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1 Introduction 

The minimum rectangular partition problem for a simple 
rectilinear polygon is to partition the interior of a simple 
rectilinear polygon into minimum number of rectangles. This 
problem is related to VLSI mask generation. A VLSI mask is 
usually a piece of glass with a figure engraved on it. The engraved 
figure can be viewed as a rectilinear polygon on the digitized 
plane [OHTS82]. In order to engrave the figure on the VLSI 
mask, a pattern generator is often used. A traditional pattern 
generator has a rectangular opening for exposure, which exposes 
rectangles onto the mask. Therefore, the engraved figure has to be 
decomposed into rectangles such that the pattern generator can 
expose each of these rectangles. The number of rectangles will 
determine the time required for mask generation. Therefore, 
decomposing a rectilinear polygon into minimum number of 
rectan 
mask P 

les is an important problem for optimal automated VLSI 
abrication. The decomposition can be classified into two 

types depending on the resulted rectan 1e.s. If the resulted 
rectangles can not overlap with % eat other, then the 
decom”psition is a partition.- If the resulted rectangles overlap 
with each other, then the decomposition is a m. Both 
partitioning approach and covering approach for VLSI mask 

f 
eneration have been discussed in previous researches such as 
LIPS79, OHTS82, GOUR83, FERR84, IMA186, 

partitioning problems and [CHAISl, HEGE82, 
covering problems. In this paper, we shall only 
partitioning problem for simple rectilinear polygons. The time 
complexity of our approach is O(nloglogn). The partition problem 
for convex rectilinear polygons or vertically (horizontally) convex 
polygons can be solved in linear time which is optimal. As for a 
rectilinear polygon with holes, we prove that O(nlogn is a lower 
bound, though, as far as we know, there is no algorit h m achieve 
this bound. 

2 Previous Results 

The minimum rectangular partition problem has been 
studied in [LIPS79, OHTS82, OHTSSJ, FERR84, IMAI86]. Some 
of their results are discussed below which are the starting point of 
our research. 

A rectilinear oolvgon on the plane is a polygon whose sides 
are either vertical or horizontal. A simple rectilinear nolvmn is a 
rectilinear oolvgon which has no windows (holes) in it. The 
minimum ;ec~a~dar Dartition nroblem defined on a simple 
rectilinear polygon can be stated as follows: Given a simple 
rectilinear polygon P on the plane, find a minimally sized set of 
non-overlapping rectangles such that every rectangle is contained 
in P and the union of all rectangles is equal to P. In the following, 
for simplicity, polygons always denote rectilinear polygons and 
partitioning always denotes rectangular partitioning. 
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A concave vertex vl : (xl, yl) of P is a vertex having a 270’ 

interior angle. A reflex edge of P is an edge connecting two 
concave vertices. Two concave vertices v 1 : (x,7 YJ and v2 : (x2, 
y2) which do not share the same edge of P are u if they are 

cohorizontal (y1=y2) or covertical (x1=x2). A M of P is a line 

segment contained in P connecting two cogrid vertices. If a 
rectilinear polygon contains no chords, then a minimal partition 
can be easily obtained by using the followin 
(1) For each concave vertex, select one o P 

principle: 
the edges. Note that 

(2) 
there are two edges intersecting at each concave vertex. 
Extend this edge until it hits another such extended edge or 
a boundary edge of P. 
Throughout this paper, we shall assume that our simple 

polygons contain chords. Ferrari, Sankar and Sklansky [FERR84] 
showed that the size of a minimal partition is equal to n-b+1 
where b is the size of the largest set of nonintersecti’ng chords. 
Consider Figure 2-l(a). The set of chords is {ab,ef,gh,ij, ch, di}. 
The largest set of nonintersecting chords is {ab,ef,gh,ij}. Using 
these nonintersecting chords, a minimal partition can be 
constructed as shown in Figure 2--l(b). Note that there might be 
other approaches to solve the minimal rectangular partition 
problem. However, this approach which is based upon finding a 
largest set of nonintersecting chords will definitely lead to a 
minimal solution. 
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Figure 2-1 

(b) 

In IFERRS41, it was shown that the minimum partition of 
any simple polygo; P containing chords can be found ii six steps: 
1 Find chords of P. 
2 Construct a bipartite graph B=(V, H, E) as follows : A 

I 1 Each vertex vi in V corresponds to a vertical chord i. B 

Each vertex hj in H corresponds to a horizontal chord j. (C) 

Each edge vihi in E corresponds to the intersection of chords 

iandj. - 
3 Find a maximum matching (PAPA82 M of B. 
4 Find a maximum independent set [ IJ APA82] S of B based 

on M. The nodes in S are not adjacent to each other and, 
therefore. the chords corresnondine to nodes in S are 
nonintersecting chords. Denoti the sige of S as b. 

5 Draw b nonintersectine chords corresnonding to S to divide 
P into b-t1 subpolygois such that each su&olygon has no 
cogrid concave vertices. 

6 Since each subpolygon contains no chords, a minimal 
partition of each subpolygon can be found by using the 
principle stated in the previous paragraph. 
In [OHTS82] and FERR84], Hopcroft and Karp’s algorithm 

I [HOPC73] was used to md the maximum matching of a bipartite 
graph. Hopcroft and Karp’s algorithm was designed for general 
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bipartite graphs and runs in O(n2’5) time where n is the number 
of vertices in the bipartite graph. Imai and Asano [IMAISG] 
proposed another algorithm to find the maximum matching 
without constructing the bipartite graph. Imai and Asano’s ^_ 
algorithm runs in O(no5N) time where N=min(m,nlogn] and m 
is the number of edges in the bipartite raph. Imai and Asano’s 
algorithm runs faster than Hopcroft an ii Karp’s algorithm. But 
Imai and Asano’s algorithm is not the most suitable one for 
simple polygons (without holes). Some special properties of the 
chords of a simple polygon have not been explored. 

As in (IMAI86], we shall not construct the bipartite graph. 
We shall make a detailed analysis of the properties of the chords 
of a simple polygon. Utilizing these special properties, we can 
have an efficient algorithm to find the maximum matching. Our 
algorithm requires O(nlogIogn) time. After the maximum 
matching is found, we can find the maximum nonintersecting 
chords in linear time and, consequently, the partition problem for 
simple polygons can be solved in O(nloglogn) time. 

3 Maximum Matching of a Soecial Bioartite Graoh 

In this section, we shall introduce a theorem which was 
initially discussed by Glover [GLOV67] and, then, generalized by 
Lipski and Preparata [LIPSSl]. We shall also show that this 
theorem can be applied to the bipartite graph derived from the 
chords of a simple polygon. 

Consider a bipartite graph B=(V,H,E). We use H(vi) to 
denote the neighbors of a vertex vi in V and V($) to denote the 
neighbors of a vertex h, in H. 
Theorem 3-l (Lipski ‘and Prenarata Let B=(V,H,E) be a 
bipartite graph.. If (vi,h,)eE and H(v&H(vi), for all vieV(her), 
then there is a maximumvmatching containing (vi,h ). * - 

We define that Hg(vl)=(hglhg~H(vi) and H vi)CH(vj), for F: 
all vjeV(hg)}. By Theorem 3-1, for any hg~Hg(vi), there is a 
maximum matching containing (vi,hg). For a bipartite graph 
derived from chords of a simple polygon, we shall prove that there 
always exists a vertical chord vi such that Hg(vi)#4 and we can 
find vi and hgeHg(vi) efficiently. In the following, we shall define 
left-free and rieht-convex and show that, for any vertical chord 
-ifs left-free and H(v,)#$ is right-convex, then (vi)#~ H 
and the horizontal chord h EH (v.) where hg has the s 

g g’ 
% 

rieht end in H(v$ 

Consider a vertical chord vi of a simple polygon P. vi slices 
the boundary of P into two parts. One part is left to vi and the 
other part is right to vi as shown in Figure 3-l. We define that vi 
is left-fret? if there is no other vertical chord whose both ends are 
on the left part. For any two vertical chords vi and v., if vi is 
left-free and x(vj)-<x(vi), then vj must be higher than tJhe upper 
end or lower than the lower end of vi. Consequently, V. does not 
intersect with any horizontal chord in H(vi), 1 

V. 
J 

r s-4 
Figure 3-l 

J 

Lemma 3-l 
Figure 3-2 

Let vi be a left-free vertical chord. For any 
vertical chord vj, if x(vj)ix(vi), then H(vi)nH(vj)+ 
Proof 
QED. 

Immediately proved from the definition of left-free. 

The definition of right+onvex is more complicated. Let vi 

be a vertical chord of a simple polygon. Let hl,h2,...,hk be the 
horizontal chords of H(vi) sorted in the descending order of 
y-position. Let al,a2 ,..., k a be the right ends of hl,h2, ,.., hk, 

respectively. If we start from al to walk along the boundary of P 

in the clockwise direction, then the order of occurrences of right 
ends ais on the boundary is still in the sequence [al’a2’...?ak] 
because P is simply connected. (See Figure 3-2.) 

The ripht-boundary of H(vi) is a piece of the bouudary of 

P, which starts from al passing through all ai, l<i<k, and ends 
at ak. H(vi) .is rizht+onvex if there is no vertical reflex edge on 
the rizht-boundary of H(v,). H(v,) is right-concave if it is not 

I 

right-convex, i.e., there exists at least one vertical reflex edge on 
the right-boundary of H(vi). The following lemma gives a 
sufficient condition for the existence of a vertical reflex edge on a 
piece of boundary. The proof of this lemma is not difficult but is 
very tedious. Therefore, we omit it. 
Lemma 3-2 Let AP be a piece of the boundary of a simple 

polygon P such that the interior of P is on the left side of AP. Let 
al and a3 be two concave vertices and a2 be any vertex on AP 
such that, if we traverse AP in clockwise direction, the 
occurrences of these three vertices on AP are in the sequence 
[aI,a2,a3] and the heights of them are y(al)>y(a2)>y(a3). There 
is a vertical reflex edge between al and a3 on AP if one of the 
following conditions is true. (a) x(al)>x(a2) and x(a,)<x(a,). (b) 

x(al)=x(a2) and x(a2)‘x(a3) (c) x(a,)>x(a,) and x(a2)=x(a3). 
Lemma 3-3 Let H(vi) be right-convex. Then either the 
highest chord or the lowest chord in H(vi) has the shortest right 
end among all chords in H(vi). 
Proof Let A=[al, a2, . . ..a.] be the set of right ends of H(vi) 
sorted from high to low. Assume that neither the highest chord 
nor the lowest chord has the shortest right end. Assume that af, 
l<f<k, is the shortest right end. We have y(al)>y(af)>y(ak). 
The right-boundary of H(vi) connects aI,af and ak. The 
occurrences of al,af and ak on the right-boundary of H(vi) are in 
the sequence [al,af,ak]. By Lemma 3-2, there exists a vertical 
reflex edge on the right-boundary of H(vi), a contradiction. 
Q.E.D. 

Let vi be a vertical chord such that H(vi) is right-convex. 
Consider a vertical chord vj, x(vi)<x(vj). We are going to prove 
in Lemma 3-4 which is the key lemma in this section that, if v. 

J 
intersects with the shortest horizontal chord in H(vi), then v. 

J 
intersects with every horizontal chord in H(vi). In order to prove 
Lemma 3-l, we first discuss some properties of the ends of vj. Let 
$ be the shortest chord in H(vi). Assume that vj intersects with 
hg. Let pl and p2, respectively, be. the upper end and the lower 
end of vj. (See Figure 3-3.) Consider the vertical edge 6 of p2. p2 
is the higher end of t. Let pi be the lower end of t. We have 
y(p2)>y(pi) as shown in Figure 3-3(a). Then, consider the 
horizontal edge X of pa. If pi is a convex vertex, then p.$ is the 
right end of A and x(p$>x(p$ where p2” is the left end of X as 
shown in Figure 3-3(b). 1 
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Lemma 3-4 Let H(vi) be right-onvex and hg be the 
chord in H(vi) having the the smallest right end. For any vertical 

chord vj, x(vj)>x(vi), if vj intersects with hg, then v. intersects 
with every hieH(vi). 

J 

Proof Assume that hfEH(vi) and hf does not intersect with 
v.. Let pI and p2 be the upper end and the lower end of vj, 

rdspectively. Let af be the right end of hf. By Lemma 4-1, hg is 
the highest chord or the lowest chord in H(vi). Without loss of 
generality, we assume that h is the highest chord in H(vi). Let 
AP denote the right-boun ary 9 of H(vi). Since vj does not 
intersect with hf, we have y(p2)>y(af) and, therefore, p2 and af 
are concave vertices on AP. Let pi be the lower end of the 

- 
vertical edge of p2. We have x(p2)=x(p2). (1) If p$=af, then p2af 

is a vertical reflex edge on AP, a contradiction. (2) Assume that 
af#p& we have y(p2)>y(p2)>y(af). If pi is a concave vertex, then 

-9 p2p,, IS a vertical reflex edge on AP, a contradiction. If p2 is a 
convex vertex, then, assuming that pz is the vertex clockwise 

succeeding pi on AP, we have x(p2)>x(p!$ and x(af)>x(pz). 

Since y(p2)>y(p2)=y(p$>y(af), by Lemma 3-2, there is a 
vertical reflex edge between p2 and af on AP, a contradiction. 
Q.E.D. 

Based on Lemma 3-3 and 3-4, we immediately have the 
following lemma. 
Lemma 3-5 Let vi be a vertical chord and H(vi) be 

right<onvex. Let hg be a horizontal chord with the smallest right 

end in H(vi). For any vertical chord v j, x(vi)<x(vj), if hgeH(vj), 

then H(vi)cH(vj). 

Lemma 3-1 and lemma 3-5 show that, for a left-free 
vertical chord vi of a simple polygon P, if H(vi)## is 
right-onvex, then hgeHg(vi) where hg has the shortest right end 
in H(vi). Fiieht-free and left-convex can be defined in a 

symmetric manner as left-free and right convex. If vi is 

right-free and H(vi) is left-convex, then Lemma 3-l to Lemma 
3-5 are also true with suitable modifications. For simplicity, we 
neglect the proofs. We conclude our discussion in this section with 
the following theorem. 
Theorem 3-2 Let vi be a left-free (right-free) vertical 

chord of a simple polygon P and H(vi)#$ be right-convex 

i 
left-convex). Let B=(V,H,E) be the bipartite graph derived 
rom the chords of P. There exists,a maximum matching M of B 

such that vihg is in M, where hg IS the chord with the shortest 

right (left) end in H(vi). 
Proof By Lemma 3-l and Lemma 3-5, for any v., if 
hgeH(vj), then H(vi)cH(vj). By Theorem 3-1, there !s a 
maximum matching M such that vihgeM. Q.E.D. 

3 Maximum Matchine of a Horizontally Convex Polvgon 

In this section, we shall explain how to find the maximum 
matching of a horizontally convex polygon. The technique we 
illustrate will be later extended to simple polygons. 

Consider a simple polygon P. P is horimntallv convex if, for 
any horizontal line segment, two ends of this line segment are 
contained in P implies that this line segment is contained in P. 
The polygon in Figure 4-l(a) is a horizontally convex polygon. 

s4C;-d r S41yd rT’ 

(4 tb) 
Figure 4-1 

In a horizontally convex polygon, two horizontal support 
edges separate the boundary of the polygon into two chains of 
vertices, a left chain and a rirrht chain. Consider a vertical reflex 
edge ei and a vertical support edge si on the same chain. Assume 
that there is no other support or reflex edges between ei and si on 
the same chain. For ei and si on the left chain, a vertical chord vk 

is located between ei and si if x(si)<x(vk)gx(ei). For ei and si on 

the right chain, a vertical chord is located between ei and si if 
x(sj)>x(vk)lx(ei). The eliminating of the boundary right (left) to 
the extension of a vertical edge is called the boundarv shrinking 
along this extension. The boundary shrinking along the extension 
of e2 is shown in Figure 4-l(b). 

In general, for a given horizontally convex polygon, we can 
start from the top support edge to trace the left chain and the 
right chain at the same time such that we are on the same heights 
at both chains. We keep on tracing until we find the first vertical 
reflex edge ei. Assume that ei is on the left chain. Let si be the 
last support edge traced before ei on the same chain. For any 

vertical chord vi between si and ei, H(vi) is right-convex because 
there is no vertical reflex edge e!, on the right-boundary of H(vi). 
If vi is the leftmost chord between si and ei, then vi is left-free. 

After vi is matched and removed, the vertical chord succeeding vi 
will be left-free. Therefore, for vertical chords vi located between 

si and ei, we can process them from left to right as follows. 
(1) If H(vi)=4, then remove vi from the polygon. 
(2) If H(vi)#d, then vi is matched with a horizontal chord 

hgeH(vi) where hg is the chord with the shortest right end 
in H(vi). After matching, vi and hg are removed from the 
polygon. 
After all vertical chords between si and ei have been 

processed as described above, si and ei are eliminated by the 
boundary shrinking along the vertical extension through ei. After 

boundary shrinking, ei and si do not exist in the new polygon. If 
ei and si are on the right chain, we will process vertical chords vi 

located between ei and si from right to left. 

Repeatedly applying the above procedure, we can eliminate 
all vertical reflex edges on both chains. When all vertical reflex 
edges are eliminated, the remaining boundary forms a polygon 
with no reflex edges (a convex polygon) and, therefore, the 
neighbors of vertical chords of the remaining polygon are both 
right-convex and left-convex, which can be processed from left to 
right or from right to left. 

A horizontally convex polygon can also be processed from 
the bottom support ed e. In this case, when we trace upwards 
along the left chain anf . the right chain, the vertical reflex edge 
with the lowest lower end point will be eliminated first. It is 
important to note that, if we process a horizontally convex 
polygon from the top to the bottom, we always execute boundary 
shrinkings along the unward extensions of vertical reflex edges. If 
we process from the bottom to the top, then boundary shrinkings 

are executed along the downward extensions of vertical reflex 
edges. The following algorithm, Algorithm 1, implements the 
above ideas. 
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Aleorithm 1 
input: A horizontally convex polygon P. 
outout: The maximum set M of matched chords of P. 
Steps: 

:: 
Find horizontal chords and vertical chords of P; 
Trace the left chain and the right chain of P at the same 
time to find the first pair of support edge si and reflex edge 
ei of P; 

3 If there is no vertical chords located between si and ei, then 
execute boundary shrinking along ei; otherwise, find the 
vertical chord vi located between si and ei such that there is 
no other vertical located between si and vi; 

4 Match vi with the shortest horizontal chord hg in H(vi); 
5 Put vihg into M; 
6 

i 

Remove vi and hg from P to have a new polygon P’; 
Recursively use Algorithm 1 to find M’ for P’; 
M=MuM’; 

9 end; 
Theorem 4-l Algorithm 1 finds the maximum set of matched 
chords of a horizontallv convex nolvson P. 
Proof Let vi be a veriical- chord being processed by 
Algorithm 1. Algorithm 1 ensures that VI is left-free and H(vI) is 
right-convex. In Algorithm 1, VI is matched with hgEH(vI) 
where hg has the shortest right end in H(vI). By Theorem 3-2, 
there exists a maximum matching of P, which contains v h 

lg 
After VI and hg are matched, we move the x-position of the 
upper end of VI a small distance (and modify the x-positions of 
the other relevant vertices, suitably,) such that VI will not exist 
and no other vertical chords will be produced. We also move the 
left end of hg a small distance in y-direction such that hg will not 
exist and no other horizontal chords will be produced. The 
resulting polygon is still a horizontally convex polygon without 
chords VI and hg. All other chords remain unchanged. Let B1 and 

B2 be the bipartite graph derived from chords of the old polygon 
and the new polygon, respectively. BI-{vI,hg}=B2. Let M2 be 

the maximum matching of B2. By Theorem 3-1, the maximum 
matching M1 of B* is equal to M2U(vIhg}. We can recursively 

apply the same procedure to the new polygon to find M2. 
Therefore, Algorithm 1 finds the maximum set of matched chords 
of P. Q.E.D. 

In the proof of Theorem 4-1, we adjust the positions of ends 
of chords to eliminate chords after matching. This adjustment is 
only for our induction proof. In practical processing, we do not 
adjust boundary except boundary shrinking. 

Having shown how we can handle the case of horizontally 
convex polygons, we shall now show that we can handle the 
simple polygons. 

5 Maximum Matchine of a Simole Polveon 

This section includes two subsections. In subsection 5.1, we 
will explain our basic ideas for finding the maximum matching for 
a simple polygon and prove that our ideas are correct. In 
subsection 5.2, we will explain our algorithm in detail and analyze 
the time required for executing our algorithm. 

u Basic Ideas 
A simole oolvaon can be oartitioned into horizontallv 

convex subLpolygo&“by drawing horizontal extensions through 
each horizontal reflex edge. For example. the simple polygon in 
Figure 5-l(a) is partitioned into five horizontally convex 
sub-polygons. After this, we construct a tree of these horizontally 
convex sub-polygons by the following rule: Two horizontally 
convex sub-polygons are connected if and only if they share one 
horizontal extension throu h some horizontal reflex edge. For the 
case shown in Figure 5-l(a , the tree is shown in Figure 5-l(b). “, 

la) (b) 
‘Figure 5-l 

I 

After the tree is constructed, we arbitrarily choose a node as 
the root and, then, the horizontally convex sub-polygons are 
processed according to the postorder [AH0741 sequence. For the 
tree in Figure 5-l(b), if we assign node 5 as the root, then a 
postorder sequence is l&4,3,5. For a node ni of the resulting tree, 

there are two support edges of ni. We define that the master 
m of ni is the support edge (the horizontal extension) between 

ni and its parent. If ni is the root, then we assign the upper 
support edge of ni to be the master bound of ni. (Note that it 
makes no difference to assign the lower support edge as the 
master bound for the root.) The slave bound is the other support 
edge of ni. The master bound and the slave bound of a node are 
fixed. We define verticallv visible for a concave vertex Y and a 
horizontal edge e. v is vertically visible to t if we draw a vertical 
extension through u and c is the first hit edge. If v is vertically 
visible to the master bound, then it is possible that there exists a 
vertical chord through v and this chord can not be found in ni. 
We process each sub-polygon in the postorder sequence using the 
method described in Section 4 with some modifications shown 
below. 
1 When we process node ni, we do not process the vertices 

which are vertically visible to the master bound of ni. 
2 Vertical edges at each end of the master bound are viewed 

as vertical reflex edges. We call them as virtual vertical 
reflex edees. 
Consider sub-polygon 1. We process sub-polygon 1 as 

described in Section 4 with the above modifications. After all 
vertical reflex edges (including the virtual vertical reflex edges) 
are eliminated, the resulting sub-polygon is shown in Figure 
5-2(a). Note that the remaining vertices in the sub-polygon are 
all vertically visible to the master bound of sub-polygon 1. We 
then merge sub-polygon 1 to its parent, sub-polygon 3, as shown 
in Figure 5-2(b). 

:, (a) lb) 
-1 

Figure 5-2 

nodes 
Note that, after merging with child nodes, the internal 

may not be a horizontally convex sub-polygon. For 
example, the resulting sub-polygon 3 after merging with 
sub-polygons 1,2, and 4 is not a horizontally convex 
sub-polygons because the horizontal reflex edge cd exists as 
shown in Figure 5-2(c). But we are sure that, if there exist 
vertical reflex edges in an internal node ni after merging, these 
vertical reflex edges must be on the left chain or on the right 
chain between the master bound and the slave bound of ni 
because all vertical reflex edges of the child nodes of ni have been 

eliminated by boundary &inkings. For example, in Fi ure 
5-2(c), the vertical reflex edges ji and mk are on the boun x ary 
between the master bound and the slave bound. We still can find 
the vertical reflex edges and compare their heights. Algorithm 2 
implements the above ideas. 
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Algorithm 2 
input: A simple polygon P. 
output: The maximum set M of matched chords of P. 
steps: 
1 partition P into horizontally convex sub-polygons and 

2 
construct a tree T of horizontally convex sub-polygons; 
arbitrarily assign a node of T as the root and determine the 
master bound and the slave bound for each node; 

3 visit nodes ni of T in postorder and do the following for ni 

assign two vertical edges at two ends of the master 
bound of ni to be two vertical reflex edges of ni; 

use Algorithm 1 to find a matching Mi of ni and to 
eliminate all vertical reflex edges of ni; 

/*Note that Algorithm 1 will trace from the 
slave bound to find vertical reflex edges but 
will trace the whole boundary to find the 
relevant vertical support edges and chords.*/ 

M=MuMi; 

If ni is the root, then 
return; 

else 
merge nj to its parent; 

end it 
end; 
Theorem 5-l Algorithm 2 finds the maximum set of matched 
chords of a simple polygon P. 
Proof Consider step 3 of Algorithm 2. The vertical reflex 
edges of ni are found by tracing the left chain and the right chain 

from the slave bound. Without loss of generality, we assume that 
the slave bound of ni is lower than the master bound and, 
consequently, the slave bound is lower than any vertical reflex 
edge of ni. Let ei be the first found vertical reflex edge. We are 
sure that there is no other vertical reflex edge lower than ei. 

Assume that ei is on the left chain. After ei is found, we can find 

the corresponding support edge si of ei. si might not be on the 
boundary between the slave bound and the master bound but si is 
always lower than ei. Therefore, for any vertical chords vi located 

between ei and si, H(vi) is right-convex in ni because there is no 

vertical reflex edge lower than ei. Lemma 3-l to Lemma 3-5 are 
still valid for vi. Therefore, the vertical chords located between s. 1 
and ej can be processed from left to right to find their matches. 
Using the similar techniques in the proof of Theorem 4-1, we can 
prove that Algorithm 2 finds the maximum matching of P. 
Q.E.D. 

It is important to note that, though some vertices might be 
recursively merged to their parent nodes, we are sure that any 
vertex will only be processed constant times for the following 
reasons. Consider an internal node ni of T. In Algorithm 2, we 
only trace the boundary between the master bound and the slave 
bound to find the lowest or the highest vertical reflex edge of ni. 
After a desired vertical reflex edge is found, we will trace the 
whole boundary of ni to find the relevant vertical support edge 
and the relevant vertical chords. However, the traced boundary 
will be eliminated by the boundary shrinking along this vertical 
reflex ed e. Therefore, any vertex will only be traced constant 
times be ore being eliminated. It should also be noted that, in P 
Algorithm 5 the ends of a master bound are treated the same as 
ends of vertical reflex edges and the vertices of a sub-polygon ni, 
which are vertically visible to the master bound of ni, are not 
processed in ni. In order to execute Algorithm 2 efficiently, 
Algorithm 2 will be modified in subsection 5.2 to find a maximum 
matching in O(nloglogn) time. 

5.2 Alerorithms 
For a given simple polygon P, the algorithm for finding the 

maximum matching is shown in Algorithm MAIN. In addition to 
finding the maximum matching M of P, MAIN also outputs the 
set U of unmatched chords with respect to M. M and U will be 
used in Section 6 to find the maximum set of nonintersecting 
chords of P in linear time, which is the final goal of this paper. 

Algorithm MAIN 
input: A simple polygon P. 
output: The maximum matching M of chords of P and the 

set U of unmatched chords with respect to M. 
begin 
1 Partition P into horizontally convex sub-polygons. 

Construct a tree T, of horizontally convex sub-polygons; 
For each node nk o? Th, find horizontal chords in nk; 

2 Construct a tree TV storing the x-positions of vertical reflex 

edges and end points of master bounds; 
3 Visit nodes of Th in postorder; 

4 For each visited node nk of Th, do 
Find the maximum matching of chords in nk; 
If nk in not the root of Th, then merge nk to the 

parent of nk; 
end 

We discuss each step in detail as follows. 
Step 1 The input oly on P is a sequence of vertices. We 
store P into an array R P). r i or each vertex v of P, there are two 
data items about v. One is the position of v on the plane and the 
other is that v is the ith input element of P. For the ith vertex v, 
we can locate Y in R(P) in constant time. In order to partition P 
into horizontally convex sub-polygons, we have to draw 
horizontal extensions through horizontal reflex edges to hit the 
nearest boundary. Tarjan and Van Wyk [TARJ88] have defined a 
vertex-edge to be a vertex and an edge that can be 
connected by an open horizontal line segment that lies entirely 
inside P. For a particular concave vertex v, if the vertex-edge 
visible pair of v is known, the hit point of Y can be computed in 
constant time. In [TARJ88], Tarjan and Van Wyk proposed an 
O(nloglogn) algorithm to find all the vertex-edge visible pairs. 
We use Tarjan and Van Wyk’s algorithm to find all the 
vertex-edge visible pairs as preprocessing. After these pairs are 
found, we record this information back into R(P) such that, for 
the ith vertex Y of P, we can decide the hit point of v in constant 
time. 

In addition to R(P), P is also stored in a fineer search tree 
(TARJ88] which can be constructed in linear time. Using a 
concave vertex v and its hit point hit(v), the finger search tree of 
P is partitioned into two sub-trees (sub-polygons): one contains 
the vertices from v to hit(v) and the other contains rest vertices. 
This is a three-wav solitting [TAR&B]. Each three-way splitting 
will reduce one end of horizontal reflex edges. For each 
sub-polygon, we can recursively apply the three-way splitting 
until there exists no end of horizontal reflex edges. If there are n 
vertices in the original linger search tree and i vertices from u to 
hit(v) (hit(u) is exclusive), it takes O(l+log(min{i,n-i}+l)) 
amortized time [TARJSS] to split this finger search tree into two 
sub-trees containing i and n-i vertices, respectively. (Note that, 
though the hit point will be a vertex in each sub-polygon, we do 
not include these two new vertices in the sub-trees. Because the 
hit points are irrelevant for the further partitioning.) Let T(n) be 
the worst case total time required for partitioning. We have the 
following recurrence formula. 

T(,),,O( 1) if.n<nO where no is a.constant; 
max {T(i)+T(n-i)+O(l+log(mm( r n-1)+1)) 

1 Sk<n ifn,n 
0 

Solvin this recurrence, we have T(n)=O(n) [MEHL84]. 
There ore, the total time required for partitioning P into f 
horizontally convex sub-polygons is O(nloglogn). 

The tree Th of horizontally convex sub-polygons is 
constructed as follows. Initially, there is only one node in Th 
corresponding to the original finger search tree. Whenever the 
finger search tree or a sub-fin er search tree is split, the 
corresponding node in Th will also %e split and the resulting nodes 

are connected. Th is constructed when P is partitioned into 

horizontally convex sub-polygons. After constructing Th, 
arbitrarily assign a node of Th as the root. 

Horizontal chords can be found in linear time by tracing the 
left-chain and the right-chain of a node nk of Th. When two 
concave vertices on different chains of nk are found to have the 
same y-position, a horizontal chord exists. When a horizontal 
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chord h is found, we record the e,xlstence of h at both ends of 11 on 
the boundary of nk. 

step 2 Boundary shrinkings are executed along the vertical 
extensions through vertical reflex edges and virtual vertical reflex 
edges. These extensions are fixed after the master bound of each 
node in Th is determined. These estensions partition P into a set 
of vertically convex sub-polygons. Tree Tv is constructed in a 

similar way as Th. Among the nodes of Tv, there is a node 
containing the master bound of the root of Th. We assign this 
node as the root of Tv. When a boundary shrinking is executed 
along an extension, the relevant horizontal chords in the child 
part are shortened to the x-position of this extension. Finding 
new positions of horizontal chords can be executed on TV using 
the static tree set union algorithm of Gabow and Tarjan 
[GABOSS]. In [GABO&j, for static tree set union, a rooted tree 
with k nodes is given. Each node of this tree is a singleton set. 
The LINK(v) operation is to unite a node v in the tree to its 
parent. (Actually, LINK(v) is to make a mark on node v.) 
FIND(v) will return v if node v is not marked by LINK; 
otherwise, the nearest unmarked ancestor of v will be returned 
[GABOS5]. We can apply the static tree set union to tree TV. TV 
corresponds to the given rooted tree. The boundary shrinking 
along an extension (T corresponds to making a mark on the child 
node of the edge defined by u. Since the child node v of (r is 
uniquely defined, LINK(v) is well defined for the boundary 
shrinking along u. Our FIND operation is executed as follows. Let 
p be an end point of a horizontal chord h. Assume that p is 
originally contained in the node v of TV. When v is marked by 

LINK(v), it means that p has been shortened to the position of 
the edge connectin 
the new position o d 

v and its parent. If p is recursively shortened, 
p IS the edge incident to the nearest unmarked 

ancestor of v. Therefore, FIND(v) which returns the nearest 
unmarked ancestor of v can be used to find the new positions of p 
which is original1 r contained in v. It is shown in [GABOSJ] that a 
sequence of 0 m intermixed LINK and FIND operations can be 

1’ executed in 0 m+k) time where k is the number of nodes in the 
static tree. Since the number of vertical reflex edges and master 
bounds is of O(n), k is bounded by O(n). The number of LINK 
operations is at most equal to the number of k. The number of 
FIiUD operations is equal to the number of vertical chords which 
is also bounded by O(n). Therefore, O(m+k) is bounded by O(n). 

Step 4 The ideas for finding maximum matching of a node 
of Th have been explained in subsection 5.1. Assume that a 
vertical reflex edge ei (or an end of a master bound) and its 
corresponding vertical support edge si have been found. We only 
explain how the vertical chords vi between ei and si and their 
neighbors H(vi) are found. 

Assume that. ei and si are on the left chain. The vertical 
chords between ei and si can be found as follows. si partitions the 
left chain into two pa&: the upper chain and the lower chain. 
Starting from si and tracing the upper chain and the lower chain 

of si at the same time, a vertical chord exists when two concave 
vertices on the different chains have the same x-position. (Note 
that the vertices which are visible to the master bound of nk are 
not traced and vertical chords crossing the master bound of nk 
will not be found.) For a found vertical chord vi, H(vi) can be 
found as follows. (1) Assume that vi is the first vertical chord 

with respect to si. H(vi) is the set of horizontal edges whose one 
end is on the boundary between vi and si and the other end is not. 
H(vi) can be found by tracing the boundary from si to vi. (2) 
Assume that vi is not the first vertical chord and vi-I is the 
vertical chord prior to vi. H(vi) is equal to the union of H(viml) 
and the set of horizontal chords found on the boundary between 
vi-l and vi. For simplicity, we set si=vo and H(vo)=o. 
Procedure FIND-NEIGHBOR(v. ,-l,vi) will return H(vi) where 
vi is the vertical next to v. r-l. In FIND-NEIGHBOR. a double 
linked list H(vi) is constructed. Two pointers, head(H(vi)) and 

tail(lI(vi)), point to the head and the tail of H(vi), respectively. 
Since we assume that ei and si are on the left-chain, we trace the 
upper chain and the lower chain of si from left to right. If the left 

end of a horizontal chord h is found on the upper chain, then h 
will be put at head(H(vi)). If the left end of h is found on the 
lower chain, then h will be put at tail(H(vi)). If the right end of h 
is found on the upper chain, then head(H(vi)) will be removed 
and 11 will be set to be unmatched. If the right end of h is found 
on the lower ,chain, then tail( H(vi)) will be removed and h will be 
set to be unmatched. The unmatched chords arc nut into a set U. 
U will be used to find the masimum independent set. The 
removed horizontal chord is always on the head or the tail of 
H(vi) because horizontal chords never intersect with each other. 

For a horizontal chord h”H(vi), assume that the left end of h is 
on the upper (lower) chain. It is possible that the right end of h is 
found on the lower (upper) chain. However, at the time of the 
right end of h is traced by FIND-NEIGHBOR, h is the tail 
(head) of the list H(vi). 
Alzorithm FIND NEIGHBOR(vi+$ 
input: Two vertical chords vi-1 and vi, where vi-1 and v. 

are on the left-chain, x(vi-I)<x(vi), and vi-l hd 
been processed. 

output: H(Vi) 
begin 

/*Assume that vi-I is left to vi and is on the left chain.*/ 
make an empty list H(vi); 

H(Vi)=H(Vi-l); 
trace the upper chain and the lower chain of vertices 
between vi-I and vi; 
for each found concave vertex pi, do: 

case A: pi is the left end of a horizontal chord h, then 
subcase 1: h is matched, then skip; 
subcase 2: pi is on the upper chain, then put 
pi at head(H(vi)); 
subcase 3: pi is on the lower chain, then put pi 
at tail(H(vi)); 

case B: pi is the right end of a horizontal chord h, 
then 

subcase 1: h is matched, then skip; 
subcase 2: pi is on the upper chain, then 
delete head( H( vi)); 
subcase 3: if pi is on the lower chain, then 
delete tail(H(vi)); 

end do; 
if h is not matched, then put h into U; 

end 
In FIND-NEIGHBOR, since H(vi-I) is directly assigned to 

H(vi), the horizontal chords common to H(vi) and H(vi-I) have 
not to be found again. Therefore, the vertices on the boundary left 
to ‘i-1 do not have to be traced for H(vi) and the time required 
for finding H(vi) is proportional to the number of vertices on the 
upper chain and the lower chain between vi-l and vi. The total 
time required for Algorithm MAIN to execute 
FIND-NEIGHBOR to find H(vi) for all vi is O(n). The following 
property is obvious from Algorithm FIND-NEIGHBOR. This 
property will be used for findin 
Let pi and pj be two vertices. once FIND-NEIGHBOR traces %. 

the maximum independent set. 

every vertex in a fixed sequence. pi is traced by 

FIND NEIGHBOR before pj if pi is prior to pj in the tracing 
sequence. 
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Prooertv 5-l Let pi be a concave vertex between a pair of 
neighboring support edge and vertical reflex edge (or between a 
support edge and an end of a master bound). Let hit(pi) be the 

vertical hit point of pi. The vertical line segment m) slices 

the polygon into two pieces. Then, either the vertices on the 
left-piece or the vertices on the right-piece of Pihit are 
traced by FIND-NEIGHBOR before pi, 

The maximum number of matched chords in nk can be 
found by procedure MATCHING. The basic ideas have been 
explained in subsection 5.1. In MATCHING, a vertical chord v. 

1 
whose neighbor is empty will be set to unmatched and be put into 
U. Otherwise, vi will be matched with the head or the tail of the 

list H(vi). 
A- 
input: A node nk of tree Th 
output: 

begin 
1 

2 

M: the maximum set of matched chords of nk. 
U: the set of unmatched chords. 

assign the vertical edge at each end of the master bound of 
nk as vertical reflex edges; 

trace from the slave bound of nk to find the nearest vertical 
reflex edge ei and its corresponding vertical support edge si. 

/*Assume that ei and si are on the left chain.*/ 

trace from si to find vertical chords between ei and si; 

do for vertical chords vi between ei and si from left to right 
FIND NEIGHBOR(v. 
if H(v)=4 then U U;~~~i)’ 

xI=FiND(head(H(y)); 
i ; 

3 

x2=FIND(tail(H(vi)); 

if xI<x2, then hg=head(H(vi); 
else h =tail(H(vi); 

B put vi g into M; 

remove vi and h 
end do; 

J3 
; 

4 

5 

execute boundary shrinking along ei; 
repeat step 2 and step 3 until there is no vertical reflex 

%ris not the root, then LINK(nk); 
else U=UuH(vi); 

end; 
In MAIN, the time required for partitioning P into 

horizontally convex sub-polygons is O(nloglo n) where n is the 
number of vertices of P. The time required or processing each B 
node of Th is proportional to the number of vertices of this node 
because each vertex in this node is traced constant times. It takes 
totally O(n) time to process all nodes of Tb Therefore, the total 
time reauired for findine: the maximum matchinn of P is 
O(nloglogn). 
Theorem 5-2 The total time required far Algorithm MAIN 
to find the maximum matching of chords of a simple polygon P is 
Ofnloelaen) where n is the number of vertices of P. 

’ xs’fdr a horizontally vertically) convex polygon or a 
convex polygon, it takes 0 n) I time to find the maximum 
matching of chards because we do not have to partition it into 
sub-polygons. This time bound is an obvious lower bound. 
Theorem 5-3 Al orithm 

P 
MAIN is optimal for finding the 

maximum matching o chords of a horizontally (vertically) convex 
polygon. ‘, 

fi Maximum Nonintersectine Chords 

In this section, we will show that, without constructing the 
bipartite graph of chords, the maximum independent 
(nonintersecting) set of chords can be found in linear time based 
on the matched pairs and unmatched chords found in Section 5. 

Far any horizontal or vertical chord u ot I’, u slices the 
boundary of P into two pieces. One piece contains the master 
bound and this piece is the main boundary of u, denoted as 
mb(u). The other piece is the secondarv boundm of u, denoted 
as sb(u). Two chords have the same orientation if they are both 
vertical or both horizontal. orient(u) is a set of chords such that, 
for any t6orient(u), t is on sb(u) and t has the same orientation as 
u. For any chord u, sb(u) is consistent if every unmatched chord 
u’ whose both ends are on sb(u) has the same orientation as u. 
i.e., u’eorient(u). Boundary shrinking has been defined in Section 
4 to eliminate the vertical reflex edge. In this section, boundary 
shrinking can be executed along a vertical chord or a horizontal 
chord. After eliminating sb(u) by boundary shrinking, the chords 
intersectin with u will not exist in the new polygon. We use 
NH(u) to f enote the set of chords intersectinc with u. If a chord 
is matched with an element in NH(u) but botl ends of this chord 
are not on sb(u), then this chord will be an unmatched chord 
after boundary shrinking of sb(u). Let W be the set of unmatched 
chords which are caused by eliminating sb(u). We propose the 
following algorithm to find the maximum nonintersecting chords. 
Algorithm INDEPENDENT(P) 
input : A simple palygon P 
output : The set S of maximum nonintersecting chords of P 
steps 
1 Use Algorithm MAIN to find the maximum matching M 

and the set U of unmatched chords. U is organized as a 
stack and the unmatched chords in U are sorted such that 
the first found unmatched chord is on the top of U and the 
last found unmatched chord is at the bottom of U; 

2 do until U is empty 
uI=poP(U); 
if sb(uI) have been shrinked, then repeat from 2; 
traverse sb(uI) to find orient(u) and NH(u); 

find W from NH 

boundary shrinking along uI; 

3 end. 
In order to prove that the above al orithm correctly find the 

maximum matching, we will prove the fo q 
(A) 

lowing: 
Let M be any maximal matching of a simple polygon P and 
let U be the set of unmatched chords with resoect to M. We 

PI 

((2 

0’) 

prove that, for any ueU, if sb(u) is consistent, then u and 
orient(u) are in a maximum independent S of P. This will 
be proved in Corollary 6-l and Lemma 6-1. In addition, we 
show in Lemma 6-5 that, sb(ul) is consistent where u1 is 
the first unmatched chord output by Algorithm MAIM. 
After eliminating sb(uI), we have a new polygon. Let S’ be 
a maximal independent set of the new polygon. We prove 
that S={uI}Uorinet(ul)US’. This is proved in Lemma 6-3. 
This lemma tells us that S can be found bv recursivelv 
finding S’. 

I 

In order to find S’, we first try to find a maximal matching 
and the relevant unmatched chords of the new polygon. In 
Lemma 6-2, we prove that, after eliminating sb(ul), the set 

of remaining matched chords is a maximal matchin 
new polygon. That is, M1=M-{chords on sb(ul } B 

of the 
is a 

maximal matching of the new polygon. Also in Lemma 6-2, 
we prove that WIUU-({uI]Uarient(ul)) is the set of 

unmatched chords with respect to MI where WI is the set 
of unmatched chords caused by deleting sb(ul). 
We show that, if we order elements of U-({ul}Uorient(ul)) 
according to their outputting sequence and put WI at the 
beginning of U-({uI}Uorient(uI)) ta have a new sequence 
U’=[w I ,... wk,u2 ,..., u,], then sb(uf) is consistent where uf is 
the first element in U’. (Nate that uf=u2 if W=&) This is 
proved in Proposition 6-1. By Lemma 6-1, we can put uf 
and orient(uf) into S’. 
Let B= V,H,E) 

matching of Ii 
be a bipartite graph, M be any maximum 

U be the set of unmatched nodes with respect to 
M, S be a set df maximum independent set of B and N be a set of 
minimum node cover of B. We introduce two theorems about 
bipartite graphs. 

350 



Theorem 6-l (PAPA821 M is a maximum matching of B if and 
only if there does not exist any augmenting path with respect to 1” 
I”1 . 

Theorem 6-2 fK?n~ig-Ermrv?~v Th.) The size of M is equal to 
thesizeofN,i.e., JM]=]N . 

If we remove N from B then the remaining nodes in B form 
an indeoendent set. Becauie N is minimum, (HUV)-N is a 
maximum independent set. By definition of node cover and 
Theorem 6-2, for any matched pair (v,h)eM, exactly one of v and 
h belongs to N. The following corollary follows directly. 
Corollarv 6-l For any maximum independent set S of nodes in 
B, we have UCS and, for any matched pair (v,h)eM, either veS or 
heS. 

From Lemma 6-l to Lemma 6-3. we still assume that M is 
an arbitrary maximum matching of chords of a simple polygon P 
and U is the set of unmatched chords with respect to M. 
Lemma 6-l Let ueU be an unmatched chord of a simple polygon 
P. If sb(ul is consistent. then there is a set S of maximum 
nonroftors’ecting chords such that ueS and orient(u)cS. 

By Corollary 6-1, there is a set S of maximum 
nonintersecting chords such that ueS. Let uieorient(u). If ui is 
unmatched, then, by Corollary 6-1, uieS. If ui is matched with wi 
and I+@, then, by Corollary 6-1, w+S. For all matched 
uieorient(u) and u+S, we remove corresponding wi from S and 
put ui into S. After replacing, the size of S is not changed. For 

any chord wj in P having the different orientation as u, there are 
three possibilities: both ends of wj are not on sb(u); only one of 
two ends of wj is on sb(u) and both ends of wj are on sb(u). If 

neither ends of wj are on sb(u), then wj does not intersect with 
any i+eorient(u). If only one end of wj is on sb(u), then wj 
intersect with ueS and wjeS. If both ends of wj are on sb(u), then, 

by our assumption that sb(u) is consistent, Wj is matched with a 
chord ujeorient(u) and, owing to our replacing, wj’S. Therefore, 
for any uieorient(u), ui does not intersect with any other chord in 

S and S is independent. Q.E.D. 
By Lemma 6-1, if u is unmatched and sb(u) is consistent, 

then we can put u and orient(u) into S. After that, we should not 
consider u and orient(u) any longer. Therefore, we execute 
boundary shrinking alon u to eliminate sb(u). After eliminatin 
sb(u) by boundary shrm mg, the chords intersecting with u wil ii. 4 
not exist in the new polygon. Let P’ be the new polygon. Let M’ 
be the set of remaining matched chords after boundary shrinking, 
i.e., M’={vihj (v.h.EM, both ends of vi and both ends of h. are on 

’ 1 I 
mb(u).}. For any zeNH(u), z is matched with a chord w where w 
has the same orientation as u. If weorient( then w is 
eliminated. If w@orient(u), then w is in P’, but does not belong to 
any matched pair in M’ because z is deleted; that is, w is 
unmatched with respect to M’. Let W={w(w is matched with 
zeNH(u) and weorient(u Let U’ be the set of unmatched chords 
after boundary shrinking, i.e., U’=WUU-({u}Uorient(u)). 
Lemma 6-2 Let II be an unmatched chord of a simple polygon P 
such that sb(u) is consistent. Let P,‘, M’ and U’ be the polygon 
resultin 
matche if 

by executing boundary shrmking along u, the remaining 
chords in P and unmatched chords of P’, respectively. 

Then M’ is a maximum matching of chords of P’ and Ii’ is the set 
of unmatched chords with respect to M’. 
Proof It is obvious that M’ contains only matched chords of 
P’. If M’ is not maximum, then there is at least two chords ui and 

uj in U’ such that there is an augmenting path between ui and u.. 
It is impossible that both ui and uj are in W because all chords ih 
W have the same orientation. It is impossible either that both ui 
and uj are in U-({u}Uorient(u)) because, by Theorem 6-1, there 
is no augmenting path between any ui and u. in U. Therefore, we 
have uieW and ujeU-({u}Uorient(u)). Sincle ui intersects with 
NH(u), ui is on an alternating path starting from u. Therefore, 

there is an augmenting path between u and ui, which is a 
contradiction because M is a maximum matching a;d both u and 
uj are in U. Q.E.D. 

Lemma 6-3 Let ueU. Assume that sb(u) is consistent. Let 
P’=mb(u)u{u} be the polygon resulting from boundary shrinking 
along u and S’ be any set of maximum nonintersecting chords of 
P’. Then S’U{u}uorient(u) is a maximal set of non-intersecting 
chords of P. 
Proof 

i 

By the definition of boundary shrinking, no chord in 
u}Uorient(u) 
‘U{u}Uorient(u 

intersects with any chord in P’. Therefore, 

2 
is a set of nonintersecting chords. Assume that 

the size of S’U ujUorient(u) is not maximum. By Lemma 6-1, 
there is a maximum set S of nonintersecting chords such that 
({u}Uorient(u))cS and IS I> ]S’~{u}t~orient(u) 1. Assume that 
T=S-({u}Uorient(u)). T is a set of nonintersectin chords of P’ 
because no chord on sb(u) is in T. We have ] T ] > ] 5 1. Since S’ is 
a maximum set of nonintersecting chords of P’, we have 
(S’ 12 (T ( , a contradiction. Q.E.D. 

In the following, we will show that, for the original polygon 
or for the polygon resulting from a sequence of boundary 
shrinkings, how to find an unmatched chord u such that sb(u) is 
consistent. Let us consider Algorithm MAIN in subsection 5.2. 
For each output w (either a matched pair or an unmatched chord) 
of MAIN, we give w a number to indicate the outputting sequence 
of w. This number is the procasinp number of w, PN(w). If w is 
an unmatched chord u, then PN(u)=PN(w). If w is a matched 
pair vihj, then PN(vi)=PN(hj)= PN(w). The processing number 

of each chord is fixed during the whole process of finding the 
maximum independent set in spite of the boundary shrinkings. 
Let P’ and M’ be the polygon and the maximum, matching 
resultin 
S&I&J o B 

after a sequence of boundary shrinkin 
u in P’ is a subset of the original sb(u) o 

f, respectively. 
u m P. Based 

on sb(u) defined in P’, orient(u) and NH(u) can be defined for u 
in P’ accordin ly. In the following, we wilI always use P,M,U and 
S to denote t e original polygon, the maximum matching, the !l 
unmatched chords with respect to M and the maximum 
independent set, and use P’,M’,U’ and S’ to denote the polygon, 
the maximum matching, the unmatched chords with respect to 
M’ and the maximum independent set resulting from a sequence 
of boundary shrinkings. In the following, we assume that 
u=[y2’...’ uk] is ordered in the ascending order of processmg 
numbers. This sortin 

1 
sequence does not require any extra time 

5s~;; 2 exactly t e outputting sequence. 
Let ueU be any unmatched chord of the 

original polygon P. For any unmatched chord uieU whose both 

ends are on sb(u), PN(ui)<PN(u). 
Proof If u is vertical, then, by Algorithm MATCHING, II is 
left-free or right-free at the time of u being processed for 
matching. Therefore, every vertex on sb(u) should have been 
traced before u. If u is horizontal, by Algorithm 
FIND NEIGHBOR, we know that every vertex on sb(u) should 
have 6&n traced before u is found to be unmatched. Therefore, 
for any ui whose both ends are on sb(u), PN(ui)<PN(u). Q.E.D. 
Lemma 6-5 Let U=[u1,u2,...,uk] be ordered in the 

ascending order of processing numbers. Then, sb(ui) is consistent. 
Proof By Lemma 64 we know that, for any unmatched 
chord u+U, if both ends of ni are on sb(ul), then 
PN(ui)<PN(ul). Since U is ordered in the ascending order of 
processing number, there is no unmatched chord on sb(u1). By 
definition, sb(u1) is consistent. Q.E.D. 

By Lemma 6-1 and 6-5, we know that we can put uleU 

and orient(u1) into S. If we execute boundary shrinking along ul, 

then a new polygon P’ and relevant M’ and U’ will be resulted. 
Let W’={w(w is matched with seNH(ui) and w@orient(u)}. We 

have U’=W’UU-({ul}Uorient(ul)). Let W’=[w1,w2,...,wd] be an 

arbitrary sequence of elements in W’. If we put W’ at the 
beginning of U-({u,}Uorient(u,)), then we have 

U1=[W1’W2,...,Wd,U2’UZ+1’“’ uk]. We shall show that sb(w1) is 
consistent so that we can execute boundary shrinking along wl.In 
addition, the boundary shrinking along w1 will cause more 
unmatched chords wi and we still have to prove that Sb(wi) is 
consistent. Lemma 6-6 and Proposition 6-1 are dedicated to 
prove that sb(wl) and sb(wi) are consistent. 
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If we execute boundary shrinking along WI, we will have a 

new polygon P’, M2 and U*. Let W”=[wi,...,w~] be the 

unmatched chords caused by boundary shrinking along WI. We 

say that W’ is directly caused by uI and W* is indirectly caused 

by ui. For any element in weW’UW*, w has the same orientation 

as ul. It will also be proved later that, for any weW’UW*, sb(w) 

is consistent. If we execute boundary shrinking along weW’UW*, 
then more unmatched chords might be caused indirectly by uI. It 
is easy to see that, for any w caused directly or indirectly by uI, 

w has the same orientation as uI. If we recursively repeat 

boundary shrinking along the unmatched chord caused directly or 
indirectly by uI, then no boundary shrinking along u2 will be 

executed until all unmatched chords caused by uI are eliminated. 

If we repeat this process to eliminate unmatched chords 
‘1 !“23”e3ui-1 I then we will have a polygon P’ resulting by a 
sequence of boundary shrinkings along uI to uiel and along 
unmatched chords caused by ul to ‘i-2. Let 
U”[W1’W2 ,..., Wd,Ui,Ui+l (... Uk] be the relevant unmatched chords 
of P’. We know that W=[w w I, 2,...,wd]cU is caused (directly or 
indirectly) by I+-1 where W=[wl,w2,...,wd] is an arbitrarily 
‘sequence of W. In the following lemma and proposition, we are 
g;io;e that, for any WEW, sb(w) is consistent. 

Let W=[wl,w2,...,wd] be the set of 

unmatched chords caused directly or indirectly by boundary 
shrinking along ui-I. If an unmatched chord uje[ui,ui+L,...,uk] 
which has different orientation as wf, then no ends of uj are on 

sb(wf) for any wfeW. 
Proof Omitted in this conference paper. 

%Zition 6-l Let uqw 1’ 2’ w . . ..W u. u. d’ 1’ ,+~‘--.“kl 
where W=[wl,w2,...,wd] is the set of unmatched chords caused 
directly or indirectly by the elimination of uiml. For any wcW, 

sb( w) is consistent. 
Proof By Lemma 6-6, there is no unmatched chord uj on 

sb(wf) such that uj has different orientation a~ wf By definition, 

sb(wf) is consistent. QED. 

Theo-rem 6-3 Algorithm INDEPENDENT correctly finds 
the maximum nonintersectinrr chords. 
Proof By Proposition 6-1, we know that, after executing 
boundary shrinking along an unmatched chord uiml of the 
original polygon such that sb(uidl) is consistent, the next 
unmatched chord whose secondary boundary is consistent can be 
found by arbitrarily choosing an element from W caused by ui-L. 

After all unmatched chord caused by ui-I are eliminated, the 
remaining unmatched chord in the polygon is U’=[U~,U~+~,...U~]. 

By Lemma 6-4, it is easy to see that sb(ui) is consistent. 

Therefore, we can execute boundary shrinking along ui. 

Repeatedly executing boundary shrinking along the unmatched 
chord whose secondary boundary is consistent, we can find a 
maximum set of nonintersecting chords. Q.E.D. 

Step 1 of INDEPENDENT(P) requires O(nloglogn) time. 
Steps 2 and 3 require linear time. The boundary shrinking along 
u1 in step 4 is actually a three-way splitting of the finger search 
tree of P [TARISS]. There is no further splitting for. the vertices 
on sb(ui). Therefore, the time required for boundary shrinkings 

along ul’s is bounded by O(n). Totally, we need O(nloglogn) 

time. After the maximum set S of nonintersecting chords of P is 
found. we then. as described in Section 2. draw these chords to 
partition P into’a set of sub-polygons such that there is no cogrid 
vertices in any sub-polygon. The minimal partition of P is 
equivalent to partitioning each sub-polygon into minimal 

rectangles. The minimal partition of each sub-polygon can be 
found by drawing a vertical line through each concave vertex in 
this sub-polygon as described in Section 2. 

Section 7 Lower Bounds of the Partition Problem 

In this section, we discuss the lower bound problem for 
partitioning a polvgon with holes. We prove that O(nlogn) 
operations are required to solve the partition problem for 
poly ons with holes by reducing the sorting problem to this 
problem. The reducing strategy is inspired by [ASAN86]. 

Consider a set X={xI,x2,...,xn} of n distinct positive 
integers. Let m and M be the smallest and the bi 
X, respective1 P 

est integers in 

P 
. A polygon P is constructed as 0110~s. First, a 

rectangle R= (m,O),(M+c,S) 
h 

is constructed where t is a small 
fraction, e.g., 0.1, (m,O) is t e lower-left corner, and (M+c,3 

h 
is 

the upper-right corner of R. We then draw two vertical re ex 
edges X1 and X2 along the vertical sides at m and M+c as shown 
in Figure 7-1. 

i.---$M+c,3) 

Im.0) I-1 
\---I-, 

Figure 7-l 
For each x$X--(m,M}, a rectangular hole h,=[(x,,l), 

(xi+c,2)] is added inside R. (See Figure 7-2(a).) There a;e tot’ally 
n-2 holes in R. The polygon P is equal to the union of R and hi. 

(4 
--J 

(&O) 
--- 

(b) 
Figure 7-2 

The minimum partition of this polygon is shown in Figure 
7-2(b). In Figure 7-2(b), there are n+l rectangles in the 
partition. Among these n+l rectangles, there are n-l rectangles 
whose upper side is at height 2, lower side is at height 1, left side 
is at xi-t6 and right side is at xk. It is obvious that xk is the 

integer-succeeding xi. We can sort integers in X using these n-l 
rectangles as follows. We construct an array NEXT(2,n-1). For 
each rectangle [(xi+~,l),(xk,2)], we set NEXT( l,i)=xi and 
NEXT(2,i)=k (see Figure 7-3). That is, we store xi at the ith 

element and set a pointer from the ith element ‘to the kth 
element. Tracing NEXT in linear time, we can find the successor 
xk of each xi. - 

g-e -i-th k-th 

FT!!E!EF 
Figure 7-3 Array NEXT 

Lemma 7-I O(nlogn) is a lower bound for the partitioning 
problem for polygons with holes. 

3 Conclusion 

We have proposed an algorithm to solve the problem of 
finding the maximum matching of the bipartite graph of the 
intersecting chords of a simple polygon. The partition problem of 
simple polygon can be solved in O(nloglogn) by applying our 
results. This time bound is equal to the time required for 
triangulating a non-rectilinear simple polygon. We have also 
shown that the lower bound for the minimum partition problem 
for polygons with holes is O(nlogn) which is the same as 
triangulating a non-rectilinear polygon with holes [ASAN%]. 
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Though triangulation problem is not a minimization problem, it 
seems interesting to note the similarities between the time 
complexities of the minimum rectangular partition problem and 
the triangulation problem. 
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