to Xk.

To show that Rk is not expressible in
FO+IFPk+Suc we make use of digraphs G, and H,
shown in Figure 1. G, and H, are structures with
vocabulary v = <E,s,d,Ll,Rl,L2,R2> where E is the
edge predicate and s,d,Ll,Rl,LZ and R2 are
constants. We augment G, and H, with the successor
predicate Sucv = { (vi,vi+l) : l<i<Sm+S 1 . --

326

v1 v2 v3 V4 vm+l vm+2

s . - - - : --. d

vm+3 vm+4 ?a+5 %a+6 v2m+3 v2m+4

Ll e-ej= Rl

v2m+5 V2m+6 v2m+7 v2m+8 v3ln+5 v3m+6

L2 , - : - ;-. R2

the following theorem :

Theorem [Eh,Fr] : P2 has a winning strategy for
the M move game on G and H iff G and H satisfy the
same set of FO sentences of QR M. I

We show that P2 wins the log m move EF game
played on the augmented structures G,+SucV and
H,,+SucV. Hence G,+SucV and H,+SucV agree on all FO
sentences of QR log m, m = n/3 - 2. Therefore, no
fixed-length FO sentence can distinguish G,+SucV
from H,+SucV. We then show that this is
contradicted if Rk is expressible in FO+IFPkcSuc.

The Graph Gn
WI: P2 wins the log m move EF game played on
structures G, and H, augmented with SucV.

v1 "2 v3 V4 %+l vm+2

s .-. l -9 Rl

vm+3 vm+4 vm+5 vm+6 v2m+3 v2m+4

L2 .) 2 = - ;b. d

v2m+5 v2m+6 v2m+7 v2da v3m+5 v3m+6

Ll .- - - - - =- R2

The Graph I&

Figure 1

We now introduce a tool which will be used to
show that Rk is not expressible in FO+IFPk+Suc.
First we introduce a technical definition. The
quantifier rank (QR) of an FO sentence is the
maximum depth of nesting of quantifiers in it.
An Ehrenfeucht-Fraisse (EF) game [Eh,Fr] is played
by two players, Pl and P2, on a pair of structures
G and H with the same vocabulary. Pl tries to show
that the two structures are different whereas P2
tries to keep them looking alike. Formally the M
move game is defined as follows :

At the ith move, l<i(M, Pl chooses an element gi
(hi) from G (H) and-P? responds with an element hi
(pi) from H (G). P2 is said to win the M move game
if the map which sends constants from G to
constants from H and maps gi to hi, l<iRi, is an --
isomorphism of the induced substructures, i.e.,
the substructures obtained from G and H by
restricting their respective domains to the
constants and the elements chosen by both the
players. The usefulness of EF games results from

Proof (Sketch) : We define a few terms before
proceeding with the proof. Let dS(vi,vj) denote
the E-distauca, i.e., the length of the path, from
vi to vj in G, (H,). Let dS,,,(vi,vj) denote the
Suc-distauce from vi to vj, i.e., the length of
the path from vi to vj in the graph constructed on
V by using the tuples of SucV as directed edges.
Note that if j=i+r, r?l, then dSUC(vi,vj)=r and
dSuc(vj,vi)= 00. However dE(vi,vj)=r if j=i+r and

Vi and vj lie in the same row of G, (H,). If vi
and vj lie in different rows then
dE(vi,vj)=dg(vj,vi)= 00. An r-chain, r<m, is a
sequence of vertices gl,g2,...,gp such that
dS(gi,gi+l)=dS,,Jgi,gi+l)(r, 1519-l. Note that
this definition ensures that all the vertices in a
chain must be from the same row of G, (El,). Two
chains g19g2,*..*gp and hl,h2,---,hp are
isoDorphic iff de(gi,gi+l)=dE(hi,hi+l) and
dS,,Jgi.gi+l) = dsucOq,hi+l), Iii+1, and some
gi is a constant iff hi is also the same constant.
Two chains gl,g2,...,gp and hl,h2,...,hq are
rl,r2-disjoint if

(I) dE(gi,hj) > rl and dE(hj,gi) > rl, liiip and
l<j<q, and

(11) dSuc(gi,hj)>r2 and dsu& ,gih-2, l<i<p and _ _
l<j<q. --

A vertex vj is said to be r-free from a chain if
dR(gi,vj)>r and dE(Vj,gi)>r for each gi belonging
to the chain.

P2 wins the log m move game by the following
strategy. At the first move any vertex chosen by
Pl from G, (H,) is at an E-distance of r, r<m/2,
of exactly one constant from G, (H,). P2 responds
with a vertex from H, (G,) which is also at an
E-distance of r of the same constant from H, (Gn).
Inductively, with j moves remaining the vertices
from G, (Hn) chosen by both the players and also

327

the constants s,d,Ll,Rl,LZ and R2 (even if these
are not chosen) can be partitioned into Zj-chains
21 s...,!sp - (El ,...,:,I such that

(I) pi is isomorphic to iii, 1512,
(ii) ii and 2, (iii and xx), i#x, are mutually

either 2j,2j-disjoint or 2j,l-disjoint, and
(iii) Ei and zx, i#x, are mutually 2j,2j-disjoint

(2j,l-disjoint) iff iii and Kx are mutually
Zj,Zj-disjoint (2j,l-disjoint).

Now, suppose Pl picks up a vertex vg from G,
at the next, i.e., log P -jilt", move. Then the
following cases are possible :

cam? 1: vg is at an E-distance r, r<2j'l, of
exactly one chain &.

case2: vg is Zj-l-free from each ii, 1Ailp.

It can be shown that in case 1, P2 can respond
with a vertex vh from Hn which is at an E-distance
of r from the chain hi. Similarly, in case 2 P2
can respond with a vertex q, which is also
Zj-l-free from each chain xi. The details are
given in [Du].

The case when Pl chooses a vertex from H, can
be similarly handled. At the end of the above
move, the chains si and Ki, l<i<p, and the chosen --
points vg and vh can be split into isomorphic
Zj-l-chains which are mutually either
2j-1,2j-1-disjoint or 2j-1,1-disjoint. Thus the
induction hypothesis is true with j-l moves
remaining. At the end, with no moves remaining,
i.e., j-0, P2 wins the EF game. 1

Lera 2: Rk is not expressible in FO+IFPk+Suc,
k)2.

Proof : Suppose that Rk(Xl,X2,...,Xk) iS

expressible in FO+IFPk+Suc. Let g{P,Suc,R) be a
formula such that ifp of g is Rk. If G, is the
input structure then the ifp of g must contain the
tuple (S,q,...,Vk-l,d) but if H, is the input
structure then the ifp of g contains the tuple

(s,v2,Vk-1.Rl). Note that on both the
structures the ifp of g contains exactly three
tuples, one for each row of vertices. Therefore
the ifp will be computed in atmost three
iterations. Hence the sentence

3 X2,..‘,Xk-1 g3(0,Suc,s,x2,...,Xk-l,d)

is true on the augmented structure G,+SUCG and
false on the augmented structure H,+SUCH where
SUCG and SUCH are any two (maybe even same) valid

succesor predicates on V (recall that g i:i
Sue-invariant). This contradicts Lemma 1 and hence
our initial assumption was incorrect. I

-3 : Rk is expressible in FO+LFPkil, k>2. -

Proof : We use a k+l-ary predicate variable to
iteratively traverse the paths originating at
zero-indegree vertices. When the path originating
at xl, indegree(0, traverses a vertex z, z#xl,
the tuple (xl,...,xl,z) is added to P. If at any
stage a tuple (xl,...,xl,xk), outdegree(xk)=O, is
found in P then (xlrx2,...,xk,xk) is added to P
iff (xl,x2,...,xk) < Rk. The following formula
accomplishes this task :

g(P,xlrx2r***.xk+l) =
[E(q+k+l) h ++ Z 1 E(zsxk) A xk#xk+l

Xi-xl, 1

v [3z p(xk,...,Xk,Z) ,, E(z,Xk+l)

k-l

A Xk+=%+l /\ A xi=Xk 1
i-1

v 1 p(xl,.*.,X1,Xk) l\+Z 1 E(Xk,Z) A
k-2

A E(xi,xi+l) A A X&j
i-1 l(i#j(k

A Xk=Xk+l 1 l

Since g is positive in P, its lfp is well
defined. In the first and each subsequent
iteration, the first disjunct adds a tuple
(xl,...,xl,y) to P for each edge E(xl,y), xl#y, in
the input graph such that indegree(xl)=O. Since P
is empty during'the first iteration, the other two
disjuncts do not add any tuples to P.

The second disjunct traverses paths starting
at vertices whose indegree is zero. For each such

path, its first edge has already been added to P
by the first disjunct. In the ith iteration, 121,
for each tuple (xl,...,xl,y) in P, the second
disjunct checks if there is an edge E(y,z), z#xl,
and adds the tuple (xl,...,xl,z) to P. Thus at the
end of the ith iteration P contains a tuple
(Xlr*..,Xl,Y), xl#y, iff indegree(and there
is a path of length i from xl to y. If there is a
path from x1* indegree(xl)=O, to Xkr
OUtdegree(Xk)=o, then the tuple (Xl,Xl.Xk)
will be added to P in atmost n-l iterations. The
third disjunct checks if the tuple (Xl,Xk)
satisfies Rk and adds the tuple (xl,...,Xk,Xk) to
P. Since the tuples added by the first two

328

disjuncts always have distinct kth and k+lth
components, it follows that

(xl,.*..xk) <Rk <==> (xl,...,xk,xk) E LFP g . 1

Lela4: There exists a unary predicate which is
not expressible in FO+IFPl+Suc but is expressible
in FO+LFP*.

Proof : Consider digraphs which are structures
with vocabulary <E,s,d,Ll,Rl,L*.R2>. Consider a
query on digraphs which defines the following
"nary predicate :

R1(x) <=I> outdegree(x)=O and there is a path
from s to x.

By arguments similar to those used in Lemmas 1 and
2 we can show that ~1 is not expressible in
FC+IFP1+Suc. However R1 can be expressed in
FO+LFP* as shown below :

dP,q,x*) -
t xl-” A %q,q) A xl#x21

v 13 2 P(Xl,Z) A P(z,x*) A XlfX2 I
v r3 2 P(Z,Xl) AY y (E(Xl,Y) ==> y-x1) A

q-q I l I

Since FO+LFPk c FO+IFPk and
FO+IFPk+Suc, Lemmas 1 - 4 give us

FO+LFPk+Suc c

Thaorem I : For k,l. there exist k-ary predicates
(i) which are not expressible in Fo+LFr'k

(FO+LFPk+Su~) but are expressible in
FO+LFP~+~ (FO+LFPk+l+Suc) and

(ii) which are not expressible in FO+IFPk
(Fo+I&+SUC) but are expressible in
FO+IFPk+l (FO+IFPk+l+Suc). I

We now show that there exist k-ary
predicates which are not expressible in
FO+GFPk+Suc but are expressible in FO+IFPk+l, k>l. -
Consider the set of digraphs which are structures
with the vocabulary <E,s,d>. We require that the
digraphs be free from self-loops, indegree =
outdegree = 0, outdegree = indegree - 1,
and all other vertices must have an indegree and
outdegree of one. Let Fl be an FO sentence which
checks iE a given digraph satisfies these
conditions. The following query defines a k-ary
predicate, k,l, on structures which satisfy Fl :

&x, ,x2 ,...,xk) <==> path length from s to xl =
path length from Xk to d
and E(xi,xi+l), l<i<k-1. --

Lelas: Rk is not expressible in FO+GFPk+Suc, k>l.

Proof : Consider structures S, = <V,,Suc,,v1,v,>
and sn+l = <Vn+l~Su~~+l~vl~vn+l~ with the
vocabulary <Suc,s,d> where Vt - {vi: 1<i<t }
and Suet - { (vi,vi+l) : 1<i<t-1 }. Using-the
structure S, csn+l) we can-define. by an FO
formula, a digraph G, (Gn+l) whose edges are the
tuples of Sue, (Suc,+l) (see Figure 2). Note that
both G, and G,+l satisfy the sentence Fl. Wlg we
assume that n is even.

"1 "2 "3 "n-1 "n

8 .v.-. d

Ths Graph Go

"1 "2 "3 "n "n+l

s .-. a... d

2 Plgmre

If k is even (odd) then Rk contains exactly
one tuple when evaluated on G,+l (Gn) and is empty
when evaluated on G, (G,+l). Suppose that Rk is
expressible in FO+GFPk+Suc. Let Rk be the gfp of
g(P,sUC,Xl,...,Xk). If k is even then the gfp of g
is empty when G, is the input structure and
contains a single tuple when G,+l is the input
structure. Thus the sentence

3 Xl,X2,**‘,Xk g(0,s”C,Xl,X2....,Xk)

is true on Gn+l. We claim that this sentence is
false on G,. This is so for the following reason.
Suppose that g(@,xl,...,xk) f 0 on G,. Since the
gfp of g is empty on G,, gi(O,Z) = 0, i>l. Thus
g(Q,E) f$(@,Z) and g((b,E) - gi+l(O,Z). Hence the
iterative computation of the gfp will never
terminate on G,, a contradiction. Thus we have a
fixed-length FO sentence which distinguishes S,
from S,+l. The case when k is odd can be handled
similarly.

However, it is shown in [GUI that P2 wins the
log n - 1 move EF game played on the structures S,
and sn+l* Thus no fixed-length sentence can

329

distinguish these structures, a contradiction. 1

Lemra6 : Rk is expressible in FO+IFPk+l, k,l.

Proof : Since the input structure satisfies Fl,
it has a unique path which originates at s and
terminates at d. Our strategy is to simultaneously
traverse this path, one edge at a time, in the
forward and reverse direction starting from s and
d respectively. Each step of this traversal yields
vertices x1 and xk such that the distance of x1
from s equals the distance of d from Xk- If the
distance of xk from xl is k-l then we are done.

The following formula uses a k+l-ary
predicate variable to keep track of the paths
traversed :

,...,Xk) = F1 A gl(P,xl,...rxk) where l3(P 9x1

gl(P,x

I

:l,...,Xk+l) =
k

E(S,Xk+l) h A xi=s I

i-1

k-l
v [E&d) A xk+l’d /\ A Xi = Xkl

i-l

v [3 2 P(s ,..., 8,s) h E(z,Xk+l) h
k

A xi-s I
I=1

v [3 2 P(s,..., z,d) A E(Xk,Z) A
k-l

A Xi’Xk A xk+l-d 1
I=1

v [PCS,..., s,xl) A P(Xk,...,Xkd A
k-l
/\ E(q,xi+l) A xk’xk+l A
i=l

k-2

A 7 (P(S,...,S,Xi) v
I=2 P(xj,...,xi,d)) 1 .

The conjunct Fl ensures that if the input
structure does not satisfy F1 then the gfp
computation terminates at the first iteration with
an empty predicate. In the first iteration, when P
is empty, only the first two disjuncts of gl add
tuples to P. The first (second) disjunct adds a
tuple (s,...,s,x) ((x,...,x,d)) for each edge
E(s,x) (E(x,d)) in the input graph.

The third disjunct traverses the path
starting from s, in the forward direction, while
the fourth disjunct traverses the path terminating
at d in the reverse direction. In the it11
iteration, i>l, the third (fourth) disjunct adds a
tuple (s,...,s,x) ((x,...,x,d) > to P iff the
path length from s to x (x to d) is exactly i.
Thus the tuples (s,...,s,xl) and (Xk,...,Xk,d)
are added to P in the same iteration iff the
length of the path from s to xl is equal to the
length of the path from xk to d.

If (x1,x* ,...,xk) E Rk then there are exactly
k-2 vertices xi, 2<i<k-2, lying between x1 and Xk. --
Further for each xi lying between x1 and Xk

neither (s,...,s,xi) nor (xi,...,xi,d) would have
been added to P. The last disjunct uses this fact
to check whether the tuple (Xl,X*,...,Xk 1
satisfies Rk. If the check is successful it adds
the tUpk! (Xl,X2,...,Xk,Xk) t0 P. Note that the
computation of the gfp proceeds monotonically
(even though P occurs under an odd number of
negations in gl) and therefore termination is
guaranteed on all valid input structures. Further
the gfp computation remains unchanged even if we
replace g(P,E) by P(E) V go,%). Since the
tuples added to P by the first four disjuncts of
gl have distinct kth and k+lth components, we have

(Xl,Xk) E d‘ <==> (Xl,...,Xk,xk) c IFP g . 1

Since FO+GFPk C FO+GFPk+Suc and FO+IFPk C
FO+GFPk, Lemmas 5 and 6 give us the following
theorem :

Theorem 2 : There exist k-ary predicates, kll,
which are not expressible in FO+GFPk (FO+GFPk+Suc)
but are expressible in FO+GFPk+l (FO+GFPk+l+Suc).

4. k-ary IPPs are More Powerful than k-ary LFPs

Consider structures with vocabulary <Ek,s,d> where
Ek is a k-ary predicate-symbol. For k=2 such
structures can be considered as digraphs and for
k>2 they can be interpreted as directed
hypergraphs [Be] in which each hyperedge has
exactly k vertices. A hyperedge is an ordered
tuple B = (Xl,X2,...,Xk) where x1 is the head of

B, Xk is the tail of E and xis, 2<i<k-1, are the --
internal vertices. The indegree (outdegree) of a
vertex is r iff it is the tail (head) of exactly r
hyperedges. If a vertex is not the tail (head) of
any hyperedge then its indegree (outdegree) is
zero. We only consider structures with the
following properties :

330

(1) Outdegree(s)=Z and indegree(s)=O.
(ii) Outdegree(d)=O and indegree(d)=2.
(iii) Each non-internal vertex, besides s and d,

has an outdegree and indegree of one.
(iv) All vertices in a hyperedge are distinct.
(v) If a vertex is an internal vertex in some

hyperedge then it appears in no other
hyperegde.

Let Fk be an FO sentence such that a
structure with vocabulary <Ek,s,d> satisfies Fk
iff properties (i)-(v) are true for that
structure. Note that the concept of a path in
digraphs can be easily generalized for hypergraphs
which satisfy Fk. Further, there are exactly two
vertex disjoint paths from s to d in each
structure which satisfies Fk. Consider a query
which defines the following k-ary predicate :

R k (Xl,... ,xk) <==>
if the input structure satisfies Fk
then

if the two paths from 8 to d contain the
same number of hyperedges

then
Rk contains all the hyperedges from
the two s-d paths

elm?
Rk contains all the hyperedges on
the shorter s-d path and all but
the last hyperedge on the longer
s-d path

else Rk IS empty i I

To show that Rk is not expressible in
FO+LFPk+Suc, we use structures %,n and Hk,n+k-L
with vocabulary <Ek,s,d>. For k-2, the graphs Gz,~
and H2,n+l are shown in Figure 3. The structure
Gk,n (Hk,n+k-l) can be obtained from G2,n
(Hz,~+~) by replacing each edge by a hyperedge
having k vertices. Formally, Gk,n is the structure
<Vn,Ek,vl,vm(k-l)+l>, n=2m(k-I), where

vn = t vlrvm(k-l)+l 1 IJ Vn,t U vn,b *

Vn,t = { vi : Z<i<m(k-1) 1 ,

vn,b = { vi : m(k-1)+2<i<n 1 and --

Ek = Ek =

I (Vl I (Vl ,vn,vn-l,***,vn-k+2) 1 U ,vn,vn-l,***,vn-k+2) 1 U
J (Vi, J (Vi,Vi+k-1)Vi+k-1) : i=jk-(j-l) and O<jLm-1) U : i=jk-(j-l) and O<jLm-1) U

{ (Vi+k-l,***,vi) { (Vi+k-l,***,vi) : i=jk-(j-l) and m<j<2m-2) . : i=jk-(j-l) and m<j<2m-2) . -- --

Similarly Wk,n+k-1 is the structure

<Vn+k-l,hk,vl,vm(k-l)+l> where

Vntk-1 = 1 "lrvm(k-l)+l 1 u Vn+k-l,t UVn+k-1,b 9
V,+k-1,t = { Vi : 2ii<m(k-l) 1 9

v2 v3 v4 Vrn

v2m v2m-1 v2m-2 vm+2

The Graph G2,n

v2 v3 v4 Vrn

v2m+l v2m v2m-1 vm+2

3 Plgllre

Vn+k-1,b = (vi : m(k-1)+2<i<n+k-1 1 and --

((Vl,Vn+k-l,***sVn+l) IlJ
1 (vi,...,vi+k-1) : i= jk-(j-l) and O<j<m-1 }u
{ (Vi+k-l,...,Vi) : i= jk-(j-l) and m<j?2m-1 } . --

Note that the both the s-d paths in Gk,n have
m hyperedges. However, Hk,n+k-l has m hyperedges
on the top path from s to d but the bottom path
from s to d contains m+l hyperedges. We augment

Gk,n and Wk,n+k-1 with successor predicates
Sue, and Suc,+k-1 respectively where
Suet = { (Vi,Vi+1) : 1<i<t-1 } . --

-7: P2 wins the log m - 2 move EF game
played on Gk,n and Hk,n+k-l augmented with Sue,
and sUCn+k-1 respectively.

Proof (Sketch) : We can consider a hyperedge

(g1 ,...,a) in Gk,n (Hk,n+k-1) as an ordered
sequence of k binary edges (glrgp),
k2983) ,..*,(&-l,gk)* If vx is the ith component
and vy the jth component, j>i, of some hyperedge Z
then dg(vx,vy)=j-i. If vx is the ith component
of hyperedge gl and vy is the jth component of E2

331

and there are p hyperedges on the path from the
tail of 81 to the head of 82, then dR(vx,vy) =
(k-i+l)+pk+(j-1). However, in both cases dR(vy,vx)
= 00. Note that in Sk,n (Hk,n+k-1) if vx and vy
lie in different rows then dg(vx,vy)= 00. We
define dSuc(vx,vy) as in Lemma 1.

A top r-chain is a sequence of vertices
g1,**.rgp such that dE(gi,gi+l)=dsuc(gi,8i+1)<r.
l<i<p-1. -- A hotta r-cum is a sequence of
vertices gl9”*9gp such that
dE(8i,gi+1)dsuc(gi+l,gi)~r, llfLe-1. The notion
of isomorphism for top (bottom) chains,
rl,r2-disjoint chains and r-free vertices carry
over from Lelna 1.

Inductively, with j moves remaining, the
vertices chosen by both the players from Gk,,, and
the constants s and d can be partitioned into top
Zj-chains (bottom 2j-chains)&, gtd, pl...., BP

(gbs, %d, Hp+l,**.*Hq). These top (bottom) chains
are mutually 2j,2j-disjoint. Further the chains
‘;x, l<x<p,
2j,2j-d:87oint.

and ifyy, __ e+l<y<q, are mutually
Since the chains gts and gbs (&d

and &d) contain the constant s (d), they are
mutually Zj,O-disjoint. Similarly the chosen
vertices from Hk,n+k-l and the constants 8 and d
can be partitioned into top (bottom) Zj-chains
lits,~td,%l,...,%p (iibs,~bd,bp+l,...,iiq) with the
same properties as the corresponding chains in

Sk,n* The chains & and fii, l<i<q, gts and %ts, --
zbs and hbs, &d and&d, and jjbd and hbd are
isomorphic.

At the next, i.e., log m -(j+l)th, move if Pl
chooses a constant from Gk,n then P2 responds with
the same constant from Hk,n+k-1. Otherwise suppose
that Pl chooses vg C Vn,t such that vg is the qth
component of some hyperedge. Then either vg IS not
23-l -free from some top chain pi or vg is
2j-l-free from all top chains. In either case,
we can show that P2 can respond with a vertex vh E

vn+k-1, Vh is also the qth component of some
hyperedge, such that the inductive assertion
remains true at the end of this move. The case
when vg E vn,b or when Pl chooses a vertex from
Hk,n+k-l can be handled Similarly. I

Lem 8: Rk is not expressible in FO+LFPk+Suc,
k)2.

Proof : Suppose that Rk is expressible in
Po+LFPk+Suc. Then there exists a formula
g(P,Suc,q,Xk). positive in P, such that its
lfp is gk. Thus the lfp of g evaluated on
Gk,.,+sUCn contains a tuple (xl,...,xk) for each
hyperedge (Xl,...,Xk) in Gk,n. However, the 1fP of

g evaluated on Hk,n+k-l+Sucn+k-1 contafns all the
hyperedges of Hk,n+k-l except the hyperedge on the
bottom row whose tail is d. Since the lfp of g
evaluated on Gk,n+Sucn is Rk, no proper subset of
Ek can be a fixed-point of g when Gk,n+Suc, is the
input structure.

Let T be a 2k-ary predicate defined as
follows :
T(Ul,.~.,uk,Xl,...,Xk) =

Ekhl,...,uk) A Ek(xl,...,s)A if\ xizui .
I=1

The k-ary predicate T(uI,...,uk,-,...,-) evaluated
on a hypergraph contains all its hyperedges except
the hyperedge (~1,. . . ,Uk). Hence, the following
sentence

3 Ul,...,Uk [tt Xl,...,Xk
dT(ul .*.*.Uk,_,.*.,-),suc,xl,.**,xk 1
<=-> T(Ul,...,Uk,Xl,...,Xk)]

is true for Hk,n+k.ml+SUCn+k-l but false for

Gk , n+Sucn for all valid succesor predicates Sue,
and Sucn+k-1 (recall that g is Sue-invariant).
This contradicts Lemma 8 and hence our initial
assumption was incorrect. I

Lem9 : Rk is expressible in FO+IFPk, k>2.

Proof : We use a k-ary predicate variable P to
store the hyperedges occuring on the two s-d
paths. Initially, the two hyperedges out of s are
placed in P. In each subsequent iteration one more
hyperedge from each path is added to P. If the two
s-d paths have the same number of hyperedges then
the two hyperedges, whose tails are d, will be
added to P in the same iteration. If the number of
hyperedges on the two s-d paths are not equal, we
make use of the above fact to avoid adding the
last hyperedge on the longer path to P. The
following formula accomplishes this task :

g(P,Xl,....Xk I= Fk A fXl(p,Xl,...,Xk) where

gl(p,Xl,...,Xk I=
[x1-S h Ek(xl,...,Xk) 1

v [3Yl ,***,Yk-1 P(Y1,...,Yk-l,xl) A
Ek(Xl ,...,Xk) /i (Xk'd ==>

* Zl,...,Zk-1 1 P(zl,...,=+l.d) 11.

The conjunct Fk ensures that the fixed-point
computation terminates in the first iteration with
an empty predicate if the input hypergraph does
not Satisfy Fk- The first disjunct initializes P
to contain the two hyperedges out of s. The second

332

disjunct traverses the two s-d paths adding an
extra hyperedge at each iteration. Note that this
disjunct checks that P does not already contain a
hyperedge whose tail is d before it adds such a
hyperedge to P. Thus it ensures that the last
hyperedge on the longer s-d path will not be added
to P. The computation of the fixed-point of g
proceeds monotonically even though P occurs
negated in g. Thus the ifp of g is the same as the
gfp of g. Therefore it follows that

(Xl,...,Xk) E Rk <--> (Xl,...,Xk) c IFP g . 1

Lenxnas 7-9 give us the following theorem :

Theorem 3 : There exist k-ary predicates, kL2,
which are not expressible in FO+LFPk (FO+LFPktSuc)
but are expressible in FO+IFPk (FO+IFPk+Suc).

5. k-ax-y GPPs are More Powerful than k-ary IPPs

In this section we show that there exist k-ary
predicates, kll, which are not expressible in
FO+IFPk but are expressible in FO+GFPk[nk] where
FO+GFPk[nkJ contains only those formulae of
FO+GFPk for which the fp computation takes atmost
nk iterations (n - size of the domain). A
similar result is also shown for FO+IFPk+Suc and
FO+GFPk+Suc[nk]. Our proof strategy is to show the
existence of k-ary predicates which are not
expressible in FO+IFPk+Suc but are expressible in
FO+GFPk. Since Fo+IFPk c Fo+IFPk+suc and
FO+GFPk[nk] c FO+GFPk+Suc[nkT, we immediately
obtain the desired results.

Consider digraphs with the following
properties :

(1) there are no self-loops ,
(ii) the indegree of any vertex is atmost one

and
(iii) the outdegree of any vertex is atmost one.

Let F3 be an FO sentence such that a digraph
satisfies F3 iff it satisfies properties (I)-
(iii). Consider a query on such digraphs which
defines the following k-ary predicate, k)2 :

Rk(q ,...,Xk) <==>
indegree(xl)=O, outdegree(xk)=O,
E(xi,xi+1), l<i<k-2, and there exists a path --
from X1 to xk.

It has been shown in Section 3, using Lemmas
1 -Id 2, that Rk is not expressible in

FO+IFPk+Suc. Note that the digraphs G, and H, used
in Lemma 1 satisfy the sentence F3. Thus it
follows that Rk is not expressible in FO+IFPk+Suc
even if the input structures are restricted to
those satisfying F3.

Lera 10 : Rk is expressible in FO+GFPk[n], k)2,
when the input structures are restricted to those
satisfying F3.

Proof : The following formula uses a k-ary
predicate variable to compute Rk :

dp,xl,***,Xk) - F3 A gl(p,xl,...,Xk) where

gl(p,xl,...,Xk) -
[+ Yl,“*,Yk 1 p(Yl,***,Yk) A

+ 2 1 E(z,xl) A 3 Zl,.*.,Zk 21-X1 A

k-l k-l

A E(zi,~i+l) A =k'xk /\ A Xi'xll
i-1 i-2

v [3 2 P(q,***,q,z) A E(z,Xk) A
k-l

A xi-q 1
i-2

if [p(xl,.*.,xl,xk) A + 2 1 E&Z) A
k-2

A ‘Nxi,xi+l) 1
i-l

v [p(Xl ,X2,. . . ,Xk) A X1+2 1 .

The conjunct F3 ensures that if the input
structure does not satisfy F3 then the gfp
computation terminates at the first iteration with
an empty predicate. The gfp computation is
actually carried out by gl. The first disjunct of
gl checks if P is empty (which it will be in the
first iteration) and initializes it to contain
tueles (x~,~~~,x~,Y), indegree(xl)=O, such that
the path length from x1 to y is exactly k-l. Note
that digraphs which satisfy F3 are free from self-
loops and vertices with indegree greater than one.
Hence if a tuple is added to P in the first
iteration then the input digraph is guaranteed to
contain vertices xl,...,xk such that (xl,...,Xk) I$
Rk. Since P is empty during the first iteration,
the other three disjuncts do not contribute any
tuples. If no vertex in the input graph has an
indegree of zero the gfp computation terminates at
the first iteration with an empty predicate.

If P is non-empty at the end of the first
iteration, the first disjunct will not add any
tuples to P in any subsequent iteration since (as

333

shown below) P will never be empty again. The
function of the second disjunct is to traverse the
paths originating at zero-indegree vertices. Note
that for each such path, its first k-l edges have
already been traversed by the first disjunct and
the corresponding tuple added to P. In the ith
iteration, 122, for each tuple (xI,...,xl,y) in P,
the second disjunct checks if there is an edge
from y to z and adds (xl,...,xl, z)toP if the
check succeeds. Note that the absence of self-
loops and vertices with indegree greater than one
ensures that the tuple (xl,...,xl,z) was mot added
to P in any previous iteration. Hence at the end
of the ith iteration, 122, P contains a tuple
(Xl, . ..xl.z) iff the path length from xl to z is
exactly k+i-2. We emphasize that the tuples added
to P, by the first two disjuncts, in an iteration
are dropped from P in the next iteration. This
ensures that the gfp does n6t contain tuples which
do not belong to Rk.

The third disjunct keeps on checking whether
P contains a tuple (x1, l **,XlrqJ where
outdegree(xk)=D. Such a tuple is guaranteed to be
added to P in atmost n-l iterations. If P contains
such a tuple then the input digraph also contains
the vertices q,***sqp1 such that t
-(x1,x2 ,..., q) E Rk. The third disjunct finds
the vertices xi, 2<i<k-1, and adds the tuple t to --
P. Note that if (Xl,.r.,Xl,Xk), which caused t to
be added to P, was added to P in the ith iteration
then it will be dropped from P in the next
iteration. Thus we must ensure that t does not
drop out of P in any future iteration. Note that
the tuples added to P by the third disjunct have
distinct values in all the k components (this
follows from the fact that the input graph
satisfies F3) but the tuples added by the first
two disjunct8 have the same value in the first k-l
components. The fourth disjunct uses this property
to maintain the Rk tuples in P. Finally when the
gfp computation terminates, the tuples in P are
exactly the tuples of Rk, i.e.,

(Xl. kq) E R <--> (xl,...,xk) E GFP g.

We now show that the above gfp computation
will terminate in atmost n iterations. Consider

any two vertices xl, indegree(0, and xk,
outdegree(0, such that there is a path from xl
to Xk of length I, i>k-1. Hence the tuple
(xl,...,xl,xk) will be added to P in the i-k+2th
iteration by first disjunct, if i=k-1, or by the
second disjunct, if i>k-1. Therefore the third
disjunct will add the tuple (xl,...,xk) to P in
the i-k+3tb iteration. Since i<n-1, each such
tuple will be added to P by the end of the

n-k+2th iteration. Since k22, the gfp computation
will always terminate in n iterations. I

For the case when k=l consider digraphs with
vocabulary (E,s,d,Ll,Rl,L2,R2> which satisfy F4 =
F3 A w z 1 E(z,s), i.e., in addition to
satisfying F3 the indegree of s is zero. Lemma 4
shows that a unary predicate R1 is not expressible
in FO+IFP1+Suc on digraphs satisfying F4. However,
for digraphs which satisfy F4, arguments similar
to those in Lemma 10 can be used to show that R1
is expressible by the following FOffiFPl[n] formula

8(P,x) - F4 A gl(P,x) where
gl(P,x) - [x-s A + z 7 P(Z) 1

v r 3 z P(z) A E(z,x) 1
V 1 P(x) A hf Y 1 E(X,Y) 1 .

Lezzza 10 and the above discussions yield :

m-4: For kll, there exist k-ary predicates
which are not expressible in FO+IFPk (FO+IFPk+Suc)
but are expressible in FO+GFPk[nk]
(PO+GFPk+Suc[nk]). I

Deferences

[AU] A.V.Aho and J.D.Ullman, Universality of Data
Retrieval Languages, Proc. 6th ACM-POPL, 1979.

[Be] C.Berge, Graphs and Hypergraphs, North-
Holland, 1974.

[CH] A.Chandra and D.Harel, Structure and
Complexity of Relational Queries, JCSS, Vol 25, No
1, 1982.

[Du] P.Dublish, Optimization and Expressibility
of Relational Queries, Ph.D. Thesis, Dept. of
Computer Science 0 Engg., IIT Delhi, July 1988.

[Eh] A.Ehrenfeucht, An Application of Games to
the Completeness Problem for Formalized Theories,
Fundamenta Mathematicae, Vol 49, 1961.

[En] H.Enderton, A Mathematical Introduction to
Logic, Academic Press, 1972.

[Fr] R.Fraisse, Sur les Classifications des
Systems de Relations, Publ. Sci. Univ. Alger I,
1954.

[Gu] Y.Gurevich, Towards Logic Tailored for
Computational Complexity, Computation and Proof
Theory, Let. Notes in Mathematics, Vol 1104,

334

Springer-Verlag, 1984.

[GS] Y.Gurevich and S.Shelah, Fixed-Point
Extensions of First-Order Logic, Proc. of 26th
IEEE-FOCS 1985 , .

[Iml] N.Immerman, Number of Quantifiers is Better
than Number of Tape Cells, JCSS, Vol 22, No 3,
1981.

[Im2] N.Immerman, Relational Queries Computable in
Polynomial Time, Information and Control, Vol 68,
1986.

335

