
Detecting and Decomposing Self-Overlapping Curves 

Peter W. Shor 
Christopher J. Van Wyk 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Paint one side of a rubber disk black and the other side white: stretch the disk any way you 
wish in three-dimensional space, subject to the condition that from any point in space, if you 
look down you see either the white side of the disk or nothing at all. Now make the stretched 
disk transparent but color its boundary black project its boundary into a plane that lies below 
the disk. The resulting curve is self-overlapping. We show how to test whether a given curve 
is self-overlapping, and how to count how many essentially different stretchings of the disk 
could give rise to the same curve. 

Some non-simple curves are more non-simple than oth- 
ers. Figure l(a) shows an elementary non-simple curve. To 
create this example, begin with a circle in the plane, then insert 
a finger into its interior and push the boundary around until it 
crosses itself. This general operation, pushing the boundary 
from the inside only, repeated a finite nutrnber of times, gen- 
erates the class of seljkverkzpping curves. In particular. it can- 
not yield either the curve in Figure l(b), which needs a twist to 
create it, or the curve in Figure l(c), which requires two twists 
or a push from the outside to meate it. 

We define below precisely what it means for a cUrve to 
be self-overlapping. Our goal in this paper is to find a way to 
distinguish self-overlapping curves from other kinds of non- 
simple curves.* This problem cannot be solved by appeal to the 
celebmted Whitney-Graustein theorem [w37], which character- 
izes curves that can be regularly deformed into a circle, since 
the curve in Figure l(c) can be deformed regularly into a circle, 
even though it is not self-overlapping. 

DEFINITIONS 

For any two points u and b in the plane, a is the line 
segment between them. Let St and Dz denote the unit circle 
and the unit disk, respectively. For a set ScR* that is 
homeomorphic to the unit circle S’, S denotes the union of S 
and its interior. For a set ScR2 that is homeomorphic to the 
unit disc D2. $T is the boundary of S and int S is the interior of 
S. The domain of a mapping f is denoted dom f. 

Let g:S’+R’ be a continuous map of the unit circle into 
the plane. Then C = g (S’ ) is a closed curve in the plane. We 

*Bill Thumton conjecturea that a planar CUN~ ia aelf-overlapping only if it is the 
image of the boundary of a homeanmph of the uoit disk under an immersion of 
that homwmorph. We shall not attempt to prove this conjecture. 
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use g to keep track of our place when we trace the curve C. 
which may contain self-intersections. To simplify the notation, 
we shall write 0 instead of eie. 

We define what it means for curve C to be seif- 
overlapping in texms of its decomposition into simple closed 
curves. Such a decomposition corresponds to a dissection of the 
unit circle by chords; indeed, we begin the definition of a 
decomposition with a dissection of the unit circle by a sequence 
of chords. The following construction tests whether a given 
decomposition demonstrates that C is selfoverlapping. 

Let ((&wi) 1 1 I i I m) be a sequence of non-empty 
open counterclockwise ranges of angles, and let Si = G be the 
chord of the unit circle determined by Cpi and \yi. The COXIS~~UC- 

tion can succeed only if no two chords in the set 
{Si 1 1 I i I m} intersect at a point in int 0’. The sequence of 
angle ranges gives rise to two sequences of subregions of D2. 
Let are = S’; for 1 < i 5 m, let aAr_r = aI’~-,-(~i~$i)r,-,USi 

and Xi = ari-l-($i.~iviX;,USi; fidly, let aA,,, = X,,,. (In this 
definition. the notation (t$.w)r means the open interval along ar 
going counterclockwise from I$ to v.) These subregions are 
defined only if SiCri-t for 1 I i I m. THUS. 6i splits ri-1 into 
A,-, and ri. The non-intersection condition on the chords 
implies that ri and A; are homeomorphic to D2 for all i. Figure 
2 shows a dissection of D2 by a short sequence of angle ranges. 

The dissection of D2 by the sequence of subregions 
(Ai 1 0 5 i I m) g’ tves rise to a decomposition of C in the fol- 
lowing way. We describe the decomposition by a sequence of 
mappings. Let ge = g; for 1 < i I m. let Xi = g{~i) and 
yi = g(Vi)v ad let 8; map &-I onto gi-l((&vViX;,)G mci 
ari onto gi_l ((Vi,~i)r,_,)UX~ such that if zdom gi_,. then 
gi(X) = gi_l(X). Thus. gj always maps pieCeS Of IS' t0 pieces Of 

C, and for 1 5 j I i it maps the chord Sj to the jth diugonul 
xx. Figure 2 illustrates the development of a short sequence of 
mappings. For 0 I i < m, let Di = gi+l(aAi); let D,,, = g,,,@A,,,). 
The ith diagonal chops the closed curve Di_l Off of C during 
the construction. 

Definition. The above construction is valid if Di is simple for 
OIiSm. 
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When a construction is valid, the restriction of g., to &$ is a 
homeomorphism for all i. 

Let F:D2+R2 be a continuous extension of g,,,: for 
x~dom g,. F(x) = g,,,(x), and for 0 I i I m, F restricted to Ai 
is a homeomotphism between Ai and ii. 

Let us pause for a moment to review where in this con- 
struction we have made choices. The map g:S’+R’ was given. 
A decomposition of CS is delined by a sequence of angle ranges 
((@ipvi) 1 1 < i I m), which defines a sequence of chords, (6;). 
and two sequences of subregions, (ri) and (A;). of D2. We 
constructed a sequence of mappings that culminates in g,,,. 
which defined a sequence of diagonals (xx) and a sequence of 
closed curves (Di). We chose F as a continuous extension of 
g,,, to D’. By construction, the restriction of F to S’ agrees 
with g, and the restriction of F to S’U{& 1 1 < i < k} agrees 
with gL; thus, we can recover the complete status of the con- 
SWUC~~OII ~?OIII the pair (8,F), where 9 = ((~i.Wi) 1 1 < i < m). 

Definition. Let g :S1 +R2 be given. If there exist 8 and F such 
that (6.F) is a valid construction and for each point XE D2 there 
is a neighborhood of x in which F is injective. then g delines a 
self-overlqping curve. and the construction (8,F) ukmcmsfrur~ 
this fact. 

The dissection 8 and its image under F suggests how we 
might paste together small pieces of rubber so that together they 
form a homeomorphic copy of the disk in R3. the projection of 
whose boundary into R2 yields the self-overlapping curve C. 

Figure 3(a) shows a self-overlapping curve and a diago- 
nal that suggests how it can be decomposed. Figure 3(b) shows 
a curve that is not self-overlapping and illustrates why we 
require that F be locally injective. The diagonal separates C 
into two simple closed curves, but F is not injective in any 
neighborhood of the upper endpoint of the diagonal: the interi- 
ors of the two closed curves overlap in any neighborhood of 
that point 

COMPATlBLE DECOMPOSlllONS 

For the self-overlapping curves in Figures l(a). 2, and 
3(a). all decompositions are essentially the same, or computible. 
Figure 4 illustrates that this is not true in general. To explain 
the diificulty. we define formally what it means for two decom- 
positions to be compatible. Let (8.F) and (e’.F’) dellne two 
decompositions. The two decompositions are compatible if 
whenever ($‘,v/)E 8’. F-‘(g(#)g(f)) includes a path that con- 
nects I$’ to v’ and otherwise lies in int D2, in which case we 
say that I$’ and u/ are mutually visible under (63.F). We note 
without proof that compatibility between decompositions of g is 
an equivalence relation that depends only ‘on 9 and 8’. not on 
the choice of F and F’; thus we refer below to mutual visibility 
under 8 alone. We also note that the visibility relation is sym- 
metric and depends only on 8. Figure 5 shows the inverse 
image of one of the diagonals in Figure 4(a) with respect to the 
decomposition in Figure 4(b); the dashed path at g ends at a 
preimage of d and vice versa. since neither path connects two 
points in S’. the two decompositions are incompatible. 

ALGORITHMS FOR POLYGONS 

In this section we present an algorithm to discover 
whether a polygon is self-overlapping. This is a key step in the 
algorithm to solve the problem on general curves. 

A curve C = g(Sr) is a polygon if C consists of II line 
segments or sides. In this case, there is an increasing sequence 
of angles (0, 1 0 I i < n) such that g(ei) is an endpoint of one 
of the sides of C, the image of these angles under g is the set of 
vertices of C. A decomposition construction (8,F) is a triungu- 
kzfion of C if it demonstrates that C is self-overlapping and for 
($.w)E~. $ = 01 and w = e, for some i and k. Since triangula- 
tions are decompositions, two sequences of angle ranges can 
define incompatible triangulations. 

If there is a triangulation of the polygon then it is cer- 
tainly self-overlapping. Conversely, Theorem 1 below shows 
that if (8,F) demonstrates that polygon C is self-overlapping 
then there is a triangulation compatible with (8,F). This means 
that an algorithm to determine whether a polygon is self- 
overlapping can work by seeking a triangulation of the polygon. 

Lemma 1. Let (8.F) demonstrate that g defines a self- 
overlapping polygon P. Let 0 be such that v = g(9) is a convex 
vertex of P. There exists an open neighborhood NacS’ of 8 
such that whenever 4 and v lie on opposite sides of 8 in No, Cp 
and w are mutually visible under 8. 

Proof. Let N&)2 be an open neighborhood of 6 on 
which F is injecpve. The neighborhood F(N) must include a 
nonempty triangle T two of whose sides coincide with sides of 
P that are incident to v. Let N&j’ be an open neighborhood 
of 9 such that g(Na)cT. (See Figure 6.) 

Let $, yeNe be two points that lie on opposite sides of 
0 in N,. By construction, g($)g(w) lies in T. Since F is injec- 
tive on N and TcN, F-‘(g($)g(~)) includes a path between I$ 
and \y that otherwise lies in the interior of N. Thus, $ and w 
are mutually visible under 8. H 

Lemma 2. Let (8.F) demonstrate that g delines a self- 
overlapping polygon P. There exist two points 0r. e2eS1 such 
that g(0,) and g&l,) are vertices of P and tlr and t12 are mutu- 
ally visible under 9. 

Proof. Let 0 be such that v = g(t)) is one of the vertices 
of P with minimum y-coo&rate. Since P is self-overlapping, 
the region F(D’) can be understood as the “inside” of P. 
Since v has minimum y-coordinate, all of the inside of P lies 
above v, so v is a convex vertex. Let Q and w be the preimages 
under g of the vertices that precede and follow v on P. If Cp and 
w are mutually visible under 8, then we are done. 

Otherwise, let Ne = ($‘,\J) be. a maximal open neighbor- 
hood of 8 such that I$, $‘, 8, y’, and w appear in that cyclic 

order on S’. and for any c and rl on opposite sides of 8 iu Na, 
< and rl are mutually visible under 8, as constructed in the 
proof of Lemma 1 and illustrated in Figure 7. Let 
1 = g($‘)g(v’). By construction, F-‘(l) includes no path that 
joins 9’ to v’ and otherwise lies in int D2. By continuity, how- 
ever, F-‘(I) includes a path El between Cp’ and v’ that lies in the 
inverse image under F of the triangle Ag(B)g($)g(yr’). There- 
fore, the path lI intersects S’ in more than two points. Let 2 be 
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a point on the boundary of the intersection of the interior of ll 
with S’. Then F 01). like g(O), is a vertex of P. and 0 and x 
are mutually visible under 8. n 

Theorem 1. Given a decomposition (8.F) that demonstrates 
that polygon P is self-overlapping, there exists a compatible tri- 
angulation of P. 

Proof. Use Lemma 2 to find points 0, aud 8, that are 
mutually visible under 8 such that g(0,) and g(t3,) are vertices 
of P. Then F-‘(g(8t)g(t&)) includes a path l7 that joins 8, to 
e2 and divides D2 into two simply wrmected regions Rr and 
&. We can modify 0 so it demonstrates that F@Rt) and 
F(K&) are both self-overlapping polygons, as follows. We 
build the two sequences by considering in order the chords 
defined by 8. For each, if (&w)ofJ has both endpoints in &Jt 
or &a. assign it to the modified sequence for the appropriate 
region. Otherwise, the chord $$ intersects ll in a single point 
(since F(G) and F(U) are both line segments): assign @@r-&S, 
to the modified sequence for Rr and Fwnf& to the modified 
sequence for &.. 

This proves that a self-overlapping polygon on n vertices 
can always be decomposed into two self-overlapping polygons, 
each of which has no more than n-l vertices. Thus, a simple 
induction suffices to complete the proof of the theorem. n 

Next we use Theorem 1 to state an algorithm that tests 
whether a given polygon is self-overlapping. 

Algorithm 1. Let vo. . . . , vmml be the vertex sequence of 
polygon P. For convenience, assume that no three consecutive 
vertices form a straight angle. 

The algorithm uses dynamic programming to lind a tri- 
angulation of P; it wnstructs a table Qna where Qij is one if it 
is possible to triangulate the (j-i+l)-gon whose vertices are 
vi. . . . , v+ and zero otherwise. (All arithmetic on subscripts is 
carried out modulo n, so if j < i, the vertex sequence wraps 
around from v,-t to vo. and we treat j-i +l as j-i +n +l.) For 
convenience we set Qi,i+r = 1. 

The 6rst step of the dynamic program is to fill in the 
vdues Qi,i+2; if vi+l is a convex vertex, then Qi,i+l = 1, but if 
vi+1 is a reflex VGXWX then Qi,i+2 = 0. The numbering of the 
vertices defines an orientation on the polygon, and all triangles 
for which Qi,i+2 = 1 will be oriented the same way; without loss 
of generality we assume that this orientation is counterclockwise 
aS one travels from Vi thrOUgh Vi +2 t0 Vi +I. 

III general, the value of Qij is one if and only if there 
exists GUI index k such that Q, = Q~j = 1, AViVjV~ is o&rued 
counterclockwise, Vi, Vjl Vk+r and Vk-r appear in that order 
counterclockwise around v,. and the following four segments do 
not intersect the mterior of AViVjVk: ViVi+r, Vk-rVk, VkVk+r, and 
vjeIvj (see Figure 8). A simple induction shows that when 
these conditions hold, Vi, Vj’ and Vk form a triangle along whose 
sides we cm glue triangulations of Vi through Vk and Vk through 
Vj SO that we CSII corntruct an F that is locally iujective around 
Vi, Vj, and Vk. 8 

Since we can compute each element Q, in 0 (n) time, 
Algorithm 1 runs in 0 (n3) time. The polygon is self- 
overlapping if and only if there is au index i such that 

Qi-t,i = 1. Therefore we can test in time cubic in the number 
of vertices whether a polygon is self-overlapping. 

To make it possible to reconstruct a triangulation of P 
from the dynamic program, Algorithm 1 can record at each 
location Qij that is set to one a value of k that permitted us to 
set Qij = 1. From these values it is possible to recoustruct a 
sequence 8 that demonstrates that P is self-overlapping. 

GENERALIZATION TO CURVES 

In this section we show how to use Algorithm 1 to test 
whether a curve C = g (S’ ) is self-overlapping. 

Algorithm 2. For convenience, assume that there is no point 
XCC that has more than two preimages under g; if C does con- 
tain such multiple crossing points, shift its path slightly to elim- 
inate them. Replace each crossing point and each maximal 
opeu interval of C that contains no crossing point by a vertex 
and connect the vertices to construct a planar graph G whose 
embedding is topologically the same as C (see Figure 9). Use 
any of several algorithms ([dFPP88], [G83], [RT85]) to modify 
the embedding of G so that each edge is replaced by 0 (1) 
straight line segments. Let H be the Hamiltonian cycle of a 
straight-line embeddiig of G that corresponds to traversing g 
around S’; use Algorithm 1 to test whether H is self- 
overlapping. n 

If curve C crosses itself at k points, this algorithm runs in 
O(k3) time, since tbe time to construct the dynamic program 
dominates the time to construct the straight-line embedding of 
C. This observation could be useful to provide a faster algo- 
rithm to determine whether a polygon is self-overlapping. If au 
n-sided polygon contains k crossing points, and k < n, construct 
the arrangement of the line segments (in 0 (n logn + k) time 
[CE88]), construct the planar graph embedding described in this 
section (in 0 (k) time), and run the dynamic program on the 
resulting polygon (in 0 (k3) time). 

COUNTING INCOMPATIBLE DECObdPOSlllONS 

Let P = g(.S’) be a polygon with n vertices, and let 
(B,F) demonstrate that P is self-overlapping. If the sequence of 
angle pairs 0 delines a triangulation of P, then for 0 I i I n -3, 
the image F(aAi) is a triangle Z’i whose vertices are vertices of 
P. and JAi contains three values Ui. pie yi. which are preiruages 
Of the vertices Of Ti. 

The triangulations delined by two sequences of angle 
ranges, 8 and 8’. are combinatorially equivalent if they define 
the same set of chords in D2. Thus. wmbinatorially equivalent 
triangulations are produced by different orderings of the same 
set of diagonals. Notice, however, that in general a sequence of 
angle ranges cauuot be reordered arbitrarily, since each diagonal 
is required to cut off a simple curve. 

It is straightforward to mod$ Algorithm 1 to count the 
number of combmatorially equivalent ways there are to triaugu- 
late P. Instead of setting Qij to be ZOO or one, we store in Qij 
the number of combinatorially different triangulations of 
Vi, m m s * Vje Since a convex n-gon has exponentially many com- 
binatorially different triangulations, all of which are compatible, 
this count does not tell how many incompatible decompositions 
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there are. Now we shall define some triangulations that have 
special poperties that let them count the incompatible dccompo- 
sitions of a polygon. 

A triangulation (8,F) of P is a constrained Delaumy tri- 
angulation (CDT) with respect to a decomposition if for each 
0 5 i S n -3, there is no value 0 such that g(0) is a vertex of P, 
g(e) lies inside the circumcircle of Ti, and 8 is visible under 8 
to all of a;. Bi, and yi. This definition is essentially the same as 
for simple polygons [LL86], except the notion of visibility is 
defined with respect to a decomposition. 

A triangulation (9.F) of P is locally optimal if the fol- 
lowing is true for every two regions Ai and Aj that share a 
&&on-their boundaries: Without loss of generality, label the 
preimages of the vertices so that CZ,. = aj and Ti = ^li; then Bi 
does not lie inside the circumcircle of Tj and pi does not lie 
inside the circumcircle of Ti. If Ai and Aj share a chord and do 
not have this POW, then AbifijCri and Apifljyi Q have this 
property [LLs6]. From this it is clear that a locally optimal tri- 
angulation of a polygon P always exists, and that a constrained 
Delatmay triangulation is locally optimal. 

The next theorem shows that a locally optimal triangula- 
tion is a constrained Delaunay triangulation, which proves that 
constrained Delaunay triangulations exist, and also that we can 
compute them relatively easily. 

Theorem 2. Suppose that P = g(S’) has no four cocircular ver- 
tices and 8 defines a locally optimal triangulation of P. Then 
8 defines a CDT of P. 

Proof. The proof is a modification of the proof for sim- 
ple polygons [LL86]. and is omitted in this abstract. 

* If no four of the vertices of a simple polygon are cocircu- 
lar, then the constrained Delaunay triangulation is unique 
[LL86]. We shall prove a stronger result. 

Theorem 3. Suppose that P = g(S’) has no four cocircular ver- 
tices. Two decompositions 8 and 8’ of P have combiiatorially 
equivalent constrained Delaunay triangulations if and only if 
they are compatible. 

Proof. Omitted. 

Theorem 3 implies that when P has no four cocircular 
vertices, we can count the number of incompatible decomposi- 
tions it has by finding the number of combinatorially ine- 
quivalent constrained Delaunay triangulations. Algorithm 3 is a 
modification of Algorithm 1 that does this. It fills a table 
Q “UYII by setting Q, to be the number of combmatorially dif- 
ferent locally optimal triangulations of the (j-i +1)-gon whose 
Vb%il%S are Vi.. . . ,Vj that khlde AViVjV~. Obviously. Qi~ = 0 
when k does not follow i and precede j in cyclic order. 

Algorithm 3. The first step of the dynamic program sets 
Qi,i+li+l = 1 if and Old)’ if Vi+1 is a convex vertex. The general 
Step of the dY&c ~rogm SetS Qi* to C&Qti>XC&,Qkj~> 
where the summation indices a and b are such that Q, > 0. 
Q k,B > 0, AViVjVL is oriented counterclockwise and obeys the 
local optirnality property with respect to both triangles AViV,V, 
and AVkVbVj. the vertices Vi, Vj, V&+1 and q-1 appear in that 

order counterclockwise arotmd Vk, and the following four seg- 
ments do not interSeCt the interior Of AViVjVk: ViVi+l, Vk-lVk, 

VkVk+l. and Vj-1Vj. ThUS, Vi. Vi, and Vk fOml a tklgk along 
whose sides we can glue 10~ally optimal triangulations of Vi 
through vk and vk through vj to derive a locally optimal triangu- 
lation of Vi through Vi. n 

Since the range of values of a and b that must be con- 
sidered to compute Qijk do not overlap, it is easy to compute 
Qijk in 0 (PI) time, which leads to a running time of 0 (n4) for 
Algorithm 3. If instead of a simple three-dimensional table we 
maintain a matrix Q., of sorted ~U~INXS, where Qij contains 
the partial sums of the values of Q,, sorted by increasing angle 
at vk in AViVjVk, then we CXI reduce .thiS running time to 
0 (?I3 log n). 

If a polygon contains four cocircular vertices that are 
mutually visible under some decomposition, then it has com- 
binatorially different Delaunay triangulations that are compati- 
ble. Since Algorithm 3 counts combinatorially different 
Delaunay triangulations, it will not count correctly the number 
of incompatible decompositions of the polygon. To prevent 
this, modify the dynamic program so that if Ti*, and Ti*, are to 
be set to the same value because vi, Vj, Vk,, and Vkr are CO&U- 
lar and tllUtUdY visible, then Old)’ Ti,j,&{k,,kz) is Set to this 
Vahle, while Ti,j,-(k,,k,, iS Wt to Zero. 

If we use Algorithm 3 instead of Algorithm 1 as a step in 
Algorithm 2, then we can count the number of incompatible 
decompositions of any CuNe. 

OPEN PROBLEMS 

Can the detection problem be solved in sub-cubic time? 

Let C be a self-overlapping plane curve and let R be an 
open region in R2-C. Under any mapping F delined by a 
decomposition of C. every point in R has the same number of 
preimages under F (this follows from theorems about winding 
numbers [A66]); thus we can speak of the number of layers that 
cover R. independent of the mapping F. We say that C is a k- 
layer curve if k is the maximum value such that no region in 
R2-C is covered by more than k layers; for example, the curve 
in Figure 4 is a three-layer curve. We know of no two-layer 
curve that has two incompatible decompositions, and conjecture 
that none exists. 

The curve in Figure 4 has two “holes”; for any k, it can 
be generalized to have k holes, k+l layers, and k incompatible 
decompositions. It can also be glued to several copies of itself 
to form a curve that has 2k holes, 3 layers, and 2’ incompatible 
decompositions. These. observations lead us to conjecture that 
in general the number of incompatible decompositions of a k- 
layer curve C is not divisible by a prime larger than k. 

Is there a constructive way to defme the class of self- 
overlapping curves when there are infinitely many self-overlaps? 
It is not enough to take m = 00 in the definition of this paper, 
because a sequence of diagonals could approach a limit and not 
decompose the whole region into simple curves; the region 
“L” could be non-self-overlapping. 
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1. The curve in (a) is a self-overlapping curve. Those in (b) 
and (c) are not. 

2. 

3. 

The left column shows the diisection of Dz by the 
sequence ((@lr~l),(&,~z)). The right column shows the 
image of D2 together with appropriate chords as the 
sequence of mappings go, g r , and g2 is produced. The 
shaded regions indicate int D 0 and int D 1. 

The diagonal in (a) shows that the curve is self- 
overlapping. The diagonal in (b). however, does not 
yield a proper decomposition of the non-self-overlapping 
curve shown. 
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This figure has two incompatible decompositions. The 
diagomtls in one are 7 and &; the diagortals in the other 
arezand&. 

The points in S’ that are preimages under g of the 
labelled points in Elgure 4 are labelled with the 
corresponding letters. The chords show that we are using 
the decomposition in which 2 and be are diagonals. 
Under a mapping Fdeflned by this decomposition, the 
inverse image of dg &es not include a path between 
points 0nS’. 

Figure (a) depicts most of the notation in the proof of 
Lemma 1. Figure (b) shows the images of the neighbor- 
hoods N and Ns under F and g, respectively, as well as 
triangle T. 

This illustration for the proof of Theorem 1 uses a simple 
polygon. Thus, F and g are homeomorphisms, and we 
need only draw the situation in the plane that coma+-&. 
The figure shows the image of one possible choice of 
maximal open neighborhood Ns. 

General step of the dynamic program. 

The transformation ftom curve to straight-line Hamil- 
tonian planar graph. The edges of the two-cycle have 
been bowed out to make both visible. 
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