SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 838

March 1989

ON MONOTONE PATHS AMONG
OBSTACLES, WITH APPLICATIONS
TO PLANNING ASSEMBLIES

By

Esther M. Arkin
Robert Connellyt
Joseph S. B. Mitchell

$IETILA YN
TN DA

SRR
ot iy Wiy

AN

This paper to appear in the Proceedings of the Fifth Annual ACM Symposium on Computational Geometry,
Saarbricken, West Germany, June 5-7, 1989.

1 Department of Mathematics, Cornell University

Page 1
ON MONOTONE PATHS AMONG OBSTACLES, WITH

APPLICATIONS TO PLANNING ASSEMBLIES

(extended abstract)

Esther M. Arkint
Robert Connellyt
Joseph S. B. Mitchell*

Cornell University
Ithaca, NY 14853

Abstract

We study the class of problems associated with the de-
tection and computation of monotone paths among a
set of disjoint obstacles. We give an O(nFE) algorithm
for finding a monotone path (if one exists) between
two points in the plane in the presence of polygonal
obstacles. (Here, E is the size of the visibility graph
defined by the n vertices of the obstacles.) If all of the
obstacles are convex, we prove that there always exists
a monotone path between any two points s and t. We
give an O(nlogn) algorithm for finding such a path
for any s and t, after an initial O(E + nlogn) prepro-
cesing. We introduce the notions of “monotone path
map”, and “shortest monotone path map” and give
algorithms to compute them. We apply our results to
a class of separation and assembly problems, yielding
polynomial-time algorithms for planning an assembly
sequence (based on separations by single translations)
of arbitrary polygonal parts in two dimensions.

Partially supported by NSF Grants DMC-3451984 and
ECSE-8857642.

{Partially supported by NSF Grant MCS-790251.

" Partially supported by a grant from Hughes Research Lab-
oratories, Malibu, CA, and by NSF Grants IRI-83710358 and ECSE-
3857642,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the ti-
tle of the publication and its date appear, and notice is given that
copying is by permission of the Association of Computing Machin-
ery. To copy otherwise, or to republish, requires a fee and /or specific
permission.

1. Introduction

In this paper, we study the problem of finding a mono-
tone path from a point s to a point ¢ among a set of
disjoint obstacles in the plane. We say that a path
is monotone with respect to a direction vector d (or,
d-monotone) if, for every pair of points u and v on
the path such that u precedes v, the vector uv has a
nonnegative inner product with d.

The notion of monotonicity has been prevalent
in computational geometry. Monotone polygons have
considerable special structure which allows, for in-
stance, a simple linear-time triangulation procedure.
It is known ([PS]) that a simple polygon can be tested
for monotonicity in linear time. In fact, within the
same time bound, one can determine the entire set of
directions (which will be a convex cone) along which
the polygon is monotone.

We assume that the domain space 2 is given to
us as a (possibly unbounded) simple polygon with k
disjoint simple polygonal holes (“obstacles”). Let n be
the total number of vertices defining €2.

There are two questions of immediate interest:
(i). If a direction d is given to us, can we determine
whether or not there exists a monotone path from s
to t, and, if so, produce one such path? and (ii). If
no direction is specified ahead of time, can we deter-
mine whether or not there exists a direction d and a
path from s to ¢ such that the path is monotone with
respect to d?

Figure 1.1 shows a path which is monotone with

Page 2

Figure 1.1. A monotone path in the z-direction.

d

Y

Figure 1.2. d-monotone path, no z-monotone path.

-

Figure 1.3. No monotone path in any direction.

respect to the z-axis. Figure 1.2 shows an example of
a case in which there is no path from s to ¢ monotone
with respect to the az-axis, but there is a monotone
path with respect to the direction d. And, Figure 1.3
shows an example of a case in which there is no direc-
tion d with respect to which there exists a monotone
path.

A monotone path is one which does not “double
back”, so it describes a path which, in a certain sense,
requires little turning. We were motivated to study
this class of problems by several questions, including:
1). How can we find paths which are “nice” in some
sense? 2). If we are charged only for motion in some
given direction (say, in direction d), then how do we
find a path from s to ¢ which minimizes this motion?
Clearly, if there exists a path which is monotone with
respect to d, then this path will minimize motion in
direction d.

An important application of our results is to the
separability problem: Given a set of parts in the plane,
how do we disassemble them (or, equivalently, how can
we assemble them)? Using the results on the computa-
tion of monotone paths, we provide a polynomial-time
algorithm for determining a sequence of motions to as-
semble a set of arbitrary polygonal parts in the plane,
under the following assumptions: There is one “hand”
that can translate any subset of parts in any one di-
rection. (No rotations are allowed.) We disassemble
the set S of parts by partitioning S into two disjoint
nonempty subsets (S; and S,) of parts by translating
one subset (S) in some direction d a sufficient distance
so that the problems of disassembling S; and S, are
now independent. We then repeat the procedure on
the subproblems defined by S; and S», continuing to
disassemble sets of parts until each set is a singleton.

QOur results are summarized as follows:

1). We answer the question (i) above with a sim-
ple O(nlogn) algorithm to find a monotone path (if it
exists) in a given direction d. We also prove a lower
bound of Q(nlogn) (even if the obstacles are all con-
vex), assuming that we are required to output a mono-
tone path. In fact, we give an O(nlogn) algorithm
which solves a slightly more general problem: find a
path P which minimizes the length of the path P; that
we get if we project P orthogonally onto a line in di-
rection d.

2). We answer question (ii) above with an O(nE)
algorithm to find a monotone path (if it exists) in any
direction (here, E is the size of the visibility graph
defined on the set of obstacles). (In the special case of
convex obstacles, we get an improved bound of O(F +
nlogn).) We characterize the set of all directions along
which there exists a monotone path from s to t, prove a
bound of @(k) on its combinatorial size, and show how
to compute it within our stated time bounds. Within
the same time bounds, we construct a monotone path
map (MPM), which is a subdivision of Q according

Page 3

to the structure of the set of monotone paths from a
given source point s to any other point ¢ in €.

3). In the case of convex obstacles, we prove a re-
markable theorem that there will always exist a mono-
tone path from s to ¢ in some direction. We show that
the set of all directions along which there is a mono-
tone path from s to ¢ is a convex cone. We provide an
O(E + nlogn) algorithm that produces a monotone
path map (with respect to s), allowing us to produce
the cone of directions for which a monotone path exists
from s to any query point ¢ in O(log n) time. Further-
more, after locating ¢ within the MPM, we can output
a monotone path to ¢ in time proportional to its size.

4). We also examine the special case of mono-
tone paths in a simple polygon (without holes), and
we show that the (possibly empty) set of all possible
directions along which monotone paths exist can be
found in time O(T + n) (where T is the time to trian-
gulate the simple polygon) for a given s and ¢, or, with
the same amount of preprocessing, we can answer two-
point queries for any given s and t in time O(logn),
returning the valid interval of directions along which
there is a monotone path from s to t.

5). Finally, we show how to apply some of our re-
sults to yield efficient algorithms to plan assemblies of
planar parts. Our algorithm determines a direction d
such that some (nontrivial) subset of the parts can be
translated along d away from the remaining parts (or
determines that no such separation is possible). By
repeated applications of this technique, we arrive at
a means of planning disassemblies (and hence assem-
blies) of arbitrary polygonal parts.

2. Min Travel in a Given Direction

The problem of finding shortest paths in three dimen-
sions has been shown to be NP-Hard [CR]. We may ask
if using the distance function \/z? + y* rather than
the usual Euclidean metric, /22 4 y* + 22, makes the
problem any easier. However, the construction of [CR]
suggests that this is not the case — it remains NP-
Hard even if we are not “charged” for travel in the
z-direction.

In the two-dimensional case, the current best
algorithms for computing Euclidean shortest paths
among polygonal obstacles require quadratic time.
If, however, we measure distance according to the
metric Vz2 = |z| rather than the Euclidean metric
(V/z? + y?), we obtain the problem of minimizing the
length of a projected path along a given direction d,

where, without loss of generality, d lies along the z-
axis.

Our algorithm is based on searching a graph which
is constructed by a straightforward application of the
plane sweep paradigm. (We give only a sketch here.)
We sweep the plane with a vertical line, building the
vertical adjacency map (which connects each vertex to
the first obstacle boundary point hit when going up
from the point, and when going down, resulting in a
trapezoidization of Q). The resulting diagram consists
of a planar subdivision with O(n) vertices and line seg-
ments, and it defines a planar graph (the vertical ad-
jacency graph (VAG)) whose edges are defined by the
line segments. See Figure 2.1. We assign the length
of an edge to be the length of its projection onto the
z-axis. The problem of finding an z-minimizing path
from s to ¢ is then solved by running Dijkstra’s algo-
rithm on the resulting planar graph.

Figure 2.1.

A vertical adjacency graph.

Theorem 2.1 We can find a path which minimizes
the length of its projection along any given direction
in time O(nlogn).

Note that if the length of the projected path is
equal to the projected distance between s and ¢, then
the path is in fact monotone. Also note that, given
the VAG, it is easy to construct the set of all points ¢
which can be reached by a monotone path (monotone,
that is, in the given direction) from s. (Refer to the
shaded region in Figure 2.1.) Thus, we have:

Corollary 2.2 One can detect whether or not there
exists a monotone path from s tot in a fixed direction

Page 4

d in time O{nlogn), and, if so, output one such path
within this same time bound. Within the same time
bound, one can find the region of all points t for which
there exists a d-monotone path from s tot.

We also have the following lower bound result.

Theorem 2.3 A lower bound on the complexity
of finding a path (if one exists) from s to t which is
monotone in a given direction d is Q(nlogn). (This
assumes that we must actually output an ordered list
of turning points in a plecewise-linear representation
of the path.)

Proof: The simple reduction is from sorting, and is
omitted here. 1

3. A General Algorithm

We turn now to the problem of finding a monotone
path in any direction. More precisely, we want an
algorithm to find a direction d (if one exists) such that
there exists a d-monotone path from s to t. Further
requirements of our algorithm may be to produce a
description of the set of all d’s for which a monotone
path exists and/or to produce a representation of a
d-monotone path.

We begin with some basic properties of monotone
paths.

Lemma 3.1 If a d-monotone path is pulled taut,
then it will remain d-monotone.

Corollary 3.2 If a d-monotone path from s to t
exists, then there is a d-monotone path from s to t
which is taut, and is therefore piecewise-linear and lies
on the visibility graph.

Corollary 3.3 If there is a d-monotone path from s
tot for some d, then there is a d.-monotone path from
s to t, where d. is a vector orthogonal to an edge e of
the visibility graph.

Remark: A further corollary of Lemma 3.1 is the
result (4) of Section 1, which has to do with the special
case of monotone paths within simple polygons. By
combining Lemma 3.1 with the results of [GH] (on
two-point shortest path queries in simple polygons)
and [PS] (on finding cones of monotone directions for
simple polygons), we obtain the claimed results.

Thus, it suffices for our algorithm to check only
those E directions d. defined by edges of the visibility
graph.

Lemma 3.4 The set of all directions d for which a
monotone path exists from s to t consists of a union
of at most k convex cones whose bounding rays are
orthogonal to edges of the visibility graph.

Proof: (Sketch) We show that between any two
taut paths that are monotone in different directions
there must be an obstacle. 1

In fact one can exhibit an example to show that
the above bound is tight, as shown in Figure 3.1,
where k (nonconvex) obstacles give rise to & “skinny”
cones of feasible directions d for which there exists a
d-monotone path.

Figure 3.1. k cones of monotone directions.

The above lemmas justify the following algorithm.

1). Build the visibility graph (VG) of s, ¢, and the
obstacle space . This can be done in O(E + nlogn)
time and O(E) space [GM].

2. Sort the edges of VG according to slope. This
requires time O(E log E) = O(E logn).

. - - 3. For each direction d, that is orthogonal to some

edge e of VG (there are two such directions for each
e), orient the edges of the visibility graph according
to d,, thereby obtaining a directed graph DVG(d.).
The naive means of doing this requires O(E') time per
direction d,. However, the fact that we have the edges
e sorted by slope allows us to do this step faster by
noting that if we proceed through the directions d.
in slope order, then the DVG changes in a very small
way from one direction to the next; namely, one edge
of DVG gets flipped at each step. This allows the
orientation to be done in constant amortized time per
direction, for a total cost of O(F).

4. Now, to find a monotone path from s to ¢ (if
one exists) requires that we search the directed graphs
DVG(d,) for a directed path from s to t. This can be

Page 5

done, for instance, by depth-first search in linear time
(linear, that is, in the number of edges in the graph).
Hence we get a total time bound of O(E?) = O(n*).

We get an improvement to the above naive algo-
rithm by reducing the size of the graph that we search.
Instead of rotating through the directions d, searching
DVG(d,) (which is of size E'), we can rotate through
the directions d., keeping track of the way in which
the directed vertical adjacency graph DVAG(d,) (of
size O(n)) changes. (The directed vertical adjacency
graph is simply the oriented version of the VAG, in
which each edge is oriented according to d..) Again,
one can show that the graph DVAG(d,) changes in a
trivial way from one direction to the next. The result
is the following:

Theorem 3.3 Given a polygonal obstacle environ-
ment of size n, we can detect the existence of a mono-
tone path from s to t in time O(nE), and we can
output such a path if it exists within this same time
bound. In fact, within this same time bound, we can
construct the set of all directions d along which there
is a monotone path from s tot.

The bottleneck in both the naive solution and its
improvement is the search step, which must be done
for each direction d.. It is quite plausible that a better
method could be employed that would use the fact that
as we proceed from one directed graph to the next, the
number of flips is small (constant). It may be possible
to reuse search information from one step to the next.

4. Convex Obstacles

When all of the obstacles are convex, and the bounding
simple polygon is also convex, then we will show that
there always exists a monotone path from s to t. We
originally found this fact to be quite remarkable, as
it seemed that by building “spirals” out of disjoint
line segments, and cluttering the space with enormous
numbers of obstacles, it should be possible to prevent a
monotone path. However, as our theorem shows, such
is not the case.

We begin with a few definitions. For any direction
d, let dj be the vector d rotated counterclockwise by
7/2. We define the leftmost path in direction d out
of s, I(d), as the semi-infinite path starting from s
constructed in the following manner: Shoot a ray from
s in direction dy. If it goes to infinity (or hits the
outer boundary of §2) without hitting an obstacle, then
this ray is {{d). Otherwise, it will hit an obstacle, O,

at some point p. The path I(d) proceeds by turning
right at point p, following the boundary of O until it
can again proceed in direction d; . This construction
continues until the path either goes off to infinity or
hits the outer boundary of Q. Refer to Figure 4.1.
We similarly define the rightmost path in direction d
out of s, 7(d), by shooting a ray in direction —d; and
turning left every time we hit an obstacle.

Figure 4.1. Defining {(d), r(d), H(d), waterfall paths.

If two paths P; and P> are monotone in direction
d and do not cross each other (although they may coin-
cide along subpaths), then we say that P, is left of P»

_if at the first point where the paths diverge P; lies left

of Py. (Note that when they first diverge they cannot
split apart by more than =, since they are both mono-
tone in direction d; thus, the notion of being “left” at
the point of divergence is well-defined.) Another way
to say this is to define the polygon between P; and P,
as that which lies to the right of the path from s along
P, to the outer boundary (or the circle at infinity if
none), and then returns to s along the reverse of P».
We similarly define the notion of one path being right
of another.

Lemma 4.1 The paths {(d) and r(d) intersect only
at point s. In fact, [(d) and r{d) cannot hit the same
obstacle.

Lemma 4.2 The path I(d) (resp., r(d)}) is monotone

Page 6

in direction d, and is the leftmost (resp., rightmost)
such path.

By Lemma 4.1, the paths I(d) and r(d) together
form a simple path P(d) defined by traversing r(d)
in reverse until we reach point s and then by travers-
ing I(d) from s. The path P(d) partitions § into two
regions, H(d) and H®(d), where H(d) is the set of
points which lie to the right of P(d). Refer again to
Figure 4.1, where H(d) is shown shaded.

Lemma 4.3 There exists a d-monotone path from
5 to any point t € H(d) N Q.

Proof: Construct a path P from t to s as follows:
go in direction —d from ¢ until either an obstacle is
hit or until P(d) is hit. If we hit P(d), we are done,
since both {(d) and r(d) are monotone in direction d.
Otherwise, we must hit an obstacle, in which case we
continue around the boundary of the obstacle in the di-
rection that keeps us monotone in direction —d (this is
always possible by the convexity of the obstacles). We
leave the boundary of an obstacle at the first chance
we have to proceed in direction —d. This process con-~
tinues until we hit P(d). Refer to Figure 4.1. Clearly,
the path P that we construct in this way is monotone
in direction —d (and thus its reverse is monotone in
direction d). We call the resulting path P a “water-
fall path”, since it follows the path that water would
follow from t if gravity were in direction —d. 1|

Lemma 4.4 H(d) is precisely the set of all points
which are reachable by a d-monotone path from s.

Proof: By the previous lemma, it suffices to show
that it is not possible to reach a point t € H°(d) along
a d-monotone path. Consider any such ¢ and assume
that P is a d-monotone path from s to t. P must enter
the open halfplane defined by s and d. (P can never
enter the open halfplane defined by s and —d.) Thus,
P will have to enter H{d). But since t is not in H(d),
P will have to cross P(d), contradicting Lemma 4.2. 1

Theorem 4.5 If all obstacles are convex, then the
set of all directions d for which a monotone path exists
from s tot is nonempty.

Proof: (Sketch) Our goal is to prove that there ex-
ists a direction d such that ¢ € H({d). The basic idea
is to imagine what happens to H(d) as we rotate d
counterclockwise. For simplicity, let us assume that
no three vertices are colinear. \We keep track of the
paths I(d) and r(d). The only directions d which cru-
cially affect I(d) or r(d) are those directions which are

orthogonal to a visibility graph edge (in the reduced
visibility graph that consists only of those visible edges
which lie on lines of tangency between two obstacles).
At any such critical direction d, one of I(d) or r(d)
makes a discontinuous jump, as shown in Figure 4.2.

Figure 4.2. Sweeping the paths {(d) and r(d).

Assume that {(d) makes a discontinuous jump
from I(d™) to (d*). (The non-degeneracy assumption
implies that r(-) varies continuously at d.) Then, ev-
ery point ¢ in the region between the two paths I(d™)
and I(d*) is reachable from s along a d*-monotone
path, since the region between the two paths belongs
to H(d*). Thus, there are no points “missed” when d
passes through a critical value, and everything varies
continuously otherwise; hence, every point ¢ must lie
within some H(d). 1

Corollay 4.6 Given a planar graph with an em-
bedding such that every face is convex, there exists a
monotone path between any two nodes of the graph.
(The outer face must be convex in the sense that the
outermost cycle forms a convex polygon.)

Page 7

Corollary 4.7 Given a collection of arbitrary con-
vex bodies in R™ (m > 2) with disjoint interiors, and
given any two points s and t not in the interior of
the obstacles, there always exists a monotone path (in
some direction) from s tot which avoids the obstacle
interiors.

Proof: Consider any plane through s and t, and
restrict the path to lie on this plane. This reduces to
the two-dimensional case proven in Theorem 4.5. 1

Theorem 4.8 If all obstacles are convex, then the
set of all directions d for which a monotone path exists
from s tot consists of a single (nonempty) convex cone.

Proof: (Sketch) Assume that there exist monotone
paths from s to ¢ in directions dy and da (# dp). Thus,
t € H(dy) and t € H(d2). Assume that d; lies to the
left of da, meaning that ds x d; > 0, and let d be
any direction in the convex cone defined by d; and
d. We must show that ¢ € H(d). One can show this
by arguing that /(d) lies between {(d,) and i(d2), and
similarly 7(d) lies between r(di) and r(dz). 1

We sketch now an algorithm to find a monotone
path from s to any point t. The algorithm in fact
produces the monotone path map with respect to s
(MPM(s)), which is a subdivision of the plane into
sets of points ¢ according to a common structure of
the interval of directions along which there is a mono-
tone path from s to t. Figure 4.3 gives an example of
such a subdivision. The subdivision itself may have
quadratic size, but we will show how to represent it
implicitly as two linear-size subdivisions such that for
any query point ¢ we can quickly determine the interval
of monotone directions from s to ¢.

The algorithm proceeds by simulating the sweep-
ing of the paths I(d) and r(d) as d revolves counter-
clockwise about s. At each critical direction d for
which either I(d) or r(d) changes discontinuously, we
process an “event”. Events for path [(d) are of two
types: Type I, in which a segment along I(r) encoun-
ters a left point of tangency; and Type II, in which
a segment along /() encounters a right point of tan-
gency. Refer to Figure 4.4. (Analogous events are
defined for path r(d).) Note that an initial pair of
paths {(d) and r(d) can be found in time O{nlogn) by
a sweep line method (using a sweep line orthogonal to
d), or can be read off of the VAG(d) in linear time.
Note also that the events will correspond to directions
of common tangency lines between pairs of obstacles,
and these directions are easily obtained from the visi-
bility graph.

Figure 4.3. Example of a monotone path map.

Type I Type Il

Figure 4.4. Events for sweeping {(d).

The algorithm maintains a description of the cur-
rent paths /(d) and r(d), and at each event makes the
appropriate changes to one of them. Type Il events
cause a simple insertion to be made into I(d). Type 1
events, though, may modify a large portion of the path
I(d), as seen in the figure. But, the region between the
old and the new path {(d) will never be visited again
by the sweeping of I(d) (by Lemma 4.2), so vertices
that define its boundary are charged only once. The
result is the following.

Lemma 4.9 There will be at most O(k) events.

Corollary 4.10 The monotone path map can be
represented implicitly in a data structure of size O(n),
such that in O(logn) query time we can retrieve the

d)

Page 8

cone of all possible directions along which there Is a
monotone path from s to a query point t.

In Figure 4.3, we have shown two values of query
point ¢, and we have shaded the corresponding cones
of directions d for which there exists a monotone path
from s to ¢t. The representation of the MPM is simply
two planar subdivisions (each of size O(n)), one cor-
responding to the critical events in sweeping the path
I(d) (shown in solid lines in the figure), and one corre-
sponding to the critical events in sweeping r(d) (shown
in dashed lines in the figure).

In order to complete the sketch of the algorithm,
we must describe how we determine the next event.
For each vertex v along the path I(d) (and similarly
for vertices along r(d)), we assume that we have all
other vertices visible from v in sorted order by angle
about v. This can be done in an O(E+n log n) prepro-
cessing step by constructing the visibility graph, since
the algorithm of [GM] actually produces, for each ver-
tex, the edges of the visibility graph sorted by angle
about that vertex. (Fortunately, we will not need to
have the complete list of visibility graph edges sorted,
as this would require O(Elogn) using present tech-
nology.} Thus, for each of the O(n) vertices along I(d)
and r(d), we know when the next event will occur. We
keep these potential upcoming events stored in a pri-
ority queue. The next event will be the one stored at
the head of the queue. Theorem 4.8 implies that we
need only O(n) insertions/deletions in the queue. The
result is the following.

Theorem 4.11 The monotone path map can be con-
structed in time O(nlogn) for any particular source
point s, after having completed an O(E + nlogn) pre-
processing.

Remark: In the full paper, we go on to show how
monotone path maps can be constructed for noncon-
vex obstacles as well. We also introduce the notion
of a shortest monotone path map subdivision, which
allows us not only to find a monotone path from s to
any other point ¢, but allows us to find the shortest
such path. We analyze the combinatorial complexities
of both monotone path maps and shortest monotone
path maps.

5. Separation Problems

The problem of detecting “movable separability” of
sets has received much attention in the recent liter-
ature (see [To] for a survey of many recent results).

One class of problems that has been addressed is that
of determining when a given pair of objects can be
separated by a single translation. We can cast this
question into the context of monotone paths by the
following result.

Lemma 5.1 A set S of objects in the plane can be
separated into two disjoint sets S; and Sz (S = S1US2)
by a motion of objects S, in direction d if and only if
there exists a monotone path in direction d; between
51 and 52.

Proof: This can be seen as a consequence of Theo-
rem 7 of [To]. 1

We can apply our results on monotone paths to
solve the following separation problem: Given a set S
of polygonal parts in the plane, find a direction d and a
subset S; C S (S; # 0, 9) such that the set of parts 5;
can be separated from the parts S, = S\S; by a single
translation of Sy in direction d. If such a separation
of S is possible, we say that S can be fractured with
respect to direction d.

We sketch our method here. First, find the con-
vex hull of the set S. Next, for each segment F;g; of
the convex hull boundary which joins a vertex p; of
one object to a vertex g; of a different object, we con-
struct a pair of very long line segments attached at
points p; and ¢; which extend out from S in a direc-
tion perpendicular to 7;g;. (The extensions need only
be long enough that their convex hull strictly includes
S. Their purpose is to avoid our algorithm producing
the trivial monotone path that follows the boundary
of the convex hull.) Refer to Figure 5.1. Let © be the
space whose obstacle set consists of S appended with
the segments just described.

Figure 5.1. Construction for fracturing a set of parts.

Page 9

Lemma 5.2 There exists a direction d such that S
can be fractured with respect to direction d if and only
if there exists a monotone path through €2 between a
point of segment P;7; and a point of segment 7;q;,
for ¢ # j. In fact, it suffices to check only for paths
between endpoints of the segments p;q; and 7;; .

Lemma 5.2 provides the basis for an algorithm.
We can solve the O(n?) monotone path problems by
techniques described in Section 3. We stop as soon
as we find some monotone path. We then partition S
accordingly, and then we can reapply the same tech-
nique to each subset, each time separating at least
one part from the remainder. This gives an algo-
rithm for finding a sequence of motions to assemble
a set of parts, if such a sequence exists. The naive
means of implementing this algorithm would run in
time O(n?-nE-n) = O(n*E). We give instead a means
of achieving O(nkE) by searching simultaneously for
all O(n?) pairs of monotone paths. Figure 5.2(a-c)
shows an example of our algorithm finding a sequence
of fracturings that leads to the disassembly of a set of
parts.

Theorem 5.3 The problem of planning an assembly
of parts under the restrictions described above (sin-
gle translational separations) can be solved in time
O(nkE) and space O(E).

Proof: (Sketch) The main idea of our technique is
to perform simultaneously all of the steps necessary for
computing monotone paths between convex hull points
of all sets of parts that remain to be disassembled. We
thereby will spend O(nE) per level in the disassembly.
Since there are at most k levels, the result will follow.

We modify our O(nE) algorithm of Section 3 as
follows. For each of the E critical directions d., we
build the DVAG(d,). But now we also identify the
important set V' of vertices which are on the convex
hull(s) of the assemblies we need to take apart. (We
are solving many disassembly problems at once. For
each, we have found the convex hull and attached at
most O(n) extension segments.) For each node v of the
DVAG which corresponds to a vertex of V', we “split”
the node in two {vy and vp), with vy serving as the
“head” for all incoming arcs to v and vo serving as
the “tail” for all outgoing arcs from v. We draw an
arc from a “super source” ¢ to each vp, and an arc
from each vy to a “super sink” 7. We then search for a
path from ¢ to r in the resulting digraph. This search
takes time O(n) per direction E, for a total of O(nE)
per level of fracturing. 1

Figure 5.2(c).

A disassembly sequence of fracturings.

Can we get a disassembly sequence which is close
to “balanced”, that is, in which the set of parts is
(roughly) divided in half at each separation? The an-

Page 10

swer is that we can in the case of convex parts (we
do so by applying the results of [GY]), but in general
it will not be possible to get a balanced disassembly
sequence. Figure 5.3 shows a case in which the dis-
assembly requires k separation steps. An interesting
open question is whether or not we can find a minimum
depth disassembly sequence.

]

[l

L1

Figure 5.3. Depth k disassembly required.

6. Conclusion

Several extensions of our results are possible, including
the following.

1). Suppose that instead of requiring a path to be
monotone in direction d, we require every subvector
of the path to lie within some given cone. (Call this
monotonicity with respect to the cone.) Monotonicity
in direction d is the special case in which the cone is the
halfspace defined by d. Alternatively, we may not be
given a fixed cone but rather only the angle subtended
by the.cone. The problem then is to determine if there
exists an orientation of the cone such that there is a
path that is cone-monotone. Qur results generalize to
handle these cases.

2). We may want to search for a path which
“switches back” with respect to d the minimum num-
ber of times (i.e., which is the least non-monotone in
direction d, in this sense). This can be solved by a
simple modification of our algorithm that minimizes
travel in a fixed direction.

Some interesting open problems are suggested by
our research. We are currently examining the following
questions.

1). How can we characterize and detect the case
in which it is possible to separate 2 or more polygons
by a sequence of at most 2 translations? The existence

of a monotone path between a set of objects is a proof
that they can be separated by a single translation. But
if we allow up to 2 (or more generally, up to k) trans-
lations, it is more difficult to provide a succinct proof
of separability. (Standard motion planning methods
can, of course, be applied.)

2). What about higher dimensions? We are quite
interested in the problem of computing a monotone
surface among a set of polyhedral obstacles in three
dimensions. Such surfaces could be used to plan as-
semblies of three-dimensional parts. Our results on
this problem are only preliminary at this time.

Acknowledgement

We would like to thank Robert Freimer, Samir Khuller,
Mark Novick, Shmuel Onn, Christine Piatko, and all
of the other participants that have been attending
the Computational Geometry Workshops at Cornell,
where the problems addressed here were originally
raised.

7. References

[CR] J. Canny and J. Reif, “New Lower Bound Tech-

niques for Robot Motion Planning Problems”,
Proc. 28th FOCS, pp. 49-60, Oct. 1987.

[GM] S.K. Ghosh and D.M. Mount, “An Output Sensi-

tive Algorithm for Computing Visibility Graphs”,
Technical Report CS-TR-1874, Department of
Computer Science, University of Maryland, July
1987. (Also appears in FOCS, 1987.)

[GH] L.J. Guibas and J. Hershberger, “Optimal Short-

est Path Queries in a Simple Polygon”, Proc.
Third Annual ACM Conference on Computa-
tional Geometry, Waterloo, Ontario, 1987, pp. 50-
63. .

[GY] L.J. Guibas and F.F. Yao, “On translating a set of

rectangles”, Proc. 12th Annual ACM Symposium
on Theory of Computation (1980) 154-160.

[PS] F.P. Preparata and K.J. Supowit, “Testing a Sim-
ple Polygon for Monotonicity”, Information Pro-
cessing Letters 12, No. 4 (1981), pp. 161-164.

[To] G.T. Toussaint, “Movable Separability of Sets”,
in Computational Geometry, Ed. G.T. Toussaint,
North Holland Publishing Co., 1985.

