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Abstract

We consider arrangements of curves that intersect pairwise in at most
k points. We show that a curve can sweep any such arrangement and
maintain the k-intersection property if and only if k equals 1 or 2.
We apply this result to an eclectic set of problems: finding boolean
formulee for polygons with curved edges, counting triangles and digons
in arrangements of pseudocircles, and finding extension curves for
arrangements. We also discuss implementing the sweep.

1 Introduction

When is it important that lines in an arrangement are straight, or that
circles in an arrangement are circular? Of course, it depends on the
questions one asks. Many, such as, “What is the minimum number
of triangles in an arrangement of lines,” do not depend on straight-
ness, but only on the fact that two lines intersect in a single point. [25]
One can answer such questions for more general arrangements of pseu-
dolines. Branko Griinbaum, in a lecture entitled “The importance of
being straight,” points out that because there are arrangements of pseu-
dolines that cannot be stretched to lines, there are questicns in which
straightness is crucial. He says that we cannot yet answer these because
“most of our tools and methods are general (or vague and imprecise?)
enough to apply to the case of pseudolines.” [20]

In this paper, we look at sweeping arrangements of curves with inter-
section restrictions. Before we go further, we define curves, arrange-
ments, and sweeping, and look at reasons to study these objects.

The curves that we consider in this paper lie in the Buclidean plane
or on the sphere, are smooth, have no self-intersections, and are endless
(either closed or bi-infinite). Any two curves intersect in a finite number
of points, at which they cross.

A set of curves I has the k-intersection property if every two of them
intersect in at most k points. If any two curves of I' intersect in exactly
k points, then T has the exact k-intersection property.

This topological or combinatorial restriction on the intersection of
curves is different from the restrictions used in the field of computer
graphics. Computer-aided design systems usually place algebraic re-
strictions on curves; for example, they may require that all curves be
lines, conic sections, or cubic plane curves (the components of cubic
splines). Natural families of algebraic curves satisfy the k-intersection
property for some k, however: lines have the l-intersection prop-
erty, vertical parabolas are 2-intersecting curves, general conics are
4-intersecting curves, and cubic plane curves are 9-intersecting. The
topological restriction is more general in the sense that if a property
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holds or an algorithm works for k-intersecting curves, then it will apply
to any family of algebraic curves with the k-intersection property.

When calculating arrangements using finite precision arithmetic,
one usually cannot preserve straightness. Greene and Yao (18]
and Milenkovic [28] have given algorithms that do preserve the 1-
intersection property for line arrangements.

Finally, Sharir and other researchers in computational geometry have
used intersection restrictions in applying the theory of Davenport-
Schinsel sequences to curves [1, 11, 23, 33, 34]. This theory has been
an important tool in the analysis of algorithms that deal with algebraic
curves.

Unfortunately, our positive results extend only to curves with the
2-intersection property; we cannot say much about cubic plane curves.

A finite set of curves I partitions a surface into three types of max-
imal connected regions: vertices are regions contained in two or more
curves of ', edges are contained in only one curve, and faces are con-
nected regions contained in no curves of I'. We call this partition the
arrangement of I'. An arrangement is simple if no three curves share
a common point. We deal primarily with simple arrangements in this
paper; we will note where our statements apply to non-simple arrange-
ments. Figure 1 illustrates these definitions.

The names given to the sets of the par-
tition suggest that the arrangement of T is —

a graph embedded in the plane. 1t makes & vertex
an unusual graph—some edges are infinite ( ‘
rays, and many edges can connect a pair «_-
of vertices. If a curve of I" does not in- edge -
ge
tersect any other curve, we have an edge
with no vertices. With these differences Fig. 1: A simple arrange-
in mind, however, it should not cause con- ment
fusion to think of the arrangement as a
planar graph.

In the past, one studied arrangements of lines and planes in recre-
ational mathematics and because of their relationships to configura-
tions of points and to certain convex polytopes. Griinbaum collected
many results and conjectures on arrangements of lines and curves in
the plane in his 1972 monograph [22]. Other early results are con-
tained in {19} and [21]. Griinbaum’s terminolegy differs slightly from
ours. He discusses “arrangements of pseudolines,” “arrangements of
curves,” and “weak arrangements of curves”; we call them arrange-

-ments of curves with the exact 1-, exact 2-, and 2-intersection proper-

ties, respectively. We shall call 1-intersecting curves pscudolines and
2-intersecting curves pseudocircles. This means that two pseudolines
(or two pseudocircles) are not required to intersect in 1 point (or 2
points).

Recently, researchers in computational geometry have found numer-
ous applications for line arrangements in algorithms for geometry and
graphics (see Edelsbrunner’s bock {7]). They have also considered ar-
rangements of curves with intersection conditions. Edelsbrunner et
al. [8] apply Davenport-Schinzel sequences to prove generalizations of
the horizon theorem for arrangements of lines [5, 10] and to construct
such arrangements incrementally in nearly quadratic time. McKenna
and O’Rourke [27] independently proved and used the horizon theorem
for the case of pseudocircles.
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Sweeping is important both as a paradigm for developing graphical
and geometric algorithms, and as tool for use in mathematical proofs.
The underlying idea is to determine properties of a collection of ob-
jects in a space of dimension d by looking at a series of consecutive
(d — 1) dimensional slices. Sweeping converts a static problem into a
dynamic problem of lower dimension.

As examples of sweep algorithms in the literature, consider the
problem of finding the intersections of n lines or segments in the
plane. Shamos and Hoey [32] showed bow to detect an intersection
in O(nlogn) time by sweeping the plane with a line. Bentley and
Ottman (2] extended their ideas and developed s practical algorithm
to report all K intersections between n segments in O((n + K')logn)
time. Mairson and Stolfi [26] used a sweeping line to report all X
intersections between two sets of segments, each of which has no self-
intersections, in O(nlogn+K) time. They also applied their techniques
to segments of z-monotone curves.

If a straight line sweeps the plane to find the intersection points of
a set of segments, then it encounters the points in sorted order in the
direction perpendicular to the sweep. In such a sweep, the logarith-
mic factors in the time complexity seem inescapable. For infinite lines
Edelsbrunner and Guibas [9] showed that we can avoid the logarithmic
factor by sweeping the plane with a pseudoline. Their algorithm runs in
optimal O(n?) time. Chazelle and Edelsbrunner {4] recently developed
an algorithm to report all K segment intersections in O(nlogn + K)
time that also sweeps the plane with a pseudoline.

In the next section we will define precisely what it means to sweep
arrangements of curves that have the k-intersection property, but let’s
first think about what condition we would want on the sweeping
curve ¢. In designing algorithms, we would like the curves of our ar-
rangement to have few intersectione with ¢, since we must keep track
of each intersection. In proofs dealing with a family of k-intersecting
curves, we would like ¢ to fit into the family.

In section 3 we prove the sweeping theorem, which says that we can .

always sweep an arrangement of pseudolines or pseudocircles start-
ing from any curve in the arrangement, and cannot always sweep k-
intersecting curves for k > 3.

Theorem 3.1 (Sweeping theorem) Let T be o finite set of bi-
infinite curves (and closed curves, if k > 1) in the plane or sphere that
have the k-intersection property. Let ¢ be a curve of T'. If k € {1,2}
then we can sweep T' starting with ¢ and maintain the k-intersection
property. If k > 2 then arrangements ezist that cannotl be swept.

In the next section we define local operations by which a sweeping
curve can advance. For pseudolines (k = 1) and pseudocircles (k = 2)
we can always apply one of the local operations, For k > 2 we indicate
how to construct an arrangement that cannot be swept by a given
curve.

In section 4 we present two applications of the sweep theorem. We
use the pseudoline case to extend the work of Dobkin et al. [6]; we find
a short boolean formula to describe a polygon with curved edges. We
use the pseudocircle case to find a relationship between the minimum
number of digons and triangles in an arrangement of 2-intersecting
curves. This is related to Griinbaum’s conjecture 3.7 [22].

Section 5 defines another type of sweep in the plane: sweeping a
double wedge. We use this sweep to prove an extension theorem for
arrangements that includes Levi's lemma {25] as a special case.

Theorem 5.1 (Extension theorem) Let T' be a finite set of curves
with the k-intersection property, and P be a set of k+ 1 poinis, not
all on the same curve. Ifk € {1,2} then there is o curve that contains
the points of P and has the k-intersection property with respect to I'.
If k > 2 then arrangements and point sets ezisi such that any curve
through the points violates the k-iniersection property.

Section 8 points out that we can easily implement the local oper-
ations used in the proof of the sweeping theorem when we know the
arrangement. When we do not, we can apply the ideas of Edelsbrunner
and Guibas [9] to sweep a set of pseudolines using linear space. We
leave sweeping pseudocircles as an open problem.

The operations that we define in section 2 can also sweep arrange-
ments of (k > 2)-intersecting curves if we do not require the sweep to
have the k-intersection property. But is there some intersection prop-
erty that is maintained by such a sweep? For algorithmic purposes, it
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would be satisfactory to have a function of k (and not of n) bound the
number of points of intersection the sweep has with any curve.

2 Definitions for sweeping

In the beginning of this section we define sweeping as a continuous
process; later we will see that we can carry it out in discrete steps. We
also define notation that we use in the proofs of section 3.

Let ¢ be an endless curve in the sphere or Euclidean plane with an
orientation, which we depict as left to right. Since ¢ is smooth and has
no self-intersections, it divides the plane or sphere into two connected
components; one with boundary oriented clockwise, the other coun-
terclockwise. We say that the component with the counterclockwise
orientation is above ¢ and the other component is below. A curve v
lies above c if the component above ¢ contains 4. When we sweep, we
handle these two components separately.

To sweep the component of the plane or sphere above ¢, we want to
move ¢ continuously to infinity if the component is unbounded, or to a
point if it is bounded. Formally, we say that a family of curves indexed
by the positive reals, C = {¢a}ap0, covers the component above c if

s The curve ¢p = ¢,

o Every point above ¢ (except one, if the component above c is

bounded) lies on exactly one curve ¢,, and

+ The curve cg is above ¢, whenever 8> a.

To say that we can sweep the component above ¢ means that a family
of curves C exists that covers the component above ¢.

Suppose ¢ is a member of a set of k-intersecting curves, I'. We can
sweep the arrangement of T’ above ¢ if there is a family of curves C that
covers the component above ¢, and the set T'UC has the k-intersection
property. Finally, we say that we can sweep I' starting from c if we can
sweep above ¢ and below c.

Though we employ this continuous definition to prove negative re-
sults in section 3.3, it is unwieldy for proving positive results. In the
literature, sweeping is investigated as a discrete process by identify-
ing events where the intersection between the sweep and the plane
changes significantly. One can usually interpolate between two consec-
utive curves of a discrete sweep in a natural way to obtain a continuous
family that covers the plane or sphere.

In our case, the oriented sweeping curve ¢ intersects the other curves
of T in some order; this order changes when ¢ passes a vertex of the ar-
rangement or changes the number of its intersections with some curve.
If we choose these changes as our events and find the curves of the
sweep where the events occur, then we obtain a discrete set of curves.
We can interpolate between two consecutive curves with the help of
the Schonflies theorem [31]: Map adjacent curves ¢ and ¢ to parallel
lines. Map the curve segments between c and ¢ to non-intersecting
line segments in the strip between the lines. The Schénflies theorem
implies that we can carry out this mapping by a homeomorphism of
the plane or sphere to itself. Under the inverse mapping, the parallel
lines in the strip become a family of curves that interpolate between
c'and ¢ and intersect the curves of the arrangement in a consistent
order. By interpolating between each pair of adjacent curves, we can
extend the curves from a discrete sweep to a continuous family that
covers the plane.

We will define local operations that allow us to advance the sweeping
curve past an intersection point of two curves and to add or remove
curves from the set of curves intersected by the sweep, without violating
the k-intersection property. But first, let us give names to some of
the things that appear along the sweeping curve.

We can represent the portion of the arrangement I’ that lies on and
above the sweep ¢ as a graph G = (V, E). (We assume that ¢ € T.)
Let A denote the component of the plane or sphere on and above c.
The vertices V of G are the points in 4 where two curves intersect.
The edges F are the edges of the arrangement that are contained in A.
To avoid having edges that are not adjacent to vertices, we introduce
an artificial vertex on any curve that has no intersection points. We
denote the edges in F by (u,v), where u,v € VU{oo}. An edge {1, 00)
is an infinite ray.

Assume that we are sweeping above ¢. A point p on a curve v is
visible from an edge e of c if there is a face above ¢ whose boundary
contains both p and the edge e. In particular, p is visible from c if p



lies on a face immediately above c.

Suppose that m of the vertices of G appear on the sweeping curve c.
We number these vertices with the integers 1,...,m in order of their
appearance along ¢. In this and the next section, we use the names i,
J, k and I for vertices on c, and the names u, v and w for vertices above

(1
i j [J i1

the sweep.
V .
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\/ 0 = ;>
Fig. 2: A hump (4, j) and a triangle A(k,v,l) in G

Figure 2 illustrates some other notation that we will use. If the
intersection of the curve o € T' with ¢ forms the vertex i, then we
define (i) = a. Some edges of the graph G lie on the curve c—we give
these edges special status and denote them with square brackets, for
example, [4,j + 1], instead of angle brackets. Thus, if we write {3, j)
we mean the edge from vertex i to vertex j along the curve y(i)=v(3),
and not an edge along the curve c.

We also define terms to describe some special configurations in G. A
hump is an edge (3, j) of G with both i and j on the sweeping curve c.
The hump (i, j) is empty if it contains no other curves. Clearly, for an
empty hump, |j — i| = 1. The hump pictured is not empty. A triangle
is a pair of edges, (k,v) and (I, v), with two distinct vertices k and I
both on the sweep and one vertex v above the sweep—we denote this
triangle by A(k,v,1). The triangle A(k,v,!) is empty if it contains no
other curves. For an empty triangle, || - kf=1. .

With this notation, we can now define the local operations that move
¢ forward while preserving the k-intersection property. The operations,
shown in Figure 3, are:

¢ (N
\ >
\\ 'i‘
¢ c )] 4
i i+t ) i+1
Pass a triangle Pass a hump
——. N
e N
¢ S\
b 1

1
Take aray Pass aray

Fig. 3: Operations by which the sweep progresses

. Taking a loop. Let v be a curve that intersects the sweep in at
most k—~ 2 points. If an edge e of v is visible from an edge [i,i+ 1]
of ¢, then there is a path from a point on e to a point on [i,i+ 1]
that intersects no other curves. The sweep ¢ can advance along
this path and intersect the edge e in two places without adding
any other intersections—preserving the k-intersection property.

. Passing an empty triangle. If A(i,v,i + 1) is an empty triangle,
then ¢ can move past the vertex v, interchanging the order of (i)
and (i + 1) along the sweep.

. Passing an empty hump. If the edge (i,i + 1) is an empty hump,
then ¢ can advance past it and reduce the number of intersections
with (i) by two.

. Taking the first ray. If a bi-infinite curve v intersects the sweep in
fewer than k — 1 points and is visible as an infinite ray from edge
[00, 1] of ¢, then ¢ can move forward and introduce one intersection
point with this ray; ¥ becomes v(1). We can define taking the last
ray in a similar fashion.

356

5. Passing the first ray. If the leftmost curve (1) is an infinite ray
with no intersections above the sweep ¢, then ¢ can move past the
ray and lose one intersection point with y(1).

If we can apply an operation, we say the sweep can make progress.
A discrete sweep terminates when either there are no curves above the
sweep or the only curves above the sweep are non-intersecting rays. In
these situations, one can continuously sweep above ¢ and maintain the
k-intersection property without difficulty.

In a non-simple arrangement, we may encounter a number of trian-
gles with a common vertex v above the sweep. We can handle this
either by passing all the triangles simultaneously or by perturbing the
curves (either actually or conceptually) to form a simple arrangement.
Since our theorems will not restrict how the operations are applied,
either of these methods will work.

3 The sweeping theorem

Using the definition of sweeping from the previous section, we now
prove:

Theorem 3.1 (Sweeping theorem) Let T be a finite set of bi-
infinite curves (and closed curves, if k> 1) in the plane or sphere that
have the k-intersection properly. Letc be a curve of I'. If k € {1,2}
then we can sweep T' stariing with ¢ and mainiain the k-iniersection
properiy. If k > 2 then arrangements ezist that cannot be swepl.

‘We establish the pseudoline and pseudocircle cases, k = 1 and k = 2,
by showing that certain local operations can always make progress. In
section 3.3 we present some unsweepable arrangements with k > 2.

3.1 Sweeping Pseudolines

To prove the pseudoline case of the sweep theorem, we show that the
sweep can always make progress using three of the operations defined
in section 2.

Lemma 3.1 Any arrangement of bi-infinite curves T with the 1-
indersection property can be swepl starting with any curvey € I' using
three operations: passing a iriangle, passing the first ray, and taking
the first ray.

Proof: We will see that the sweep can either pass the first ray, take
the first ray, or pass some triangle.

Consider the edge (1, u) of the curve 4(1) that intersects the sweep
first. f u = 0o, then we can pass y(1). Otherwise the vertex u comes
from the intersection of a curve a; with y(1).

Suppose that the curve e; does not
intersect the sweep and that the curves
{e,%(1),e3,...,a;x} border an unbounded % a)
face in counterclockwise order, as illus- 1)
trated in Figure 4. We can show by induc- 1
tion that a,, does not intersect the sweep.

Oy

Fig. 4: aj does not in-
tersect the sweep

Assume that these curves are oriented in
the counterclockwise direction. Then the
curve a;_ divides a; into two pieces, one to
the left and one to the right. If o;_y does not intersect the sweeping
curve c, then it separates the right piece of o; from c. The left piece
of a; must remain in the region bounded by {c,v(1),a,...,ai-1};
since vertex 1 is the first vertex on ¢, the left piece also cannot
intersect ¢. Therefore, if oy does not intersect ¢, then neither does
Qaym, and ¢ can take the first ray.

Otherwise a3 intersects the sweep at a point £.

Let us call a triple (, v, j) a half-triangle if (i, v) is an edge and (i)
and 7(j) intersect at v. No curve crosses the edge (i, v) of (i, v, ), so
any curve visible in the interval (3, 5) crosses ¢ between i and j and
4(j) between v and j. By induction on the size of the interval (i, 5),
we can show that every half-triangle contains an empty triangle.



In the base case, i~ j] =1 and A(3,v,7)
is an empty triangle. Otherwise a curve 8 t
intersects v(j) at w such that (j,w) is an £
edge. Since 3 is visible from j, it intersects
cat k€ (i,7). But now (j,w, k) isasmaller ¢
half-triangle, which contains an empty tri-
angle by the induction hypothesis.

Since oy intersects the sweep at £, the
triple (1,u,£) is & half triangle. The sweep
can make progress by passing the empty triangle contained in
{1,u,2). This establishes the lemma.

Fig. 5: An empty trian-
gle in a half-triangle

3.2 Sweeping Pseudocircles

To establish the pseudocircle (k = 2) case of the sweep theorem we use
operations that change an even number of intersections. Once again
we show that the sweep can always advance.

Lemma 3.2 Any orrangement of curves I' with the 2-intersection
property can be swept starting from any curve v € T by using three
operations: passing a iriangle, passing o hump, and taking a loop.

We first prove that a bi-infinite curve can sweep an arrangement of
2-intersecting curves curves in the the Euclidean plane. We assume
that a counterexample exists and then derive a contradiction. At the
end of this section, we show that a closed sweeping curve can sweep a
sphere or the Euclidean plane.

For each arrangement in the plane with a bi-infinite sweeping curve
we can form a graph G of the portion on or above the sweep. We define -
the size of an arrangement with a sweeping curve to be the pair (|V|,n);
that is, the number of vertices on and above the sweep followed by the
number of curves. Now, choose a set to 2-intersecting curves T', includ-
ing an oriented bi-infinite sweeping curve ¢, such that c cannot make
progress and the sige of the arrangement is lexicographically minimum.
We prove a sequence of lemmas about the structure of this arrange-
ment and wind up with a contradiction. This contradiction implies
that a bi-infinite sweeping curve can always sweep an arrangement of
2-intersecting curves.

Lemma 3.3 Removing any curve v from the arrangement I' allows
the sweep to progress.

Proof: By minimality of the arrangement. n

Lemma 3.4 All curves in T intersect the sweeping curve c.

Proof: Since the sweep cannot make progress by taking a new
curve, any curve 7 that does not intersect ¢ is not visible from ¢. But
removing such a curve 7y does not change ¢'s ability to make progress.
Therefore, all curves in the smallest counterexample intersect the
sweeping curve ¢. m ’

Lemma 3.5 We can choose & ple such thet all
of the curves of I' are vays to infinily below the sweep c.

2 4

Proof: Map the bi-infinite sweeping curve ¢ o a line ¢’ by s con-
tinuous mapping of the plane onto itself, cut all curves below ¢’ and
extend them perpendiculazly to infinity, then apply the inverse map-
ping. When this procedure is applied to a minimum counterexam-
ple, neither the arrangement above the sweep nor the sise is affected.
Thus, it remains a minimum counterexample. =

From now on, we assume that our unsweepable arrangement, T'; is

chosen in accordance with lemma 3.5.

Lemma 3.6 The srrangemeniT connot contain & hump or a iriangle.

Proof: The arrangement certainly cannot contain sn empty tri-
angle or hump; otherwise the sweep could make progress. Sup-
pose, however, that T' contains vertices i and j on the sweep,
with ¢ < j, that are the ends of a hump or a triangle. Since none
of the curves that intersect the sweep between i + 1 and j — 1
intersect the hump or triangle, the smaller arrangement, I' =
{y(i +1),7( + 2),...,9(F — 1)}, lies completely inside the hump or
triangle. But, by minimality, the sweep can make progress in the
arrangement [, This contradicts the fact that I' is unsweepable and
establishes the lemma. w

Let’s pause a moment and consider what these first four lemmas tell
us. We have an arrangement T’ in which the sweep cannot progress.
If we remove any curve <, then some operation applies. Lemmas
34 and 3.6 tell us that, after removing v, there must be an empty
hump or triangle where there were none before. We also have a nota-
tional convenience from lemma 3.4; every curve in I' can be denoted
(i) for some vertex i on the sweep.

Next we consider configurations in which removing a curve leaves a
hump or triangle. By finding contradictions to lemma 3.6 or to the
minimality of T', we can show that most configurations cannot occur.

Lemma 3.7 For any verlez j on the sweep, the removal of the curve
v(7) cannot leave an empty hump or emply triangle with verticesi and k
satisfyingi < j < k.
Proof: By case analysis. We skeich the idea: Lemma 3.6 implies
that the curve y(7) intersects the triangle or bump that is formed if
#4(7) is removed. That intersection point forms a new empty triangle.
To break up the new triangle, v(j) must reenter it—but in doing so,
the curve 7(j) creates another triangle that cannot be avoided. m

Lemma 3.8 The removal of a curve v(k) cannot leave ¢ hump.

Proof: Suppose that the arrangement of I' —-
{7(k)} contains the hump (i,j). Consider the
arrangement IV with only this hump removed:
I'=T-{y(i)}. By lemma 3.3, the sweep
can make progress in I'. But (i) intersects ki J
only ¥(k); therefore, in I", the curve (k) con-
tributes an edge to an empty hump or triangle—
let (k,v) be that edge. In the original arrange-
ment T, however, 7(i) intersects (k) at some
vertex u between k and v. Thus A(i, , k) is a triangle in T, contra-
dicting lemma 3.6. & .

If the removal of & curve vy does not allow us to move past a humj
(lemma 3.8) or take an edge (lemma 3.4) then we must have an empty
triangle, A(i,v,7). Since 7 cannot intersect the sweep between i and j
(lemma 3.7), we can denote the triangle in the arrangement T' - {r}
by A(s,v,i + 1). The next lemma will restrict the way v can break up
this triangle.

Fig. 6: (k) can-
not leave a hump

Lemma 3.9 Suppose that the arrangement I’ — {7} has an emply irs-
angle A(i,v,i+1). Then, in the original arrangement T, the face above
the edge [i,i + 1] has v as o vertez.

Proof: Suppose that v is not a vertex of the face above the edge
[i,%+ 1]. Then the curve v must “hide” v from that portion of the
sweep by intersecting both legs, (i,v) and (i + 1,v) of the triangle
A(i,v,i+ 1). Lemma 3.7 implies that v intersects both legs once or
both legs twice.

i i1

Fig. T: The curve v intersects the legs once. We untangle the triangle.

In both cases we can derive a contradiction by “untangling” the
triangle as shown in figure 7. Untangling eliminates the vertex v,
forming & smaller arrangement that can be swept. We omit the
proof to save space. =
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We have shown that removing any curve «y
from the minimum counterexample I' must v
leave an empty triangle and that ¥ must inter- Y
sect only one leg of that triangle. If removing
7 leaves A(3,v,i+ 1) then we say that the edge ¢
{4,3 + 1] is responsible for 7. Notice that each
edge of the sweep is responsible for at most one
curve.

i i+

sponsible for v
In order to have an edge of the sweep respon-

sible for every one of the n curves in the set I, we need at least n 4+ 1
vertices on the sweep. Thus, there is a curve that intersects the sweep
twice. We call a curve a loop with respect to c, or, more simply, a loop,
if it intersects c twice and is connected in the above component of the
plane.

The presence of a loop is critical to our argu-
ment. If we were sweeping an infinite cylinder, we
would not always have a loop; in fact, there are
unsweepable arrangements of curves that have the
two-intersection property and have no loops. Fig- \
ure 9 shows an arrangement in which the sweeping
circle, ¢, cannot make progress. The existence of ¢
a loop is a property of the plane that prevents the
sweep from becoming stuck.

‘We omit the proof of the final lemma for the bi-
infinite case.

swept

Lemma 3.10 There exists a curve ¥y whose removal does not leave a
iriangle.

Proof: We define a nesting for loops and look at an innermost loop v.
By looking at -y and the interval resonsible for ¥ we can find a smaller
arrangement in which the sweep can make progress if and only if it
can make progress in the original. But this contradicts the minimal
ity of the original arrangement. m

Lemma 3.3 states that if we remove one curve from the smallest
counterexample, then some operation applies. Lemmas 3.4 and 3.8,
however, say that the operations of taking a curve or passing a hump
will never apply after removing one curve. Lemma 3.10 proves the
existence of a curve whose removal does not leave a triangle. This
contradiction proves that any arrangement of bi-infinite, 2-intersecting
curves curves in the Euclidean plane can be swept by a curve that
maintains the 2-intersection property.

Having established the bi-infinite case, we can use it to prove that
a closed curve can always make progress. To sweep a sphere with a
closed curve ¢, simply find a point that lies only on ¢ and remove this
point from the plane. Sweeping this punctured sphere is equivalent to
sweeping the Euclidean plane with a bi-infinite curve.

To sweep an arrangement in: the Euclidean plane with a closed curve,
we show how to embed it in an arrangement of 2-intersecting curves
on the sphere. The following lemma shows that we can map the plane
into a region of a sphere bounded by a 2-intersecting curve £. Then we
close off the bi-infinite curves outside of £ to form an arrangement on
the sphere with the 2-intersection property.

Lemma 3.11 The bounded faces of an arrangement of endless curves
with the 2-intersection property in ihe plane can be embedded into a
region bounded by a curve in an arrangement of closed 2-intersecting
curves in the sphere.

Proof: Draw an auxiliary curve § around the arrangement T so
that all the vertices and closed curves of T' are on the interior of ¢
and modify the infinite rays so £ intersects each ray once. Take a
solid half-ball H and map £ to the rim of H so that the interior of
the curve ¢ is mapped to the rounded surface of the half-ball. Every
bi-infinite curve of I' has two points of intersection with §; connect
these two points by a chord along the flat surface of the half-ball.
These chords turn the bi-infinite curves of I' into closed curves; we
must show that any two closed curves intersect in at most two points.

Fig. 8: [i,4+ 1] is re-

Fig. 9: Cannot be
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Suppose two chords, ab and cd, inter-
sect. Let & denote the closed curve in-
cluding chord ab, and let 8 denote the
closed cutve including chord ¢d. The
non-chordal portion of 8 goes from the
interior of the closed curve o to the ex-
terior, so it intersects a an odd num-
ber of times. But, by the 2-intersection
property, it must do so only once.
Therefore, closing off the curves of T
with these chords does not violate the
2-intersection properiy. w

Fig. 10: Closing off curves

Given an arrangement in the Euclidean with chords

plane and & closed sweeping curve ¢, em-
bed the arrangement in the sphere according to lemma 3.11. To sweep
the interior of ¢, simply sweep on the sphere. To sweep the exterior
of ¢, sweep on the sphere until ¢ reaches the auxiliary curve . Then
return to the plane, cutting c where it meets ¢ and extending it to infin-
ity. Finish the sweep in the plane with this bi-infinite sweeping curve.
Thus, a closed sweeping curve can always progress and lemma 3.2 is
established.

3.3 Arrangements that cannot be swept

There are arrangements with the 3-intersection property that cannot
be swept.

Fig. 11: Unsweepable arrangements of 3-intersecting curves

Consider the arrangements in figure 11. In both of them, the sweep-
ing curve c intersects every curve twice. When the sweep first passes
over one of the vertices on the boundary of the shaded region, it in-
tersects one or two curves, each in two additional places—in both in-
stances violating the 3-intersection property. Thus these arrangemenis
are unsweepable.

It is not difficult to comstruct arrangements with the (k > 3)-
intersection property that have copies of the arrangements of figure 11
stopping progress in triangles or humps. This establishes the final case
of the sweeping theorem.

4 Applications of sweeping

In this section we apply the sweeping theorem to solve two problems:
finding boolean formulae for polygons with curved edges and counting
triangles and digons in arrangements of exactly 2-intersecting curves.

4.1 Boolean formula for polygons

The lines supporting the edges of a simple polygon define half-spaces
in the plane. We can describe the set of points in the interior of the
polygon by a boolean formula on these half-spaces. For example, a
convex polygon is the AND of the half-spaces defined by its edges. Pe-
terson [30] showed that every polygon with n edges can be represented
by a monotone formula that uses each half-space once.

Any bi-infinite curve divides the plane into two half-spaces; we can
attempt to find formulee for polygons with curved edges if these edges
are picces of bi-infinite curves. Define a curved segment to be a simply
connected portion of a curve. We call the points that bound a segment
vertices in this section; segments with only one endpoint we call rays.
A polygonal chain is a sequence of curved segments {s), 53,...,8,}
such that s; and 3,4, share a common vertex, either s; and s, are rays
(and the chain is open) or they share a common endpoint (and the
chain is closed), and no other intersections between segments occur. A
vertex v of a segment s divides a bi-infinite curve into two pieces; we
call the piece not containing the segment the extension of s through v.



Dobkin et al. [6] gave a simple proof that every polygon with n edges
has a Peterson-style formula—a monotone boolean formula that uses.
each edge’s half-space once. Their proof depends on the fact that ev-
ery polygonal chain has a splitting vertex—a vertex v such that the
(straight-line) extensions of the incident edges through v do not inter-
sect the chain. They split the chain at v, recursively find formulee for
the two subchains, and combine them with an AND if v is convex or an
OR if v is concave.

We can use the sweep theorem to show that polygonal chains whose
segments are portions of pseudolines also have a splitting vertex.

Theorem 4.1 In any polygonal chain whose segmenis are connecled
poriions of distinct pseudolines, there is a vertez v such that the ezien-
sions of the incident segments through v do not intersect the polygonal
chain. '

Proof: Let S = {#,53,...,8,} be a polygonal chain satisfying
the hypothesis.

If S is closed, sweep its arrangement of pseudolines starting from
a bi-infinite curve that intersects no curves. Stop when the sweeping
curve ¢ first crosses the chain S. Since all segments of § are bounded,
the sweep first intersects S by passing a triangle and not by taking
or passing the first ray. Hence, the intersection point crossed is a
vertex v of the chain, as shown in figure 12a. The incident segments
both intersect c, so their extensions through v lie wholly on the swept
side of c. The chain §, however, lics on the unswept side, except for
v. Therefore the extensions cannot intersect 5.

Fig. 12: Sweeping closed and open polygonal chains

If S is open, let 5; be the ray that is the extension of s, through its
vertex. Assume that the rays s,, 5,, and s,, appear counterclockwise
in this order on the line at infinity; if they are reversed, consider
the mirror arrangement. Sweep the arrangement beginning with a
bi-infinite curve c that intersects only 5 and stop when c intersects
the chain S, as shown in figure 12b.

Recall that we sweep by passing iriangles and taking and passing
the first (and not the last) ray. Since the sweep c intersects 3, it
cannot cross the ray s;; ray s; blocks ¢ from crossing s,. Further-
more, ¢ cannot pass 5; without intersecting the chain S since s; € S.
Therefore ¢ first intersects S by passing a triangle, and the exten-
sions of the segments incident to the triangle’s apex are separated
from the chain S as in the previous case. This proves the theorem. s

This theorem, together with the results of [6],
proves that polygons bounded by portions of pseu-
dolines have Peterson-style formulse.

Polygons bounded by portions of pseudocircles
may require auxiliary curves and variables. In fig-
ure 13, the polygon R is contained in the same half-
spaces as the polygon P—to represent one region
without the other, we must separate them with another curve.

=9
Fig. 13: P has
no formula

4.2 Triangles and digons in arrangements of exactly
2-intersecting curves

We can model lines and pseudolines in the projective plane by great
circles on a sphere with oposite pointsidentified. In “Arrangements and
Spreads,” Griinbaum notes that if we cease to identify opposite points
of the sphere, we obtain an arrangement of exactly 2-intersecting curves
with no digons (two-sided faces) [22]. He investigates minimum and
maximum number of triangles in such arrangements and asks what is
the relationship between the number of triangles and number of digons.
‘We can prove:

359

Lemma 4.1 In an arrangement of closed curves with the ezact 2-
intersection property, let p; denote the number of i-sided faces. Then
2p; +3p3 2 4n.

Proof: Assume the arrangement is on the sphere. We will find four
digons or triangles on each curve.

Choose a curve c¢. Map ¢ and one of the hemispheres it defines to
a disk in the plane by the Schonflies theorem. [31] Extend the curves
to infinity outside the disk.

Sweep the disk starting with ¢. Since c already intersects all of the
curves, it advances by passing a triangle or hump (a digon). Cut ¢
inside the hump or triangle, and extend the ends to infinity without
crossing any other curves. We can still sweep the disk with this bi-
infinite curve, so there is another digon or triangle. Similarly, we
find two digons or triangles in the other hemisphere defined by c.

Since we find each digon at most two times and each triangle at
most three times, we have 2p; + 3p3 > 4n. s
Griinbaum conjectures [22, Conj. 3.7] that every digon-free arrange-

ment of exactly 2-intersecting curves has at least 2n — 4 triangles. Spe-
cializing our result proves there are at least 4n/3 triangles—we suspect

that his conjecture is closer to the truth.

5 Sweeping wedges

In the previous section our sweeping curves moved forward to sweep
the plane. In this section we will see how to sweep by rotation about
a point. We use this sweep to prove the extension theorem, which
extends arrangements of 1- and 2-intersecting curves by adding new
curves that pass through specified points.

Theorem 5.1 (Extension theorem) Let T' be o finile set of curves
with the k-intersection property, and P be a set of k + 1 points, not
all on the same curve. If k € {1,2} then there is & curve that contains
the poinis of P and has the k-intersection property with respecti to I'.
If k > 2 then arrangements and point sets ezist such that any curve
through the poinits violsies the k-intersection property.

Levi proved the exact & = 1 case of the extension theorem in
1926 [25). Levi’s extension lemma, as hie result is known, has become
an important tool for generalizing properties of arrangements of lines to
arrangements of pseudolines. For example, Goodman and Pollack use
it, in concert with their “circular sequences” {7, 17], in a series of papers
that prove duals of Radon’s and Helly’s theorems for pseudolines [16],
prove that all arrangements of 8 pseudolines are stretchable {13}, and
define a duality for configurations of points and pseudolines (12, 15] to
establish a conjecture of Butr, Griinbaum, and Sloane {3]. They also
show that no extension lemma can hold for planes in space [14).

As we mentioned in section 4.2, Griinbaum [22] is interested in ar-
rangements of exactly 2-intersecting curves. He says, “Another open
and seemingly hard problem is to find the right analogue for (digon-
free) arrangements of curves of Levi's extension lemma. It is well pos-
sible that an appropriate result in this direction would lead to solutions
of some of the other problems mentioned.” The pseudocircle case of
the extension theorem finds a 2-intersecting curve, which is not nec-
essarily an exactly 2-intersecting curve—we do not guarantee that our
new curve intersects all other curves.

We establish both the pseudoline and pseudocircle cases of the ex-
tension theorem by showing that a bi-infinite curve can sweep a double
wedge in the Euclidean plane. Let us define such a sweep formally
before we give the proofs.

Let ¢ and ¢/ be oriented bi-infinite
curves that intersect only at a point p.
Curves ¢ and ¢ divide the plane into four
regions bounded by curve segments, as
illustrated in figure 14, We call the re-
gion where both segments are oriented
towards p the Jeft wedge, and call the re-
gion where both are oriented away from
p the right wedge. The left and right wedges together comprise the
double wedge, denoted wedge(c,c’), The wedge wedge(c,c’) contains
the curves cand (. .

The segment of ¢ bounding the left wedge is the left half of ¢, that
bounding the right wedge is the right half. We assume that the left

Fig. 14: A double wedge



wedge is below ¢ and the right wedge is above, according to the def-
initions of below and above given in section 2. We want to rotate ¢
continuously, moving downward on the left and upward on the right
until ¢ reaches ¢.

A family of curves, C = {ca}to<ag1, indexed by reals from the interval
[0, 1), covers the double wedge wedge{c, ¢) if

o The curves ¢ =cand ¢; = ¢,

¢+ Every point in wedge(c, ¢’) lies on exactly one curve ¢, except the

point p, which lies on every curve in wedge(c, '), and

o Forall0 < a < B8 < a’ <1, the curve cg lies in wedge(ca, car)

Suppose that ¢ and ¢ form a wedge wedge(c,c’) and belong to a set
of curves T’ that has the the k-intersection property, We say that ¢ can
sweep the double wedge wedge(c, ') if there is a family of curves C that
covers wedge(c, ¢’), and the set TUC has the k-intersection property. As
before, we assume that the sweeping curve ¢ is part of the arrangement.

A point ¢ on a curve  is visible from an interval I of the sweep ¢,
if ¢ and some point r € I both lic on the boundary of a common face
contained in the double wedge wedge(c, ¢').

We can view the sweeping process in another
way. If we remove the point p from the plane,
the resulting surface is topologically equivalent
to a cylinder. The sweeping curve ¢ and its des-
tination ¢’ each become two bi-infinite curves.
Both pieces of ¢ are moving in the same direction
(counterclockwise in figure 15). These two pieces
together are not allowed to intersect any curve
in more than k points; the sweep ends when the

pieces of ¢ reach the pieces of ¢.

Even though we have defined sweeping as a
continuous operation, we again want to perform
the sweep in discrete steps. We use the local op-
crations from section 2—modifying the “taking”
operations to use the new definition of visibility. We prove the exten-
sion theorem in the next three subsections.

Fig. 15:
cylinder

¢ on a

5.1 Extension lemma for pseudolines

We do not need to sweep a double wedge to prove the extension theorem
for exactly l-intersecting curves. Levi originally proved his lemma by
arguing that a curve that connected two points and had the minimum
number of intersections with other curves had the exact 1-intersection
property. See [25] or, for a proof in English, {22, Thm. 3.4]. Our proof,
which sweeps a double wedge, handles the 1l-intersecting curves case
and foreshadows the proof the pseudocircle case.

Suppose we have an arrangement of pseudolines and points p and
g not on the same pseudoline. If no curve passes through p then we
add one to the arrangement by sweeping with a bi-infinite curve until
we encounter p. Now, if only one curve passes through p, duplicate
it, reverse its orientation and perturb it so that the original and the
copy intersect only at p and the point g lies in the double wedge of
these curves. Otherwise, q lies in some region bounded by two curves
through p. Orient these two curves so that g lies in their double wedge.
Lemma 5.1 proves that we can sweep the double wedge containing g
and maintain the 1-intersection property. This establishes the k = 1
case of the extension theorem.

Lemma 5.1 Given a finite set of pseudolines T thatl includes two
curves, ¢ and ¢/, that define a double wedge, the curve c can sweep
wedge(c,¢’) using the operations of passing a iriengle and laking or
passing the first or last ray.

Proof: First apply operations that advance the right half of the
sweep ¢. If ¢ can no longer make progress in the right wedge, then
it will be able to advance in the left wedge.

Assume c cannot advance on the right—no operation applies in
the right wedge. We perform surgery: Erase everything in the plane
except ¢ and the curve segments in the right wedge, and extend these
segments to bi-infinite curves without adding any intersections. The
only effect of this surgery that is visible from the right half of ¢ is
that ¢’ disappears. Lemma 3.1 says that ¢ can make progress in the
reduced arrangement by passing triangles and passing and taking the
last ray. Since no operation applied in the original arrangement and
the curves visible from ¢ did not change, ¢ cannot pass a triangle
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¢’ removed

Fig. 16: Surgery on the right wedge finds curve v

or ray after the surgery. Therefore ¢ can now take a curve v that
intersected the left half of ¢ before the surgery.

Look at the right wedge of wedge(e,v). Since v is visible from ¢ as
a ray in this wedge, every pseudoline that intersects the right half of
¢ also intersects v above c.

Returning to wedge(c,c’), perform the same surgery as above on
the left wedge. Lemma 3.1 says that c can advance downward in the
reduced arrangement by passing triangles and passing and taking the
first ray. As before, if we can pass a triangle or a ray, we can also
pass it in the original arrangement. If we can take the ray of a curve
a, then o intersects v below the sweep, Therefore, o cannot intersect
the right half of c—if it did, it would intersect 4 above the sweep as
well. This means that ¢ can take « in the original arrangement.

Therefore, ¢ can advance on the left to sweep the double wedge. m

This completes the proof of the pseudoline case.

5.2 Extension theorem for pseudocircles

We will also prove the extension theorem for pseudocircles by sweeping
a double wedge. First, however, we show that we need consider only
closed curves on the sphere. Given an arrangement of pseudocircles in
the Euclidean plane, lemma 3.11 says we can map it to & region R of a
sphere bounded by a pseudocircle and close off all the curves without
violating the 2-intersection property. Let p, ¢, and r denote the three
points given by the hypothesis; they too are mapped into R, Assume
for the moment that we can find a curve ¢ through p, ¢, and r on the
sphere. The curve c intersects the boundary of R in at most two points,
so the portion inside R, that i8 ¢/ = ¢N'R, is a simply connected curve.
Thie curve ¢/ maps to a 2-intersecting curve in the Euclidean plane.

Now, consider the sphere with an arrangement of closed pseudocircles
and three points p, ¢, and r—for simplicity, assume no curves pass
through these three points. If we remove r, then we need to find a bi-
infinite curve that passes through p and ¢. As in the pseudoline case,
the sweeping theorem says that we can sweep with a bi-infinite curve
until we encounter p. Duplicate the sweep, reverse its orientation, and
perturb it so that the original and the copy intersect only at p and the
point ¢ lies in the double wedge of these curves. Lemma 5.2 proves
that we can sweep the double wedge containing g and establishes the
k = 2 case of the extension theorem.

Lemma 5.2 Let T be a finite set of pseudocircles, all closed ezcept
two, ¢ and ¢/, which define o double wedge. The curve c can sweep
wedge(c, c’) using the operations of passing a iriangle, passing a hump,
and taking a loop.

In some arrangements, lemma 5.3 pin-
points a place where an operation applies.
In other arrangements, we find curves that
we call crescents. Crescents have regions,
which we call their shadows, in which the
sweep can advance unless some other cres-
cent prevents it. By looking at the struc-
ture of crescents and their shadows, we will Fig. 17: Two crescents
see that there is some crescent whose shadow contains no other cres-
cents. The sweeping lemma for pseudocircles, lemma 3.2, is an impor-
tant tool in this proof.

We call a curve a crescent if it is visible from one half of the sweep
and intersects the other half in two points. Keep in mind that all curves
but ¢ and ¢’ are closed. We will refer to crescents that intersect the left
(right) half as above (below) crescents.

Crescents are important because:

c



Lemma 3.3 If an arrangement does not have both above and below
crescenls, then the sweep can make progress.

Proof: Suppose the arrangement has no above crescents; the other
case is similar, Then perform surgery on the right wedge: erase
everything from the plane except ¢ and the curve segments in the
right wedge, then extend these segments to bi-infinite curves without
adding intersections. (See figure 16.)

Lemma 3.2 says that ¢ can now advance by passing a hump or
triangle or by taking a loop. If a passing operation applies in the re-
duced arrangement, then it also applies in the original. On the other
hand, no curve visible from the right half of the sweep intersects the
left half, so any loop that can be taken in the reduced arrangement
can also be taken in the original. Therefore, ¢ can make progress in
sweeping the double wedge. u

Assume for now that v is a below crescent—it intersects the right
half of the sweep ¢ and is visible from a point p in the left half of ¢. The
hump of v is the portion of ¥ above the right half of c. If ¢ could pass
the hump of 7 on the right, it could subsequently take the loop of v on
the left. We make the following definitions in an attempt to capture
the set of curves (or curve segments) that prevent ¢ from passing this
hump.

We define the inner and outer shadows of ¥ recursively in the follow-
ing paragraph. The inner shadow inSh(7) is a set of curve segments,
each having an endpoint that is before the hump of v on the right half
of c. The outer shadow outSh(7) is a set of curve segments, each hav-
ing an endpoint that is after the hump of v on the right half of c. The
shadow Sh(7) is the union inSh(7y) U outSh(y). The shadow interval of
Sh, intv] Sh), is the portion of ¢ from the leftmost to the rightmost point
of ¢ N Sh. The shadow region of Sh is the largest simply connected re-
gion bounded by the curve segments of the shadow Sh and the interval
intol( Sh).

Let inShg = outShg be the hump of v. We form the set inShiyy by
adding certain curve segments to inSk;: For every curve o that inter-
sects the right half of ¢ before the interval intukinSh;) and has a point
Pe visible from intvl{ inSh;), we add the curve segment from p, to the in-
tersection point with the right half of ¢ nearest intvl{inSh;). If no curves
are added, then we terminate the recursion and set inSh(y) = inSk.
Since a finite number of curves intersect ¢, the recursion eventually
terminates.

We use a similar recursion
for the outer shadow outSh(y),
replacing “before” by “after”
in the previous paragraph.

The leading curve of inner
shadow inSh; (outer shadow
outSh;) is the curve whose
intersection with ¢ is the
first (last) point of intvl inSh:)
(intvl outSh;)). The set of lead-
ing curves for an inner shadow
inSh; (outer shadow outSk;) is the set {%o,%1,...,%;}, where x; is the
leading curve for inSh; (outSh;).

We have made these definitions for below crescents. For above cres-
cents, we make similar definitions involving the left half of the sweep.
The only difference is that the outer shadow precedes the inner shadow
so that the inner shadow is closer to the vertex of the double wedge
wedge(c, c').

The way curves nest inside each other is important in our proofs. We
say that a curve o nests with a non-crescent curve § of the inner shadow
inSh(y) (outer shadow outSh(v)) if both points of the intersection ane
lie inside (outside) the closed curve . We say that & curve a nests
inwardly with the below crescent « if both points of a N ¢ lie in the
interval of ¢ between the hump of v and p, the point from which v is
visible below ¢. The curve a nests outwardly with v if both points of
anc lie outside of the hump of 4 and the interval from the hump to p.

Curves that contribute curved segments to a shadow have nesting
properties that are described in the following lemma whose proof.

Fig. 18: The shadows

Lemma 5.4 Let B be a curve whose segment §' is added in forming
the shadow inShi(t) (or outShi(y)). Leta be a curve that intersects the
sweep ¢, but not in the shadow interval If a intersects §', then o nests
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with B and with xo, %1, ..., 7i_1, the set of leading curves of inSh;_1{v)

{or outsShi_y(v)).

Corollaries to this lemma prove the definition of shadows is unam-
biguous and reveal some structure of the shadows.

Corollary 5.5 The construction of the inner and ouler shadows of v
1s well defined.

Proof: When adding the segment of a curve o to an inner shadow
inSh;, we add the segment “from p, to the intersection point withthe
right half of ¢ nearest intvinSh;).” Lemma 5.4 says that « nests with
7. Therefore, both points of aNc either precede or follow intvlinSh;)
and the nearest one is well defined. m

Corollary 5.6 Leta be a curve with e poini p, that is visible from the
shadow interval intvl Sh(v)). Either o is o crescent, does not intersect
¢, or connects py o ¢ within the shadow region of Sh(v).

Proof: Assume o intersects ¢ and is not a crescent. If o is first

visible from but does not intersect intvlinSh;) (or intv) outSh;)), then

lemma 5.4 says that a nests with the leading curve of the shadow.

Thus o will be included in inShi;y (or outShiy1). m

Now we can show how one crescent can prevent the sweep from
advancing in the shadow of another. We say that an above or below
crescent A stops a below or above crescent B, AQB, if A is visible from
the shadow interval intv) Sh(B)).

Lemma 5.7 If no crescent stops a crescent y, then the sweep can ad-
vance in the shadow region of SK(v).

Proof: Suppose that no operation applies in intvl Sh(7)). As usual,
we perform surgery: erase every curve outside the shadow region
except ¢ and extend all curve segments to infinity without adding
intersections.

The sweep lemma, lemma 3.2, says that ¢ can make progress in
the reduced arrangement. If ¢ could advance by passing a hump or
triangle, then it could do so in the original arrangement. Therefore
it can take a loop of a curve a. Since & is not a crescent, corollary 5.6
implies that & does not intersect c. Thus ¢ can take « in the original
arrangement. m
To prove that there is a crescent not stopped by any other crescent,

we show that the @ relation is acyclic. We omit the proof due to space
constraints. :

Lemma 5.8 The Q relstion is acyclic.

Proof: If cycles exist, we can show that the crescents of a minimal

length cycle must nest deeper and deeper. The most deeply nested

crescent, however, cannot stop any other crescent of the cycle. This

contradiction shows that no cycle exists. m

This lemma, combined with lemma 5.7, shows that we can make
progress even when crescents exist. Thus, the proof of lemma 5.2 is

complete.
5.3 Arrangements with no extension curves

Figure 19 shows that when we specify k-2 pointsin pseudoline (k = 1)
or pseudocircle (k = 2) arrangements, an extension curve may not exist.

Fig. 19: No extension curve

In figure 19a, we want to draw a new curve through the three points,
80 one point lies between the other two. But then one of the pseudolines
separates the middle point from the adjacent points—the new curve
intersects this pseudoline at least twice.

In figure 19b, we can assume that the new curve through these four
points is closed. The center point then has two adjacent points and one



opposite point on this closed curve. One of the pseudocircles separates
the center and its opposite from their adjacent points. The new curve
intersects this pseudocircle in at least four points. Since the pseudo-
circles of figure 19b also satisfy the 3-intersection property, the above
argument proves that not all arrangements of 3-intersecting curves with
four points have an extension curve. We will show how to convert this
to an arrangement of bi-infinite curves in lemma 5.9.

Lemma 5.9 For every k > 3, there is an arrangement of k-
intersecting curves and k + 1 points such that any curve through these
poinis viclates the k-intersection property.

Proof: If k > 3 is even, consider arrangements of four curves
constructed after the scheme in figure 20. The figures on the left
show arrangements with the 4 and 6-intersection property. Those on
the right indicate how to form arrangements for other even k—curve
segments are drawn to represent the open curves that surround their
perimeter,

.
. .
<] >
.
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k=6 k=4i+2

Fig. 20: Arrangements for even k

We can connect one pair of points by a (curved) segment that
crosses curves 2 times. Any other segment that connects two points
crosses the curves at least 4 times. To connect all k+1 points requires
4k + 2 crossings, or an average of k + 1/2 crossings per curve. Thus,
any extension curve through the points intersects one of the curves
in more than k points.

Since the extension must cross each curve an even number of times,
it intersects one of the curves in k+2 points. Thus, the arrangements
of figure 20 also show (k + 1)-intersecting curves with no extension
curves.

For those who are not happy with cloged
curves satisfying an odd intersection property,
we can replace each closed curve by three
bi-infinite curves as shown in figure 21. An
extension curve can extend infinitely in only
two of the three, so we can close one without
crossing the extension curve. This reduces the
problem to the previous case. »

}
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Fig. 21:
curves
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6 Algorithms for sweeping curves

If we know the graph that represents the arrangement, then we can
casily implement the local operations defined in section 2. The only
complication could be dealing with separate connected components of
the graph. If we sweep pseudolines or pseudocircles, lemmas 5.1 and 5.2
say that we can apply any operation to make progress—we may even
be able to apply operations in parallel.

Since an arrangement of n curves can have quadratic size, it is impor-
tant to ask whether one can perform the sweep when the arrangement
is ‘not known explicitly. Edelsbrunner and Guibas showed that this
could be done efficiently for line arrangements [9]. Let’s look at their
ideas and try to use them to sweep arrangements of pseudolines and
pseudocircles.

6.1 Implementing a pseudoline sweep

When sweeping an arrangement of lines, Edelsbrunner and Guibas can
start with a curve that intersects every line—they don’t need to use
taking or dropping operations. Thus, their problem is to recognize
empty triangles. For this purpose they keep two data structures that
they call upper and lower horizon trees.

The horizon trees could also be called envelope trees because for any
interval [i, + 1] on the sweep, one tree encodes the lower envelope of
the lines that intersect the sweep before the interval, specifically the
lines 4(1),...,7(i), and the other encodes the upper envelope of the
lines (i + 1),...,7(n). (Unfortunately, the upper horison tree encodes
the lower envelopes.) In this section, we want to concentrate on the
envelope properties, so we will refer to the trees as lower and upper
envelope trees.

Any empty triangle that occurs in both envelope trees is truly empty.
The lower envelope tree certifies that no line cuts it from above and
the upper that no line cuts it from below. Since we can pass triangles
in any order, we need only one tree: one can prove that in the upper
envelope tree (lower horison tree) the uppermost or first triangle cannot
be cut by a line above it. Thus if we always pass the upper triangle in
the upper envelope tree, we can sweep the plane. Overmars and Welsi
noticed this fact in the dual [29].

For lines, and also for pseudolines, the envelope trees have linear
sise—once a curve crosses into the envelope, it cannot leave. The initial
trees are easy to construct. Simply add the curves in increasing order
along the sweep to build the lower envelope tree, and in decreasing
order to build the upper envelope tree. The time to update the irees
can be related to the horizon complexity of the lines of the arrangement
(thus the original names) so it amortizes to constant time per triangle.

We can now modify the method of Edels-
brunner and Guibas to use a single envelope
tree to sweep pseudolines in linear space and Y
in time proportional to the sise of the arrange-

ment. Initially we need to know the order along = :
the sweep ¢ of the curves that intersect ¢. We 1 {

also assume that we know the ordering around . .
the line at infinity. With this information, we 1§ 22 Sweeping

can take rays until we reach a curve that already  CUFVes 7(1)- -5 7(3)
intersects the sweep—say it is v intersecting the sweep at i. That is,
7 = 1(3).

We find the upper envelope tree (lower horison tree) for the curves
Y = {y(1);...,7(3)}. The first triangle in this trec is an empty triangle

. in the arrangement I'V. Every curve that is visible in the interval [oo, 1]

of the sweep ¢ must intersect ¢ at or before i to avoid intersecting v
twice; therefore the first triangle is an empty triangle in I' and ¢ can
pass it. The sweep ¢ can continue to advance until ¢ drops the curve 1.
If the sweep is not yet complete, then c returns to taking curves.

6.2 Open problems for (k > 1)-intersecting curves

Applying these ideas to sweep pseudocircles seems more difficult. There
are two obvious complications: Since pseudocircles can be closed, we
may have to sweep several connected components of the graph of their
arrangement. The fact that each curve can intersect the sweep twice
is certain to complicate the description if not the algorithm.

A special case that avoids these two complications is the case in
which the sweep intersects every pseudocircle once. Since passing a
hump and taking a loop change two intersections, lemma 3.2 says that
an arrangement of such curves can be swept by passing triangles. An
algorithm for this case might have application to computing skewed
projections [24, 27]. .

There are complications even in this case, The envelope trees can
have size £2(n3), so we don’t want to store them explicitly. We need
some structure that can store them compactly and allow efficient up-
dates when two curves change order. We leave this as an open problem.

Another open problem involves sweeping arrangements of k-
intersecting curves, for k > 2. We can sweep any arrangement by first
applying our local operations until we get stuck, then taking curves,
violating the k-intersection property, until other operations apply. In
an extreme case, if the sweep takes all visible edges, then clearly it can
make progress. What intersection property does the sweeping curve
satisfy if we sweep with this procedure? How can such a procedure
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be implemented if the arrangement is not known explicitly? These
questions are important for practical applications to sweeping curves.
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