
Untyped Sets, Invention, and Computable Queries*

Richard Hull and Jianwen Su

Computer Science Department+
University of Southern California

Los Angeles, CA 90089-0782

Hull@cse.usc.edu JSu@cse.usc.edu

Conventional database query languages are consid-
ered in the context of untyped sets. The algebra
without while has the expressive power of the typed
complex object algebra. The algebra plus while,
and COL with untyped sets (under stratified se-
mantics or inflationary semantics) have the power
of the computable queries. The calculus has power
beyond the computable queries; and is characterized
using the typed complex object calculus with in-
vention. The Bancilhon-Khoshafian calculus is also
discussed. A technical tool, called “generic Turing
machine”, is introduced and used in several of the
proofs.

I Introduction

Since the relational data model [Cod701 has its
significant drawbacks in many application areas
(such as engineering design, CAD, etc.), various
attempts have been made towards extending the
model and its query languages (calculus and alge-
bra) [HK87]. A mong these proposed models and

*This work supported id part by NSF grant IRI-87-19875
and DARPA contract MDA903-81-C-0335. Views and con-
clusions contained in this document are those of the authors
and should not, be interpretedas representing the official opin-
ion or policy of NSF, DARPA, the U.S. Government, or any
other person or agency connected with them.

‘Part of this work was performed while the authors were
visiting the Information Sciences Institute of USC.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM O-89791-308-6/89/0003/0347 $1.50

languages, one important common feature is to use
the “set” (or “grouping”) construct. Roughly speak-
ing, there are two fundamentally different ways to
introduce sets: (1) typed sets, which require all el-
ements in a set to have certain fixed structure(s),
as in the nested relation and most complex ob-
ject models [Hu187, AB88, AG87]; and (2) untyped
sets, which impose no restrictions on the types of
their members, e.g., FAD [BBKV87], the Bancilhon-
Khoshafian calculus (BK) [BK86], and also the “Set
Theoretic Data Model” of Gemstone [CM84]. In this
extended abstract we conduct a theoretical study of
expressive power of several query languages of com-
plex objects using untyped sets. Our results indicate
that untyped sets generally yield considerably more
expressive power, and in several cases, the power of
computable queries. Also, several pairs of query lan-
guages (e.g., complex object calculus and algebra)
which are equivalent (nonequivalent) in the conven-
tional context are seen to be nonequivalent (equiv-
alent) in the context of untyped sets. Finally, we
indicate how analogous results can be obtained in
the presence of lists or freely interpreted function
symbols.

The investigation described here provides a
bridge between research on the use of (typed) sets
in query languages [HS88b, KV88, PvG88, GvG88]
and research on computable queries [CH80, AV87].
While the complex object and nested relation mod-
els where developed several years ago, it is only
recently that theoretical investigations of the ex-
pressive power and complexity of their associated
query languages have been made. For example,
the independent investigations [HS88b, KV88] show
that each level of nested sets gives more expres-
sive power at an exponential cost (of time, space);
and [AB88, GvG88] show that in the context of the
nested relation algebra, the powerset construct is
equivalent to various iterative constructs (e.g., fix-

347

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73721.73755&domain=pdf&date_stamp=1989-03-29

point, while). On the other side, [AV87] intro-
duced a transaction language which has the expres-
sive power of (essentially) the computable queries
originally introduced in [CH80]. In the current pa-
per, we show that if untyped sets are permitted, then
the algebra (with while) and deductive languages
(with negation, using either stratified or inflationary
semantics) also have the power of the computable
queries. Furthermore, the calculus has expressive
power beyond this class.

Calculus, algebraic, and deductive languages
are considered here. In all cases, we restrict atten-
tion to their behavior on flat relational input and
output. When sets are typed, these languages all
have the same expressive power, that is, the ex-
pressive power of the class 8 of elementary queries
[HSSSJ, which are generic mappings from flat re-
lations to flat relations and computable by Turing
machines within hyper-exponential time (space).

When incorporating untyped sets it is shown
that the algebra (with the powerset operator) is ex-
pressively equivalent to the one with typed sets. We
also study the algebra extended by a while loop-
ing construct; in the presence of untyped sets this
is closely related to FAD. We show that every com-
putable query is expressible in this extended alge-
bra regardless of the presence of the powerset oper-
ator. Thus, untyped sets break the “balance” be-
tween powerset and iteration (e.g., while).

A second focus concerns deductive languages.
Several such languages have been suggested: COL
[AG87], BK, LDLl [BNR*87], complex object DAT-
ALOG [AB88], etc. Here we mainly study the ex-
pressive power of two extensions of COL with un-
typed sets under the semantics of stratification and
inflation (respectively). We show that inflationary
COL with untyped sets, stratified COL with un-
typed sets, and the class of computable queries are
all equivalent. (Analogous results hold for com-
plex object DATALOG.) This provides an interest-
ing contrast to the fact that stratified DATALOG’
is strictly weaker than inflationary DATALOG’
[Ko187, KP88, AV88]. We also briefly discuss
BK. Although we do not characterize its expressive
power, we present results indicating some of the lim-
itations of its expressive power.

Finally, we turn to untyped sets in the cal-
culus. It turns out that the untyped sets can be
used as invented values [AV87, HS88b]. Indeed, the
calculus with untyped sets has the same expressive
power as the calculus with countable invention. Un-
fortunately, their power is far beyond Turing com-

putability and thus unreasonable. A new semantics
called “terminal invention” is proposed. It is shown
that the class of queries expressible by the calculus
with terminal invention is exactly the class of all
computable queries.

In this paper we introduce a technical vehi-
cle, called “generic Turing machine” (GTM), which
is used in several of the proofs that languages have
the power of the computable queries. Unlike con-
ventional Turing machines, GTMs use an infinite
input alphabet which corresponds to the underlying
domain of (all) database instances considered. The
transistion function of GTMs is finitely expressible,
and ensures that the computation and its output is
“generic”. (However, as with the use of conventional
Turing machines to describe query functions, the fo-
cus is on GTMs whose output is independent of the
order of the input.)

Section 2 reviews basic concepts. GTMs are
introduced in Section 3. Section 4 introduces the
notion of untyped sets, and analyzes the algebra.
Deductive languages and the calculus are studied in
Sections 5 and 6. This is only an extended abstract.
It is assumed that readers are familiar with COL and
BK. Proofs are therefore either omitted or briefly
sketched.

2 Preliminaries

In this section, we establish terminology for pre-
viously studied concepts including types, objects,
databases, query functions; several query languages
(algebra, deductive, and calculus); and the notion of
equivalent expressive power. Notably, all languages
considered have the ability to return the “undefined”
value (?) as output.

We assume that U is a countably infinite uni-
versal domain of atomic objects, P is a countably
infinite set of abstract predicate names, and U and
P are disjoint. Types are defined recursively from
the symbol ‘U’ and the tuple and set constructs:

Definition: The set of types is a family of expres-
sions defined recursively by:

(a) the symbol U is the basic type;

(b) if T is a type then {T} is a set type; and

(c) if Tl, T,, n 2 1 are types then [Tl, T,] is
a tuple type.

348

A type is jlat if no set construct occurs in it.

The domain of a type T, denoted dam(T),
is defined in the usual fashion. Each element of
dam(T) is an object of type T; any finite subset of
dam(T) is an instance of type T; and inst(T) de-
notes the family of instances of T.

Definition: A database schema is a sequence
D=< PI :Tl,...,P,, :T, > where

(a) Pi E P for i E [l..n];

(b) Ti is a type for i E [l..n]; and

(C) Pi # Pj if i # j.

D is flat if Ti is flat for i E [l..n]. A (database)
instance of D is a sequence d =< PI : II,. . . , P,, :
1, > where Ij is an instance of q for each j E [l..n].
The family of instances of D is denoted inst(D).

The atomic (active) domain of an object X
(instance 1, database instance d), denoted adorn(X)
(adorn(I), adorn(d)), is the set of atomic objects
“used” in building X (I, d).

Definition: If D is a database schema and T
is a type, a query function f from D to T, de-
noted f : D -+ T, is a (partial) mapping from
&t(D) to inst(T). Further, let d E inst(D). If
f(d) is undefined, we write f(d) = ‘?‘. Also, we
define indom(f, d) = adorn(d), and outdom(f, d) =
udom(f(d)) (0 if f(d) = ‘?‘).

Definition: If C C U is a finite set, f : D + T is
a query function, then: f is

(a) (input) domain preserving wti C, if Vd E
inst(D), outdom(f, d) C indom(f, d) U C;

(b) C-generic if f ou = (zo f for each permutation’
d over U with Vx E C, a(x) = x.

f is domain preserving (generic) if f is domain pre-
serving wrt C (C-generic) for some C.

It is easily verified that each generic (and
deterministic) query function is domain preserv-
ing. All queries in the languages discussed here are
generic and domain preserving.

We now introduce two interesting classes of
queries. The family of “computable queries” was
introduced in [CH80] and also studied in [AV87].

lo is extended naturally to databases.

Definition: The class C of computable query func-
tions is the set of query functions f such that

(a) f : D + T is a query function for some flat
database schema D and flat type T;

(b) f is generic; and

(c) f is Turing-computable.

We briefly mention a particular framework
by which Turing machines are used to compute
database mappings. Let D be a flat schema and
T a flat type, and f : D + T a C-generic database
mapping where C c U is finite. A Turing machine
M computes f if the following conditions are satis-
fied. First, it is assumed without loss of generality
that C and distinquished symbols ‘O’,‘l’,‘,‘,‘(‘,‘)‘,‘[‘,
and ‘I’ are included in the tape alphabet of M.
An input instance I is placed into an ordered list,
where values in adorn(I) - C are encoded using
strings over {O,l}. If M halts, it must hold on
its tape the encoding of an instance J of T, such
that adorn(J) C adorn(I) U C. Finally, the opera-
tion of M must be independent of the encoding for
adorn(I)-C used, and also independent of the order
in which the input is presented.

On the other hand, the notion of “elementary
queries” arises naturally in the query languages for
complex objects (see Theorem 2.2). Roughly speak-
ing, this family contains queries whose time (space)
complexity are elementary functions.

Definition: Let f be a query function and t: N
--+ N be a function. f has time (space) complexity
t, if there exists a Turing machine M which decides
o E f(d) within time (space)2 t(lldll+ 11011) whenever
d is a input database instance and o is an object of
the target type.

Notation: The class of hyper-exponential func-
tions hypi (i E N) is defined such that hype(n) = n
and hypi+r(n) = 2*YPi(“), for i 2 0.

Definition: The class Z of elementary query func-
tions is the set of query functions f such that:

(a) f E C; and

(b) f has hyper-exponential time (space) complex-
ity.

A query is syntactically an expression. With
associated semantics, each query expression realizes

211dll denotes the length of d.

349

a query function. As our focus is on query functions
from flat schemas to flat types, we consider only
query expressions of that property in the rest of the
abstract.

The algebra used here is essentially equiva-
lent to those of [AB88, KV84, RKS85], but includes
a unary operator undefine which returns ‘?’ if the
instance is empty and the instance otherwise. We
use a syntax which views algebra expressions as se-
quences of assignments, each of which applies a sin-
gle operator (e.g., in the spirit of [KV84]). This per-
mits the easy incorporation of the while construct
into the algebra (in the spirit of [GvG88]). An alge-
braic query expression is a sequence of assignments
followed by an assignment to a special variable ANS
which holds the answer to the query, such that each
variable is assigned a value before it is referenced.
Let “ALG (‘ts’ for typed &s) denote the family
of all such query expressions. The while construct
has the following format: z := while < z; y > do
assignments end, where x, y, z are variables such
that z does not occur in the assignments, with the
semantics: while the value of y is not empty ex-
ecute the assignments; z finally gets the value of
2 at the end of the loop. We consider algebras
with both nested while and unnested while, de-
noted as t”ALG+wlrile (tSALG+unnested-wlrile).
In the evaluation of an algebraic expression, if any
variable (or ANS) is assigned the undefined value,
or if a while loop does not terminate, then the query
evaluates to the undefined value.

In the same spirit as the algebra extending
the relational algebra, COL is an extension of DAT-
ALOG to incorporate complex objects. Notably,
COL uses function symbols which are interpreted
as set valued data functions. It has a stratification
semantics to ensure a minimal model (see [AG87]
for details).

The complex object model in [BK86] is a
model based on untyped sets, where the set of ob-
jects together with the “sub-object” relationship
forms a lattice. BK is a rule-based language with
a fixpoint semantics. Informally, a query consists of
a set of rules. An application of rules is to find all
valuations such that the tails “match”3 the database
and then take the least upper bound of the heads.

In our investigation, we view each query ex-
pression in COL and BK as a query with a special
predicate ANS for output. And we use tSCOL, BK

31n BK, this is based on the sub-object relationshipinstead
of equality.

to denote the families of query expressions in COL,
BK.

In the calculus, formulas are built from u a 21,
u E u, P(U) (P is a predicate name, ‘u and u are vari-
ables/constants) using sentential connectives (A, V,

-) and typed quantifications (Vx/T4, 3x/T+) (see
[HS88b]). A calculus query expression is an expres-
sion of form {t/T I 4) where 4 is a (well-typed) for-
mula. Let ‘dCALC represent the family of all cal-
culus query expressions. Three different semantics
discussed in section 5 are: no invention (limited in-
terpretation), countable invention (unlimited inter-
pretation) [HS88b], and terminal invention.

Definition: Two query languages Li and Lz are
equivalent if they realize the same set of query func-
tions. L1 is no more expressive than L2 (LI L La)
if each query function realizable in L1 is also realiz-
able in L2. If S is a family of query functions, Ll is
S-equivalent if

(a) every query expression realizes some f in S, and

(b) every query function in S is realizable.

Thus, the notion of C-equivalent has been
called “computationally complete” in other inves-
tigations. When the context is clear, both query
functions and query expressions are refered as sim-
ply queries.

The expressive power of many complex ob-
ject languages is characterized by following two the-
orems.

Theorem 2.1: [AB88] tSALG, %OL, ‘%ALC,
and complex object DATALOG are all equivalent.

Theorem 2.2: tdCALC is I-equivalent. Hence,
tSALG, tSCOL, and complex object DATALOG are
also E-equivalent.

Proof: (sketch) It is sufficient to show that
lSC!ALC is E-equivalent. The rest follows easily from
this and Theorem 2.1.

To show that every query function realizable
in tSCALC is in &, we use a naive query evalua-
tion algorithm which is easily seen to have hyper-
exponential data complexity. For the other direc-
tion, let f be an arbitrary query function in &. By
definition, there is a Turing machine A4 which com-
putes f within hyper-exponential time, i.e., hyplpi

350

time for some i. It should be noted that a (partial)
computation of M can be represented by a four di-
mensional array, where the first two columns spec-
ify a particular tape square (over time), the third
is the symbol on that square, and the last indi-
cates the position of the tape head. In order to
“hold” a halting computation of M, the array must
be sufficiently large. More precisely, the first two
columns must have hypi(n) number of distinct ele-
ments where n is (roughly) the number of atomic el-
ements in the input. Recall that each level of nested
sets induces one high level of exponentiation of data
complexity [HS88b, KV88]. Therefore, using the
type {[T, T, U, U]} where T is a type with i levels
of nested sets, the array is able to “hold” all halting
computations of M. It is now easy to construct an
expression in the calculus to simulate the behavior
of M. (More details are provided in [HSSSa].) 0

3 Generic Turing Machines

As indicated in the introduction, several of the ma-
jor theorems of the paper show that certain query
languages are C-equivalent. In the previous lit-
erature such proofs are generally accomplished by
showing that a given query langauge can simulate an
arbitrary Turing machine which computes a generic
query function. In this section we present a technical
construct, called “generic Turing machine” (GTM),
which can be used to simplify proofs of this sort.

Consider the problem of showing that a given
database query language can simulate arbitrary Tur-
ing machines which compute a generic query func-
tion. Three fundamental issues arise:

1.

2.

3.

the tape alphabet of the Turing machine is fi-
nite, but the underlying domain of input in-
stances is infinite.

the Turing machine must be restricted so that
it computes a generic mapping.

the computation of the Turing machine must
be independent of the order in which the input
instance is presented to it.

The notion of generic Turing machine focuses on the
first two issues; in particular, a GTM can directly
manipulate infinitely many tape symbols, and will
necessarily compute only generic mappings. How-
ever, we must restrict our attention to GTMs whose
output is independent of the order of the input.

Intuitively, a GTM M is a two-tape Turing
machine whose alphabet includes the underlying do-
main U and a finite set W of working (or punctua-
tion) symbols. Also, a finite set C C U of constants
is explicitly specified in M - these correspond to the
constants used in a query, and the computation of
A4 will be C-generic. The transition function for M
explicitly uses the members of WUC to refer to tape
symbols, and also uses the distinquished variables cr
and p, which are used to refer to elements of U - C.

Formally, we have

Definition: A generic Turing machine (GTM)
(relative to U) is a six-tuple

M = (K, W, C, 6, so, h)

where

1.

2.

3.

4.

5.

6.

K is a finite set of states.

W is a finite set of working symbols, which in-
cludes the distinquished symbols ‘,‘, ‘(‘, ‘)‘, ‘[‘,
and ‘I’ which are used for encoding input rela-
tions and output relations.

C C U is a finite set of constants.

SO E K is the start state.

h E K is the unique halting state.

6 is the transition function from (I< - {h}) x
(WUCU{a}) x (WuCU(a,p}) to K x (WU
CU{a,P}) x (WUCU{o, a}) x {L, R, -}2. In
a transition value 6(4, a, b) = (q’, a’, b’, Dl, 02))
b = p only if a = a; Q E {a’, b’} only if (Y E
{a, b); and /? E {a’, b’} only if /3 E {a, b}.

M is viewed as having 2 one-way infinite tapes (ex-
tending to the right). A transition value 6(q, a, b)
= (q’, a’, b’, Dl, 02) is generic if cr E {a, b). Intu-
itively, a generic transition value is used as a tem-
plate for an infinite set of transition values which are
formed by letting o (and p if it occurs) range over
(distinct) elements of U - C. Assuming this pro-
vision, a computation of M is defined in the usual
fashion.

The restrictions on b in the above definition
ensure that M is deterministic.

Let D be a flat database schema and T a flat
type. A GTM M “computes” a query function from
D to T in the following manner. An input instance
I is enumerated in some order e and placed left-
justified on the first of the two tapes of M. M

351

computes until it reaches the halting state. If the
contents of the first tape hold an ordered listing of
an instance of T, that instance is the output of the
computation of M on input I with order e. If M
does not halt, or if the contents of the first tape
is not an ordered listing of an instance of T, then
M produces the undefined output on I with order
e. M is input-order independent from D to T if for
each instance I of D, the output of M is the same
regardless of the input order used for I.

Proposition 3.1: The family of mappings com-
puted by input-order independent generic Turing
machines is C-equivalent.

Proof: (Sketch) First, let f : D -, T be a com-
putable query function which is C-generic for some
finite C C U. Becuase f is Turing-computable, we
can assume that there is a (conventional) Turing ma-
chine M which computes f, using the constants C
and encoding other elements of U using strings over
{O,l}. A GTM M’ which simulates M can be con-
structed as follows: M’ includes 0 and 1 in its work-
ing symbols. Given an input instance I on its first
tape, M’ first develops an encoding of adorn(l) - C
into strings over {O,l}. (The particular encoding
will depend on the order of the input to M’.) M’
then transforms its initial input into an input for M;
simulates M; and then decodes the output.

For the other direction, suppose that f : D --t
T is computed by an input-order independent GTM
M. We briefly indicate how to construct a (con-
ventional) Turing machine M’ which simulates M.
Without loss of generality we can assume that M’ is
a 4-tape machine; two tapes will be used to simulate
each of the tapes of M. M will take as input a list-
ing of an input instance I encoded using strings over
{O,l}. Non-generic transitions of M can be used
more-or-less directly by M’. Generic transitions of
M must be simulated by M’; this is reminiscent of
the simulation of an arbitrary Turing machine by
one with a two element tape alphabet. 0

It is easily verified that if the notion of GTM
were modified to have only one tape, then it would
be strictly weaker than C. (This is because a l-tape
GTM is unable to replicate elements of adorn(d) -
C.) On the other hand, each n-tape GTM can be
simulated by a 2-tape GTM.

4 Algebra with Untyped Sets

To provide a formal model for discussion, the defi-
nition of untyped sets is first introduced, along with
associated definitions (domain, instance, etc.). The
algebra described in the previous section is modified
to fit this model. Two results are then given. First,
it is shown that the algebra (without while) with
untyped sets is C-equivalent. On the other hand,
when (nested or unnested) while is included, the al-
gebra is C-equivalent even without powerset. Hence,
in this context, while is more powerful than pow-
erset, contrasting to the results in the case of typed
sets [GvG88].

Definition: A relaxed type (rtype) is defined as:

(4

lb)
Cc)

(4

(4

(b)

(cl

U is the atomic rtype;

Obj is the universal rtype;

{T) is a set rtype if T is an rtype; and

[TI,Tnl is a tuple rtype if 1 5 n and Ti is an
rtype for i E [l..n].

Let Obj be the smallest set such that:

U E Obj;

{Xl, *-a, X,,} E Obj if 0 5 n and Xi E Obj for
i E [l..n]; and

[Xl, a*‘, X,,] E Obj if 1 5 n and Xi E Obj for
i E [l..n].

Now, the domain of an rtype is defined similarly to
that of a type.

Definition: The domain of an rtype T, denoted
dam(T), is defined:

(a) don@) = U;

(b) dom(Obj) = Obj;

(c) dom({T}) = {{Xl,Xn}] 0 5 n and Xi E
dam(T) for i E [l..n]}; and

(d) dom([Tl, T’]) = {[XI, X,] 1 Xi E
don(Z) for i E [l..n]}.

Each element in dam(T) is an object. Any finite
subset of dam(T) is an instance of T. inst(T) de-
notes the family of instances of T.

352

We now make some intuitive comments about
the system of rtypes. Most importantly, this system
subsumes essentially all of the objects used in BK
and FAD. In BK, special “bottom” and “top” ob-
jects are used (and FAD permits “bottom”); rtypes
do not provide this. Also, both BK and FAD have a
convention of named attributes in tuples, while here
we use position to identify the coordinates. In the
current investigation we use rtypes to provide a min-
imal typing framework, in order to retain the overall
spirit of the typed languages (algebra, COL, calcu-
lus) whose variants are studied here. It should be
noted that the family of types introduced in Section
2 is a proper subset of the family of rtypes. Also,
unlike types, it is possible for two distinct rtypes to
have overlapping domains.

We associate the set Obj with an equality re-
lationship extended from the equality of U in a natu-
ral manner. The algebraic operators are extended in
natural ways to range over instances of rtypes. For
example, we permit the formation of unions of in-
stances of different rtypes (which result in instances
of type ObJ). Also, horizontal operators such as se-
lection can operate on instances of Obj; these ‘Pg-
nore” elements of the instance which do not have
the right shape. We use ALG (ALG+(unnested-
)while) to represent the algebraic language(s) which
map from flat schemss to flat types, possibly using
rtypes as intermediate types.

The following results show the power of while
in this context:

Theorem 4.1:
equivalent;

(a) ALG and ‘bALG are E-

(b) ALG+unnested-while-powerset and
ALG+while-powerset are C-equivalent.

Proof: (sketch) (a) Obviously, ALG has the full
power of tSALG and thus all elementary query func-
tions are realizable in ALG. On the other hand, for
any given expression E and database d, the number
of new objects created during the process of E[d is
an elementary function of the length of E and the
number of atomic elements in d since there are no
loops. Therefore, E is easily seen to have hyper-
exponential data complexity.

(b) It is clear that the algebra with nested
or unnested while is a procedural and generic lan-
guage, and thus contained in C. To establish the
other directions, we use Theroem 6.4 and show:

(9
(ii)

(iii)

C C ALG+while;

ALG+while C ALG+while-powerset; and

ALG+while-powerset E
ALG+unnested-while-powerset.

Among the above three claims, (ii) can be obtained
by using a similar reasoning to the proof of a theo-
rem in [GvG88] which states that the powerset con-
struct is equivalent to the while construct in the
case of the typed algebra. (iii) can be proved by re-
peatedly collapsing two consecutively nested while
loops. Roughly speaking, this can be obtained by
using a cross product of two condition variables.

We now describe the proof of (i). Let f be
a C-generic computable query function from T to
D, and let M be an order-independent GTM which
computes f. There are three fundamental issues to
be addressed in the construction of a query Q in
ALG+while for simulating M:

(4

@I

(cl

encoding the input instance I into a sequence
that can be used as the input for M.

providing an arbitrarily large ordered set of in-
dices which can be used to hold the “current”
contents of the two tapes of M.

simulating individual steps of M.

In this sketch we address each issue more or less
independently; their synthesis is relatively straight-
forward.

Consider pa.rt (a). In ‘6ALG it is easy to build
a query &I who>l~ ~blltput is an object ORD of type
T = [S, s] and S = (. . . {U} . . a) (where the nesting
is ofheight k such that hypb(ladom(d)l) 2 max{]]d]],
ladom(d)l!} for all instances d of 0); where ORD
holds a total order for4 cons,(adom(d)). Using
ORD, we would like to build a binary relation whose
first column holds elements of cons,(adom(d)) and
whose second column holds a listing of d. In gen-
eral this is impossible because the operation of Q
is generic. For this reason, we simultaneously build
and use a family of listings of d, one for each order-
ing of the set adorn(d) - C. To this end, we build
a query Q2 in ‘*ALG which maps to the type {R},
where R = {[T, U]}; and which maps the input d
to an object PERMS = { ENC, I p is a ordering of
adorn(d) - C }.

‘For a type T and set X C U, the constructive domain
of T relative to X is cm+(X) = (o 1 o has type T and
adorn(o) c X}.

3’53

We now turn to part (b). The query Q will
have a crucial while loop which will perform part
(c), and will simultaneously create one additional
element to be used as an index for the tapes of
M. The sequence of elements produced will be
a; {a}; {a, {a}}; {a, {a}, {a, {a}}};. . . . If the unary
relation P holds an initial segment of this sequence,
then the (pseudo-)ALG expression5 npg1,2(P x
P)) - P will hold the least element outside of P.

We conclude this section by the following re-
mark. The “magic power” of untyped sets is its
ability to have arbitrarily large, finite sets built with-
out using “invented values” (relative to indom(d)).
Together with appropriate control structures (e.g.,
while), it then yields rich expressiveness. Since
FAD subsumes ALG+while, it also is C-equivalent.

We turn now to part (c). We first consider
the simplified case in which a specific ordering of
the input is given in a binary relation 1J!, whose first
column holds an initial segment of cons,(adom(d))
and second column the listing of the input. In this
context, we use two 3-ary relations Tl and T2 and
one unary relation S to record the “current” config-
uration of the computation of M on IN. The first
coordinate of Tl will hold values from the set P of
indices, the second coordinate will hold the symbol
in the corresponding tape square of the first tape
of M, and the third coordinate will hold either ‘Y’,
indicating that the tape head is there, or ‘N’, indi-
cating that it isn’t. T2 will encode the current con-
tents of the second tape analogously. Finally, the
unary relation S will hold a single tuple indicating
the current state of M. Using these data structures
it is straightforward to set up a while loop which
simulates a single move of it4 on each iteration, and
which terminates if S(h) holds (i.e., if the compute
tion of M is in a halting configuration). A technical
detail here is that in the first iterations of the while
loop, the input stored in IiVmust be transfered into
Tl.

5 Deductive Languages with
Untyped Sets

The main interests here are two syntactically dif-
ferent languages, ‘sCOL and BK. We first extend
‘6COL to use rtypes rather than types; and study
it using two alternative semantics: stratification and
inj?ation. It turns out that both extensions are C-
equivalent. It is clear that each BK query is com-
putable and monotonic. Although we do not char-
acterize the expressive power of BK, we provide a
pair of results which indicate significant limitations
in its expressive power, at least in the case where it
is restricted to map from and to flat relations.

We conclude by describing how to general-
ize the above construction so that it simultaneously
works with several orderings of the input rather
than just one. In particular, for each ordering p
of adorn(d) - C let IN, be a binary relation hold-
ing a listing of d in which tuples are ordered lexico-
graphically according to the ordering p. It is easy
to build a query Qs in tSALG which, on input d
yields the object { [ENC,,,IN,] 1 p is an ordering for
adorn(d) - C}. Also, rather than using the types
Tl, TLand S@cribed above, we use 2 4-ary rela-
tions Tl and T2 and a binary relation S. In each of
these, the last column has type R, and will hold el-
ements of PERMS. In particular, for each ordering
p of adorn(d) - C, the relations 7ri,z,sud=~~c,Tl,
iri,z,zua4=~~cpT2, and ?T~(T~=ENC,,S, will hold the
values of Tl, T2, and S for the input IN,. 0

As introduced in [AG87], “COL is a strongly
typed language: each variable has an associated
type. (In practice, a “COL program implicitly as-
sumes an assignment of types to variables.) As de-
tailed in the full paper, it is straightforward to mod-
ify the syntax of “COL to form COL, whose vari-
ables range over rtypes. We associate two alterna-
tive semantics to COL programs. The first, strat-
ification is the natural generalization of the strati-
fied semantics used in tbCOL. The second, inflation
is the natural generalization of the “inflationary se-
mantics” introduced for DATALOG’ in [I<P88]. We
denote COL extensions with stratification and infla-
tion semantics as COL6” and COL”‘f respectively.
In the context of untyped sets, it is possible using ei-
ther semantics to write a COL program which, on a
given input, does not yield a finite minimal model.
In this case, we view the output to be undefined.
(Technically, there is no least fixed-point in such
cases, because infinite objects and instances are not
permitted in our model.)

In contrast to Theorem 2.2, we have

Theorem 5.1:
equivalent.

COLSt’ and COL’“f are C-

5Here vz denotes the operation of nesting on the second Proof: (Sketch) It is clear that both variants of
column. COL are within C. We discuss the proof that COLSt’

354

subsumes C. This follows by an argument similar to
the one showing that C C ALG+while in the proof
of Theorem 4.1 (b). As in that argument, let M
be a GTM, and recall that three fundamental issues
were addressed:

(4

(b)

encoding the input instance I into a sequence
that can be used as the input for M.

providing an arbitrarily large ordered set of in-
dices which can be used to hold the “current”
contents of the two tapes of M.

(cl simulating individual steps of M.

Because tdCOL can simulate tdALG, part (a) can
be accomplished. Part (c) will be accomplished in a
manner similar to the way it was done in the earlier
proof, with one wrinkle. Specifically, in the cur-
rent context the relations Tl, T2, and S will record
the entire history of the computation, rather than
simply the “current” configuration. (If only the
“current” configuration is stored, than negation is
needed to make each move, it appears impossible to
construct a stratified program which behaves cor-
rectly.) To store the entire history, we add another
column to each of the relations, which intuitively
holds an index indicating which step of the compu-
tation is described by the associated tuple.

For part (b), we assume that a is a distin-
quished constant, and F a function symbol. The or-
dered set a; {a}; {a, {a), {a, {a}};. . . is now created
in the set F(a) by the following rules:

a E F(a) +
{al E F(a) +

and the set of rules

(1~) E F(a) + u E F(a), SC&p, s) I
s is a nonhalting state of I<}

(Here t will typically hold an element of lNp denot-
ing the time; if S(t, p, s) is true at some point in the
execution of the program, then M is in the state Q
during the u-th step in the computation.) 0

We now turn to BK, which is obviously mono-
tonic and contained in C. It is natural to com-
pare the expressive power of BK with the class of
monotonic query functions in E a.nd/or C. It should
be noticed that BK has two main differences from
COL. The first, that negation is not included, has
already been mentioned. The second involves vari-
able instantiation: in BK, variable instantiation is

not based on equality, but rather on sub-object re-
lationship.

The following discussion indicates the diffi-
culties in using the techniques above to analyze the
expressive power of BK.

Example 5.2: Suppose the database d has two
binary relations: R1 of type {[A:U, B:U]}, and Rz
of type {[B:U, CU]). (We use here a variant of the
BK syntax.) Consider the following rule:

At first glance, it appears that this rule computes
the join of Ri and R2. However, by using variable
instantiations in which y is assigned I, it is clear
that if RI and R2 are nonempty then R will hold
rlR1 x azR2. 0

Indeed, the following result shows that BK
cannot perform joins.

Proposition 5.3: There is no BK query which
takes as input two binary relations RI of type { [A:U,
B:U]} and R2 of type ([B:U, CV]} and as output
produces the natural join of R1 and R2.

Proof: (sketch) Suppose that the BK query Q has
the property that Q[Rl : II, RP : 121 _> I1 w I2 for
all input relations 11 and I2. Let 11 = {[A : 1, B :
21) and 12 = ([B : 2,C : 31, [B : 4, C : 51). Then
[A : 1, C : 31 E Q[lr ,121. Using results from [BK86],
there is a tree of rules which “derives” the tuple
[A : 1, C : 2] in the output. Transform this tree by
replacing all instantiation assignments of variables
to 2 by an assignment to I, and all assignments to
3 by assignments to 5. This will yield a derivation of
the tuple [A : 1, C : 51, whence Q does not compute
the join. 0

In the proof that COL z C we simulated Tur-
ing computations by constructing and using an or-
dered sequence of objects. The following example
explores the problems that arise in attempting to
construct sequences in BK.

Example 5.4: Suppose that the relation S with
structure {[A:U, B:U]} is used to hold a chain of val-
ues, starting with the distinquished symbol ‘$’ and
ending with the distinquished symbol ‘#‘. (E.g.,
the instance {[$,l], [1,2], [2,3], [3,#]} holds a chain

355

of length 5). We now consider a naive attempt to
build a BK program which constructs a list which
holds the chain held by S (e.g, in this case yielding
the list [H:#, T:[H:3, T:[H:2, T:[H:l, T:$]]]]). Con-
sider the following pair of rules:

LIST{ [H : I, T : $1) + S{ [A : $, B : z]}
LIST{ [H : 2, T : [H : y, T : z]]} c

S{ [A : y, B : x]}, LIST{ [H : y, T : z]}

The second rule involves a join-like condition on S
and LIST. It is easily verified that on an input
for S which includes at least the tuple [$,l], this
pair of rules will produce the infinite sequence of
lists: [H:l, T:$], [H:l, T:[H:I, T:$], [H:l, T:[H:I,
T:[H:l., T:$], In particular, the execution of
this program will not terminate, and so its output
is undefined. 0

Using a generalization of the argument of
Proposition 5.3, we also have:

Proposition 5.5: There is no BK query which
takes as input a binary relation S holding a chain
(starting with IF and ending with #) and produces
as output a list (as in Example 5.4) holding that
chain.

Proof: If the output can compute [H:#, T:[H:n,
T:[H:n- 1, T:[. . . H:2, T:[l,$]] . . .I]] from an input
chain Is, note that the tuples [$,1],[1,1] are also
“in” 1s. 0

The above results indicate the difficulty of us-
ing BK to simulate queries from other languages and
also other computational formalisms, such as Turing
machines. At present, the problem of characterizing
the expressive power or complexity of BK queries
remains open.

6 Untyped Sets = Invention
for Calculus

In this section, we explore how untyped sets yield
more expressive power for calculus. This turns out
to be related to the study of (complex object) cal-
culus under unlimited interpretation, which was an-
alyzed using invented values in [HS88b]. In the cur-
rent paper, the calculus with untyped sets is charac-
terized by a known class of calculus under invention.
However, the functions realized by these languages

are not computable, in fact, not even recursively
enumerable. Thus, a new semantics called “terminal
invention” is proposed. And it is shown that the cal-
culus (with typed sets and) with terminal invention
is C-equivalent.

The calculus tSCALC extended with untyped
sets, denoted CALC, is the calculus using rtypes
instead of types. There is an intuitive correspon-
dence between untyped sets and invented values in
this context. Consider a query Q whose formula
contains a quantified variable 2: of the rtype {Obj}.
Then 2 ranges over arbitrarily large finite sets, all
constructed from atomic objects appearing either in
the input database instance or as constants in Q (if
any). The elements in z can be used in the same
manner as invented values.

We now informally review the semantics of
t6CALC with invented values introduced in [IIS88b].
For a query Q E tdCALC, a database d, and i E N,
the semantics of Q under d with i invented values,
denoted Q]i [d, is obtained as follows: (a) evaluate Q
under limited interpretation with the active domain
extended to include i new values (denote the answer
Q]‘[q); and (b) delete from Q]‘[d objects contain-
ing invented values. Qlw[d and QIw[q are defined
analogously. Note that the limited interpretation of
Q is Q]s[d, and (assuming a countably infinite uni-
versal domain) the unlimited interpretation of Q is
QLPI.
Definition: If Q et6CALC, the semantics of Q
under finite invention, Qf’, is defined as Q”[q =
UO<i+, Q]i[d for all database instances d; the se-
mantics of Q under countable invention, Qci, is de-
fined as Qci[q = QIw[$l for all d. Let t”CALCfi
and ““CALC”” denote the families of calculus queries
with finite and countable invention semantics (re-
spectively).

Theorem 6.1: [HS88b] ‘“CALC’” is strictly more
powerful than ‘“CALCf”, which in turn is strictly
more powerful than C.

To illustrate the power of ‘“CALC”’ and
t”CALCfi we include:

Example 6.2: [HS88b]. Let A4 be a (conven-
tional) Turing machine with unary input alphabet
{a}; and let c be a constant in U. Then there is
a query Q in tSCALC/i which computes the total
function

fhalt (d) = { fcl} ftErzlr On a’d’;

356

and there is a query Q’ in tSCALCci which computes
the query

fi;;;ir(d) = {[Cl} - fha?t(d)

Intuitively, the body of Q outputs the tuple (c) if
there exists a halting computation of M on the input
aldl whose running time is 5 the number of active
domain and invented objects. Because the semantics
of Q is obtained by taking the union of its output
on all finite sets of invented values, Q essentially has
access to computations of M of all possible lengths.
It is shown in [HS88b] that no query in tbCALCfi
can compute fm. Under countable invention, Q’
can simultaneously examine all possible computa-
tions of M on the input, and thus compute f=
0

Let CALCZJ denote the class of calculus
queries whose variables of rtypes which are not types
are all existentially quantified.

Theorem 6.3: (a) CALC z ‘“CALC”‘; and (b)
CALC3 E ‘%ALCf’.

Proof: (sketch) (a) To show that ‘“CALC”’ 5
CALC, note that if a is a constant then the set
consGbj({a]) is countably infinite; this can be used
as the set of invented values. For the opposite direc-
tion, let Q be a query in CALC. The central problem
in building a query Q’ in t6CALCci which simulates
Q is the removal of the type Obj wherever it occurs
in Q. This is accomplished by “flattening” each ele-
ment Of COnSObj(adom(d, Q)) into an object of type

W,u,U,UI) 1 h w iic uses invented values. This flat-
tening is reminiscent of the representation of com-
plex objects used in the Logical Data Model [KV84].
(The proof of Lemma 6.5 in [HSSSa] uses this tech-
nique of flattening in a slightly different context, and
illustrates how it can be simulated in tSCALC.)

(b) To simulate a query Q in CAL& by a
query in tSCALCfi, first form Q’ E CAL& by mov-
ing all existentially quantified variables involving the
type Obj to the outside. The body of Q’ now has
the form &l/T1 . . .3z,,/Tn$ where II, has no quan-
tified variables with types involving Obj. For each
assignment (Y for cl, . . . , c,, $[a] can be simulated
using flattening and a finite set of invented values
(whose size depends on a). Because the output of
Q’ is based on taking the union of the “outputs” of
$~[a] for each a, Q’ can be simulated by the seman-
tics of finite invention. 0

Hence, a pure form of calculus with untyped
sets (and complex object calculus with unlimited in-
terpretation) is not practical under Church’s thesis.
We conclude by proposing the following new seman-
tics for tbCALC, which is shown to be C-equivalent.
(The full details of this development are presented
in [HSSSa] .)

Definition: If Q E “CALC, the semantics of Q
under terminal invention, Qti, is:

QInM if n is least such that

Q”‘[d = Ql”[q contains an
invented value,

? otherwise.

The family of such queries is denoted as ‘6CALC”.

Theorem 6.4 ‘“CALC” is C-equivalent.

Proof: (sketch) It is obvious that each calculus
query under terminal invention is computable and
generic, hence in C. Let f be a query function in
C and M be a Turing machine which computes f.
The construction of query Q E “CALC is essentially
similar to that in the proof of Theorem 2.2. The
only difference is that an arbitrarily large number
of indices are now available under invention. Hence,
we can use the type {[U, U, U, U]} to store the com-
putation of M. The rest of constructions are fairly
direct. 0

It should be noted that the results on expres-
sive power of ‘8CALC with invented values rely on
the presence of variables ranging over set types. For
example, it was demonstrated in [AGSS86] and in-
dependently developed in [HS88b] (details appear in
[HS89]) that the relational calculus with (finite or
countable) invention has only the expressive power
of the conventional relational calculus. In other
words, the relational calculus with the unlimited in-
terpretation has the same expressive power as with
the limited interpretation.

7 Conclusion

The results described in this paper characterize the
expressive power of query languages based on con-
ventional paradigms from databases, but interpreted
in a context where untyped (or unrestrictedly het-
erogeneous) sets are permitted. The languages stud-
ied cover a spectrum of expressive powers, ranging

357

from the algebra without while, which is equiva-
lent to &; through “most” langauges, which have
the power of C; up to the calculus, which has an
expressive power strictly greater than C.

While the technical discussion focused pri-
marily on the use of untyped sets, analogous results
hold in other cases where untyped sets can be sim-
ulated. Such situations include the use of list struc-
tures and the use of a freely interpreted function
symbol (which has at least two input arguments).
These constructs are typical of database program-
ming languages such as, e.g., GALILEO [AC085].

Acknowledgement [BNR*87]
The notion of terminal invention was inspired by a

conversation with Victor Vianu. We also thank Pe-
ter Buneman and Aaron Watters for helpful discus-
sions concerning the relationship between natural
join and BK.

[CH~O]

References

[AB88] S. Abiteboul and C. Beeri. On fhe
Power of Languages for the Manipula-
tion of Complex Objects. Technical Re-
port No.846, INRIA, May 1988.

[AC0851 A. Alb ano, L. Cardelli, and R. Orisini.
Galileo: a strongly-typed, interactive
conceptual language. ACM Trans. on
Database Systems, 10(2):230-260, June
1985.

[AG87] S. Abiteboul and S. Grumbach. COL:
a language for complex objects based
on recursive rules (extended abstract).
In Proc. Workshop on Database Pro-
gramming Languages, pages 253 - 276,
Roscoff, France, September 1987.

[AGSS86] A. K. Aylamazyan, M. M. Gilula, A. P.
Stolboushkin, and G. F. Schwartz. Re-
duction of the relational model with infi-
nite domain to the case of finite domains.
Proc. of USSR Acad. of Science (Dok-
lady), 286(2):308-311, 1986.

[AV87] S. Abiteboul and V. Vianu. Transac-
tion Languages for Database Update and
Specification. Technical Report No.715,
INRIA, September 1987.

[AV88]

[BBKV87]

[BK86]

[CM841

[Cod701

[GvG88]

[HK87]

[HSSSa]

S. Abiteboul and V. Vianu. Procedu-
ral and declarative database update lan-
guages. In Proc. ACM Symp. on Prin-
ciples of Database Systems, pages 240-
250, 1988.

F. Bancilhon, T. Briggs, S. Khoshafian,
and P. Valduriez. FAD, a powerful
and simple database language. In Proc.
Int. Conf on Very Large Databases,
pages 97-105, 1987.

F. Bancilhon and S. Khoshafian. A cal-
culus for complex objects. In Proc. ACM
SIGACT-SIGMOD Symp. on Principles
of Database Systems, 1986.

C. Beeri, S. Naqvi, R. Ramakrishnan, 0.
Schmueli, and S. Tsur. Sets and negation
in a logic database language (LDLl).
In Proc. ACM Symp. on Principles of
Database Systems, 1987.

A. K. Chandra and D. Harel. Com-
putable queries for relational data bases.
Journal of Computer and System Sci-

ences, 21(2):156-178, Oct. 1980.

G. Copeland, and D. Maier. Making
Smalltalk a database system. In Proc.
ACM SIGMOD Int. Conf. on the hfa.n-
agement of Data, 1984.

E. F. Codd. A relational model of data
for large shared data banks. Communi-
cations of the ACM, 13(6):377-387, June
1970.

M. Gyssens and D. van Gucht. The pow-
erset algebra as a result of adding pro-
gramming constructs to the nested re-
lational algebra. In Proc. ACM SIG-
MOD Int. Conf. on Management of
Data, 1988.

R. Hull and R. King. Semantic data
modeling: survey, applications, and re-
search issues. ACM Computing Surveys,
19(3):201-260, September 1987.

R. Hull and J. Su. On the Expressive
Power of Database Queries with Inter-
mediate Types. Technical Report 88-53,
Computer Science Department, Univ. of
Southern California, 1988. Invited to
special issue of Journal of Computer and
System Sciences.

358

[HSSSb]

[HS89]

[Hu187]

[Ko187]

[KP88]

[KV84]

[KV88]

[PvG88]

[RKS85]

R. Hull and J. Su. On the expres-
sive power of database queries with
intermediate types. In Proc. ACM
Symp. on Principles of Database Sys-
tems, pages 39-51, 1988.

R. Hull and J. Su. Domain Independence
and the Relational Calculus. Technical
Report, Computer Science Dept, Univ
of Southern California, 1989. In prepa-
ration.

R. Hull. A survey of theoretical research
on typed complex database objects. In J.
Paredaens, editor, Databases, pages 193-
256, Academic Press (London), 1987.

P.G. Kolaitis. The expressive power
of stratified logic programs. 1987.
manuscript, Stanford University.

P.G. Kolaitis and C.H. Papadimitriou.
Why not negation by fixpoint? In Proc.
ACM Symp. on Principles of Database
Systems, 1988.

G. M. Kuper and M. Y. Vardi. A new
approach to database logic. In Proc.
ACM Symp. on Principles of Database
Systems, pages 86-96, 1984.

G. M. Kuper and M. Y. Vardi. On the
complexity of queries in the logical data
model. In Proc. Int. Conf. on Database
Theory, pages 267-280, 1988.

J. Paredaens and D. van Gucht. Pos-
sibilities and limitations of using flat
operators in nested algebra expressions.
In Proc. ACM Symp. on Principles of
Database Systems, Austin, Texas, 1988.

M. A. Roth, H. F. Korth, and A. Silber-
schatz. Extended algebra and calculus for
notlNF Relational Databases. Technical
Report TR-85-19, University of Texas at
Austin, 1985.

359

