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Conventional database query languages are consid- 
ered in the context of untyped sets. The algebra 
without while has the expressive power of the typed 
complex object algebra. The algebra plus while, 
and COL with untyped sets (under stratified se- 
mantics or inflationary semantics) have the power 
of the computable queries. The calculus has power 
beyond the computable queries; and is characterized 
using the typed complex object calculus with in- 
vention. The Bancilhon-Khoshafian calculus is also 
discussed. A technical tool, called “generic Turing 
machine”, is introduced and used in several of the 
proofs. 

I Introduction 

Since the relational data model [Cod701 has its 
significant drawbacks in many application areas 
(such as engineering design, CAD, etc.), various 
attempts have been made towards extending the 
model and its query languages (calculus and alge- 
bra) [HK87]. A mong these proposed models and 
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languages, one important common feature is to use 
the “set” (or “grouping”) construct. Roughly speak- 
ing, there are two fundamentally different ways to 
introduce sets: (1) typed sets, which require all el- 
ements in a set to have certain fixed structure(s), 
as in the nested relation and most complex ob- 
ject models [Hu187, AB88, AG87]; and (2) untyped 
sets, which impose no restrictions on the types of 
their members, e.g., FAD [BBKV87], the Bancilhon- 
Khoshafian calculus (BK) [BK86], and also the “Set 
Theoretic Data Model” of Gemstone [CM84]. In this 
extended abstract we conduct a theoretical study of 
expressive power of several query languages of com- 
plex objects using untyped sets. Our results indicate 
that untyped sets generally yield considerably more 
expressive power, and in several cases, the power of 
computable queries. Also, several pairs of query lan- 
guages (e.g., complex object calculus and algebra) 
which are equivalent (nonequivalent) in the conven- 
tional context are seen to be nonequivalent (equiv- 
alent) in the context of untyped sets. Finally, we 
indicate how analogous results can be obtained in 
the presence of lists or freely interpreted function 
symbols. 

The investigation described here provides a 
bridge between research on the use of (typed) sets 
in query languages [HS88b, KV88, PvG88, GvG88] 
and research on computable queries [CH80, AV87]. 
While the complex object and nested relation mod- 
els where developed several years ago, it is only 
recently that theoretical investigations of the ex- 
pressive power and complexity of their associated 
query languages have been made. For example, 
the independent investigations [HS88b, KV88] show 
that each level of nested sets gives more expres- 
sive power at an exponential cost (of time, space); 
and [AB88, GvG88] show that in the context of the 
nested relation algebra, the powerset construct is 
equivalent to various iterative constructs (e.g., fix- 

347 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73721.73755&domain=pdf&date_stamp=1989-03-29


point, while). On the other side, [AV87] intro- 
duced a transaction language which has the expres- 
sive power of (essentially) the computable queries 
originally introduced in [CH80]. In the current pa- 
per, we show that if untyped sets are permitted, then 
the algebra (with while) and deductive languages 
(with negation, using either stratified or inflationary 
semantics) also have the power of the computable 
queries. Furthermore, the calculus has expressive 
power beyond this class. 

Calculus, algebraic, and deductive languages 
are considered here. In all cases, we restrict atten- 
tion to their behavior on flat relational input and 
output. When sets are typed, these languages all 
have the same expressive power, that is, the ex- 
pressive power of the class 8 of elementary queries 
[HSSSJ, which are generic mappings from flat re- 
lations to flat relations and computable by Turing 
machines within hyper-exponential time (space). 

When incorporating untyped sets it is shown 
that the algebra (with the powerset operator) is ex- 
pressively equivalent to the one with typed sets. We 
also study the algebra extended by a while loop- 
ing construct; in the presence of untyped sets this 
is closely related to FAD. We show that every com- 
putable query is expressible in this extended alge- 
bra regardless of the presence of the powerset oper- 
ator. Thus, untyped sets break the “balance” be- 
tween powerset and iteration (e.g., while). 

A second focus concerns deductive languages. 
Several such languages have been suggested: COL 
[AG87], BK, LDLl [BNR*87], complex object DAT- 
ALOG [AB88], etc. Here we mainly study the ex- 
pressive power of two extensions of COL with un- 
typed sets under the semantics of stratification and 
inflation (respectively). We show that inflationary 
COL with untyped sets, stratified COL with un- 
typed sets, and the class of computable queries are 
all equivalent. (Analogous results hold for com- 
plex object DATALOG.) This provides an interest- 
ing contrast to the fact that stratified DATALOG’ 
is strictly weaker than inflationary DATALOG’ 
[Ko187, KP88, AV88]. We also briefly discuss 
BK. Although we do not characterize its expressive 
power, we present results indicating some of the lim- 
itations of its expressive power. 

Finally, we turn to untyped sets in the cal- 
culus. It turns out that the untyped sets can be 
used as invented values [AV87, HS88b]. Indeed, the 
calculus with untyped sets has the same expressive 
power as the calculus with countable invention. Un- 
fortunately, their power is far beyond Turing com- 

putability and thus unreasonable. A new semantics 
called “terminal invention” is proposed. It is shown 
that the class of queries expressible by the calculus 
with terminal invention is exactly the class of all 
computable queries. 

In this paper we introduce a technical vehi- 
cle, called “generic Turing machine” (GTM), which 
is used in several of the proofs that languages have 
the power of the computable queries. Unlike con- 
ventional Turing machines, GTMs use an infinite 
input alphabet which corresponds to the underlying 
domain of (all) database instances considered. The 
transistion function of GTMs is finitely expressible, 
and ensures that the computation and its output is 
“generic”. (However, as with the use of conventional 
Turing machines to describe query functions, the fo- 
cus is on GTMs whose output is independent of the 
order of the input.) 

Section 2 reviews basic concepts. GTMs are 
introduced in Section 3. Section 4 introduces the 
notion of untyped sets, and analyzes the algebra. 
Deductive languages and the calculus are studied in 
Sections 5 and 6. This is only an extended abstract. 
It is assumed that readers are familiar with COL and 
BK. Proofs are therefore either omitted or briefly 
sketched. 

2 Preliminaries 

In this section, we establish terminology for pre- 
viously studied concepts including types, objects, 
databases, query functions; several query languages 
(algebra, deductive, and calculus); and the notion of 
equivalent expressive power. Notably, all languages 
considered have the ability to return the “undefined” 
value (?) as output. 

We assume that U is a countably infinite uni- 
versal domain of atomic objects, P is a countably 
infinite set of abstract predicate names, and U and 
P are disjoint. Types are defined recursively from 
the symbol ‘U’ and the tuple and set constructs: 

Definition: The set of types is a family of expres- 
sions defined recursively by: 

(a) the symbol U is the basic type; 

(b) if T is a type then {T} is a set type; and 

(c) if Tl, . . . . T,, n 2 1 are types then [Tl, . . . . T,] is 
a tuple type. 
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A type is jlat if no set construct occurs in it. 

The domain of a type T, denoted dam(T), 
is defined in the usual fashion. Each element of 
dam(T) is an object of type T; any finite subset of 
dam(T) is an instance of type T; and inst(T) de- 
notes the family of instances of T. 

Definition: A database schema is a sequence 
D=< PI :Tl,...,P,, :T, > where 

(a) Pi E P for i E [l..n]; 

(b) Ti is a type for i E [l..n]; and 

(C) Pi # Pj if i # j. 

D is flat if Ti is flat for i E [l..n]. A (database) 
instance of D is a sequence d =< PI : II,. . . , P,, : 
1, > where Ij is an instance of q for each j E [l..n]. 
The family of instances of D is denoted inst(D). 

The atomic (active) domain of an object X 
(instance 1, database instance d), denoted adorn(X) 
(adorn(I), adorn(d)), is the set of atomic objects 
“used” in building X (I, d). 

Definition: If D is a database schema and T 
is a type, a query function f from D to T, de- 
noted f : D -+ T, is a (partial) mapping from 
&t(D) to inst(T). Further, let d E inst(D). If 
f(d) is undefined, we write f(d) = ‘?‘. Also, we 
define indom( f, d) = adorn(d), and outdom(f, d) = 
udom(f(d)) (0 if f(d) = ‘?‘). 

Definition: If C C U is a finite set, f : D + T is 
a query function, then: f is 

(a) (input) domain preserving wti C, if Vd E 
inst(D), outdom(f, d) C indom(f, d) U C; 

(b) C-generic if f ou = (zo f for each permutation’ 
d over U with Vx E C, a(x) = x. 

f is domain preserving (generic) if f is domain pre- 
serving wrt C (C-generic) for some C. 

It is easily verified that each generic (and 
deterministic) query function is domain preserv- 
ing. All queries in the languages discussed here are 
generic and domain preserving. 

We now introduce two interesting classes of 
queries. The family of “computable queries” was 
introduced in [CH80] and also studied in [AV87]. 

lo is extended naturally to databases. 

Definition: The class C of computable query func- 
tions is the set of query functions f such that 

(a) f : D + T is a query function for some flat 
database schema D and flat type T; 

(b) f is generic; and 

(c) f is Turing-computable. 

We briefly mention a particular framework 
by which Turing machines are used to compute 
database mappings. Let D be a flat schema and 
T a flat type, and f : D + T a C-generic database 
mapping where C c U is finite. A Turing machine 
M computes f if the following conditions are satis- 
fied. First, it is assumed without loss of generality 
that C and distinquished symbols ‘O’,‘l’,‘,‘,‘(‘,‘)‘,‘[‘, 
and ‘I’ are included in the tape alphabet of M. 
An input instance I is placed into an ordered list, 
where values in adorn(I) - C are encoded using 
strings over {O,l}. If M halts, it must hold on 
its tape the encoding of an instance J of T, such 
that adorn(J) C adorn(I) U C. Finally, the opera- 
tion of M must be independent of the encoding for 
adorn(I)-C used, and also independent of the order 
in which the input is presented. 

On the other hand, the notion of “elementary 
queries” arises naturally in the query languages for 
complex objects (see Theorem 2.2). Roughly speak- 
ing, this family contains queries whose time (space) 
complexity are elementary functions. 

Definition: Let f be a query function and t: N 
--+ N be a function. f has time (space) complexity 
t, if there exists a Turing machine M which decides 
o E f(d) within time (space)2 t(lldll+ 11011) whenever 
d is a input database instance and o is an object of 
the target type. 

Notation: The class of hyper-exponential func- 
tions hypi (i E N) is defined such that hype(n) = n 
and hypi+r(n) = 2*YPi(“), for i 2 0. 

Definition: The class Z of elementary query func- 
tions is the set of query functions f such that: 

(a) f E C; and 

(b) f has hyper-exponential time (space) complex- 
ity. 

A query is syntactically an expression. With 
associated semantics, each query expression realizes 

211dll denotes the length of d. 
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a query function. As our focus is on query functions 
from flat schemas to flat types, we consider only 
query expressions of that property in the rest of the 
abstract. 

The algebra used here is essentially equiva- 
lent to those of [AB88, KV84, RKS85], but includes 
a unary operator undefine which returns ‘?’ if the 
instance is empty and the instance otherwise. We 
use a syntax which views algebra expressions as se- 
quences of assignments, each of which applies a sin- 
gle operator (e.g., in the spirit of [KV84]). This per- 
mits the easy incorporation of the while construct 
into the algebra (in the spirit of [GvG88]). An alge- 
braic query expression is a sequence of assignments 
followed by an assignment to a special variable ANS 
which holds the answer to the query, such that each 
variable is assigned a value before it is referenced. 
Let “ALG (‘ts’ for typed &s) denote the family 
of all such query expressions. The while construct 
has the following format: z := while < z; y > do 
assignments end, where x, y, z are variables such 
that z does not occur in the assignments, with the 
semantics: while the value of y is not empty ex- 
ecute the assignments; z finally gets the value of 
2 at the end of the loop. We consider algebras 
with both nested while and unnested while, de- 
noted as t”ALG+wlrile (tSALG+unnested-wlrile). 
In the evaluation of an algebraic expression, if any 
variable (or ANS) is assigned the undefined value, 
or if a while loop does not terminate, then the query 
evaluates to the undefined value. 

In the same spirit as the algebra extending 
the relational algebra, COL is an extension of DAT- 
ALOG to incorporate complex objects. Notably, 
COL uses function symbols which are interpreted 
as set valued data functions. It has a stratification 
semantics to ensure a minimal model (see [AG87] 
for details). 

The complex object model in [BK86] is a 
model based on untyped sets, where the set of ob- 
jects together with the “sub-object” relationship 
forms a lattice. BK is a rule-based language with 
a fixpoint semantics. Informally, a query consists of 
a set of rules. An application of rules is to find all 
valuations such that the tails “match”3 the database 
and then take the least upper bound of the heads. 

In our investigation, we view each query ex- 
pression in COL and BK as a query with a special 
predicate ANS for output. And we use tSCOL, BK 

31n BK, this is based on the sub-object relationshipinstead 
of equality. 

to denote the families of query expressions in COL, 
BK. 

In the calculus, formulas are built from u a 21, 
u E u, P(U) (P is a predicate name, ‘u and u are vari- 
ables/constants) using sentential connectives (A, V, 

-) and typed quantifications (Vx/T4, 3x/T+) (see 
[HS88b]). A calculus query expression is an expres- 
sion of form {t/T I 4) where 4 is a (well-typed) for- 
mula. Let ‘dCALC represent the family of all cal- 
culus query expressions. Three different semantics 
discussed in section 5 are: no invention (limited in- 
terpretation), countable invention (unlimited inter- 
pretation) [HS88b], and terminal invention. 

Definition: Two query languages Li and Lz are 
equivalent if they realize the same set of query func- 
tions. L1 is no more expressive than L2 (LI L La) 
if each query function realizable in L1 is also realiz- 
able in L2. If S is a family of query functions, Ll is 
S-equivalent if 

(a) every query expression realizes some f in S, and 

(b) every query function in S is realizable. 

Thus, the notion of C-equivalent has been 
called “computationally complete” in other inves- 
tigations. When the context is clear, both query 
functions and query expressions are refered as sim- 
ply queries. 

The expressive power of many complex ob- 
ject languages is characterized by following two the- 
orems. 

Theorem 2.1: [AB88] tSALG, %OL, ‘%ALC, 
and complex object DATALOG are all equivalent. 

Theorem 2.2: tdCALC is I-equivalent. Hence, 
tSALG, tSCOL, and complex object DATALOG are 
also E-equivalent. 

Proof: (sketch) It is sufficient to show that 
lSC!ALC is E-equivalent. The rest follows easily from 
this and Theorem 2.1. 

To show that every query function realizable 
in tSCALC is in &, we use a naive query evalua- 
tion algorithm which is easily seen to have hyper- 
exponential data complexity. For the other direc- 
tion, let f be an arbitrary query function in &. By 
definition, there is a Turing machine A4 which com- 
putes f within hyper-exponential time, i.e., hyplpi 
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time for some i. It should be noted that a (partial) 
computation of M can be represented by a four di- 
mensional array, where the first two columns spec- 
ify a particular tape square (over time), the third 
is the symbol on that square, and the last indi- 
cates the position of the tape head. In order to 
“hold” a halting computation of M, the array must 
be sufficiently large. More precisely, the first two 
columns must have hypi(n) number of distinct ele- 
ments where n is (roughly) the number of atomic el- 
ements in the input. Recall that each level of nested 
sets induces one high level of exponentiation of data 
complexity [HS88b, KV88]. Therefore, using the 
type {[T, T, U, U]} where T is a type with i levels 
of nested sets, the array is able to “hold” all halting 
computations of M. It is now easy to construct an 
expression in the calculus to simulate the behavior 
of M. (More details are provided in [HSSSa].) 0 

3 Generic Turing Machines 

As indicated in the introduction, several of the ma- 
jor theorems of the paper show that certain query 
languages are C-equivalent. In the previous lit- 
erature such proofs are generally accomplished by 
showing that a given query langauge can simulate an 
arbitrary Turing machine which computes a generic 
query function. In this section we present a technical 
construct, called “generic Turing machine” (GTM), 
which can be used to simplify proofs of this sort. 

Consider the problem of showing that a given 
database query language can simulate arbitrary Tur- 
ing machines which compute a generic query func- 
tion. Three fundamental issues arise: 

1. 

2. 

3. 

the tape alphabet of the Turing machine is fi- 
nite, but the underlying domain of input in- 
stances is infinite. 

the Turing machine must be restricted so that 
it computes a generic mapping. 

the computation of the Turing machine must 
be independent of the order in which the input 
instance is presented to it. 

The notion of generic Turing machine focuses on the 
first two issues; in particular, a GTM can directly 
manipulate infinitely many tape symbols, and will 
necessarily compute only generic mappings. How- 
ever, we must restrict our attention to GTMs whose 
output is independent of the order of the input. 

Intuitively, a GTM M is a two-tape Turing 
machine whose alphabet includes the underlying do- 
main U and a finite set W of working (or punctua- 
tion) symbols. Also, a finite set C C U of constants 
is explicitly specified in M - these correspond to the 
constants used in a query, and the computation of 
A4 will be C-generic. The transition function for M 
explicitly uses the members of WUC to refer to tape 
symbols, and also uses the distinquished variables cr 
and p, which are used to refer to elements of U - C. 

Formally, we have 

Definition: A generic Turing machine (GTM) 
(relative to U) is a six-tuple 

M = (K, W, C, 6, so, h) 

where 

1. 

2. 

3. 

4. 

5. 

6. 

K is a finite set of states. 

W is a finite set of working symbols, which in- 
cludes the distinquished symbols ‘,‘, ‘(‘, ‘)‘, ‘[‘, 
and ‘I’ which are used for encoding input rela- 
tions and output relations. 

C C U is a finite set of constants. 

SO E K is the start state. 

h E K is the unique halting state. 

6 is the transition function from (I< - {h}) x 
(WUCU{a}) x (WuCU(a,p}) to K x (WU 
CU{a,P}) x (WUCU{o, a}) x {L, R, -}2. In 
a transition value 6(4, a, b) = (q’, a’, b’, Dl, 02)) 
b = p only if a = a; Q E {a’, b’} only if (Y E 
{a, b); and /? E {a’, b’} only if /3 E {a, b}. 

M is viewed as having 2 one-way infinite tapes (ex- 
tending to the right). A transition value 6(q, a, b) 
= (q’, a’, b’, Dl, 02) is generic if cr E {a, b). Intu- 
itively, a generic transition value is used as a tem- 
plate for an infinite set of transition values which are 
formed by letting o (and p if it occurs) range over 
(distinct) elements of U - C. Assuming this pro- 
vision, a computation of M is defined in the usual 
fashion. 

The restrictions on b in the above definition 
ensure that M is deterministic. 

Let D be a flat database schema and T a flat 
type. A GTM M “computes” a query function from 
D to T in the following manner. An input instance 
I is enumerated in some order e and placed left- 
justified on the first of the two tapes of M. M 
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computes until it reaches the halting state. If the 
contents of the first tape hold an ordered listing of 
an instance of T, that instance is the output of the 
computation of M on input I with order e. If M 
does not halt, or if the contents of the first tape 
is not an ordered listing of an instance of T, then 
M produces the undefined output on I with order 
e. M is input-order independent from D to T if for 
each instance I of D, the output of M is the same 
regardless of the input order used for I. 

Proposition 3.1: The family of mappings com- 
puted by input-order independent generic Turing 
machines is C-equivalent. 

Proof: (Sketch) First, let f : D -, T be a com- 
putable query function which is C-generic for some 
finite C C U. Becuase f is Turing-computable, we 
can assume that there is a (conventional) Turing ma- 
chine M which computes f, using the constants C 
and encoding other elements of U using strings over 
{O,l}. A GTM M’ which simulates M can be con- 
structed as follows: M’ includes 0 and 1 in its work- 
ing symbols. Given an input instance I on its first 
tape, M’ first develops an encoding of adorn(l) - C 
into strings over {O,l}. (The particular encoding 
will depend on the order of the input to M’.) M’ 
then transforms its initial input into an input for M; 
simulates M; and then decodes the output. 

For the other direction, suppose that f : D --t 
T is computed by an input-order independent GTM 
M. We briefly indicate how to construct a (con- 
ventional) Turing machine M’ which simulates M. 
Without loss of generality we can assume that M’ is 
a 4-tape machine; two tapes will be used to simulate 
each of the tapes of M. M will take as input a list- 
ing of an input instance I encoded using strings over 
{O,l}. Non-generic transitions of M can be used 
more-or-less directly by M’. Generic transitions of 
M must be simulated by M’; this is reminiscent of 
the simulation of an arbitrary Turing machine by 
one with a two element tape alphabet. 0 

It is easily verified that if the notion of GTM 
were modified to have only one tape, then it would 
be strictly weaker than C. (This is because a l-tape 
GTM is unable to replicate elements of adorn(d) - 
C.) On the other hand, each n-tape GTM can be 
simulated by a 2-tape GTM. 

4 Algebra with Untyped Sets 

To provide a formal model for discussion, the defi- 
nition of untyped sets is first introduced, along with 
associated definitions (domain, instance, etc.). The 
algebra described in the previous section is modified 
to fit this model. Two results are then given. First, 
it is shown that the algebra (without while) with 
untyped sets is C-equivalent. On the other hand, 
when (nested or unnested) while is included, the al- 
gebra is C-equivalent even without powerset. Hence, 
in this context, while is more powerful than pow- 
erset, contrasting to the results in the case of typed 
sets [GvG88]. 

Definition: A relaxed type (rtype) is defined as: 

(4 

lb) 
Cc) 

(4 

(4 

(b) 

(cl 

U is the atomic rtype; 

Obj is the universal rtype; 

{T) is a set rtype if T is an rtype; and 

[TI, . . ..Tnl is a tuple rtype if 1 5 n and Ti is an 
rtype for i E [l..n]. 

Let Obj be the smallest set such that: 

U E Obj; 

{Xl, *-a, X,,} E Obj if 0 5 n and Xi E Obj for 
i E [l..n]; and 

[Xl, a*‘, X,,] E Obj if 1 5 n and Xi E Obj for 
i E [l..n]. 

Now, the domain of an rtype is defined similarly to 
that of a type. 

Definition: The domain of an rtype T, denoted 
dam(T), is defined: 

(a) don@) = U; 

(b) dom(Obj) = Obj; 

(c) dom({T}) = {{Xl, . . ..Xn} ] 0 5 n and Xi E 
dam(T) for i E [l..n]}; and 

(d) dom([Tl, . . . . T’]) = {[XI, . . . . X,] 1 Xi E 
don(Z) for i E [l..n]}. 

Each element in dam(T) is an object. Any finite 
subset of dam(T) is an instance of T. inst(T) de- 
notes the family of instances of T. 
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We now make some intuitive comments about 
the system of rtypes. Most importantly, this system 
subsumes essentially all of the objects used in BK 
and FAD. In BK, special “bottom” and “top” ob- 
jects are used (and FAD permits “bottom”); rtypes 
do not provide this. Also, both BK and FAD have a 
convention of named attributes in tuples, while here 
we use position to identify the coordinates. In the 
current investigation we use rtypes to provide a min- 
imal typing framework, in order to retain the overall 
spirit of the typed languages (algebra, COL, calcu- 
lus) whose variants are studied here. It should be 
noted that the family of types introduced in Section 
2 is a proper subset of the family of rtypes. Also, 
unlike types, it is possible for two distinct rtypes to 
have overlapping domains. 

We associate the set Obj with an equality re- 
lationship extended from the equality of U in a natu- 
ral manner. The algebraic operators are extended in 
natural ways to range over instances of rtypes. For 
example, we permit the formation of unions of in- 
stances of different rtypes (which result in instances 
of type ObJ). Also, horizontal operators such as se- 
lection can operate on instances of Obj; these ‘Pg- 
nore” elements of the instance which do not have 
the right shape. We use ALG (ALG+(unnested- 
)while) to represent the algebraic language(s) which 
map from flat schemss to flat types, possibly using 
rtypes as intermediate types. 

The following results show the power of while 
in this context: 

Theorem 4.1: 
equivalent; 

(a) ALG and ‘bALG are E- 

(b) ALG+unnested-while-powerset and 
ALG+while-powerset are C-equivalent. 

Proof: (sketch) (a) Obviously, ALG has the full 
power of tSALG and thus all elementary query func- 
tions are realizable in ALG. On the other hand, for 
any given expression E and database d, the number 
of new objects created during the process of E[d is 
an elementary function of the length of E and the 
number of atomic elements in d since there are no 
loops. Therefore, E is easily seen to have hyper- 
exponential data complexity. 

(b) It is clear that the algebra with nested 
or unnested while is a procedural and generic lan- 
guage, and thus contained in C. To establish the 
other directions, we use Theroem 6.4 and show: 

(9 
(ii) 

(iii) 

C C ALG+while; 

ALG+while C ALG+while-powerset; and 

ALG+while-powerset E 
ALG+unnested-while-powerset. 

Among the above three claims, (ii) can be obtained 
by using a similar reasoning to the proof of a theo- 
rem in [GvG88] which states that the powerset con- 
struct is equivalent to the while construct in the 
case of the typed algebra. (iii) can be proved by re- 
peatedly collapsing two consecutively nested while 
loops. Roughly speaking, this can be obtained by 
using a cross product of two condition variables. 

We now describe the proof of (i). Let f be 
a C-generic computable query function from T to 
D, and let M be an order-independent GTM which 
computes f. There are three fundamental issues to 
be addressed in the construction of a query Q in 
ALG+while for simulating M: 

(4 

@I 

(cl 

encoding the input instance I into a sequence 
that can be used as the input for M. 

providing an arbitrarily large ordered set of in- 
dices which can be used to hold the “current” 
contents of the two tapes of M. 

simulating individual steps of M. 

In this sketch we address each issue more or less 
independently; their synthesis is relatively straight- 
forward. 

Consider pa.rt (a). In ‘6ALG it is easy to build 
a query &I who>l~ ~blltput is an object ORD of type 
T = [S, s] and S = (. . . {U} . . a) (where the nesting 
is ofheight k such that hypb(ladom(d)l) 2 max{]]d]], 
ladom(d)l!} for all instances d of 0); where ORD 
holds a total order for4 cons,(adom(d)). Using 
ORD, we would like to build a binary relation whose 
first column holds elements of cons,(adom(d)) and 
whose second column holds a listing of d. In gen- 
eral this is impossible because the operation of Q 
is generic. For this reason, we simultaneously build 
and use a family of listings of d, one for each order- 
ing of the set adorn(d) - C. To this end, we build 
a query Q2 in ‘*ALG which maps to the type {R}, 
where R = {[T, U]}; and which maps the input d 
to an object PERMS = { ENC, I p is a ordering of 
adorn(d) - C }. 

‘For a type T and set X C U, the constructive domain 
of T relative to X is cm+(X) = (o 1 o has type T and 
adorn(o) c X}. 
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We now turn to part (b). The query Q will 
have a crucial while loop which will perform part 
(c), and will simultaneously create one additional 
element to be used as an index for the tapes of 
M. The sequence of elements produced will be 
a; {a}; {a, {a}}; {a, {a}, {a, {a}}};. . . . If the unary 
relation P holds an initial segment of this sequence, 
then the (pseudo-)ALG expression5 npg1,2(P x 
P)) - P will hold the least element outside of P. 

We conclude this section by the following re- 
mark. The “magic power” of untyped sets is its 
ability to have arbitrarily large, finite sets built with- 
out using “invented values” (relative to indom(d)). 
Together with appropriate control structures (e.g., 
while), it then yields rich expressiveness. Since 
FAD subsumes ALG+while, it also is C-equivalent. 

We turn now to part (c). We first consider 
the simplified case in which a specific ordering of 
the input is given in a binary relation 1J!, whose first 
column holds an initial segment of cons,(adom(d)) 
and second column the listing of the input. In this 
context, we use two 3-ary relations Tl and T2 and 
one unary relation S to record the “current” config- 
uration of the computation of M on IN. The first 
coordinate of Tl will hold values from the set P of 
indices, the second coordinate will hold the symbol 
in the corresponding tape square of the first tape 
of M, and the third coordinate will hold either ‘Y’, 
indicating that the tape head is there, or ‘N’, indi- 
cating that it isn’t. T2 will encode the current con- 
tents of the second tape analogously. Finally, the 
unary relation S will hold a single tuple indicating 
the current state of M. Using these data structures 
it is straightforward to set up a while loop which 
simulates a single move of it4 on each iteration, and 
which terminates if S(h) holds (i.e., if the compute 
tion of M is in a halting configuration). A technical 
detail here is that in the first iterations of the while 
loop, the input stored in IiVmust be transfered into 
Tl. 

5 Deductive Languages with 
Untyped Sets 

The main interests here are two syntactically dif- 
ferent languages, ‘sCOL and BK. We first extend 
‘6COL to use rtypes rather than types; and study 
it using two alternative semantics: stratification and 
inj?ation. It turns out that both extensions are C- 
equivalent. It is clear that each BK query is com- 
putable and monotonic. Although we do not char- 
acterize the expressive power of BK, we provide a 
pair of results which indicate significant limitations 
in its expressive power, at least in the case where it 
is restricted to map from and to flat relations. 

We conclude by describing how to general- 
ize the above construction so that it simultaneously 
works with several orderings of the input rather 
than just one. In particular, for each ordering p 
of adorn(d) - C let IN, be a binary relation hold- 
ing a listing of d in which tuples are ordered lexico- 
graphically according to the ordering p. It is easy 
to build a query Qs in tSALG which, on input d 
yields the object { [ENC,,,IN,] 1 p is an ordering for 
adorn(d) - C}. Also, rather than using the types 
Tl, TLand S@cribed above, we use 2 4-ary rela- 
tions Tl and T2 and a binary relation S. In each of 
these, the last column has type R, and will hold el- 
ements of PERMS. In particular, for each ordering 
p of adorn(d) - C, the relations 7ri,z,sud=~~c,Tl, 
iri,z,zua4=~~cpT2, and ?T~(T~=ENC,,S, will hold the 
values of Tl, T2, and S for the input IN,. 0 

As introduced in [AG87], “COL is a strongly 
typed language: each variable has an associated 
type. (In practice, a “COL program implicitly as- 
sumes an assignment of types to variables.) As de- 
tailed in the full paper, it is straightforward to mod- 
ify the syntax of “COL to form COL, whose vari- 
ables range over rtypes. We associate two alterna- 
tive semantics to COL programs. The first, strat- 
ification is the natural generalization of the strati- 
fied semantics used in tbCOL. The second, inflation 
is the natural generalization of the “inflationary se- 
mantics” introduced for DATALOG’ in [I<P88]. We 
denote COL extensions with stratification and infla- 
tion semantics as COL6” and COL”‘f respectively. 
In the context of untyped sets, it is possible using ei- 
ther semantics to write a COL program which, on a 
given input, does not yield a finite minimal model. 
In this case, we view the output to be undefined. 
(Technically, there is no least fixed-point in such 
cases, because infinite objects and instances are not 
permitted in our model.) 

In contrast to Theorem 2.2, we have 

Theorem 5.1: 
equivalent. 

COLSt’ and COL’“f are C- 

5Here vz denotes the operation of nesting on the second Proof: (Sketch) It is clear that both variants of 
column. COL are within C. We discuss the proof that COLSt’ 
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subsumes C. This follows by an argument similar to 
the one showing that C C ALG+while in the proof 
of Theorem 4.1 (b). As in that argument, let M 
be a GTM, and recall that three fundamental issues 
were addressed: 

(4 

(b) 

encoding the input instance I into a sequence 
that can be used as the input for M. 

providing an arbitrarily large ordered set of in- 
dices which can be used to hold the “current” 
contents of the two tapes of M. 

(cl simulating individual steps of M. 

Because tdCOL can simulate tdALG, part (a) can 
be accomplished. Part (c) will be accomplished in a 
manner similar to the way it was done in the earlier 
proof, with one wrinkle. Specifically, in the cur- 
rent context the relations Tl, T2, and S will record 
the entire history of the computation, rather than 
simply the “current” configuration. (If only the 
“current” configuration is stored, than negation is 
needed to make each move, it appears impossible to 
construct a stratified program which behaves cor- 
rectly.) To store the entire history, we add another 
column to each of the relations, which intuitively 
holds an index indicating which step of the compu- 
tation is described by the associated tuple. 

For part (b), we assume that a is a distin- 
quished constant, and F a function symbol. The or- 
dered set a; {a}; {a, {a), {a, {a}};. . . is now created 
in the set F(a) by the following rules: 

a E F(a) + 
{al E F(a) + 

and the set of rules 

(1~) E F(a) + u E F(a), SC&p, s) I 
s is a nonhalting state of I<} 

(Here t will typically hold an element of lNp denot- 
ing the time; if S(t, p, s) is true at some point in the 
execution of the program, then M is in the state Q 
during the u-th step in the computation.) 0 

We now turn to BK, which is obviously mono- 
tonic and contained in C. It is natural to com- 
pare the expressive power of BK with the class of 
monotonic query functions in E a.nd/or C. It should 
be noticed that BK has two main differences from 
COL. The first, that negation is not included, has 
already been mentioned. The second involves vari- 
able instantiation: in BK, variable instantiation is 

not based on equality, but rather on sub-object re- 
lationship. 

The following discussion indicates the diffi- 
culties in using the techniques above to analyze the 
expressive power of BK. 

Example 5.2: Suppose the database d has two 
binary relations: R1 of type {[A:U, B:U]}, and Rz 
of type {[B:U, CU]). (We use here a variant of the 
BK syntax.) Consider the following rule: 

At first glance, it appears that this rule computes 
the join of Ri and R2. However, by using variable 
instantiations in which y is assigned I, it is clear 
that if RI and R2 are nonempty then R will hold 
rlR1 x azR2. 0 

Indeed, the following result shows that BK 
cannot perform joins. 

Proposition 5.3: There is no BK query which 
takes as input two binary relations RI of type { [A:U, 
B:U]} and R2 of type ([B:U, CV]} and as output 
produces the natural join of R1 and R2. 

Proof: (sketch) Suppose that the BK query Q has 
the property that Q[Rl : II, RP : 121 _> I1 w I2 for 
all input relations 11 and I2. Let 11 = {[A : 1, B : 
21) and 12 = ([B : 2,C : 31, [B : 4, C : 51). Then 
[A : 1, C : 31 E Q[lr ,121. Using results from [BK86], 
there is a tree of rules which “derives” the tuple 
[A : 1, C : 2] in the output. Transform this tree by 
replacing all instantiation assignments of variables 
to 2 by an assignment to I, and all assignments to 
3 by assignments to 5. This will yield a derivation of 
the tuple [A : 1, C : 51, whence Q does not compute 
the join. 0 

In the proof that COL z C we simulated Tur- 
ing computations by constructing and using an or- 
dered sequence of objects. The following example 
explores the problems that arise in attempting to 
construct sequences in BK. 

Example 5.4: Suppose that the relation S with 
structure {[A:U, B:U]} is used to hold a chain of val- 
ues, starting with the distinquished symbol ‘$’ and 
ending with the distinquished symbol ‘#‘. (E.g., 
the instance {[$,l], [1,2], [2,3], [3,#]} holds a chain 
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of length 5). We now consider a naive attempt to 
build a BK program which constructs a list which 
holds the chain held by S (e.g, in this case yielding 
the list [H:#, T:[H:3, T:[H:2, T:[H:l, T:$]]]]). Con- 
sider the following pair of rules: 

LIST{ [H : I, T : $1) + S{ [A : $, B : z]} 
LIST{ [H : 2, T : [H : y, T : z]]} c 

S{ [A : y, B : x]}, LIST{ [H : y, T : z]} 

The second rule involves a join-like condition on S 
and LIST. It is easily verified that on an input 
for S which includes at least the tuple [$,l], this 
pair of rules will produce the infinite sequence of 
lists: [H:l, T:$], [H:l, T:[H:I, T:$], [H:l, T:[H:I, 
T:[H:l., T:$], . . . . In particular, the execution of 
this program will not terminate, and so its output 
is undefined. 0 

Using a generalization of the argument of 
Proposition 5.3, we also have: 

Proposition 5.5: There is no BK query which 
takes as input a binary relation S holding a chain 
(starting with IF and ending with #) and produces 
as output a list (as in Example 5.4) holding that 
chain. 

Proof: If the output can compute [H:#, T:[H:n, 
T:[H:n- 1, T:[ . . . H:2, T:[l,$]] . . .I]] from an input 
chain Is, note that the tuples [$,1],[1,1] are also 
“in” 1s. 0 

The above results indicate the difficulty of us- 
ing BK to simulate queries from other languages and 
also other computational formalisms, such as Turing 
machines. At present, the problem of characterizing 
the expressive power or complexity of BK queries 
remains open. 

6 Untyped Sets = Invention 
for Calculus 

In this section, we explore how untyped sets yield 
more expressive power for calculus. This turns out 
to be related to the study of (complex object) cal- 
culus under unlimited interpretation, which was an- 
alyzed using invented values in [HS88b]. In the cur- 
rent paper, the calculus with untyped sets is charac- 
terized by a known class of calculus under invention. 
However, the functions realized by these languages 

are not computable, in fact, not even recursively 
enumerable. Thus, a new semantics called “terminal 
invention” is proposed. And it is shown that the cal- 
culus (with typed sets and) with terminal invention 
is C-equivalent. 

The calculus tSCALC extended with untyped 
sets, denoted CALC, is the calculus using rtypes 
instead of types. There is an intuitive correspon- 
dence between untyped sets and invented values in 
this context. Consider a query Q whose formula 
contains a quantified variable 2: of the rtype {Obj}. 
Then 2 ranges over arbitrarily large finite sets, all 
constructed from atomic objects appearing either in 
the input database instance or as constants in Q (if 
any). The elements in z can be used in the same 
manner as invented values. 

We now informally review the semantics of 
t6CALC with invented values introduced in [IIS88b]. 
For a query Q E tdCALC, a database d, and i E N, 
the semantics of Q under d with i invented values, 
denoted Q ]i [d, is obtained as follows: (a) evaluate Q 
under limited interpretation with the active domain 
extended to include i new values (denote the answer 
Q]‘[q); and (b) delete from Q]‘[d objects contain- 
ing invented values. Qlw[d and QIw[q are defined 
analogously. Note that the limited interpretation of 
Q is Q]s[d, and (assuming a countably infinite uni- 
versal domain) the unlimited interpretation of Q is 
QLPI. 
Definition: If Q et6CALC, the semantics of Q 
under finite invention, Qf’, is defined as Q”[q = 
UO<i+, Q]i[d for all database instances d; the se- 
mantics of Q under countable invention, Qci, is de- 
fined as Qci[q = QIw[$l for all d. Let t”CALCfi 
and ““CALC”” denote the families of calculus queries 
with finite and countable invention semantics (re- 
spectively). 

Theorem 6.1: [HS88b] ‘“CALC’” is strictly more 
powerful than ‘“CALCf”, which in turn is strictly 
more powerful than C. 

To illustrate the power of ‘“CALC”’ and 
t”CALCfi we include: 

Example 6.2: [HS88b]. Let A4 be a (conven- 
tional) Turing machine with unary input alphabet 
{a}; and let c be a constant in U. Then there is 
a query Q in tSCALC/i which computes the total 
function 

fhalt (d) = { fcl} ftErzlr On a’d’; 
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and there is a query Q’ in tSCALCci which computes 
the query 

fi;;;ir(d) = {[Cl} - fha?t(d) 

Intuitively, the body of Q outputs the tuple (c) if 
there exists a halting computation of M on the input 
aldl whose running time is 5 the number of active 
domain and invented objects. Because the semantics 
of Q is obtained by taking the union of its output 
on all finite sets of invented values, Q essentially has 
access to computations of M of all possible lengths. 
It is shown in [HS88b] that no query in tbCALCfi 
can compute fm. Under countable invention, Q’ 
can simultaneously examine all possible computa- 
tions of M on the input, and thus compute f= 
0 

Let CALCZJ denote the class of calculus 
queries whose variables of rtypes which are not types 
are all existentially quantified. 

Theorem 6.3: (a) CALC z ‘“CALC”‘; and (b) 
CALC3 E ‘%ALCf’. 

Proof: (sketch) (a) To show that ‘“CALC”’ 5 
CALC, note that if a is a constant then the set 
consGbj({a]) is countably infinite; this can be used 
as the set of invented values. For the opposite direc- 
tion, let Q be a query in CALC. The central problem 
in building a query Q’ in t6CALCci which simulates 
Q is the removal of the type Obj wherever it occurs 
in Q. This is accomplished by “flattening” each ele- 
ment Of COnSObj(adom(d, Q)) into an object of type 

W,u,U,UI) 1 h w iic uses invented values. This flat- 
tening is reminiscent of the representation of com- 
plex objects used in the Logical Data Model [KV84]. 
(The proof of Lemma 6.5 in [HSSSa] uses this tech- 
nique of flattening in a slightly different context, and 
illustrates how it can be simulated in tSCALC.) 

(b) To simulate a query Q in CAL& by a 
query in tSCALCfi, first form Q’ E CAL& by mov- 
ing all existentially quantified variables involving the 
type Obj to the outside. The body of Q’ now has 
the form &l/T1 . . .3z,,/Tn$ where II, has no quan- 
tified variables with types involving Obj. For each 
assignment (Y for cl, . . . , c,, $[a] can be simulated 
using flattening and a finite set of invented values 
(whose size depends on a). Because the output of 
Q’ is based on taking the union of the “outputs” of 
$~[a] for each a, Q’ can be simulated by the seman- 
tics of finite invention. 0 

Hence, a pure form of calculus with untyped 
sets (and complex object calculus with unlimited in- 
terpretation) is not practical under Church’s thesis. 
We conclude by proposing the following new seman- 
tics for tbCALC, which is shown to be C-equivalent. 
(The full details of this development are presented 
in [HSSSa] .) 

Definition: If Q E “CALC, the semantics of Q 
under terminal invention, Qti, is: 

QInM if n is least such that 

Q”‘[d = Ql”[q contains an 
invented value, 

? otherwise. 

The family of such queries is denoted as ‘6CALC”. 

Theorem 6.4 ‘“CALC” is C-equivalent. 

Proof: (sketch) It is obvious that each calculus 
query under terminal invention is computable and 
generic, hence in C. Let f be a query function in 
C and M be a Turing machine which computes f. 
The construction of query Q E “CALC is essentially 
similar to that in the proof of Theorem 2.2. The 
only difference is that an arbitrarily large number 
of indices are now available under invention. Hence, 
we can use the type {[U, U, U, U]} to store the com- 
putation of M. The rest of constructions are fairly 
direct. 0 

It should be noted that the results on expres- 
sive power of ‘8CALC with invented values rely on 
the presence of variables ranging over set types. For 
example, it was demonstrated in [AGSS86] and in- 
dependently developed in [HS88b] (details appear in 
[HS89]) that the relational calculus with (finite or 
countable) invention has only the expressive power 
of the conventional relational calculus. In other 
words, the relational calculus with the unlimited in- 
terpretation has the same expressive power as with 
the limited interpretation. 

7 Conclusion 

The results described in this paper characterize the 
expressive power of query languages based on con- 
ventional paradigms from databases, but interpreted 
in a context where untyped (or unrestrictedly het- 
erogeneous) sets are permitted. The languages stud- 
ied cover a spectrum of expressive powers, ranging 
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from the algebra without while, which is equiva- 
lent to &; through “most” langauges, which have 
the power of C; up to the calculus, which has an 
expressive power strictly greater than C. 

While the technical discussion focused pri- 
marily on the use of untyped sets, analogous results 
hold in other cases where untyped sets can be sim- 
ulated. Such situations include the use of list struc- 
tures and the use of a freely interpreted function 
symbol (which has at least two input arguments). 
These constructs are typical of database program- 
ming languages such as, e.g., GALILEO [AC085]. 
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