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Abstract 

We consider a generalization of notions of exter- 
nal visibility of simple polygons, namely weak exter- 
nal visibility, weak external visibility from a line and 
monotonicity, that we call sector visibility. Infor- 
mally, sector visibility addresses the question of exter- 
nal visibility along rays (or sight lines) whose angles 
are restricted to a sector (wedge) of specified width u. 
This provides an interesting measure of the degree of 
external visibility of a polygon. Our framework also 
permits a unification and extension of a number of 
previously unrelated results. Finally, our results 
uncover a curious complexity discontinuity in this 
family of problems; algorithms are 63(n) when u < A 
or d = 27r, but require n(n log n) time (at least), 
when m < u < 217. 

1. Introduction 

Any sequence of n points pl,...,pn in the 
Euclidean plane E2 defines a polygonal chain 
CJpb...,p,J whose vertices are the points pl,...,pn and 
whose edges are the finite line segments [pep;+l], 
i = l,...,n-1. A polygonal chain qpl ,..., P,,+~] with 
Pl = P&-l is called a polygon (or n-gon ). 

Semi-infinite line segments are referred to a 
rays. We denote by ray(z, $) the ray with endpoint z 
and direction $. The ray r = ray(z, (I) is said to sup- 
port polygon Pat z if r n P = (2). 

A polygonal chain is simple if no nonconsecutive 
pair of its edges intersect. A simple polygon P has a 
well defined (bounded) interior (denoted by &t(P)) 
and (unbounded) exterior (denoted by ezt(P)). We 
denote by p the union of P and int(P). We assume 
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that the point sequence defining a given simple 
polygon P satisfies the property that each directed 
line segment [pi,pi+l] has the interior of P to its left. 
Hereafter, polygonal chains (including polygons) will 
be assumed tq be simple. 

Two points z and y are said to be visible (with 
respect to a polygon P) if [z,y] n PC {z,y}, that is 
the interior of the line segment [z,y] lies either in 
&t(P) or est(P). If &t([sy]) C &t(P) (respectively, 
int([z,y]) G ezt(P)) then I and y are said to be inter- 
nally (respectively ezternally) visible (with respect to 
PI- 

A point set T is said to be weakly visible from a 
point set S if, for each point PET, there exists a point 
qES such that p and q are visible. The notion of 
weak visibility has received attention in both the 
mathematics and computer science literature. Horn 
and Valentin [HV] h ave characterized L-sets in terms 
of the weak visibility properties while such characteri- 
zations for convex and star-shaped sets have been 
presented by Shermer and Toussaint [ST]. Avis and 
Toussaint [AT] showed that given a polygon P and a 
specified e of P, whether P is weakly visible from e 
can be determined in O(n) time. A more difficult 
problem is to determine whether there exists an edge 
of P from which B is weakly visible. Clearly by 
applying the algorithm in [AT] to each edge in turn 
the latter problem can be solved in O(na) time. Sack 
and Suri [SS] discovered a linear-time algorithm for 
determining all (if any) such edges of a given polygon. 
Recently Yan Ke [Ke] considered the problem of 
detecting the weak visibility of a polygon from an 
internal line segment. He presents an O(n log n) 
time algorithm that tests if a polygon is weakly visi- 
ble from some internal line segment and reports such 
a line segment if it exists. He also shows that the 
shortest such segment can be found in O(n log n) 
time. Finally he addresses the query version of this 
problem: given a query line segment S in $‘, is p 
weakly visible from S? He shows that this question 
can be answered in O(log n) time after the polygon is 
preprocessed in 0( n log n) time using O(n) space. 
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In this paper we focus on weak external visbility 
of a a polygon. This topic is as yet quite unexplored 
compared to its internal counterpart. Toussaint and 
Avis [TA] considered the problem of determining if a 
polygon is weakly externally visible. (Since we will 
restrict ourselves hereafter to notions of visibility that 
are both weak and external we will drop these adjec- 
tives for the sake of less cumbersome terminology.) A 
polygon P is edge-visible if for each point XEP there 
exists a ray that supports P at x. This is equivalent 
to saying that P is visible from a circle at infinity 
(or, in fact, any circle that properly encloses P). 
Toussaint and Avis [ TA], using related results of 
[AT], show that edge-visibility of polygons can be 
determined in O(n) time. This result is proved by 
showing that the edge-visibility problem is equivalent 
to the somewhat less constrained vertex-visibility 
problem: determine, for each vertex VEP, if there 
exists a ray that supports Pat v. 

The notion of monotonocity, which enjoys 
numerous applications [PSh], can also be cast as a 
kind of external visibility problem. A polygonal chain 
C is said to be monotone with respect to a line L if 
every line orthogonal to L intersects C in at moat one 
point. Equivalently, C is weakly visible from one 
point on the circle at infinity (defined by the family of 
sight-lines orthogonal to L). A polygon is monotone 
with respect to a line L if it can be decomposed into 
two chains each of which is monotone with respect to 
L. Preparata and Supowit [PSu] show that monotoni- 
city of a polygon, in fact a description of direction8 of 
monotonicity, can be determined in O(n) time. 

Intermediate to the notions of edge-visibility 
and monotonicity is the notion of edge-visibility from 
a line, the study of which was the starting point for 
the research presented here. A polygon P is edge- 
visible from a line if there exists a line L in ext(P) 
such that P is edge-visible from L. (Equivalently, P 
is edge-visible from a semicircle at infinity, whose 
points correspond to sight lines in an interval 
bounded by the two orientations of L). 

The above notions of external visibility have a 
natural unification and generalisation. We refer to 
arbitrary angles as sightlines. An open interval W of 
sightlines 4 satisfying lllB < 3 < $F and denoted 
($J”,@) is referred to as a (visibility) wedge; closed 
wedges are defined similarly. We denote by ] WI the 
(angular) width of W, namely tiF- tis . A polygonal 
chain C is said to be W-edge-visible (respectively, 
W-vertex-visible) if for every point (respectively, ver- 
tex) z of C there exists a $E W such that ray(x,$) 
supports C at x. Furthermore, C is said to be u- 
sector-(edge/vertex)-visible if there exists a wedge W 
of width CT such that C is W-(edge/vertex)-visible. It 
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should be clear from the discussion above that (weak 
external) edge-visibility corresponds to 2lr-sector- 
edge-visibility, edge-visibility from a line corresponds 
to r-sector-edge-visibility, and monotonicity (of 
chains) corresponds to r-sector-edge-visibility, for all 
sufficiently small r>O. 

Given this framework a number of natural quee- 
tions arise: 

1. [Wedge (edge/vertex)-visibility problem] 
Given a polygon P and a wedge W of sight lines, 
determine whether P is W-(edge/vertex)-visible. 

2. [sector (edge/vertex)-visibility problem] 
Given a polygon P and an angle Q, 0 5 (T < 2s, 
determine whether P is o-sector-(edge/vertex)- 
visible, and if so describe all wedges W that real- 
ise this sector visibility. 

3. [minimum sector (edge/vertex)-visibility problem] 
Given a polygon P, determine the minimum 0 for 
which P is a-sector-(edge/vertex)-visible. 

We show that the inherent (worst case) com- 
plexity of answering the sector (edge/vertex)-visibility 
problem exhibits a curious discontinuity. When u 5 R 
or Q= 2a the complexity is 0(n), yet when 
x < c < 2n it has an G(n log n) lower bound. Furth- 
ermore, when u 5 rrr, in at most O(n) additional time 
a linear sise description of all wedges realiing the 
specified sector visibility can be constructed, that per- 
mits wedge visibility queries to be answered in 
O(log n) time per query. The minimum sector 
(edge/vertex)-visibility problem inherits the same 
complexity bounds; it has a e(n) solution when the 
minimum is at most x and an n(n log n) lower bound 
otherwise. 

2. Det ermining wedges of support 

If P= CJpI,...,ptiI] is a polygon and x is any 
point of P we define angle(x) to be the external angle 
of P at point 2. (In particular, angle(x) = r for all 
non-vertices of P.) The local wedge of support of P at 
point x, denoted W;(x), is given by (6JB(x),6F(~)) 
where fJB(pl) is the angle in [0,27r) formed by the ray 
with endpoint passing 
@(pi) = BB(pd + ~$ekd - rF, 

through Pn-1, 
for 

e”(x) = eB(PJ, 

i> 1, 
~EN[p;ld), ad 

S’(x) = 6”(x) + angle:x), for all x in P. 

Note that by this definition the local wedge of 
support of a point is dependent on the choice of initial 
vertex pti The redundancy evident in the representa- 
tion of angles, though hard to motivate here, is 
exploited in subsequent algorithms. This redundancy 
is limited, however, by the fact that polygons that are 
vertex-visible cannot spiral too much. In fact, 



Lemma 1. If P is vertex-visible then 
W;(u) C (-5n,57r), for all vertices u of P. 

Proof. Suppose gB(pi) < 51~. Then it is straightfor- 
ward to show that P does not admit a supporting ray 
at either p1 or pi+l- The argument when f(pJ > 5n 
is identical. 

Q.E.D. 

If P is a polygon and z is any point of P, the 
global wedge of support of P at z, denoted W,(z) (or 
simply W(z) when P is understood), is the set of all 
angles $E WJ ) z such that ray(z,$) supports P at z. 
Let W(z) = (#r(z),$F(z)). By the maximality of 
W(z) it follows that both ray(z#(z)) and 
ray( z,+‘( z)) intersect P - { 2). Let tB( 2) (respectively 
t”(z)) denote the first such point of intersection along 
ray(z,@ 2)) (respectively ray(z,$Y(z))). p(z) (respec- 
tively, f (z)) is referred to as the back (respectively 
forward) tangent point from z (see Figure 1). With 
this notation it is clear that P is W-edge-visible if and 
only if for every point ZEP there is a $E Wp(z) and a 
3% W such that $ = 3’ (mod 274. If this is the case 
we say that W spans the collection { Wdz)lzEP}. 

In this section we consider the efficient compu- 
tation of W,(z) for all points 2 of a given polygon P. 
We assume without loss of generality that P is edge- 
visible; in fact if this is not the case it will be 
detected as part of the algorithm. 

It will suffice to show how to determine p(z) for 
all points z of P, a symmetric algorithm can be used 
to construct f(z), and hence complete the determina- 
tion of W,(z). The algorithm proceeds by refining P, 
through the addition of new vertices on some of its 
edges, and determining t”(v) for each vertex u of this 
refined polygon. The new vertices are chosen in such 
a way that for an-arbitrary non-vertex point z on P, 
t”(x) = t”(u), where u is the vertex following z on the 
refined chain. 

The algorithm is most easily described as a sim- 
ple modification of the on-line convex hull algorithm 
for polygonal lines due to Melkman [Ml. Let 
P = cIJ~~,...,~,+~] be a polygon. Suppose, without loss 
of generality, that p1 is a vertex of the convex hull of 
P. If zl,z, and z3 are three points then the function 
side(q,z& takes the value 1, 0, or -1 depending on 
whether x3 is to the right of, collinear with, or to the 
left of the line through q and ~a and directed from q 
to zs. The algorithm maintains a stack S of points 
(initially empty). The operations push and pop 
modify S in the obvious way. The variable top refers 
to the top element of S. 

Algorithm back4angents 

push PI 
ts(PzkP1 
jt3 
while j<n do 

if side(top, p+r,pj) ‘5 0 
tien if side(p,,,p’ i,pj) 2 0 

then HALTG+r is not weakly ext. visible} 
&e @(Pj)+Pj-I 

push PSI 
j+j+l 

else m- top 
POP s 
while S## and side(top,s,pJ > 0 

w+ intersect(line(top,z); line(p*npj)) 
insert w on [p*l,pjj 
P( w)+-2 
at- top 
POP s 

t8(Pj)t2 
push I 
jtj-i-1 

The correctness of algorithm back-tangents fol- 
lows from a straightforward case analysis similar to 
that of [M] together with the invariant that the ele- 
ments of S followed by ptiI describe the convex hull of 
the polygonal chain CJpI,...,pJ. It is easy to confirm 
that the algorithm runs in O(n) steps and inserts 
O(n) new vertices into the edges of C. We summar- 
ize the result of this section in the following theorem. 

Theorem 1. Given a polygon P linear time suflices 
to construct a refinement P’ of P with the property 
that given any point x of P and its associated edge 
the wedge of support of P at z can be determined in 
O(1) time. 

It may be suspected that to determine the sec- 
tor edge-visibility of a given polygon it suffices to 
determine its sector vertex-visibility. In fact this is 
the case for both E- and Pz-sector visibility (TA, PSu]. 
This is not true in general, however. Nevertheless, 
when 4 < A, it is straightforward to reduce the sector 
edge-visibility problem to a closely related sector 
vertex-visibility problem. 

Lemma 2. Let P be any polygon and let W any 
wedge of sight lines of width at most A, then P is W- 
edge-visible if and only if the polygon P*, formed from 
P by subdividing each of its edges, is W-vertex- 
visible. 
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Proof. It suffices to observe that if both of the end- 
points of some edge of P’ are W-visible then so is the 
entire edge. We know, from [AT], that if the end- 
points of any edge e of P* are W-visible then c is 
edge-visible. 

If supporting rays from W at each of the end- 
points of e diverge then at least one of these must 
support all of the points of G (here we use the fact 
that one of the two end points of c must be a subdivi- 
sion point). Alternatively, it is easy to see that e is 
wedge-visible for some wedge W’ bounded by two 
rays of W and satisfying ] W’l < w. Since the width of 
W is at most ?r it follows that W'C W, and hence G is 
W-edge-visible. 

Q.E.D. 

Note that lemma 2 does not hold for wedges of 
width greater than x. Figure 2 illustrates a polygon P 
and a visibility wedge W such that each vertex of P, 
including u, is W-visible, yet the shaded edge is not 
W-visible. 

3. The sector edge-visibility problem 

In section 1 we introduced the sector edge- and 
vertex-visibility problems. In section 2 we showed 
that, when Q 5 s, sector edge-visibilty reduces to sec- 
tor vertex-visibility. In this section we focus on the 
problem of sector vertex-visibility. Before addressing 
the general case it is instructive to consider the case 
where u = x, what we originally called weak visibility 
from a hue. The problem of sector vertex-visibility in 
this case can be interpreted as a transversal problem; 
specifically does the collection { Wp( u)lu~ v) (where V 
denotes the vertices of P and each W,(u) ia now 
viewed as a sector of the plane) admit a common 
transversal. In general a family F of subsets of the 
plane is said to admit a common transversal if there 
exists a straight line L which intersects every member 
of F. 

Common transversals for families of convex sets 
have been investigated for some time in both the 
mathematics [Gr], [Le] and computer science [AB], 
[Awl], [AW2], [Ed], [We] literatures. In the latter 
the more aggressive term stabber is more often used 
for transversal. Transversals in the plane find appli- 
cation in several areas including line-fitting [O’R] and 
updating triangulations [ET]. Edelsbrunner, Over- 
mars and Wood [EOW] develop a method for planar 
visibility problems that yields a procedure for com- 
puting transversals for F, a family of simple objects, 
in O(n” log n) time, where n is the cardinality of F. 
By simple objects it is meant those objects that have 
an O(1) storage description each and which are such 

that, for every pair of such objects, constant time 
suffices to compute their intersection, common 
tangents, etc.. O(n log n) time is sufficient for the 
special cases of vertical line segments [O’R], for the 
line segments with arbitrary directions [EMPRWW], 
for a set of n translates of a simple object in the plane 
[Ed] and for n circles of equal radius [BL]. Finally, 
for a set of isothetic rectangles O(n) time suffices via 
linear programming [Ed]. 

Given a family F of n convex cones, as in the 
visibility problem considered in this paper, determin- 
ing whether F admits a common transversal could 
certainly be accomplished in 0( n2 log n) time with 
the procedure of [EOW] or in O(n log n ct( n)) time, 
where a(n) is the extremely slowly growing inverse 
Ackermanu’s function, with the more recent tech- 
nique of Atallah and Bajaj [AI!]. We now show that 
the structure in our family F allows us to solve this 
transversal problem in O(n log n) time. (In the next 
section this is improved to O(n) time.) 

In the remainder of this section we show that 
the problem of finding a wedge, of width at most 
cr < 2s, that spans a collection of n wedges, has 
inherent worst-case complexity 0( n log n). We intro- 
duce a dual wedge cover problem that simplifies some 
of the arguments. Let l+!’ = { WI, * * . , WJ be a set of 
wedges. The set l@ is said to cover the plane if for 
every angle +, 0 2 J, < 27r, there exists a wedge 
WiE wsuchthat(IE W+ . 

If W = ($“,$q is an open) wedge then W” 
1 denotes the (closed) wedge (~6 -2n+c7,4B]. W’, which 

we call the a-dual of wedge W, can be viewed as a 
generalised complement of wedge W. Furthermore, 

Lemma S. The set @I= {Wl,...,WJ admits a 
s anning wedge of width u if and only if the set 
& ={wy,.. . , Wn} does not cover the plane. 

Proof. This follows immediately from the observation 
that the wedge (+,$+cr) spans m if and only if 
eqw 

Q.E.D. 

Lemma 4. The plane covering problem for wedges 
has worst case time complexity e(n log n). 

Proof. An 0( n log n) solution follows by simply lexi- 
cographically sorting the wedges (viewed as ordered 
pairs) and scanning the resulting list. The G(n log n) 
lower bound, which says, in effect, that this sorting 
step is unavoidable in general, holds for arbitrary 
fixed order algebraic decision trees [B-O]. Ben-Or [B- 
O] shows that determining if a set A = {a,, . . . ,ad 
is identical to the set B = {l,...,n) requires f2(n log n) 
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time on this model. This set equality problem is 
easily reduced to the plane covering problem by set- 
ting Wi= [27rai/n,2x(a,+l)/n], for 1 5 is R. Note 
that this is closely related to the so-called measure 
problem also discussed by Ben-Or. 

Q.E.D. 

The following theorem which summa&es the main 
result of this section is an immediate consequence of 
the above lemmas. 

Theorem 2. The sector vertex-visibility problem has 
complexity O(n log ~8). 

In fact Lemma 4 tells us something stronger 
than Theorem 2. In particular, if we,have any hope of 
achieving an o(n log n) bound on the complexity of 
sector visibility problems it must come as a result of 
exploiting the structure imposed by the underlying 
polygon on the set of visibility wedges associated with 
its vertices. Of course, this is precisely what makes 
problems for polygonal chains less complex than their 
unstructured counterparts in general. We pursue this 
idea in the next section. 

4. Sector visibility when Q 5 A 

We have seen that sector edge-visibility reduces 
to sector vertex-visibility when u 5 A. Curiously, it is 
in precisely this situation that sector vertex-visibility 
itself exhibits a demonstrable complexity discon- 
tinuity. The purpose of this section is to substantiate 
this claim. 

Superficial examination of the global wedges of 
support associated with the vertices of an arbitrary 
simple polygon, reveals little apparent structure. For 
example the wedges of adjacent vertices can intersect 
in an arbitrary fashion. It turns out that the useful 
structure is most easily seen by examining the dual 
wedges. 

Recall that the global wedge of support of 
pol gon 

d 
P at vertex pi, W(p,j, is the interval 

(lb (Pi)sf(Pi))*It (~F(p3 _ 2R + u,;Bgy W(Pi) is the 
. 
interval 

Lemma 5. If j > i then tf’(pJ - A < @(pi). 

Proof. Let c denote the direction of the ray from pi 
through pf Then the existence of a chain from pi to 
pi in P ensures that +‘(pi) < c and @(pi) > s - x. 

Q.E.D. 

Corollary. lf j > 1 then wO(pJ either intersects 

W”(pi) or it contains angles strictly larger than those 
of V(Pi). 

It follows from the corollary above that we can 
maintain U l<ili wbi) as a stack S of disjoint wedges 

where the angles of successive wedges strictly 
increase. This construction is made precise in the fol- 
lowing algorithm. 

Algorithm combine-dual-wedges 

We know from Lemma 1, that the angles in 
wedges remaining on S at the completion of algorithm 
combine-dual-wedges lie in the interval [-51r,57r]. It is 
now straightforward to complete the union of the dual 
wedges with all angles now reduced mod 27r; with 
this reduction S partitions into O(1) ordered lists of 
intervals, which can be merged in O(n) time. 
Together with Lemma 2 and Lemma 3 this completes 
the proof of the following: 

Theorem S. The sector edge-visibility and the sec- 
tor vertex-visibility problems both have complexity 
O(n), when o < A. 

It is immediate from their definition that dual 
wedges decrease linearly in width with increasing u. 
This permits us to solve the minimum sector vertex- 
visibility problem by first using the above algorithm 
to check if P is 7r-sector-vertex-visible. If this is so 
then the union of the dual wedges on the stack at 
completion fail to cover the plane. If the maximal 
uncovered wedge (which can be constructed in O(n) 
time by a simple scan) has width 7, then it is easy to 
see that P has minimum sector vertex-visibility, x - 7. 
Hence we have, 

Theorem 4. The minimum sector edge-visibility and 
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the minimum sector vertex-visibility problems both 
have complexity O(n), when the minimum o is at 
most r. 

It remains now to show that the condition 
Q 5 1 in the two preceeding theorems cannot be 
relaxed. This is an immediate consequence of the fol- 
lowing, 

Theorem 6, The sector vertex-visbility problem 
requires G(n log n) time, when r < u < 2%. 

Proof. As in lemma 4 we prove the lower bound by 
reduction from the set equality problem. Hence our 
lower bound holds for arbitrary fixed order algebraic 
decision trees. 

For simplicity we will describe the reduction 
when u = 3x/2; the generaliaation should be clear. 
Let a,f{ l,..., n}, 1 5 i In. Consider the polygon P 
with 3n + 18 vertices illustrated schematically in Fig- 
ure 3. Vertex vi, 1 I i 5 n by construction, haa 

W(vJ = 
as% (cr,-l)fr II 
K, 7 + 5 . Note that each such 

wedge W(q) c (0,x) and thus constitutes a notch in 
the upper edge of polygon P. The dual wedges associ- 
ated with vertices WI,..., wa cover the entire plane 
except for the wedge [0,x/2]. Thus P is c-sector 
vertex-visible if and only if the dual wedges associated 
with vertices vl,...,v, do not cover the wedge [0,7r/2]. 
But, by construction, this holds precisely when 
{au . . . . aJ = {1,2 ,..., n}. 

Q.E.D. 

6. Concluding remarks 

Sector visibility problems constitute what may 
be considered the easiest external visibility problems. 
Though we have characterized the asymptotic com- 
plexity of many of these exactly, some questions from 
within this family remain incompletely resolved. For 
example, what ia the complexity of sector edge- 
visibility when ?r < u < 2R 

Other external visibility questions do not fit 
within our sector visibility framework but deserve 
attention. Among these ia the appealing problem of 
determining, for a given polygon P that is edge-visible 
from a line, the shortest such line. 
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