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Abstract 

We consider arrangements of curves that intersect palrwise in at most 
k points. We show that a curve can sweep any such arrangement and 
maintain the k-intersection property if and only if k equals 1 or 2. 
We apply thii result to an eclectic set of problems: finding boolean 
formula for polygons with curved edges, counting triangles and digons 
in arrangements of pseudocircles, and finding extension curves for 
arrangements. We also discuss implementing the sweep. 

1 Introduction 

When is it important that lies in an arrangement are straight, or that 
circles in an arrangement are circular? Of course, it depends on the 
questions one asks. Many, such as, “What is the minimum number 
of triangles in an arrangement of lines,” do not depend on straight- 
ness, but only on the fact that two lines intersect in a single point. [25] 
One can answer such questions for more general arrangements of pseu- 
dolines. Bra&o Griinbaum, in a lecture entitled “The importance of 
being straight,” points out that because there are arrangements of pseu- 
dolines that cannot be stretched to lines, there are questions in which 
straightness is crucial. He says that we cannot yet answer these because 
‘most of our tools and methods are general (or vague and imprecise?) 
enough to apply to the case of pseudolines.” [20] 

In thii paper, we look at sweeping arrangements of curves with inter- 
section restrictions. Before we go further, we define curves, arrange- 
ments. and sweeping, and look at reasons to study these objects. 

The curves that we consider in this paper lie in the Euclidean plane 
or on the sphere, are smooth, have no self-intersections, and are endless 
(either closed or bi-infinite). Any two curves intersect in a finite number 
of points, at which they cross. 

A set of curves T has the k-intersection property if every two of them 
intersect in at most k points. If any two curves of l? intersect in exactly 
k points, then I’ has the exact k-intersection property. 

This topological or combinatorial restriction on the intersection of 
curves is different from the restrictions used in the field of computer 
graphics. Computer-aided design systems usually place algebraic rc- 
strictions on curves; for example, they may require that all curves be 
lines, conic sections, or cubic plane curves (the components of cubic 
spliies). Natural families of algebraic curves satisfy the k-intersection 
property for some k, however: limes have the l-intersection prop 
erty, vertical parabolas are 2-intersecting curves, general conic8 are 
4-intersecting curves, and cubic plane curves are 9-intersecting. The 
topological restriction is more general in the sense that if a property 
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holds or an algorithm works for k-intersecting curves, then it will apply 
to any family of algebraic eurves with the k-intersection property. 

When calculating arrangements using finite precision arithmetic, 
one usually cannot preserve straightness. Greene and Yao [la] 
and Milcnkovic [28] have given algorithms that do preserve the l- 
intersection property for line arrangements. 

Finally, Sharir and other researchers in computational geometry have 
used Intersection restrictions in applying the theory of Davenport- 
Schiirel sequences to curves [l, 11, 23, 33, 341. This theory has been 
an important tool in the analysis of algorithms that deal with algebraic 
curves. 

Unfortunately, our positive results extend only to curves with the 
Z-intersection property; we cannot nay much about cubic plane curves. 

A finite set of curves T partitions a surface into three types of max- 
imal connected regions: vertices are regions contained in two or more 
curves of I’, edges are contained in only one curve, and faces are con- 
nected regions contained in no curves of I’. We call this partition the 
arrangement of I’. An arrangement is simple if no three curves share 
a common point. We deal primarily with simple arrangements in this 
paper; we will note where our statements apply to non-simple arrange- 
ments. Figure 1 illustrates these definitions. 

The names given to the sets of the par- 
tition suggest that the arrangement of r is 
a graph embedded in the plane. It makes 
an unusual graph-me edges are infinite 
rays, and many edges can connect a pair 
of verticee. If a curve of I? doea not in- 
tersect any other curve, we have an edge 
with no vertices. With these differences 
in mind, however, it should not cause con- 
fusion to think of the arrangement as a 
planar graph. 

face 
vertex B edge -J 

Fig. 1: A simple arrange- 
ment 

In the past, one studied arrangements of lines and planes in recre- 
ational mathematics and because of their relationships to configura- 
tions of points and to certain convex polytopea. Grirnbaum collected 
many results and conjectures on arrangements of lines and curves in 
the plane in his 1972 monograph [22]. Other early results are con- 
tamed in [19] and [21]. Griinbaum’s terminology differs slightly from 
ours. He diicusses “arrangements of pseudolines,” %rrangements of 
curvcs,D and “weak arrangements of curves”; we call them arrange- 
ments of curves with the exact l-, exact 2-, and 2-intersection proper- 
ties, respectively. We shall call l-intersecting curves pscudolincs and 
2-intersecting curves pseudocircles. Thii means that two pseudolines 
(or two pseudocircles) are not required to intersect in 1 point (or 2 
points). 

Recently, researchers in computational geometry have found numer- 
ous applications for line arrangements in algorithms for geometry and 
graphics (see Edelsbrunner’s book [7]). They have also considered ar- 
rangements of curves with intersection conditions. Edelsbrunner et 
al. [8] apply Davenport-Schiisel sequences to prove generaliiations of 
the ho&on theorem for arrangements of lines [5, 101 and to construct 
such arrangements incrementally in nearly quadratic time. McKenna 
and O’Rourke [27] independently proved and used the horizon theorem 
for the case of pseudocircles. 
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Sweeping is important both as a paradigm for developing graphical 
and geometric algorithms, and as tool for use in mathematical proofs. 
The underlying idea is to determine properties of a collection of ob- 
jects in a space of dimension d by looking at a series of consecutive 
(d - 1) dimensional slices. Sweeping converts a static problem into a 
dynamid problem of lower dimension. 

As examples of sweep algorithms in the literature, consider the 
problem of finding the intersections of n lines or segments in the 
plane. Shamos and Hoey 132) showed how to detect an intersection 
in O(nlogn) time by sweeping the plane with a line. Bentley and 
Ottman [2] extended their ideas and developed a practical algorithm 
to report all K intersections between n segments in O((n + K) logn) 
time. Mairson and Stolfi [ZS] used a sweeping line to report all X 
intersections between two sets of segments, each of which has no aelf- 
intersections, in O(nlogn+X) time. They also applied their techniques 
to segments of r-monotone curve*. 

If a straight line sweeps the plane to fmd the intersection points of 
a set of segments, then it encounters the points in sorted order in the 
direction perpendicular to the sweep. In such a sweep, the logarith- 
mic factors in the time complexity seem inescapable. For infinite lines 
Edelsbrunner and Guibas [0] showed that we can avoid the logarithmic 
factor by sweeping the plane with a pseudoline. Their algorithm runs in 
optimal O(na) time. Chazelle and Edelsbrunner [4] recently developed 
an algorithm to report all Ii segment intersections in O(nlogn + X) 
time that also sweeps the plane with a pseudoline. 

In the next section we will define precisely what it mews to sweep 
arrangements of curves that have the k-intersection property, but let’s 
first think about what condition we would want on the sweeping 
curve c. In designing algorithms, we would lie the curves of our ar- 
rangement to have few intersections with c, since we must keep track 
of each intersection. In proofs dealing with a family of k-intersecting 
curves, we would like c to fit into the family. 

In section 3 we prove the sweeping theorem, which says that we can 
always sweep an arrangement of pseudolines or pseudocircles start- 
ing from any curve in the arrangement, and cannot always sweep h- 
intersecting curves for k 1 3. 

Theorem 3.1 (Sweeping theorem) Let I? be s finite ret of bi- 
inj;nite CWWI (and &red eurvea, if k > 1) in the plane or sphere that 
have the k-interrection property. Let e be a EUNC of I’. If k E {l, 2) 
lhcn we can sweep r siorting wiih c ond maintain the k-intersection 
property: If k > 2 ihen arrangementi e&l Ihat cannot be swept. 

In the next section we define local operations by which a sweeping 
curve cau advance. For pseudolines (k = 1) and pseudocircles (k = 2) 
we can always apply one of the local operations. For k > 2 we indicate 
how to construct an arrangement that cannot be swept by a given 
curve. 

In section 4 we present two applications of the sweep theorem. We 
use the pseudoline ca.se to extend the work of Dobkin et al. [6]; we find 
a short boolean formula to describe a polygon with curved edges. We 
use the pseudocircle case to find a relationship between the minimum 
number of digons and triangles in an arrangement of 2-intersecting 
curves. This is related to Griinbaum’s conjecture 3.7 [22]. 

Section 5 defines another type of sweep in the plane: sweeping a 
double wedge. We use this sweep to prove an extension theorem for 
arrangements that includes Levi’s lemma [25] as a special case. 

Theorem 5.1 (Extension theorem) Let I’ be a fide set of CWWI 
with the 6-intersec#on property, and P be a sel of k+ 1 pails, not 
all on the lame curve. If k E {l, 2) then there is a curve that containa 
ihe points of P and hw the k-interneelion property with respect to r. 
Ij k > 2 ihen arrangementi and point reb e&t rucb that any curve 
through ihc poink violaler the k-infersection properly. 

Section 6 points out that we can easily implement the local oper- 
ations used ln the proof of the sweeping theorem when we know the 
arrangement. When we do not, we can apply the ideas of Edelsbrunner 
and Guibas [9] to sweep a set of pseudolines using linear space. We 
leave sweeping pseudocircles es an open problem. 

The operations that we define in section 2 can also sweep arrange- 
ments of (k > 2)-intersecting curves if we do not require the sweep to 
have the k-intersection property. But is there some intersection prop 
erty that is maintained by such a sweep? For algorithmic purposes, it 
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would be satisfactory to have a function of k (and not of n) bound the 
number of points of intersection the sweep has with any curve. 

2 Definitions for sweeping 

In the beginning of this section we define sweeping as a continuous 
process; later we will see that we can carry it out in discrete steps. We 
also define notation that we use in the proofs of section 3. 

Let c be an endless curve in the sphere or Euclidean plane with an 
orientation, which we depict as left to right. Since c is smooth and has 
no self-intersections, it divides the plan; or sphere into two connected 
components; one with boundary oriented clockwise, the other coun- 
terclockwise. We say that the component with the counterclockwise 
orientation is above c and the other component is below. A curve 7 
lies above c if the component above c contains 7. When we sweep, we 
handle these two components separately. 

To sweep the component of the plane or sphere above c, we want to 
move c continuously to infinity if the component is unbounded, or to a 
point ifit is bounded. Formally, we say that a family of curves indexed 
by the positive reals, C = {c,},+ covers the component above c if 

s The curve co = c, 
. Every point above c (except one, if the component above c is 

bounded) lies on exactly one curve c,, and 
. The curve c,q is above err whenever fl> Q. 

To say that we can aweep the component above e means that a family 
of curves C exists that covers the component above c. 

Suppose E is a member of a set of k-intersecting curves, I’. We can 
sweep the arrangement of r above e if there is a family of curves C that 
covers the component above c, and the set I? UC has the k-intersection 
property. Finally, we say that we cau sweep I’ starting from c if we can 
sweep above c and below c. 

Though we employ thii continuous definition to prove negative re- 
sults in section 3.3, it is unwieldy for proving positive results. In the 
literature, sweeping is investigated as a discrete process by identify- 
ing events where the intersection between the sweep and the plane 
changes significantly. One-can usually interpolate between two consec- 
utive curves of a discrete sweep in a natural way to obtain a continuous 
family that covers the plane or sphere. 

In our case, the oriented sweeping curve e intersects the other curves 
of I’ in some order; this order changes when c passes a vertex of the ar- 
rangement or changes the number of its intersections with some curve. 
If we chowe these changes as our events and find the curves of the 
sweep where the events occur, then we obtain a discrete set of curves. 
We can interpolate between two consecutive curves with the help of 
the SchSnflir theorem [31]: Map adjacent curves c and c’ to parallel 
lines. Map the curve segments between c and d to non-intersecting 
line segments in the strip between the lines. The Schanflies theorem 
implies that we can carry out this mapping by a homeomorphism of 
the plane or sphere to itself. Under the inverne mapping, the parallel 
lines in the strip become a family of curves that interpolate between 
c’and c’ and intersect the curves of the arrangement in a consistent 
order. By interpolating between each pair of adjacent curves, we can 
extend the curves from d discrete sweep to a continuous family that 
covers the plane. 

We will define local operations that allow us to advance the sweeping 
curve past an intersection point of two curves and to add or remove 
curves from the set of curves intersected by the sweep, without violating 
the k-intersection property. But first, let us give names to some of 
the things that appear along the sweeping curve. 

We can represent the portion of the arrangement r that lies on and 
above the sweep c e.s a graph G = (V,E). (We assume that c E I’.) 
Let A denote the component of the plane or sphere on and above c. 
The vertices Vof G are the points in A where two curves intersect. 
The edges E are the edges of the arrangement that are contained in A. 
To avoid having edges that are not adjacent to vertices, we introduce 
an artificial vertex on any curve that has no intersection points. We 
denote the edges in E by (u, u), where u, v E VU(m). An edge (u, oo) 
is an infinite ray. 

Assume that we are sweeping above c. A point p on a curve 7 is 
visible from an edge e of c if there is a face above c whose boundary 
contains both p and the edge e. In particular, p is visible from c if p 



lies on a face immediately above c. 
Suppose that m of the vertices of G appear on the sweeping curve c. 

WC number these vertices with the integers 1,. . . , m in order of their 
appearance along e. In thii and the next section, we use the names i, 
j, k and 1 for vertices on c, and the names u, v and us for vertices above 
the sweep. 

i 

Fig. 2: A hump (i, j) and a triangle A(k, u, I) in G 

Figure 2 illustrates aomc other notation that we will use. If the 
intersection of the curve u E I? with c forms the vertex i, then we 
define 7(i) = Q. Some edges of the graph G lie on the curve -e give 
these edges special status and denote them with square brackets, for 
example, b, j + 11, instead of angle brackets. Thus, if we write (i, j) 
we mean the edge from vertex i to vertex j along the curve 7(+7(j), 
and not an edge along the curve e. 

We also define terms to describe nome special configurations in G. A 
hump is an edge (i, j) of G with both i and j on the sweeping curve e. 
The hump (i, j) Is empty if it contains no other curves. Clearly, for an 
empty hump, ]j - il = 1. The hump pictured is not empty. A triangle 
is a pair of edges, (k,v) and (I,v), with two distinct vertices k and 1 
both on the sweep and one vertex v above the sweep-we denote this 
triangle by A(k, v, I). The triangle A(k, u, I) is empty if it contains no 
other curves. For an empty triangle, ]I - k] = 1. 

With this notation, we can now define the local operations that move 
c forward while preserving the k-iitersection property. The operations, 
shown in Figure 3, are: 

Tske a loop Pass a triangle pass a hump 

Take a ray Pass a my 

Fig. 3: Operations by which the sweep progresses 

1. Taking a loop. Let 7 be a curve that intersects the sweep in at 
most k - 2 points. If an edge e of 7 is visible from an edge [i, i + l] 
of c, then there is a path from a point on e to a point on [i, i + I] 
that intersects no other curves. The sweep c can advance along 
this path and intersect the edge e in two places without adding 
any other intersections-preserving the k-intersection property. 

2. Passing an empty triangle. If A(i,u,i + 1) is an empty triangle, 
then c can move past the vertex v, interchanging the order of 7(i) 
and -y(i + 1) along the sweep. 

3. Passing an empty hump. If the edge (i, i + 1) is an empty hump, 
then c can advance past it and reduce the number of intersections 
with 7(i) by two. 

4. Taking the first ray. If a bi-infinite curve 7 intersects the sweep in 
fewer than k - 1 points and is visible as an infinite ray from edge 
[co, l] of c, then c can move forward and introduce one intersection 
point with this ray; 7 becomes 7( 1). We can define taking the last 
ray in a similar fashion. 

5. Passing the fIrat ray. If the leftmost curve 7(l) is an infinite ray 
with no intersections above the sweep e, then c can move past the 
ray and lose one intersection point with 7(l). 

If we can apply an operation, we say the sweep can make progress. 
A discrete sweep terminates when either there are no curves above the 
sweep or the only curves above the sweep are non-intersecting rays. In 
these situations, one can continuously sweep above c and maintain the 
k-intersection property without di&ulty. 

In a non-simple arrangement, we may encounter a number of trian- 
gles with a common vertex v above the sweep. We can handle this 
either by passing all the triangles simultaneously or by perturbing the 
curves (either actually or conceptually) to form a simple arrangement. 
Since our theorem will not restrict how the operations are applied, 
either of these methodr will work. 

3 The sweeping theorem 

Using the definition of sweeping from the previous section, we now 
prove: 

Theorem 3.1 (Sweeping theorem) Lei I’ be a finite #et of bi- 
infiniie CUPVCJ (and clorcd curves, if k > 1) in the plane of qhere that 
have the k-interJection property. Let c be a curve of I’. If k E { 1,2} 
tken WC con moeep I’ Jtarting with c and maintain tke k-inierrection 
properly. If k > 2 then arrangementi et& that cannot be swepi. 

We establish the pseudoline and pseudocircle cases, k = 1 and k = 2, 
by showing that certain local operations can always make progress. In 
section 3.3 we present some unsweepable arrangements with 6 > 2. 

3.1 Sweeping Pseudolines 

To prove the pseudoline case of the sweep theorem, we show that the 
sweep can always make program using three of the operations defined 
in section 2. 

Lemma 9.1 Any arrangement of bi-infinite CWWIJ r wiih the l- 
interJection property can be #wept Jtariing witk any CUNC 7 E T ruing 
three opcratiow paming a triangle, paJJing the firat ray, and taking 
ihe ,%‘Jt P3y. 

Proof: We will ses that the sweep can either paas the first ray, take 
the first ray, or pruw some triangle. 

Consider the edge (1, u) of the curve 7(I) that intersects the sweep 
first. Ifu = 00, then we can pass 7(l). Otherwise the vertex u comes 
from the intersection of a curve or with 7( 1). 

Suppose that the curve cur does not 
intersect the sweep and that the curves 
(c,7(l),crl,...,a,} border an unbounded 
face in counterclockwise order, an illua- 
trated in Figure 4. We can show by induc- 

-2Je&.k* 

’ 1 
tion that LI, does not intersect the eweep. 

Aaaume that these curves are oriented in Fig- 4’ Or does not in- 
the counterclockwise direction. Then the terscct the sweep 

curve q-r divides ai into two pieces, one to 
the left and one to the right. If Q;-I does not intersect the sweeping 
curve c, then it separates the right piece of ai from c. The left piece 
of 01 must remain in the region bounded by (c,7(1), al,. . . , ori-1); 
since vertex 1 is the first vertex on c, the left piece also cannot 
intersect e. Therefore, if or does not intersect c, then neither does 
a,, and e can take the first ray. 

Otherwise ai intersects the sweep at a point L. 
Let us call a triple (i, v, j) a half-triangleif (i, u) is an edge and 7(i) 

and 7(j) intersect at u. No curve crosses the edge (i, u) of (is u, j), no 
any curve visible in the interval (i, j) crosses c between i and j and 
7(j) between v and j. By induction on the sire of the interval (i, j), 
we can show that every half-triangle contains an empty triangle. 
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In the base case, Ii-j1 = 1 and A(i,u, j) 
is an empty triangle. Otherwise a curve fi 
intersects 7(j) at w mch that (j,w) is an 
edge. Since p is visible from j, it intersects 
c at k E (i, j). But now (j, UJ, k) is a smaller 
half-triangle, which contains an empty tri- 
angle by the induction hypothesis. 

Since CQ intersects the sweep at L, the 
triple (l,u,L) is a half triangle. The sweep 
can make progress by passing the empty 
(1, u, L). Thii entabliihes the lemma. m 

i k i 

Fig. 5: An empty trian- 
gle in a half-triangle 

triangle contained in 

3.2 Sweeping Pseudocircles 

To establish the pseudocircle (k = 2) case of the sweep theorem we use 
operations that change an even number of intersections. Once again 
we ehow that the sweep can always advance. 

Lemma 3.2 Any arrangement of CUN~B r udh the 2-intersection 
property can be rwept darting born any curve 7 E l’ by wing three 
opcrationr: pawring a Itiangle, pwing a hump, and taking a loop. 

We first prove that a t$-infinite curve can sweep an arrangement of 
‘l-intersecting curves curves in the the Euclidean plane. We amume 
that a counterexample exirts and then derive a contradiction. At the 
end of this section, we show that a closed sweeping curve can sweep a 
sphere or the Euclidean plane. 

For each arrangement in the plane with a bi-infinite aweeping curve 
we can form a graph G of the portion on or above the sweep. We define 
the .&e of an arrangement with a sweeping curve to be the pair (IVl, n); 
that is, the number of vertices on and above the sweep followed by the 
number of curves. Now, choose a set to a-intersecting curves I’, includ- 
ing an oriented bi-infinite rweeping curve c, guch that c cannot make 
progrer and the sise of the arrangement is lexicographically minimum. 
We prove a sequence of lemrnaa about the structure of thk arraage- 
ment and wind up with a conttadiction. Thir contradiction implien 
that a bi-infinite aweeping curve can always sweep an arrangement of 
2-intersecting curves. 

Lemma 3.3 Removing an, ewve -y from the arrangement I’ allow 
ihc rweep to progrerr. 

Proof: By minimality of the arrangement. a 

Lemma 3.4 AII curvc~ in I’ infcrrect the awsepiq CYIW c. 

Prooft Since the ‘weep cannot make progrem by taking a new 
curve, any curve 7 that does not intersect c in not visible from c. But 
removing such a curve 7 doee not thazqc c’r ability to make progreaa 
Therefore, all curve‘ in the smallest counterexample inkrsect the 
sweeping curve c. m 

Lemma 3.6 We ten choose a minimum counlerezampk ruch ihat all 
of the cwvu of I’ e?e my, fo iajkdy below ulc rulecp c. 

Proof: Map the bi-tinite moeping curve c ta a line c’ by a con- 
tinuous mapping of the plane onto it& cut all curvea below c’ and 
uknd them prpeudieularly to infinity, then apply the inverse map- 
ping. When this procedure is applied to a minimum counterexam- 
pie, neither the arraqement above the #weep nor the sine t afTected. 
Thus, it rqainr a minimum counterexample. n 

From now on, we assume that our unrwecpablc arrangement, r, ia 
chosen in accordance with kmma 3.5. 

Lemma 3.6 The arrangement r cannot contain o hrmp ot a Manlk. * 
Proof: The arrangement certainly cannot contain an empty tti- 
angle or hump; otherwire the sweep could make progress. Sup 
pose, however, that r contains vertices i and j on the sweep, 
with i < j, that are the en& of a hump or a triangle. Since none 
of the curvee that intersect the awecp between i + 1 and j - 1 
intersect the hump or triangle, the smaller arrangement, I” = 
{7(i + 1),7(i + 21,. . . I 7(j - I)), lies completely inside the hump or 
triangle. But, by minimality, the sweep can make progress in the 
arrangement r’. Thii contradicts the fact that I’ ia unsweepable and 
establishes the lemma.. 

Let’s pause a moment and consider what these first four lemmas tell 
us. We have an arrangement r in which the sweep cannot progress. 
If we remove any curve 7, then some operation applies. Lemmas 
3.4 and 3.6 tell us that, after removing 7, there must be an empty 
hump or triangle where there were none before. We also have a nota- 
tional convenience from lemma 3.4; every curve in l’ can be denoted 
7(i) for some vertex i on the sweep. 

Next we consider configurations in which removing a curve leaves a 
hump or triangle. By finding contradictions to lemma 3.6 or to the 
minimality of l?, we can show that most configurations cannot occur. 

Lemma 3.7 For any verlez j on fhe #weep, Ihe removal of the curve 
-y(j) cannot leave an empty hump or empty triangle with verticesi and k 
rdiafying i < j < 6. 

Proof: By case analysis. We sketch the idea: Lemma 3.6 implies 
that the curve 7(j) intersects the triangle or hump that is formed if 
7(j) is removed. That intersection point forms a new empty triangle. 
To break up the new triangle, i(j) must reenter it-but in doing so, 
the curve 7(j) creates another triangle that cannot be avoided. n 

Lemrn~ 3.6 The removal of a CINC y(k) cannot leave a hump. 

Proof: Suppti that the arrangement of r - 
{y(k)} contains the hump (i, j). Consider the 
arrangement r’ with only thin hump removed: 
r’ = r - {-y(i)}. By lemma 3.3, the sweep 
can make progress in r’. But 7(i) intersects 
only 7(k); therefore, in I”, the curve 7(k) con- 
tributes an edge to an empty hump or triangle- 
let (k,v) be that edge. In the original arrange- 
ment I’, however, 7(i) intersects 7(k) at some 

ki i 

Fig. 6: y(k) can- 
not leave a hump 

vertex u between k and v. Thus A(i, u, k) is a triangle in r, contra- 
dicting lemma 3.6. m 
If the removal of a curve 7 does not allow UI to move past a hump 

(lemma 3.8) or take an edge (lemma 3.4) then we must have an empty 
triangle, A(i, V, j). Since 7 cannot intersect the #weep between i and j 
(lemma 3.7), we can denote the triangle in the arrangement l? - {7) 
by A(i, v, i f 1). The next lemma will restrict the way 7 can break up 
thl triangle. 

Lemma 3.9 Suppore that the armagemcnt I’ - (7) har an cmpg Iri- 
angle A(i, V, i+ 1). Then, in lhe original arrangement I’, the face above 
thy edge [i, i + l] hu v M a vctieo. 

Proof: Support that v i-not a vertex of the face above the edge 
[i, i + 11. Then the curve 7 must ‘hide” u from that portion of the 
sweep by intersecting both legs, (i,v) and (i + 1,~) of the triangle 
A(i, V, i + 1). Lemma 3.7 implies that 7 intersects both legs once or 
both lega twice. 

i i*l I i+l 

Fig. 7: The curve 7 intersects the legs once. We untangle the trie.ngle. 

In both cases we can derive a contradiction by *untangling” the 
triangle u showq in figure 7. Untangling eliminates the vertex V, 
forming a mmalkr arrangement that can be swept. We omit the 
proof to .*n space. . 
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We have shown that removing any curve 7 
from the minimum counterexample I’ must ” 
leave an empty triangle and that 7 must inter- 7 
sect only one leg of that triangle. If removing 
y leaves A(i, v, i+ 1) then we say that the edge c 2cL 

Ii, i + l] is responsible for 7. Notice that each i ii7 

edge of the sweep is responsible for at most one 
curve. 

Fig. 8: [i, i + l] is re- 

In order to have an edge of the sweep rtspon- 
sponsible for 7 

sible for every one of th; n curves in the set F, we need at least n + 1 
vertices on the sweep. Thus, there is a curve that intersects the sweep 
twice. We call a curve a loop with respect to c, or, more simply, a loop, 
if it intersects c twice and is connected in the above component of the 
plane. 

The presence of a loop is critical to our argu- 
ment. If we were sweeping an infinite cylinder, we 
would not always have a loop; in fact, there art 
unsweepable arrangements of curves that have the 
two-intersection property and have no loops. Fig- 
ure 9 shows an arrangement in which the sweeping 
circle, c, cannot make progress. The existence of c 
a loop is a property of the plane that prevents the 
sweep from becoming stuck. 

We omit the proof of the final lemma for the bi- 
infinite case. Fig. 9: Cannot be 

swept 

Lemma 3.10 There eziete s curve 7 whore removal does noi leave s 
iriangls. 

Proof: We define a nesting for loops and look at an innermost loop 7. 
By looking at 7 and the interval resonsible for -r we can End a smaller 
arrangement in which the sweep can make progress if and only if it 
can make progress in the original. But this contradicts the minimal- 
ity of the original arrangement. w 

Lemma 3.3 states that if we remove one curve from the smallcst 
counterexample, then some operation applies. Lemmas 3.4 and 3.8, 
however, say that the operations of taking a curve or passing a hump 
will never apply after removing one curve. Lemma 3.10 proves the 
existence of a curve whose removal does not leave a triangle. This 
contradiction proves that any arrangement of bi-infinite, 2-intersecting 
curves curves in the Euclidean plant can be swept by a curve that 
maintains the Zintersection property. 

Having established the bi-infinite case, we can use it to prove that 
a closed curvt can always make progress. To sweep a sphere with a 
closed curve c, simply find a point that lies only on c and remove this 
point from the plane. Sweeping this punctured sphere is equivalent to 
sweeping the Euclidean plant with a bi-infinite curve. 

To sweep an arrangement in the Euclidean plane with a closed curve, 
we show how to embed it in an arrangement of 2-intersecting curves 
on the sphere. The following lemma shows that we can map the plane 
into a region of a sphere bounded by a P-intersecting curve [. Then we 
close off the bi-infinite curves outside oft to form an arrangement on 
the sphere with the 2-intersection property. 

Lemma 3.11 The bounded faces of an arrangement of endless curves 
wiih the 2-intersection property in the plane can be embedded into s 
region bounded by s curve in sn arrangeineni of closed 2-intersecting 
curvt~ in the sphere. 

Proof: Draw an auxiliary curve 4 around the arrangement F so 
that all the vertices and closed curves of I are on the interior of t 
and modify the infinite rays so < intersects each ray once. Take a 
solid half-ball H and map < to the rim of H so that the interior of 
the curve t is mapped to the rounded surface of the half-ball. Every 
bi-infinite curve of l? has two points of intersection with t; connect 
these two points by a chord along the Aat surface of the half-ball. 
These chords turn the bi-infinite curves of I into closed curves; we 
must show that any two closed curves intersect in at most two points. 

Suppose two chords, ;;6 and z, inter- 
sect. Let CI denote the closed curve in- 
cluding chord ;;i;, and let p denote the 
closed curve including chord z. The 
non-chordal portion of p goes from the 
interior of the closed curve a to the cx- 
terior, so it intersects o an odd num- 
ber of times. But, by the &intersection 
property, it must do so only once. 
Therefore, closing off the curves of F 
with these chords does not violate the 
2-intersection property. w 

Given an arrangement in the Euclidean 
Fig. 10: Closing off curves 

olanc and a closed sweeuinn curve c. em 
with chords 

bed the arrangement in iheaphere according to lemma 3.11. To sweep 
the interior of c, simply sweep on the sphere. To sweep the exterior 
of c, sweep on the sphere until c reaches the auxiliary curve t. Then 
return to the plane, cutting c where it meets t and extending it to infin- 
ity. Finish the sweep in the plane with thii bi-infinite sweeping curve. 
Thus, a closed sweeping curve can always progress and le- 3.2 is 
established. 

3.3 Arrangements that cannot be swept 

There are arrangements with the J-intersection property that cannot 
be awept. 

Fig. 11: Unsweepable arrangements of Sintersecting curves 

Consider the arrangements in figure 11. In both of them, the sweep 
ing curve e intersects every curve twice. When the sweep first passes 
over one of the vertices on the boundary of the shaded region, it in- 
tersects one or two curves, each in two additional places-in both in- 
stances violating the 3-intersection property. Thus these arrangements 
are unsweepablt. 

It is not difficult to construct arrangements with the (k > 3)- 
intersection property that have copies of the arrangements of figure 11 
stopping progress in triangles or humps. This establishes the final case 
of the sweeping theorem. 

4 Applications of sweeping 

In this section wt apply the sweeping theorem to solve two problems: 
finding boolean formule for polygons with curved edges and counting 
triangles and digons in arrangements of exactly Zintersecting curves. 

4.1 Boolean formulae for polygons 

The lines supporting the edges of a simple polygon define half-spaces 
in the plane. We can describe the set of points in the interior of the 
polygon by a boolean formula on these half-spaces. For example, a 
convex polygon is the M?JD of the half-spaces defined by its edges. Pt- 
terson [30] showed that every polygon with n edges can be represented 
by a monotone formula that uses each half-space once. 

Any bi-infinite curve divides the plane into two half-spaces; we can 
attempt to find formulae for polygons with curved edges if these edges 
are pieces of bi-infinite curves. Define a curved segment to be a simply 
connected portion of a curve. We call the points that bound a segment 
vertices in this section; segments with only one endpoint we call rays. 
A polygonal chain is a sequence of curved segments {sr, ss, . . ., s,,) 
such that si and si+l share a common vertex, either 61 and s, are rays 
(and the chain is open) or they share a common endpoint (and the 
chain is dosed), and no other intersections between segments occur. A 
vertex v of a segment s divides a bi-infinite curve into two pieces; we 
call the piece not containing the segment the extension of s through v. 
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Dobkin et al. [6] gave a simple proof that every polygon with n edges 
has a Peterson-style formula--a monotone boolean formula that uses 
each edge’s half-space once. Their proof depends on the fact that ev- 
ery polygonal chain has a splitting vertex-a vertex v such that the 
(straight-line) extensions of the incident edges through v do not inter- 
sect the chain. They split the chain at v, recursively find formula for 
the two subchains, and combine them with an AND if u is convex or an 
OR if 0 is concave. 

We can use the sweep theorem to show that polygonal chains whose 
segments are portions of pseudolines also have a splitting vertex. 

Theorem 4.1 In any polygonal chain whose segments are connected 
portion of distinct pseudolines, there is a vertes B such that the e&e+ 
rions of the incident segmenti through t) do not intersect the polygonal 
chain. 

Proof: Let s = (81, ss, . . . , s,,} be a polygonal chain satisfying 
the hypothesis. 

If S is closed, sweep its arrangement of pseudolines starting from 
a bi-infinite curve. that intersects no curves. Stop when the sweeping 
curve e first crosses the chain S. Since all segments of S are bounded, 
the sweep first intersects S by passing a triangle and not by taking 
or passing the first ray. Hence, the intersection point crossed is a 
vertex v of the chain, as shown in figure 12a. The incident segments 
both intersect e, so their extensions through v lie wholly on the swept 
side of c. The chain S, however, lies on the unswept side, except for 
v. Therefore the extensions cannot intersect S. 

Fig. 12: Sweeping closed and open polygonal chains 

If S is open, let I~ be the ray that is the extension of so through its 
vertex. Assume that the rays so, 61, and s, appear counterclockwise 
in thii order on the line at infinity; if they are reversed, consider 
the mirror arrangement. Sweep the arrangement beginning with a 
bi-infinite curve c that intersects only & and stop when c intersects 
the chain S, as shown in figure 12b. 

Recall that we sweep by passing triangles and taking and passing 
the first (and not the last) ray. Since the sweep c intersects %, it 
cannot cross the ray 4; ray s1 blocks c from crossing s,,. Further- 
more, c cannot pass II without intersecting the chain S since q E S. 
Therefore c first intersects S by passing a triangle, and the exten- 
sions of the segments incident to the triangle’s apex are separated 
from the chain S as in the previous case. This proves the theorem.. 

This theorem, together with the results of [S], 
proves that polygons bounded by portions of pseu- 

I3 

p R 
dolines have Peterson-style form&e. 

Polygons bounded by portions of pseudocircles 
may require auxiliary curves and variables. In fig- 
ure 13, the polygon R is contained in the same half- Fig’ 13’ ’ has 
spaces as the polygon P-to represent one region no formula 

without the other, we must separate them with another curve. 

4.2 Triangles and digons in arrangements of exactly 
2-intersecting curves 

We can model lines and pseudolines in the projective plane by great 
circles on a sphere with opoaite pointsidentified. In UArrangements and 
Spreads,” Griinbaum notes that if we cease to identify opposite points 
of the sphere, we obtain an arrangement of exactly 2-intersecting curves 
with no digons (two-aided faces) [22]. He investigates minimum and 
maximum number of triangles in such arrangements and asks what is 
the relationship between the number of triangles and number of digons. 

We can prove: 

Lemma 4.1 In an arrangement of closed curves with the ezact 2- 
intersection property, let pi denote the number of i-sided faces. Then 
2pa + 3ps 2 4% 

Proof: Assume the arrangement is on the sphere. We will find four 
digons or triangles on each curve. 

Choose a curve e. Map c and one of the hemispheres it defines to 
a disk in the plane by the Schhflies theorem. [31] Extend the curves 
to infinity outside the disk. 

Sweep the diik starting wi+.h c. Since c already intersects 811 of the 
curves, it advances by passing a triangle or hump (a digon). Cut c 
inside the hump or triangle, and extend the ends to infinity without 
crossing any other curves. We can still sweep the disk with this bi- 
infinite curve, so there is another digon or triangle. Similarly, we 
find two digom or triangles in the other hemisphere defined by c. 

Since we find each digon at most two times and each triangle at 
most three times, we have 2pl+ 3~3 2 4n. l 

Griinbaum conjectures [22, Conj. 3.71 that every digon-free arrange- 
ment of exactly 2-intersecting curves her at least 2n - 4 triangles. Spe- 
cialieing our result proves there are at least 4n/3 triangles-we suspect 
that his conjecture is closer to the truth. 

5 Sweeping wedges 

In the previous section our sweeping curves moved forward to sweep 
the plane. In thii section we will see how to sweep by rotation about 
a point. We uee this sweep to prove the extension theorem, which 
extends arrangements of l- and 2-intersecting curves by adding new 
curves that psss through specified points. 

Theorem 5.1 (Extension theorem) Let l’ be a finite set of cumee 
wiih the k-intersection properly, and P be a ret of 6 + 1 poinb, not 
all on the same curve. If k E (1,2} then there ie Q curVe that containa 
the pointe of P and hw the k-iniersection property with reepect to I’. 
If k > 2 then arrsngemente and point aek ezist such thaf any curve 
through the points violaier the k-intersection property. 

Levi proved the exact k = 1 case of the extension theorem in 
1926 [25]. Levi’s extension lemma, M his result is known, has become 
an important tool for generalisiag properties of arrangements of lines to 
arrangements of pseudoliies. For example, Goodman and Pollack use 
it, in concert with their %ircular sequences” [7,17], in a series of papers 
that prove duals of Radon’s and Helly’s theorems for pseudolines [16], 
prove that all arrangements of 8 pseudolimes are stretchable [13], and 
deflne a duality for configurations of points’and pseudolines [12, 151 to 
establish a conjecture of Burr, Griinbaum, and Sloane [3]. They also 
show that no extension lemma can hold for planes in space [14]. 

As we mentioned in section 4.2, Griinbaum [22] is interested in ar- 
rangements of exactly 2-intersecting curves. He says, “Another open 
and seemingly hard problem is to find the right analogue for (digon- 
free) arrangements of curves of Levi’s extension lemma. It is well pos- 
sible that an appropriate result in this direction would lead to solutions 
of some of the other problems mentioned.” The pseudocircle case of 
the extension theorem finds a Zintersecting curve, which is not nec- 
essarily au exactly 2-intersecting curve-we do not guarantee that our 
new curve intersects all other curved. 

We establish both the pseudoline and pseudocircle cases of the ex- 
tension theorem by showing that a bi-infinite curve can sweep a double 
wedge in the Euclidean plane. Let us define such a sweep formally 
before we give the proofs. 

Let c and c’ be oriented bi-infinite 
curves that intersect only at a point p. & :,,:, 
Curves e and d divide the plane into four 

.:::: “:.. :::i,.. ::::: _/ _ ::’ Y: 
regions bounded by curve segments, as c 

% 

~~~~~~~~~~: :~~~~~~~’ 

illustrated in figure 14. We call the re- 
=I M .::.. ” ‘; i,.~,~~~:~.~~~~~:~:~:~~: 

.,. ,., 
p . . :.,:.::p : i“‘“-’ : ‘. ; :cj.:. .$zi 

gion where both segments are oriented 
towards p the left wedge, and call the re- 
gion where both are oriented away from 

Fig. 14: A double wedge 

p the right wedge. The left and right wedges together comprise the 
double wedge, denoted wedge(c,c’). The wedge wedge(c,d) contains 
the curves c and d. 

The segment of c bounding the left wedge is the left half of c, that 
bounding the right wedge is the right half. We asume that the left 
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wedge is below c and the right wedge is above, according to the def- 
initions of below and above given in section 2. We want to rotate c 
continuously, moving downward on the left and upward on the right 
until c reaches c’. 

A fkily of curves, C = {c=}o<asr, indexed by reals from the interval 
[0, 11, covers the double wedge wedge(c, c’) if 

e The curves co = c and cl = c’, 
o Every point in vedge(c, c’) lies on exactly one curve c, except the 

point p, which lies on every curve in wcdge(c, I?), and 
e For all 0 < Q < p < o’ 5 1, the curve co lies in wedge(c,, c,,) 
Suppose that e and d form a wedge wedge(c, c’) and belong to a set 

of curves T that has the the k-intersection property. We say that c can 
sweep the double wedge wedge(c, d) if there is a family of curves C that 
covers wcdge(c, c’), and the set l’UC has the k-intersection property. As 
before, we assume that the sweeping curve e is part of the arrangement. 

A point Q on a curve -r is visible from an interval I of the sweep c, 
if 2 and some point r E I both lie on the boundary of a common face 
contained in the double wedge wedoefc. ~‘1. 

We can view the sweeping pro&s in another 
way. If we remove the point p from the plane, 
the resulting surface is topologically equivalent 
to a cylinder. The sweeping curve c and its des- 
tination c’ each become two b&infinite curves. 
Both pieces of c are moving in the same direction 
(counterclockwise in figure 15). These two pieces 
together arc not allowed to intersect any curve 
in more than k points; the sweep ends when the 
pieces of e reach the pieces of d. 

Even though we have defined sweeping as a zr C c’ 

c’ c 
continuous operation, we again want to perform 
the sweep in discrete steps. We use the local op- 

Fig. 15: e on a 

erations from section Z-modifying the “taklmg” 
cylinder 

operations to use the new definition of visibility. We prove the cxtcn- 
sion theorem in the next three subsections. 

5.1 Extension lemma for pseudolines 

We do not need to sweep a double wedge to prove the extension theorem 
fdr exactly l-intersecting curves. Levi originally proved hi lemma by 
arguing that a curve that connected two points and had the minimum 
number of Intersections with other curves had the exact l-intersection 
property. See [25] or, for a proof in English, [22, Thm. 3.41. Our proof, 
which sweeps a double wedge, handles the l-intersecting curves case 
and foreshadows the proof the pseudocircle case. 

Suppose we have an arrangement of pseudolmes and points p and 
p not on the name pseudoline. If no curve passes through p then WC 
add one to the arrangement by sweeping with a bi-infinite curve until 
we encounter p. Now, if only one curve passes through p, duplicate 
it, reverse its orientation and perturb it so that the original and the 
copy intersect only at p and the point g lies in the double wedge of 
these curves. Otherwise, g lies in some region bounded by two curves 
through p. Orient these two curves so that Q lies in their double wedge. 
Lemma 5.1 proves that we can sweep the double wedge containing Q 
and maintain the l-intersection property. This establishes the k = 1 
case of the extension theorem. 

Lemma 5.1 Given a finite set of pacudolinea l’ that includes two 
curves, c and C, that define a double wedge, the curoe c can sweep 
wedge(c,d) wing the operationa of pcrssing a triangle and taking or 
patsing the first or last my. 

Proofr First apply operations that advance the right half of the 
sweep c. If e can no longer make progress in the right wedge, then 
it will be able to advance in the left wedge. 

Assume c cannot advance on the right-no operation applies in 
the right wedge. We perform surgery: Erase everything in the plane 
except c and the curve segments in the right wedge, and extend these 
segments to bi-infinite curves without adding any intersections. The 
only effect of thii surgery that is visible from the right half of c is 
that d disappears. Lemma 3.1 says that c can make progress in the 
reduced arrangement by passing triangles and passing and taking the 
last ray. Since no operation applied in the original arrangement and 
the curves visible from c did not change, c cannot pass a triangle 

Fig. 16: Surgery on the right wedge finds curve 7 

or ray after the surgery. Therefore e can now take a curve 7 that 
intersected the left half of c before the surgery. 

Look at the right wedge of wedge(c, 7). Since 7 is visible from c as 
a ray in this wedge, every pscudolme that intersects the right half of 
c also intersects 7 above c. 

Returning to wedge(c,c’), perform the same surgery M above on 
the left wedge. Lemma 3.1 says that c can advance downward in the 
reduced arrangement by passing triangles and passing and taking the 
first ray. As before, if we can pass a triangle or a ray, we can also 
pass it in the original arrangement. If wc can take the ray of a curve 
Q, then Q intersects -f below the sweep. Therefore, a cannot intersect 
the right half of oif it did, it would intersect -I above the sweep as 
well. This means that c can take Q in the original arrangement. 

Therefore, e can advance on the left to sweep the double wedge. n 

This completes the proof of the pseudoline case. 

5.2 Extension theorem for pseudocircles 

We will also prove the extension theorem for pseudocircles by sweeping 
a double wedge. First, however, we show that we need consider only 
closed curves on the sphere. Given an arrangement of pseudocircles in 
the Euclidean plane, lemma 3.11 says we can map it to a region ‘R of a 
sphere bounded by a pseudocircle and close off all the curves without 
violating the Zinterscction property. Let p, Q, and r denote the three 
points given by the hypothesis; they too arc mapped into 72. Assume 
for the moment that we can find a curve c through p, Q, and r on the 
sphere. The curve c intersects the boundary of 7Z in at most two points, 
so the portion inside ‘R, that is o’ = cnX, is a simply connected curve. 
This curve o’ maps to a a-intersecting curve in the Euclidean plane. 

Now, consider the sphere with an arrangement of closed pscudocirclcs 
and three points p, Q, aud r-for simplicity, assume no curves pass 
through these three points. If we remove r, then we need to find a bi- 
infinite curve that passes through p and q. As in the pseudoline case, 
the sweeping theorem says that we can sweep with a bi-infinite curve 
until we encounter p. Duplicate the sweep, reverse its orientation, and 
perturb it so that the original and the copy intersect only at p and the 
point q lies in the double wedge of these curves. Lemma 5.2 proves 
that we can sweep the double wedge containing 2 and establishes the 
k = 2 case of the extension theorem. 

Lemma 5.2 Let r be a finite ret of p~eudocirclee, all tlored ezcept 
two, c and c’, which dejZne a double wedge. The curve c can sweep 
wedge(c, c’) using Ihe operationa of passing a Mangle, passing a hump, 
and taking a loop, 

In some arrangements, lemma 5.3 pin- 
points a place where an operation applies. 
In other arrangements, wc find curves that 
we call crescents. Crescents have rcglons, 
which we call their shadows, in which the 
sweep can advance unless some other crcs- Ys2x o’ 
cent prevents it. By looking at the struc- 
ture of crescents and their shadows, we will Fig. 17: Two crescents 
sea that there is some crescent whose shadow contains no other crcs- 
cents. The sweeping lemma for pseudocircles, lemma 3.2, is an impor- 
tant tool in thii proof. 

We call a curve a crescent if it is visible from one half of the sweep 
and intersects the other half in two points. Keep in mind that all curves 
but c and c’ arc closed. We will refer to crescents that intersect the left 
(right) half as above (below) crescents. 

Crescents are important because: 
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Lemma 5.3 If an arrangement does noi have both above and below 
creaeente, then Lhe rweep can make progress. 

Proof: Suppose the arrangement ha5 no above crescents; the other 
case is similar. Then perform surgery on the right wedge: erase 
everything from the plane except c and the curve segments in the 
right wedge, then extend these segments to bi-infinite curves without 
adding intersections. (See figure 16.) 

Lemma 3.2 says that c can now advance by passing a hump or 
triangle or by taking a loop. If a passing operation applies in the re- 
duced arrangement, then it also applies in the original. On the other 
hand, no curve visible from the right half of the sweep intersects the 
left half, 10 any loop that can be taken in the reduced arrangement 
can also be taken in the original. Therefore, c can make progress in 
sweeping the double wedge. m 

Assume for now that 7 is a below crescent-it intersects the right 
half of the sweep c and is visible from a point p in the left half of c. The 
hump of 7 is the portion of 7 above the right half of c. If c could pass 
the hump of 7 on the right, it could subsequently take the loop of 7 on 
the left. We make the following definitions in an attempt to capture 
the set of curve.8 (or curve segments) that prevent c from passing this 
hump. 

We define the inner and outer shadowy of 7 recursively in the follow- 
ing paragraph. The inner shadow i&h(y) is a set of curve segments, 
each having an endpoint that is before the hump of 7 on the right half 
of c. The outer shadow out%(~) is a set of curve segments, each hav- 
ing an endpdmt that ie after the hump of 7 on the right half of c. The 
shadow Sh(r) is the union inSh(y) U o&h(r). The shadow interval of 
.%, into<&), is the portion of c from the leftmost to the rightmost point 
of c n Sh The shadow region of Sh is the largest simply connected rc- 
gion bounded by the curve segments of the shadow Sh and the interval 
intd(Sh). 

Let in& = out& be the hump of 7. We form the set in&+1 by 
adding certain curve segments to in& For every curve Q that inter- 
sect6 the right half of c before the interval intvl(inSk) and has a point 
pa visible from intsI(inShi), we add the curve segment tromp,, to the in- 
tersection point with the right half of c nearest intvi(inSh). If no curves 
are added, then we terminate the recursion and set in.%(~) = idk. 
Since a finite number of curves intersect c, the recursion eventually 
terminates. 

We use a similar recursion 
for the outer shadow out.%(y), 
replacing “before” by “after” 
in the previous paragraph. 

The leading curve of inner 
shadow inSk (outer shadow 
out&) is the curve whose 
intersection with c is the 
first (last) point of intv(inSk) 
(intvi(outShi)). The act of lead- Fig. 18: The shadows 
ing curves for an inner shadow 
in.9~ (outer shadow out&) is the set {ho, *1,. . ., xi), where ~j is the 
leading curve for id&j (out+). 

We have made these definitions for below crescents. For above cres- 
cents, we make similar definitions involving the left half of the sweep. 
The only difference is that the outer shadow precedes the inner shadow 
so that the inner shadow is closer to the vertex of the double wedge 
wedge(c, d). 

The way curves nest inside each other is important in our proofs. We 
say that a curve o ntsts with anon-crescent curve @of the inner shadow 
inSh(r) (outer shadow out%(T)) if both points of the intersection ane 
lie inside (outside) the closed curve 0. We say that a curve Q nests 
inwardly with the below crescent 7 if both points of a fl c lie in the 
interval of c between the hump of-y and p, the point from which y is 
visible below c. The curve Q nests outwardly with 7 if both points of 
n n c lie outside of the hump of 7 and the interval from the hump to p. 

Curves that contribute curved segments to a shadow have nesting 
properties that are described in the following lemma whose proof. 

Lemma 5.4 Let fl be a cute whose segment fl is added in forming 
the shadow inShi (or outSh(y)). Letcr be a curve that intcreecti the 
sweep c, buC not in the shadow interval. If a intersects@‘, then a nests 

with p and with q,, ~1, . . . , *i-l, the set of Ieoding cwws of i&k-l(r) 
(or outSh&&)). 

Corollaries to this lemma prove the definition of shadows is unam- 
biguous and reveal 5ome structure of the shadows. 

Corollary 5.5 The cona&uc2ion of 2he inner and outer shadows of 7 
is well defined. 

Proof: When adding the segment of a curve (Y to an inner shadow 
in&, we add the segment “fromp, to the intersection point withhhe 
right balfofc nearest intv(inSk).” Lemma 5;4 says that a nest5 with 
7. Therefore, both points of me either precede or follow intv(inSk) 

and the nearest one in well defined. . 

Corollary 5.6 Let a be a curse with a point pp Ihal is uiaible from the 
rhadow interval intol(Sh(y)). E’th I er a ia a crescent, doe.8 not intersect 
c, or connects pm to c within the, shadow region of RI(~). 

Proof: Assume n intersects c and is not a crescent. If Q is first 
visible from but does not intersect inb<inSh) (or intv<outSh)), then 
lemma 5.4 saye that Q nests with the leading curve of the shadow. 
Thus a will be included in in&+.1 (or outSk+l). . 

Now we can show how one crescent can prevent the sweep from 
advancing in the shadow of another. We say that an above or below 
crescent A stops a below or above crescent B, A@B, if A in visible from 
the shadow interval intDqSh(B)). 

Lemma 5.7 If no crescent rtops a crescent 7, Ihen the sweep can ad- 
vance in the shadow region of 3(-y). 

Proof: Suppose that no operation applies in intvqSh(ih(r)). As usual, 
we perform surgery: erase every curve outside the shadow region 
except c and extend all curve segments to infinity without adding 
intersections. 

The sweep lemma, lemma 3.2, says that c can make progress in 
the reduced arrangement. If e could advance by passing a hump or 
triangle, then it could do 80 in the original arrangement. Therefore 
it can take a loop of a curve Q. Since Q is not a crescent, corollary 5.6 
implies that a dots not intersect c. Thns c can take a in the original 
arrangement. n 

To prove that there is a crescent not stopped by any other crescent, 
we show that the 0 relation is acyclic. We omit the proof due to space 
constraints. 

Lemma 5.0 The 8 relation is acyclic. 

Proof: If cycles exist, we can show that the crescents of a minimal 
length cycle must neat deeper and deeper. The most deeply nested 
crescent, however, cannot stop any other crescent of the cycle. Thii 
contradiction shows that no cycle exists. w 

This lemma, combined with lemma 5.7, shows that we can make 
progress even when crescents exist. Thus, the proof of lemma 5.2 is 
complete. 

5.3 Arrangements with no extension curves 

Figure 19 shown that when we specify k+2 pointa in pseudoline (k = 1) 
or pseudocircle (6 = 2) arrangements, an extension curve may not exist. 

Fig. 19: No extension curve 

In figure 19a, we want to draw a new curve through the three points, 
50 one point lies between the other two. But then one of the pseudolines 
separates the middle point from the adjacent points-the new curve 
intersects this pseudoline at least twice. 

In figure 19b, we can assume that the new curve through these four 
points is closed. The center point then has two adjacent points and one 
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opposite point on this closed curve. One of the pseudocircles separates 
the center and its opposite from their adjacent points. The new curve 
intersects this pseudocircle in at least four points. Since the pseudo- 
circles of figure 19b also satisfy the 3-intersection property, the above 
argument proves that not all arrangements of 3-intersecting curves with 
four points have an extension curve.’ We will show how to convert this 
to an arrangement of bi-infinite curves in lemma 5.9. 

Lemma 8.9 POT every k 2 3, ihere is (LB arrangement of k- 
intersecting curves and k + 1 paints ruch thd cny curve #rough these 
points violater the k-intersection ptoperfy. 

Prooft If k > 3 is even, consider arrangements of four curves 
constructed after the scheme in figure 20. The figures on the left 
show arrangements with the 4 and 6intersection property. Those on 
the right indicate how to form arrangements for other even k-curve 
segments are drawn to represent the open curves that surround their 
pcilmeter. 

k-4 k-4i 

k-6 k-4i+2 

Fig. 20: Arrangements for even k 

We can connect one pair of points by a (curved) segment that 
crosses curves 2 timea. Any other segment that connects two points 
crosses the curves at least 4 times. To connect all k+l points requires 
4k + 2 crozsinge, or an average of k + l/2 crossings per curve. Thus, 
any extension curve through the points intersects one of the curves 
in more than k points. 

Since the extension must cross each curve an even number of timea, 
it intersects one of the curves in k+2 points. Thus, the arrangements 
of figure 20 also show (k + l)-intersecting curves with no extension 
curvts. 

For those who are not happy with closed 
curves satisfying an odd intersection property, 
we can replace each closed curve by three 
bi-infinite curves as shown in figure 21. An 
extension curve can extend infinitely in only 
two of the three, so we can close one without 
crossing the extension curve. This reduces the =cIt3 
problem to the previous case. . 

Fig. 21: Bi-infinite 
curves 

6 Algorithms for sweeping curves 

If we know the graph that represents the arrangement, then we can 
easily implement the local operations defined in section 2. The only 
complication could be dealing with separate connected components of 
the graph. If we sweep pseudolines or pseudocircles, lemmas 5.1 and 5.2 
say that we can apply any operation to make progress-we may even 
be able to apply operations in parallel. 

Since an arrangement of n curves can have quadratic sise, it is impor- 
tant to ask whether one can perform the sweep when the arrangement 
is ‘not known explicitly. Edelsbrunner and Guibas showed that this 
could be done efficiently for line arrangements [9]. Let’s look at their 
ideas and try to use them to sweep arrangements of pseudolines and 
pseudocircles. 

6.1 Implementing a pseudoline sweep 

When sweeping an arrangement of lines, Edelsbrunner and Guibas can 
start with a curve that intersects every lintthey don’t need to use 
takiig or dropping operations. Thus, their problem is to recognize 
empty triangles. For thii purpose they keep two data structures that 
they call upper and lower horhon trees. 

The horison trees could also be called envelope trees because for any 
interval [i, i + 11 on the sweep, one tree encodes the lower envelope of 
the lines that intersect the sweep before the interval, specifically the 
liies 7(l),..., y(i), and the other encodes the upper envelope of the 
lines 7(i + l), . . . , 7(n). (Unfortunately, the upper horiron tree encodes 
the lower envelopes.) In thii section, we want to concentrate on the 
envelope properties, so we will refer to the trees as lower and upper 
envelope trees. 

Any empty triangle that occurs in both envelope trees is truly empty. 
The lower envelope tree certifies that no lime cuts it from above and 
the upper that no line cuts it from below. Since we can pass triangles 
in any order, we need only one tree: one can prove that in the upper 
envelope tree (lower horiron tree) the uppermost or first triangle cannot 
be cut by a line above it. Thus if we always pass the upper triangle in 
the upper envelope tree, we can sweep the plane. Overmars and W&l 
noticed thii faer ln the dual [29]. 

For limes, and also for pseudolimes, the envelope treea have linear 
sire--once a curve crosses into the envelope, it cannot leave. The initial 
trees are easy to construct. Simply add the curves in increasing order 
along the sweep to build the lower envelope tree, and in decreasing 
order to build the upper envelope tree. The time to update the trees 
can be related to the horizon complexity of the limes of the arrangement 
(thus the original names) so it amortises to constant time per triangle. 

We can now modify the method of Fdels- 
brunner and Guibas to use a single envelope 
tree to sweep pseudolimes in linear space and 
in time proportional to the sire of the arrange- 
ment. Initially we need to know the order along a 
the sweep c of the curvts that intersect c. We y 1 i 
also assume that we know the ordering around 
the line at infinity. With this information, we Fig. 22: Sweeping 

can takt rays until we reach a curve that already curves 7(l), . . .,7(i) 

intersects the sweep-say it is 7 intersecting the sweep at i. That is, 
7 = 7(i). 

Wt find the upper envelope tree (lower horison tree) for the curves 
r’ = {7(l) *. ..,7(i)}. The first triangle in this tree is an empty triangle 
in tht arrangement r’. Every curve that is visible in the inttrval [oo, i] 
of the rweep c must intersect c at or before i to avoid intersecting 7 
twice; therefore the first triangle is an empty triangle in l? and c can 
pass it. The sweep c can continue to advance until c drops the curve 7. 
If the sweep is not yet complete, then c retume to takiig curves. 

6.2 Open problems for (k > 1)-intersecting curves 

Applying these ideas to sweep pseudocircles seems more difficult. There 
are two obvious complications: Since pseudocircles can be closed, we 
may have to sweep several connected components of tht graph of their 
arrangement. The fact that each curve can intersect the sweep twice 
is certain to complicate the description if not the algorithm. 

A special case that avoids these two complications is the case in 
which the sweep intersects every pseudocircle once. Since passing a 
hump and taking a loop change two intersections, lemma 3.2 says that 
an arrangement of such curves can be swept by passing triangles. An 
algorithm for this case might have application to computing skewed 
projections [24, 271. 

There are complications even in this case. The envelope trees can 
have sise Q(Y?), so we don’t want to store them explicitly. We need 
some structure that can store them compactly and allow efficitnt up 
dates when two curves change order. We leave this as an open problem. 

Another open problem involves sweeping arrangements of k- 
intersecting curves, for k > 2. We can sweep any arrangement by first 
applying our local operations until we get stuck, thtn taking curves, 
violating the k-intersection property, until other operations apply. In 
an extreme case, if the sweep takes all visible edges, then clearly it can 
make progress. What intersection property does the sweeping curve 
satisfy if we sweep with thii procedure? Bow can such a procedure 
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be implemented if the arrangement iz not known explicitly? These 
questions are important for practical applications to aweeping curves. 
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