
Minimum Pa.rtitioninP SimDle Rectilinear Polvgons in O(nlo&mn)-Time

W.T. Lieu*, J.J.M. Tan**, and R.C.T. Lee***

*
**

Institute of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

Institute of Information Science, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
National Tsing Hua University, Hsinchu, Taiwan, and the Academia Sinica, Taipei, Taiwan,
R.O.C.

1 Introduction

The minimum rectangular partition problem for a simple
rectilinear polygon is to partition the interior of a simple
rectilinear polygon into minimum number of rectangles. This
problem is related to VLSI mask generation. A VLSI mask is
usually a piece of glass with a figure engraved on it. The engraved
figure can be viewed as a rectilinear polygon on the digitized
plane [OHTS82]. In order to engrave the figure on the VLSI
mask, a pattern generator is often used. A traditional pattern
generator has a rectangular opening for exposure, which exposes
rectangles onto the mask. Therefore, the engraved figure has to be
decomposed into rectangles such that the pattern generator can
expose each of these rectangles. The number of rectangles will
determine the time required for mask generation. Therefore,
decomposing a rectilinear polygon into minimum number of
rectan
mask P

les is an important problem for optimal automated VLSI
abrication. The decomposition can be classified into two

types depending on the resulted rectan 1e.s. If the resulted
rectangles can not overlap with % eat other, then the
decom”psition is a partition.- If the resulted rectangles overlap
with each other, then the decomposition is a m. Both
partitioning approach and covering approach for VLSI mask

f
eneration have been discussed in previous researches such as
LIPS79, OHTS82, GOUR83, FERR84, IMA186,

partitioning problems and [CHAISl, HEGE82,
covering problems. In this paper, we shall only
partitioning problem for simple rectilinear polygons. The time
complexity of our approach is O(nloglogn). The partition problem
for convex rectilinear polygons or vertically (horizontally) convex
polygons can be solved in linear time which is optimal. As for a
rectilinear polygon with holes, we prove that O(nlogn is a lower
bound, though, as far as we know, there is no algorit h m achieve
this bound.

2 Previous Results

The minimum rectangular partition problem has been
studied in [LIPS79, OHTS82, OHTSSJ, FERR84, IMAI86]. Some
of their results are discussed below which are the starting point of
our research.

A rectilinear oolvgon on the plane is a polygon whose sides
are either vertical or horizontal. A simple rectilinear nolvmn is a
rectilinear oolvgon which has no windows (holes) in it. The
minimum ;ec~a~dar Dartition nroblem defined on a simple
rectilinear polygon can be stated as follows: Given a simple
rectilinear polygon P on the plane, find a minimally sized set of
non-overlapping rectangles such that every rectangle is contained
in P and the union of all rectangles is equal to P. In the following,
for simplicity, polygons always denote rectilinear polygons and
partitioning always denotes rectangular partitioning.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1989 ACM O-89791-318-3/89/0006/0344 $1.50

A concave vertex vl : (xl, yl) of P is a vertex having a 270’

interior angle. A reflex edge of P is an edge connecting two
concave vertices. Two concave vertices v 1 : (x,7 YJ and v2 : (x2,
y2) which do not share the same edge of P are u if they are

cohorizontal (y1=y2) or covertical (x1=x2). A M of P is a line

segment contained in P connecting two cogrid vertices. If a
rectilinear polygon contains no chords, then a minimal partition
can be easily obtained by using the followin
(1) For each concave vertex, select one o P

principle:
the edges. Note that

(2)
there are two edges intersecting at each concave vertex.
Extend this edge until it hits another such extended edge or
a boundary edge of P.
Throughout this paper, we shall assume that our simple

polygons contain chords. Ferrari, Sankar and Sklansky [FERR84]
showed that the size of a minimal partition is equal to n-b+1
where b is the size of the largest set of nonintersecti’ng chords.
Consider Figure 2-l(a). The set of chords is {ab,ef,gh,ij, ch, di}.
The largest set of nonintersecting chords is {ab,ef,gh,ij}. Using
these nonintersecting chords, a minimal partition can be
constructed as shown in Figure 2--l(b). Note that there might be
other approaches to solve the minimal rectangular partition
problem. However, this approach which is based upon finding a
largest set of nonintersecting chords will definitely lead to a
minimal solution.

a e
h

k
-

I: ~

i -

J

(4
Figure 2-1

(b)

In IFERRS41, it was shown that the minimum partition of
any simple polygo; P containing chords can be found ii six steps:
1 Find chords of P.
2 Construct a bipartite graph B=(V, H, E) as follows : A

I 1 Each vertex vi in V corresponds to a vertical chord i. B

Each vertex hj in H corresponds to a horizontal chord j. (C)

Each edge vihi in E corresponds to the intersection of chords

iandj. -
3 Find a maximum matching (PAPA82 M of B.
4 Find a maximum independent set [IJ APA82] S of B based

on M. The nodes in S are not adjacent to each other and,
therefore. the chords corresnondine to nodes in S are
nonintersecting chords. Denoti the sige of S as b.

5 Draw b nonintersectine chords corresnonding to S to divide
P into b-t1 subpolygois such that each su&olygon has no
cogrid concave vertices.

6 Since each subpolygon contains no chords, a minimal
partition of each subpolygon can be found by using the
principle stated in the previous paragraph.
In [OHTS82] and FERR84], Hopcroft and Karp’s algorithm

I [HOPC73] was used to md the maximum matching of a bipartite
graph. Hopcroft and Karp’s algorithm was designed for general

344

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73833.73871&domain=pdf&date_stamp=1989-06-05

bipartite graphs and runs in O(n2’5) time where n is the number
of vertices in the bipartite graph. Imai and Asano [IMAISG]
proposed another algorithm to find the maximum matching
without constructing the bipartite graph. Imai and Asano’s ^_
algorithm runs in O(no5N) time where N=min(m,nlogn] and m
is the number of edges in the bipartite raph. Imai and Asano’s
algorithm runs faster than Hopcroft an ii Karp’s algorithm. But
Imai and Asano’s algorithm is not the most suitable one for
simple polygons (without holes). Some special properties of the
chords of a simple polygon have not been explored.

As in (IMAI86], we shall not construct the bipartite graph.
We shall make a detailed analysis of the properties of the chords
of a simple polygon. Utilizing these special properties, we can
have an efficient algorithm to find the maximum matching. Our
algorithm requires O(nlogIogn) time. After the maximum
matching is found, we can find the maximum nonintersecting
chords in linear time and, consequently, the partition problem for
simple polygons can be solved in O(nloglogn) time.

3 Maximum Matching of a Soecial Bioartite Graoh

In this section, we shall introduce a theorem which was
initially discussed by Glover [GLOV67] and, then, generalized by
Lipski and Preparata [LIPSSl]. We shall also show that this
theorem can be applied to the bipartite graph derived from the
chords of a simple polygon.

Consider a bipartite graph B=(V,H,E). We use H(vi) to
denote the neighbors of a vertex vi in V and V($) to denote the
neighbors of a vertex h, in H.
Theorem 3-l (Lipski ‘and Prenarata Let B=(V,H,E) be a
bipartite graph.. If (vi,h,)eE and H(v&H(vi), for all vieV(her),
then there is a maximumvmatching containing (vi,h). * -

We define that Hg(vl)=(hglhg~H(vi) and H vi)CH(vj), for F:
all vjeV(hg)}. By Theorem 3-1, for any hg~Hg(vi), there is a
maximum matching containing (vi,hg). For a bipartite graph
derived from chords of a simple polygon, we shall prove that there
always exists a vertical chord vi such that Hg(vi)#4 and we can
find vi and hgeHg(vi) efficiently. In the following, we shall define
left-free and rieht-convex and show that, for any vertical chord
-ifs left-free and H(v,)#$ is right-convex, then (vi)#~ H
and the horizontal chord h EH (v.) where hg has the s

g g’
%

rieht end in H(v$

Consider a vertical chord vi of a simple polygon P. vi slices
the boundary of P into two parts. One part is left to vi and the
other part is right to vi as shown in Figure 3-l. We define that vi
is left-fret? if there is no other vertical chord whose both ends are
on the left part. For any two vertical chords vi and v., if vi is
left-free and x(vj)-<x(vi), then vj must be higher than tJhe upper
end or lower than the lower end of vi. Consequently, V. does not
intersect with any horizontal chord in H(vi), 1

V.
J

r s-4
Figure 3-l

J

Lemma 3-l
Figure 3-2

Let vi be a left-free vertical chord. For any
vertical chord vj, if x(vj)ix(vi), then H(vi)nH(vj)+
Proof
QED.

Immediately proved from the definition of left-free.

The definition of right+onvex is more complicated. Let vi

be a vertical chord of a simple polygon. Let hl,h2,...,hk be the
horizontal chords of H(vi) sorted in the descending order of
y-position. Let al,a2 ,..., k a be the right ends of hl,h2, ,.., hk,

respectively. If we start from al to walk along the boundary of P

in the clockwise direction, then the order of occurrences of right
ends ais on the boundary is still in the sequence [al’a2’...?ak]
because P is simply connected. (See Figure 3-2.)

The ripht-boundary of H(vi) is a piece of the bouudary of

P, which starts from al passing through all ai, l<i<k, and ends
at ak. H(vi) .is rizht+onvex if there is no vertical reflex edge on
the rizht-boundary of H(v,). H(v,) is right-concave if it is not

I

right-convex, i.e., there exists at least one vertical reflex edge on
the right-boundary of H(vi). The following lemma gives a
sufficient condition for the existence of a vertical reflex edge on a
piece of boundary. The proof of this lemma is not difficult but is
very tedious. Therefore, we omit it.
Lemma 3-2 Let AP be a piece of the boundary of a simple

polygon P such that the interior of P is on the left side of AP. Let
al and a3 be two concave vertices and a2 be any vertex on AP
such that, if we traverse AP in clockwise direction, the
occurrences of these three vertices on AP are in the sequence
[aI,a2,a3] and the heights of them are y(al)>y(a2)>y(a3). There
is a vertical reflex edge between al and a3 on AP if one of the
following conditions is true. (a) x(al)>x(a2) and x(a,)<x(a,). (b)

x(al)=x(a2) and x(a2)‘x(a3) (c) x(a,)>x(a,) and x(a2)=x(a3).
Lemma 3-3 Let H(vi) be right-convex. Then either the
highest chord or the lowest chord in H(vi) has the shortest right
end among all chords in H(vi).
Proof Let A=[al, a2,a.] be the set of right ends of H(vi)
sorted from high to low. Assume that neither the highest chord
nor the lowest chord has the shortest right end. Assume that af,
l<f<k, is the shortest right end. We have y(al)>y(af)>y(ak).
The right-boundary of H(vi) connects aI,af and ak. The
occurrences of al,af and ak on the right-boundary of H(vi) are in
the sequence [al,af,ak]. By Lemma 3-2, there exists a vertical
reflex edge on the right-boundary of H(vi), a contradiction.
Q.E.D.

Let vi be a vertical chord such that H(vi) is right-convex.
Consider a vertical chord vj, x(vi)<x(vj). We are going to prove
in Lemma 3-4 which is the key lemma in this section that, if v.

J
intersects with the shortest horizontal chord in H(vi), then v.

J
intersects with every horizontal chord in H(vi). In order to prove
Lemma 3-l, we first discuss some properties of the ends of vj. Let
$ be the shortest chord in H(vi). Assume that vj intersects with
hg. Let pl and p2, respectively, be. the upper end and the lower
end of vj. (See Figure 3-3.) Consider the vertical edge 6 of p2. p2
is the higher end of t. Let pi be the lower end of t. We have
y(p2)>y(pi) as shown in Figure 3-3(a). Then, consider the
horizontal edge X of pa. If pi is a convex vertex, then p.$ is the
right end of A and x(p$>x(p$ where p2” is the left end of X as
shown in Figure 3-3(b). 1

‘i V.
J

hg t--IL a

p2

1
V.

1
V.

J

h
6 t---L $

p2

6

Pi
(4

Figure 3-3
@I

345

Lemma 3-4 Let H(vi) be right-onvex and hg be the
chord in H(vi) having the the smallest right end. For any vertical

chord vj, x(vj)>x(vi), if vj intersects with hg, then v. intersects
with every hieH(vi).

J

Proof Assume that hfEH(vi) and hf does not intersect with
v.. Let pI and p2 be the upper end and the lower end of vj,

rdspectively. Let af be the right end of hf. By Lemma 4-1, hg is
the highest chord or the lowest chord in H(vi). Without loss of
generality, we assume that h is the highest chord in H(vi). Let
AP denote the right-boun ary 9 of H(vi). Since vj does not
intersect with hf, we have y(p2)>y(af) and, therefore, p2 and af
are concave vertices on AP. Let pi be the lower end of the

-
vertical edge of p2. We have x(p2)=x(p2). (1) If p$=af, then p2af

is a vertical reflex edge on AP, a contradiction. (2) Assume that
af#p& we have y(p2)>y(p2)>y(af). If pi is a concave vertex, then

-9 p2p,, IS a vertical reflex edge on AP, a contradiction. If p2 is a
convex vertex, then, assuming that pz is the vertex clockwise

succeeding pi on AP, we have x(p2)>x(p!$ and x(af)>x(pz).

Since y(p2)>y(p2)=y(p$>y(af), by Lemma 3-2, there is a
vertical reflex edge between p2 and af on AP, a contradiction.
Q.E.D.

Based on Lemma 3-3 and 3-4, we immediately have the
following lemma.
Lemma 3-5 Let vi be a vertical chord and H(vi) be

right<onvex. Let hg be a horizontal chord with the smallest right

end in H(vi). For any vertical chord v j, x(vi)<x(vj), if hgeH(vj),

then H(vi)cH(vj).

Lemma 3-1 and lemma 3-5 show that, for a left-free
vertical chord vi of a simple polygon P, if H(vi)## is
right-onvex, then hgeHg(vi) where hg has the shortest right end
in H(vi). Fiieht-free and left-convex can be defined in a

symmetric manner as left-free and right convex. If vi is

right-free and H(vi) is left-convex, then Lemma 3-l to Lemma
3-5 are also true with suitable modifications. For simplicity, we
neglect the proofs. We conclude our discussion in this section with
the following theorem.
Theorem 3-2 Let vi be a left-free (right-free) vertical

chord of a simple polygon P and H(vi)#$ be right-convex

i
left-convex). Let B=(V,H,E) be the bipartite graph derived
rom the chords of P. There exists,a maximum matching M of B

such that vihg is in M, where hg IS the chord with the shortest

right (left) end in H(vi).
Proof By Lemma 3-l and Lemma 3-5, for any v., if
hgeH(vj), then H(vi)cH(vj). By Theorem 3-1, there !s a
maximum matching M such that vihgeM. Q.E.D.

3 Maximum Matchine of a Horizontally Convex Polvgon

In this section, we shall explain how to find the maximum
matching of a horizontally convex polygon. The technique we
illustrate will be later extended to simple polygons.

Consider a simple polygon P. P is horimntallv convex if, for
any horizontal line segment, two ends of this line segment are
contained in P implies that this line segment is contained in P.
The polygon in Figure 4-l(a) is a horizontally convex polygon.

s4C;-d r S41yd rT’

(4 tb)
Figure 4-1

In a horizontally convex polygon, two horizontal support
edges separate the boundary of the polygon into two chains of
vertices, a left chain and a rirrht chain. Consider a vertical reflex
edge ei and a vertical support edge si on the same chain. Assume
that there is no other support or reflex edges between ei and si on
the same chain. For ei and si on the left chain, a vertical chord vk

is located between ei and si if x(si)<x(vk)gx(ei). For ei and si on

the right chain, a vertical chord is located between ei and si if
x(sj)>x(vk)lx(ei). The eliminating of the boundary right (left) to
the extension of a vertical edge is called the boundarv shrinking
along this extension. The boundary shrinking along the extension
of e2 is shown in Figure 4-l(b).

In general, for a given horizontally convex polygon, we can
start from the top support edge to trace the left chain and the
right chain at the same time such that we are on the same heights
at both chains. We keep on tracing until we find the first vertical
reflex edge ei. Assume that ei is on the left chain. Let si be the
last support edge traced before ei on the same chain. For any

vertical chord vi between si and ei, H(vi) is right-convex because
there is no vertical reflex edge e!, on the right-boundary of H(vi).
If vi is the leftmost chord between si and ei, then vi is left-free.

After vi is matched and removed, the vertical chord succeeding vi
will be left-free. Therefore, for vertical chords vi located between

si and ei, we can process them from left to right as follows.
(1) If H(vi)=4, then remove vi from the polygon.
(2) If H(vi)#d, then vi is matched with a horizontal chord

hgeH(vi) where hg is the chord with the shortest right end
in H(vi). After matching, vi and hg are removed from the
polygon.
After all vertical chords between si and ei have been

processed as described above, si and ei are eliminated by the
boundary shrinking along the vertical extension through ei. After

boundary shrinking, ei and si do not exist in the new polygon. If
ei and si are on the right chain, we will process vertical chords vi

located between ei and si from right to left.

Repeatedly applying the above procedure, we can eliminate
all vertical reflex edges on both chains. When all vertical reflex
edges are eliminated, the remaining boundary forms a polygon
with no reflex edges (a convex polygon) and, therefore, the
neighbors of vertical chords of the remaining polygon are both
right-convex and left-convex, which can be processed from left to
right or from right to left.

A horizontally convex polygon can also be processed from
the bottom support ed e. In this case, when we trace upwards
along the left chain anf . the right chain, the vertical reflex edge
with the lowest lower end point will be eliminated first. It is
important to note that, if we process a horizontally convex
polygon from the top to the bottom, we always execute boundary
shrinkings along the unward extensions of vertical reflex edges. If
we process from the bottom to the top, then boundary shrinkings

are executed along the downward extensions of vertical reflex
edges. The following algorithm, Algorithm 1, implements the
above ideas.

346

Aleorithm 1
input: A horizontally convex polygon P.
outout: The maximum set M of matched chords of P.
Steps:

::
Find horizontal chords and vertical chords of P;
Trace the left chain and the right chain of P at the same
time to find the first pair of support edge si and reflex edge
ei of P;

3 If there is no vertical chords located between si and ei, then
execute boundary shrinking along ei; otherwise, find the
vertical chord vi located between si and ei such that there is
no other vertical located between si and vi;

4 Match vi with the shortest horizontal chord hg in H(vi);
5 Put vihg into M;
6

i

Remove vi and hg from P to have a new polygon P’;
Recursively use Algorithm 1 to find M’ for P’;
M=MuM’;

9 end;
Theorem 4-l Algorithm 1 finds the maximum set of matched
chords of a horizontallv convex nolvson P.
Proof Let vi be a veriical- chord being processed by
Algorithm 1. Algorithm 1 ensures that VI is left-free and H(vI) is
right-convex. In Algorithm 1, VI is matched with hgEH(vI)
where hg has the shortest right end in H(vI). By Theorem 3-2,
there exists a maximum matching of P, which contains v h

lg
After VI and hg are matched, we move the x-position of the
upper end of VI a small distance (and modify the x-positions of
the other relevant vertices, suitably,) such that VI will not exist
and no other vertical chords will be produced. We also move the
left end of hg a small distance in y-direction such that hg will not
exist and no other horizontal chords will be produced. The
resulting polygon is still a horizontally convex polygon without
chords VI and hg. All other chords remain unchanged. Let B1 and

B2 be the bipartite graph derived from chords of the old polygon
and the new polygon, respectively. BI-{vI,hg}=B2. Let M2 be

the maximum matching of B2. By Theorem 3-1, the maximum
matching M1 of B* is equal to M2U(vIhg}. We can recursively

apply the same procedure to the new polygon to find M2.
Therefore, Algorithm 1 finds the maximum set of matched chords
of P. Q.E.D.

In the proof of Theorem 4-1, we adjust the positions of ends
of chords to eliminate chords after matching. This adjustment is
only for our induction proof. In practical processing, we do not
adjust boundary except boundary shrinking.

Having shown how we can handle the case of horizontally
convex polygons, we shall now show that we can handle the
simple polygons.

5 Maximum Matchine of a Simole Polveon

This section includes two subsections. In subsection 5.1, we
will explain our basic ideas for finding the maximum matching for
a simple polygon and prove that our ideas are correct. In
subsection 5.2, we will explain our algorithm in detail and analyze
the time required for executing our algorithm.

u Basic Ideas
A simole oolvaon can be oartitioned into horizontallv

convex subLpolygo&“by drawing horizontal extensions through
each horizontal reflex edge. For example. the simple polygon in
Figure 5-l(a) is partitioned into five horizontally convex
sub-polygons. After this, we construct a tree of these horizontally
convex sub-polygons by the following rule: Two horizontally
convex sub-polygons are connected if and only if they share one
horizontal extension throu h some horizontal reflex edge. For the
case shown in Figure 5-l(a , the tree is shown in Figure 5-l(b). “,

la) (b)
‘Figure 5-l

I

After the tree is constructed, we arbitrarily choose a node as
the root and, then, the horizontally convex sub-polygons are
processed according to the postorder [AH0741 sequence. For the
tree in Figure 5-l(b), if we assign node 5 as the root, then a
postorder sequence is l&4,3,5. For a node ni of the resulting tree,

there are two support edges of ni. We define that the master
m of ni is the support edge (the horizontal extension) between

ni and its parent. If ni is the root, then we assign the upper
support edge of ni to be the master bound of ni. (Note that it
makes no difference to assign the lower support edge as the
master bound for the root.) The slave bound is the other support
edge of ni. The master bound and the slave bound of a node are
fixed. We define verticallv visible for a concave vertex Y and a
horizontal edge e. v is vertically visible to t if we draw a vertical
extension through u and c is the first hit edge. If v is vertically
visible to the master bound, then it is possible that there exists a
vertical chord through v and this chord can not be found in ni.
We process each sub-polygon in the postorder sequence using the
method described in Section 4 with some modifications shown
below.
1 When we process node ni, we do not process the vertices

which are vertically visible to the master bound of ni.
2 Vertical edges at each end of the master bound are viewed

as vertical reflex edges. We call them as virtual vertical
reflex edees.
Consider sub-polygon 1. We process sub-polygon 1 as

described in Section 4 with the above modifications. After all
vertical reflex edges (including the virtual vertical reflex edges)
are eliminated, the resulting sub-polygon is shown in Figure
5-2(a). Note that the remaining vertices in the sub-polygon are
all vertically visible to the master bound of sub-polygon 1. We
then merge sub-polygon 1 to its parent, sub-polygon 3, as shown
in Figure 5-2(b).

:, (a) lb)
-1

Figure 5-2

nodes
Note that, after merging with child nodes, the internal

may not be a horizontally convex sub-polygon. For
example, the resulting sub-polygon 3 after merging with
sub-polygons 1,2, and 4 is not a horizontally convex
sub-polygons because the horizontal reflex edge cd exists as
shown in Figure 5-2(c). But we are sure that, if there exist
vertical reflex edges in an internal node ni after merging, these
vertical reflex edges must be on the left chain or on the right
chain between the master bound and the slave bound of ni
because all vertical reflex edges of the child nodes of ni have been

eliminated by boundary &inkings. For example, in Fi ure
5-2(c), the vertical reflex edges ji and mk are on the boun x ary
between the master bound and the slave bound. We still can find
the vertical reflex edges and compare their heights. Algorithm 2
implements the above ideas.

347

Algorithm 2
input: A simple polygon P.
output: The maximum set M of matched chords of P.
steps:
1 partition P into horizontally convex sub-polygons and

2
construct a tree T of horizontally convex sub-polygons;
arbitrarily assign a node of T as the root and determine the
master bound and the slave bound for each node;

3 visit nodes ni of T in postorder and do the following for ni

assign two vertical edges at two ends of the master
bound of ni to be two vertical reflex edges of ni;

use Algorithm 1 to find a matching Mi of ni and to
eliminate all vertical reflex edges of ni;

/*Note that Algorithm 1 will trace from the
slave bound to find vertical reflex edges but
will trace the whole boundary to find the
relevant vertical support edges and chords.*/

M=MuMi;

If ni is the root, then
return;

else
merge nj to its parent;

end it
end;
Theorem 5-l Algorithm 2 finds the maximum set of matched
chords of a simple polygon P.
Proof Consider step 3 of Algorithm 2. The vertical reflex
edges of ni are found by tracing the left chain and the right chain

from the slave bound. Without loss of generality, we assume that
the slave bound of ni is lower than the master bound and,
consequently, the slave bound is lower than any vertical reflex
edge of ni. Let ei be the first found vertical reflex edge. We are
sure that there is no other vertical reflex edge lower than ei.

Assume that ei is on the left chain. After ei is found, we can find

the corresponding support edge si of ei. si might not be on the
boundary between the slave bound and the master bound but si is
always lower than ei. Therefore, for any vertical chords vi located

between ei and si, H(vi) is right-convex in ni because there is no

vertical reflex edge lower than ei. Lemma 3-l to Lemma 3-5 are
still valid for vi. Therefore, the vertical chords located between s. 1
and ej can be processed from left to right to find their matches.
Using the similar techniques in the proof of Theorem 4-1, we can
prove that Algorithm 2 finds the maximum matching of P.
Q.E.D.

It is important to note that, though some vertices might be
recursively merged to their parent nodes, we are sure that any
vertex will only be processed constant times for the following
reasons. Consider an internal node ni of T. In Algorithm 2, we
only trace the boundary between the master bound and the slave
bound to find the lowest or the highest vertical reflex edge of ni.
After a desired vertical reflex edge is found, we will trace the
whole boundary of ni to find the relevant vertical support edge
and the relevant vertical chords. However, the traced boundary
will be eliminated by the boundary shrinking along this vertical
reflex ed e. Therefore, any vertex will only be traced constant
times be ore being eliminated. It should also be noted that, in P
Algorithm 5 the ends of a master bound are treated the same as
ends of vertical reflex edges and the vertices of a sub-polygon ni,
which are vertically visible to the master bound of ni, are not
processed in ni. In order to execute Algorithm 2 efficiently,
Algorithm 2 will be modified in subsection 5.2 to find a maximum
matching in O(nloglogn) time.

5.2 Alerorithms
For a given simple polygon P, the algorithm for finding the

maximum matching is shown in Algorithm MAIN. In addition to
finding the maximum matching M of P, MAIN also outputs the
set U of unmatched chords with respect to M. M and U will be
used in Section 6 to find the maximum set of nonintersecting
chords of P in linear time, which is the final goal of this paper.

Algorithm MAIN
input: A simple polygon P.
output: The maximum matching M of chords of P and the

set U of unmatched chords with respect to M.
begin
1 Partition P into horizontally convex sub-polygons.

Construct a tree T, of horizontally convex sub-polygons;
For each node nk o? Th, find horizontal chords in nk;

2 Construct a tree TV storing the x-positions of vertical reflex

edges and end points of master bounds;
3 Visit nodes of Th in postorder;

4 For each visited node nk of Th, do
Find the maximum matching of chords in nk;
If nk in not the root of Th, then merge nk to the

parent of nk;
end

We discuss each step in detail as follows.
Step 1 The input oly on P is a sequence of vertices. We
store P into an array R P). r i or each vertex v of P, there are two
data items about v. One is the position of v on the plane and the
other is that v is the ith input element of P. For the ith vertex v,
we can locate Y in R(P) in constant time. In order to partition P
into horizontally convex sub-polygons, we have to draw
horizontal extensions through horizontal reflex edges to hit the
nearest boundary. Tarjan and Van Wyk [TARJ88] have defined a
vertex-edge to be a vertex and an edge that can be
connected by an open horizontal line segment that lies entirely
inside P. For a particular concave vertex v, if the vertex-edge
visible pair of v is known, the hit point of Y can be computed in
constant time. In [TARJ88], Tarjan and Van Wyk proposed an
O(nloglogn) algorithm to find all the vertex-edge visible pairs.
We use Tarjan and Van Wyk’s algorithm to find all the
vertex-edge visible pairs as preprocessing. After these pairs are
found, we record this information back into R(P) such that, for
the ith vertex Y of P, we can decide the hit point of v in constant
time.

In addition to R(P), P is also stored in a fineer search tree
(TARJ88] which can be constructed in linear time. Using a
concave vertex v and its hit point hit(v), the finger search tree of
P is partitioned into two sub-trees (sub-polygons): one contains
the vertices from v to hit(v) and the other contains rest vertices.
This is a three-wav solitting [TAR&B]. Each three-way splitting
will reduce one end of horizontal reflex edges. For each
sub-polygon, we can recursively apply the three-way splitting
until there exists no end of horizontal reflex edges. If there are n
vertices in the original linger search tree and i vertices from u to
hit(v) (hit(u) is exclusive), it takes O(l+log(min{i,n-i}+l))
amortized time [TARJSS] to split this finger search tree into two
sub-trees containing i and n-i vertices, respectively. (Note that,
though the hit point will be a vertex in each sub-polygon, we do
not include these two new vertices in the sub-trees. Because the
hit points are irrelevant for the further partitioning.) Let T(n) be
the worst case total time required for partitioning. We have the
following recurrence formula.

T(,),,O(1) if.n<nO where no is a.constant;
max {T(i)+T(n-i)+O(l+log(mm(r n-1)+1))

1 Sk<n ifn,n
0

Solvin this recurrence, we have T(n)=O(n) [MEHL84].
There ore, the total time required for partitioning P into f
horizontally convex sub-polygons is O(nloglogn).

The tree Th of horizontally convex sub-polygons is
constructed as follows. Initially, there is only one node in Th
corresponding to the original finger search tree. Whenever the
finger search tree or a sub-fin er search tree is split, the
corresponding node in Th will also %e split and the resulting nodes

are connected. Th is constructed when P is partitioned into

horizontally convex sub-polygons. After constructing Th,
arbitrarily assign a node of Th as the root.

Horizontal chords can be found in linear time by tracing the
left-chain and the right-chain of a node nk of Th. When two
concave vertices on different chains of nk are found to have the
same y-position, a horizontal chord exists. When a horizontal

348

chord h is found, we record the e,xlstence of h at both ends of 11 on
the boundary of nk.

step 2 Boundary shrinkings are executed along the vertical
extensions through vertical reflex edges and virtual vertical reflex
edges. These extensions are fixed after the master bound of each
node in Th is determined. These estensions partition P into a set
of vertically convex sub-polygons. Tree Tv is constructed in a

similar way as Th. Among the nodes of Tv, there is a node
containing the master bound of the root of Th. We assign this
node as the root of Tv. When a boundary shrinking is executed
along an extension, the relevant horizontal chords in the child
part are shortened to the x-position of this extension. Finding
new positions of horizontal chords can be executed on TV using
the static tree set union algorithm of Gabow and Tarjan
[GABOSS]. In [GABO&j, for static tree set union, a rooted tree
with k nodes is given. Each node of this tree is a singleton set.
The LINK(v) operation is to unite a node v in the tree to its
parent. (Actually, LINK(v) is to make a mark on node v.)
FIND(v) will return v if node v is not marked by LINK;
otherwise, the nearest unmarked ancestor of v will be returned
[GABOS5]. We can apply the static tree set union to tree TV. TV
corresponds to the given rooted tree. The boundary shrinking
along an extension (T corresponds to making a mark on the child
node of the edge defined by u. Since the child node v of (r is
uniquely defined, LINK(v) is well defined for the boundary
shrinking along u. Our FIND operation is executed as follows. Let
p be an end point of a horizontal chord h. Assume that p is
originally contained in the node v of TV. When v is marked by

LINK(v), it means that p has been shortened to the position of
the edge connectin
the new position o d

v and its parent. If p is recursively shortened,
p IS the edge incident to the nearest unmarked

ancestor of v. Therefore, FIND(v) which returns the nearest
unmarked ancestor of v can be used to find the new positions of p
which is original1 r contained in v. It is shown in [GABOSJ] that a
sequence of 0 m intermixed LINK and FIND operations can be

1’ executed in 0 m+k) time where k is the number of nodes in the
static tree. Since the number of vertical reflex edges and master
bounds is of O(n), k is bounded by O(n). The number of LINK
operations is at most equal to the number of k. The number of
FIiUD operations is equal to the number of vertical chords which
is also bounded by O(n). Therefore, O(m+k) is bounded by O(n).

Step 4 The ideas for finding maximum matching of a node
of Th have been explained in subsection 5.1. Assume that a
vertical reflex edge ei (or an end of a master bound) and its
corresponding vertical support edge si have been found. We only
explain how the vertical chords vi between ei and si and their
neighbors H(vi) are found.

Assume that. ei and si are on the left chain. The vertical
chords between ei and si can be found as follows. si partitions the
left chain into two pa&: the upper chain and the lower chain.
Starting from si and tracing the upper chain and the lower chain

of si at the same time, a vertical chord exists when two concave
vertices on the different chains have the same x-position. (Note
that the vertices which are visible to the master bound of nk are
not traced and vertical chords crossing the master bound of nk
will not be found.) For a found vertical chord vi, H(vi) can be
found as follows. (1) Assume that vi is the first vertical chord

with respect to si. H(vi) is the set of horizontal edges whose one
end is on the boundary between vi and si and the other end is not.
H(vi) can be found by tracing the boundary from si to vi. (2)
Assume that vi is not the first vertical chord and vi-I is the
vertical chord prior to vi. H(vi) is equal to the union of H(viml)
and the set of horizontal chords found on the boundary between
vi-l and vi. For simplicity, we set si=vo and H(vo)=o.
Procedure FIND-NEIGHBOR(v. ,-l,vi) will return H(vi) where
vi is the vertical next to v. r-l. In FIND-NEIGHBOR. a double
linked list H(vi) is constructed. Two pointers, head(H(vi)) and

tail(lI(vi)), point to the head and the tail of H(vi), respectively.
Since we assume that ei and si are on the left-chain, we trace the
upper chain and the lower chain of si from left to right. If the left

end of a horizontal chord h is found on the upper chain, then h
will be put at head(H(vi)). If the left end of h is found on the
lower chain, then h will be put at tail(H(vi)). If the right end of h
is found on the upper chain, then head(H(vi)) will be removed
and 11 will be set to be unmatched. If the right end of h is found
on the lower ,chain, then tail(H(vi)) will be removed and h will be
set to be unmatched. The unmatched chords arc nut into a set U.
U will be used to find the masimum independent set. The
removed horizontal chord is always on the head or the tail of
H(vi) because horizontal chords never intersect with each other.

For a horizontal chord h”H(vi), assume that the left end of h is
on the upper (lower) chain. It is possible that the right end of h is
found on the lower (upper) chain. However, at the time of the
right end of h is traced by FIND-NEIGHBOR, h is the tail
(head) of the list H(vi).
Alzorithm FIND NEIGHBOR(vi+$
input: Two vertical chords vi-1 and vi, where vi-1 and v.

are on the left-chain, x(vi-I)<x(vi), and vi-l hd
been processed.

output: H(Vi)
begin

/*Assume that vi-I is left to vi and is on the left chain.*/
make an empty list H(vi);

H(Vi)=H(Vi-l);
trace the upper chain and the lower chain of vertices
between vi-I and vi;
for each found concave vertex pi, do:

case A: pi is the left end of a horizontal chord h, then
subcase 1: h is matched, then skip;
subcase 2: pi is on the upper chain, then put
pi at head(H(vi));
subcase 3: pi is on the lower chain, then put pi
at tail(H(vi));

case B: pi is the right end of a horizontal chord h,
then

subcase 1: h is matched, then skip;
subcase 2: pi is on the upper chain, then
delete head(H(vi));
subcase 3: if pi is on the lower chain, then
delete tail(H(vi));

end do;
if h is not matched, then put h into U;

end
In FIND-NEIGHBOR, since H(vi-I) is directly assigned to

H(vi), the horizontal chords common to H(vi) and H(vi-I) have
not to be found again. Therefore, the vertices on the boundary left
to ‘i-1 do not have to be traced for H(vi) and the time required
for finding H(vi) is proportional to the number of vertices on the
upper chain and the lower chain between vi-l and vi. The total
time required for Algorithm MAIN to execute
FIND-NEIGHBOR to find H(vi) for all vi is O(n). The following
property is obvious from Algorithm FIND-NEIGHBOR. This
property will be used for findin
Let pi and pj be two vertices. once FIND-NEIGHBOR traces %.

the maximum independent set.

every vertex in a fixed sequence. pi is traced by

FIND NEIGHBOR before pj if pi is prior to pj in the tracing
sequence.

349

Prooertv 5-l Let pi be a concave vertex between a pair of
neighboring support edge and vertical reflex edge (or between a
support edge and an end of a master bound). Let hit(pi) be the

vertical hit point of pi. The vertical line segment m) slices

the polygon into two pieces. Then, either the vertices on the
left-piece or the vertices on the right-piece of Pihit are
traced by FIND-NEIGHBOR before pi,

The maximum number of matched chords in nk can be
found by procedure MATCHING. The basic ideas have been
explained in subsection 5.1. In MATCHING, a vertical chord v.

1
whose neighbor is empty will be set to unmatched and be put into
U. Otherwise, vi will be matched with the head or the tail of the

list H(vi).
A-
input: A node nk of tree Th
output:

begin
1

2

M: the maximum set of matched chords of nk.
U: the set of unmatched chords.

assign the vertical edge at each end of the master bound of
nk as vertical reflex edges;

trace from the slave bound of nk to find the nearest vertical
reflex edge ei and its corresponding vertical support edge si.

/*Assume that ei and si are on the left chain.*/

trace from si to find vertical chords between ei and si;

do for vertical chords vi between ei and si from left to right
FIND NEIGHBOR(v.
if H(v)=4 then U U;~~~i)’

xI=FiND(head(H(y));
i ;

3

x2=FIND(tail(H(vi));

if xI<x2, then hg=head(H(vi);
else h =tail(H(vi);

B put vi g into M;

remove vi and h
end do;

J3
;

4

5

execute boundary shrinking along ei;
repeat step 2 and step 3 until there is no vertical reflex

%ris not the root, then LINK(nk);
else U=UuH(vi);

end;
In MAIN, the time required for partitioning P into

horizontally convex sub-polygons is O(nloglo n) where n is the
number of vertices of P. The time required or processing each B
node of Th is proportional to the number of vertices of this node
because each vertex in this node is traced constant times. It takes
totally O(n) time to process all nodes of Tb Therefore, the total
time reauired for findine: the maximum matchinn of P is
O(nloglogn).
Theorem 5-2 The total time required far Algorithm MAIN
to find the maximum matching of chords of a simple polygon P is
Ofnloelaen) where n is the number of vertices of P.

’ xs’fdr a horizontally vertically) convex polygon or a
convex polygon, it takes 0 n) I time to find the maximum
matching of chards because we do not have to partition it into
sub-polygons. This time bound is an obvious lower bound.
Theorem 5-3 Al orithm

P
MAIN is optimal for finding the

maximum matching o chords of a horizontally (vertically) convex
polygon. ‘,

fi Maximum Nonintersectine Chords

In this section, we will show that, without constructing the
bipartite graph of chords, the maximum independent
(nonintersecting) set of chords can be found in linear time based
on the matched pairs and unmatched chords found in Section 5.

Far any horizontal or vertical chord u ot I’, u slices the
boundary of P into two pieces. One piece contains the master
bound and this piece is the main boundary of u, denoted as
mb(u). The other piece is the secondarv boundm of u, denoted
as sb(u). Two chords have the same orientation if they are both
vertical or both horizontal. orient(u) is a set of chords such that,
for any t6orient(u), t is on sb(u) and t has the same orientation as
u. For any chord u, sb(u) is consistent if every unmatched chord
u’ whose both ends are on sb(u) has the same orientation as u.
i.e., u’eorient(u). Boundary shrinking has been defined in Section
4 to eliminate the vertical reflex edge. In this section, boundary
shrinking can be executed along a vertical chord or a horizontal
chord. After eliminating sb(u) by boundary shrinking, the chords
intersectin with u will not exist in the new polygon. We use
NH(u) to f enote the set of chords intersectinc with u. If a chord
is matched with an element in NH(u) but botl ends of this chord
are not on sb(u), then this chord will be an unmatched chord
after boundary shrinking of sb(u). Let W be the set of unmatched
chords which are caused by eliminating sb(u). We propose the
following algorithm to find the maximum nonintersecting chords.
Algorithm INDEPENDENT(P)
input : A simple palygon P
output : The set S of maximum nonintersecting chords of P
steps
1 Use Algorithm MAIN to find the maximum matching M

and the set U of unmatched chords. U is organized as a
stack and the unmatched chords in U are sorted such that
the first found unmatched chord is on the top of U and the
last found unmatched chord is at the bottom of U;

2 do until U is empty
uI=poP(U);
if sb(uI) have been shrinked, then repeat from 2;
traverse sb(uI) to find orient(u) and NH(u);

find W from NH

boundary shrinking along uI;

3 end.
In order to prove that the above al orithm correctly find the

maximum matching, we will prove the fo q
(A)

lowing:
Let M be any maximal matching of a simple polygon P and
let U be the set of unmatched chords with resoect to M. We

PI

((2

0’)

prove that, for any ueU, if sb(u) is consistent, then u and
orient(u) are in a maximum independent S of P. This will
be proved in Corollary 6-l and Lemma 6-1. In addition, we
show in Lemma 6-5 that, sb(ul) is consistent where u1 is
the first unmatched chord output by Algorithm MAIM.
After eliminating sb(uI), we have a new polygon. Let S’ be
a maximal independent set of the new polygon. We prove
that S={uI}Uorinet(ul)US’. This is proved in Lemma 6-3.
This lemma tells us that S can be found bv recursivelv
finding S’.

I

In order to find S’, we first try to find a maximal matching
and the relevant unmatched chords of the new polygon. In
Lemma 6-2, we prove that, after eliminating sb(ul), the set

of remaining matched chords is a maximal matchin
new polygon. That is, M1=M-{chords on sb(ul } B

of the
is a

maximal matching of the new polygon. Also in Lemma 6-2,
we prove that WIUU-({uI]Uarient(ul)) is the set of

unmatched chords with respect to MI where WI is the set
of unmatched chords caused by deleting sb(ul).
We show that, if we order elements of U-({ul}Uorient(ul))
according to their outputting sequence and put WI at the
beginning of U-({uI}Uorient(uI)) ta have a new sequence
U’=[w I ,... wk,u2 ,..., u,], then sb(uf) is consistent where uf is
the first element in U’. (Nate that uf=u2 if W=&) This is
proved in Proposition 6-1. By Lemma 6-1, we can put uf
and orient(uf) into S’.
Let B= V,H,E)

matching of Ii
be a bipartite graph, M be any maximum

U be the set of unmatched nodes with respect to
M, S be a set df maximum independent set of B and N be a set of
minimum node cover of B. We introduce two theorems about
bipartite graphs.

350

Theorem 6-l (PAPA821 M is a maximum matching of B if and
only if there does not exist any augmenting path with respect to 1”
I”1 .

Theorem 6-2 fK?n~ig-Ermrv?~v Th.) The size of M is equal to
thesizeofN,i.e., JM]=]N .

If we remove N from B then the remaining nodes in B form
an indeoendent set. Becauie N is minimum, (HUV)-N is a
maximum independent set. By definition of node cover and
Theorem 6-2, for any matched pair (v,h)eM, exactly one of v and
h belongs to N. The following corollary follows directly.
Corollarv 6-l For any maximum independent set S of nodes in
B, we have UCS and, for any matched pair (v,h)eM, either veS or
heS.

From Lemma 6-l to Lemma 6-3. we still assume that M is
an arbitrary maximum matching of chords of a simple polygon P
and U is the set of unmatched chords with respect to M.
Lemma 6-l Let ueU be an unmatched chord of a simple polygon
P. If sb(ul is consistent. then there is a set S of maximum
nonroftors’ecting chords such that ueS and orient(u)cS.

By Corollary 6-1, there is a set S of maximum
nonintersecting chords such that ueS. Let uieorient(u). If ui is
unmatched, then, by Corollary 6-1, uieS. If ui is matched with wi
and I+@, then, by Corollary 6-1, w+S. For all matched
uieorient(u) and u+S, we remove corresponding wi from S and
put ui into S. After replacing, the size of S is not changed. For

any chord wj in P having the different orientation as u, there are
three possibilities: both ends of wj are not on sb(u); only one of
two ends of wj is on sb(u) and both ends of wj are on sb(u). If

neither ends of wj are on sb(u), then wj does not intersect with
any i+eorient(u). If only one end of wj is on sb(u), then wj
intersect with ueS and wjeS. If both ends of wj are on sb(u), then,

by our assumption that sb(u) is consistent, Wj is matched with a
chord ujeorient(u) and, owing to our replacing, wj’S. Therefore,
for any uieorient(u), ui does not intersect with any other chord in

S and S is independent. Q.E.D.
By Lemma 6-1, if u is unmatched and sb(u) is consistent,

then we can put u and orient(u) into S. After that, we should not
consider u and orient(u) any longer. Therefore, we execute
boundary shrinking alon u to eliminate sb(u). After eliminatin
sb(u) by boundary shrm mg, the chords intersecting with u wil ii. 4
not exist in the new polygon. Let P’ be the new polygon. Let M’
be the set of remaining matched chords after boundary shrinking,
i.e., M’={vihj (v.h.EM, both ends of vi and both ends of h. are on

’ 1 I
mb(u).}. For any zeNH(u), z is matched with a chord w where w
has the same orientation as u. If weorient(then w is
eliminated. If w@orient(u), then w is in P’, but does not belong to
any matched pair in M’ because z is deleted; that is, w is
unmatched with respect to M’. Let W={w(w is matched with
zeNH(u) and weorient(u Let U’ be the set of unmatched chords
after boundary shrinking, i.e., U’=WUU-({u}Uorient(u)).
Lemma 6-2 Let II be an unmatched chord of a simple polygon P
such that sb(u) is consistent. Let P,‘, M’ and U’ be the polygon
resultin
matche if

by executing boundary shrmking along u, the remaining
chords in P and unmatched chords of P’, respectively.

Then M’ is a maximum matching of chords of P’ and Ii’ is the set
of unmatched chords with respect to M’.
Proof It is obvious that M’ contains only matched chords of
P’. If M’ is not maximum, then there is at least two chords ui and

uj in U’ such that there is an augmenting path between ui and u..
It is impossible that both ui and uj are in W because all chords ih
W have the same orientation. It is impossible either that both ui
and uj are in U-({u}Uorient(u)) because, by Theorem 6-1, there
is no augmenting path between any ui and u. in U. Therefore, we
have uieW and ujeU-({u}Uorient(u)). Sincle ui intersects with
NH(u), ui is on an alternating path starting from u. Therefore,

there is an augmenting path between u and ui, which is a
contradiction because M is a maximum matching a;d both u and
uj are in U. Q.E.D.

Lemma 6-3 Let ueU. Assume that sb(u) is consistent. Let
P’=mb(u)u{u} be the polygon resulting from boundary shrinking
along u and S’ be any set of maximum nonintersecting chords of
P’. Then S’U{u}uorient(u) is a maximal set of non-intersecting
chords of P.
Proof

i

By the definition of boundary shrinking, no chord in
u}Uorient(u)
‘U{u}Uorient(u

intersects with any chord in P’. Therefore,

2
is a set of nonintersecting chords. Assume that

the size of S’U ujUorient(u) is not maximum. By Lemma 6-1,
there is a maximum set S of nonintersecting chords such that
({u}Uorient(u))cS and IS I>]S’~{u}t~orient(u) 1. Assume that
T=S-({u}Uorient(u)). T is a set of nonintersectin chords of P’
because no chord on sb(u) is in T. We have] T] >] 5 1. Since S’ is
a maximum set of nonintersecting chords of P’, we have
(S’ 12 (T (, a contradiction. Q.E.D.

In the following, we will show that, for the original polygon
or for the polygon resulting from a sequence of boundary
shrinkings, how to find an unmatched chord u such that sb(u) is
consistent. Let us consider Algorithm MAIN in subsection 5.2.
For each output w (either a matched pair or an unmatched chord)
of MAIN, we give w a number to indicate the outputting sequence
of w. This number is the procasinp number of w, PN(w). If w is
an unmatched chord u, then PN(u)=PN(w). If w is a matched
pair vihj, then PN(vi)=PN(hj)= PN(w). The processing number

of each chord is fixed during the whole process of finding the
maximum independent set in spite of the boundary shrinkings.
Let P’ and M’ be the polygon and the maximum, matching
resultin
S&I&J o B

after a sequence of boundary shrinkin
u in P’ is a subset of the original sb(u) o

f, respectively.
u m P. Based

on sb(u) defined in P’, orient(u) and NH(u) can be defined for u
in P’ accordin ly. In the following, we wilI always use P,M,U and
S to denote t e original polygon, the maximum matching, the !l
unmatched chords with respect to M and the maximum
independent set, and use P’,M’,U’ and S’ to denote the polygon,
the maximum matching, the unmatched chords with respect to
M’ and the maximum independent set resulting from a sequence
of boundary shrinkings. In the following, we assume that
u=[y2’...’ uk] is ordered in the ascending order of processmg
numbers. This sortin

1
sequence does not require any extra time

5s~;; 2 exactly t e outputting sequence.
Let ueU be any unmatched chord of the

original polygon P. For any unmatched chord uieU whose both

ends are on sb(u), PN(ui)<PN(u).
Proof If u is vertical, then, by Algorithm MATCHING, II is
left-free or right-free at the time of u being processed for
matching. Therefore, every vertex on sb(u) should have been
traced before u. If u is horizontal, by Algorithm
FIND NEIGHBOR, we know that every vertex on sb(u) should
have 6&n traced before u is found to be unmatched. Therefore,
for any ui whose both ends are on sb(u), PN(ui)<PN(u). Q.E.D.
Lemma 6-5 Let U=[u1,u2,...,uk] be ordered in the

ascending order of processing numbers. Then, sb(ui) is consistent.
Proof By Lemma 64 we know that, for any unmatched
chord u+U, if both ends of ni are on sb(ul), then
PN(ui)<PN(ul). Since U is ordered in the ascending order of
processing number, there is no unmatched chord on sb(u1). By
definition, sb(u1) is consistent. Q.E.D.

By Lemma 6-1 and 6-5, we know that we can put uleU

and orient(u1) into S. If we execute boundary shrinking along ul,

then a new polygon P’ and relevant M’ and U’ will be resulted.
Let W’={w(w is matched with seNH(ui) and w@orient(u)}. We

have U’=W’UU-({ul}Uorient(ul)). Let W’=[w1,w2,...,wd] be an

arbitrary sequence of elements in W’. If we put W’ at the
beginning of U-({u,}Uorient(u,)), then we have

U1=[W1’W2,...,Wd,U2’UZ+1’“’ uk]. We shall show that sb(w1) is
consistent so that we can execute boundary shrinking along wl.In
addition, the boundary shrinking along w1 will cause more
unmatched chords wi and we still have to prove that Sb(wi) is
consistent. Lemma 6-6 and Proposition 6-1 are dedicated to
prove that sb(wl) and sb(wi) are consistent.

351

If we execute boundary shrinking along WI, we will have a

new polygon P’, M2 and U*. Let W”=[wi,...,w~] be the

unmatched chords caused by boundary shrinking along WI. We

say that W’ is directly caused by uI and W* is indirectly caused

by ui. For any element in weW’UW*, w has the same orientation

as ul. It will also be proved later that, for any weW’UW*, sb(w)

is consistent. If we execute boundary shrinking along weW’UW*,
then more unmatched chords might be caused indirectly by uI. It
is easy to see that, for any w caused directly or indirectly by uI,

w has the same orientation as uI. If we recursively repeat

boundary shrinking along the unmatched chord caused directly or
indirectly by uI, then no boundary shrinking along u2 will be

executed until all unmatched chords caused by uI are eliminated.

If we repeat this process to eliminate unmatched chords
‘1 !“23”e3ui-1 I then we will have a polygon P’ resulting by a
sequence of boundary shrinkings along uI to uiel and along
unmatched chords caused by ul to ‘i-2. Let
U”[W1’W2 ,..., Wd,Ui,Ui+l (... Uk] be the relevant unmatched chords
of P’. We know that W=[w w I, 2,...,wd]cU is caused (directly or
indirectly) by I+-1 where W=[wl,w2,...,wd] is an arbitrarily
‘sequence of W. In the following lemma and proposition, we are
g;io;e that, for any WEW, sb(w) is consistent.

Let W=[wl,w2,...,wd] be the set of

unmatched chords caused directly or indirectly by boundary
shrinking along ui-I. If an unmatched chord uje[ui,ui+L,...,uk]
which has different orientation as wf, then no ends of uj are on

sb(wf) for any wfeW.
Proof Omitted in this conference paper.

%Zition 6-l Let uqw 1’ 2’ wW u. u. d’ 1’ ,+~‘--.“kl
where W=[wl,w2,...,wd] is the set of unmatched chords caused
directly or indirectly by the elimination of uiml. For any wcW,

sb(w) is consistent.
Proof By Lemma 6-6, there is no unmatched chord uj on

sb(wf) such that uj has different orientation a~ wf By definition,

sb(wf) is consistent. QED.

Theo-rem 6-3 Algorithm INDEPENDENT correctly finds
the maximum nonintersectinrr chords.
Proof By Proposition 6-1, we know that, after executing
boundary shrinking along an unmatched chord uiml of the
original polygon such that sb(uidl) is consistent, the next
unmatched chord whose secondary boundary is consistent can be
found by arbitrarily choosing an element from W caused by ui-L.

After all unmatched chord caused by ui-I are eliminated, the
remaining unmatched chord in the polygon is U’=[U~,U~+~,...U~].

By Lemma 6-4, it is easy to see that sb(ui) is consistent.

Therefore, we can execute boundary shrinking along ui.

Repeatedly executing boundary shrinking along the unmatched
chord whose secondary boundary is consistent, we can find a
maximum set of nonintersecting chords. Q.E.D.

Step 1 of INDEPENDENT(P) requires O(nloglogn) time.
Steps 2 and 3 require linear time. The boundary shrinking along
u1 in step 4 is actually a three-way splitting of the finger search
tree of P [TARISS]. There is no further splitting for. the vertices
on sb(ui). Therefore, the time required for boundary shrinkings

along ul’s is bounded by O(n). Totally, we need O(nloglogn)

time. After the maximum set S of nonintersecting chords of P is
found. we then. as described in Section 2. draw these chords to
partition P into’a set of sub-polygons such that there is no cogrid
vertices in any sub-polygon. The minimal partition of P is
equivalent to partitioning each sub-polygon into minimal

rectangles. The minimal partition of each sub-polygon can be
found by drawing a vertical line through each concave vertex in
this sub-polygon as described in Section 2.

Section 7 Lower Bounds of the Partition Problem

In this section, we discuss the lower bound problem for
partitioning a polvgon with holes. We prove that O(nlogn)
operations are required to solve the partition problem for
poly ons with holes by reducing the sorting problem to this
problem. The reducing strategy is inspired by [ASAN86].

Consider a set X={xI,x2,...,xn} of n distinct positive
integers. Let m and M be the smallest and the bi
X, respective1 P

est integers in

P
. A polygon P is constructed as 0110~s. First, a

rectangle R= (m,O),(M+c,S)
h

is constructed where t is a small
fraction, e.g., 0.1, (m,O) is t e lower-left corner, and (M+c,3

h
is

the upper-right corner of R. We then draw two vertical re ex
edges X1 and X2 along the vertical sides at m and M+c as shown
in Figure 7-1.

i.---$M+c,3)

Im.0) I-1
\---I-,

Figure 7-l
For each x$X--(m,M}, a rectangular hole h,=[(x,,l),

(xi+c,2)] is added inside R. (See Figure 7-2(a).) There a;e tot’ally
n-2 holes in R. The polygon P is equal to the union of R and hi.

(4
--J

(&O)

(b)
Figure 7-2

The minimum partition of this polygon is shown in Figure
7-2(b). In Figure 7-2(b), there are n+l rectangles in the
partition. Among these n+l rectangles, there are n-l rectangles
whose upper side is at height 2, lower side is at height 1, left side
is at xi-t6 and right side is at xk. It is obvious that xk is the

integer-succeeding xi. We can sort integers in X using these n-l
rectangles as follows. We construct an array NEXT(2,n-1). For
each rectangle [(xi+~,l),(xk,2)], we set NEXT(l,i)=xi and
NEXT(2,i)=k (see Figure 7-3). That is, we store xi at the ith

element and set a pointer from the ith element ‘to the kth
element. Tracing NEXT in linear time, we can find the successor
xk of each xi. -

g-e -i-th k-th

FT!!E!EF
Figure 7-3 Array NEXT

Lemma 7-I O(nlogn) is a lower bound for the partitioning
problem for polygons with holes.

3 Conclusion

We have proposed an algorithm to solve the problem of
finding the maximum matching of the bipartite graph of the
intersecting chords of a simple polygon. The partition problem of
simple polygon can be solved in O(nloglogn) by applying our
results. This time bound is equal to the time required for
triangulating a non-rectilinear simple polygon. We have also
shown that the lower bound for the minimum partition problem
for polygons with holes is O(nlogn) which is the same as
triangulating a non-rectilinear polygon with holes [ASAN%].

352

Though triangulation problem is not a minimization problem, it
seems interesting to note the similarities between the time
complexities of the minimum rectangular partition problem and
the triangulation problem.

References

(AH0741

(ASAN

[CHAI81]

[FERRS4]

(FRAN841

[GABOSJ]

[GLOV67]

[GOURS3]

[HEGE82]

(HOPC73j

[IMAISG]

[LIPS791

(LIPSSI]

[MEHL84]

[NAHASS]

(OHTSSP]

(OHTSS31

(PAPA821

[TARJS8]

A.V. Aho, J.E. Hopcroft and J.D. Ullman~ The
De&n and Analvsis of Comnuter AlPonthms,
Addison-Wesley, Reading, Mass., 1974.
T. Asano, T. Asano, and R. Y. Pinter, ‘Polygon
Triangulation : Efficiency and Minimality’, Journal
of AI.zorithms 7(1986), 221-231.
S. Chaiken, D.J. Kleitman, M. Saks, and J. Shearer,
‘Covering Regions by Rectangles’, SIAM Journal on
Algebraic and Discrete Methods 2(1981), 394410.
L. Ferrari, P.V. Sankar, and J. Sklansky, ‘Minimal
Rectangular Partition of Digitized Blobs’, Computer
z:is;: Granhics. and Imaee Processlog 28(19S4),

D.S. Franzblau. and D.J. Kleitman, ‘An Algorithm
for Covering Polygons with Rectangles’, InfoTmatioo
and Control 63(1984), 164-1S9.
H.N. Gabow, and R.E. Tarjan, ‘A Linear-Time
Algorithm for a Special Case of Disjoint Set Union’,
Journal of CornmIter and Svstem Scienoes 30(1935).
209-221.
F. Glover, ‘Maximum Matching in Convex Bipartite
Graph’, Naval l&s. LoPist. Quart. 14(L967),
313-316.
K.D. Gourley, and D.M. Green, ‘A
Polygon-t@Rectangle Conversion Algorithm’, IEEE
Commuter Graohica and ADDkations 3(1983), 31-36.
A. Hegediis, ‘Algorithms for Covering Polygons by
Rectangles’, Commuter Aided Design
257-260.

14(1982),

E. Hopcroft, and R.M. Karp ‘An n5/2 Algorithm for
Maximum Matchings in bipartite Graph’ SIAM
Journal on Comouting 2(1973), 225-231. ’ -
H. Imai, and T. Asano, ‘Efficient Algorithms for
Geometric Graph Search Problems’, SIAM Journal
on Comoutins 15(1986), 478-494.
W. Lispki, Jr., E. Lode, F. Luccio, C. Muganai, and
L. Pagli, ‘On Two Dimensional Data Organization
II,’ Fundamenta Informaticae 2(1979), 245-260.
W. Lipski, Jr., and F.P. Preparata, ‘Efficient
Algorithms for Finding Maximum Matchings in
Convex Bipartite Graphs and Related Problems’,
Acta Informatica 15(1981), 329-346.
K. Mehlhorn, Data Structures and Algorithms 1:
Sortine and Searching, Springer-Verlag, Berlin,
1984.
S. Nahar, and S. Sah;b;;ast Algorithm for Polygon
Decomposition’,
y-

Transactions on

‘Minimum Partitioning of Rectilinear Regions’~
Transaction of Information ProcesssinE %cietv oi
J&p& 1963.
C.H. Papadimitriou, and K. Steiglitz, Combinatorial
Ootimization : Aleorithms and Com&xite,
Print&--Hall, Inc., New Jersey, 1952.
5.E. Tarjan, and C.J. Van Wyk, ‘An O(nloglogn)
time Algorithm for Triangulating Simple Polygons’,
SIAM Journal on Comnutins 17(1988), 143-178.

353

