
Ada Implementation of an X Window System Server

Stuart Lewin

Sanders Associates, Inc.
P.O. Box 2035

Mailstop MERl5-1120
Nashua, NH 03061-2035

lewin@savax.Sanders.com

ABSTRACT

Sanders is in the second year of a two year project to implement
an X Widow System server using the Ada programming language.
X is a highly portable, network transparent display management
system which was developed at MlT’s project Athena and has
emerged as the industry standard for windowing systems. Our
objectives are to implement a production-quality base windowing
system suitable for use in Ada-based real-time systems, and to
examine Ada’s applicability as an implementation language for
graphics software. We are currently running a partially implemented
server which dispatches incoming protocol requests, pcrfomls basic
windowing operations and executes basic graphics functions. This
paper explains why we chose to do an Ada implementation,
describes our implementation approach snd server design and
relates several lessons learned about using Ada in such an
application.

INTRODUCTION TO THE X WINDOW SYSTEM

Adisplay management system (of-which the X Window System’
is an example) is analogous to the operating system of a general
purpose computer. Display management systems provide a
centralized mechanism for the sharing of resources between

’ The X Window Sysmn is a trademark of the Massachusetts Institute of Technology.

potentially competing users. In much the same way that the
operating system manages access to processor cycles, peripheral
devices and file systems, the display manager manages screen space,
colors, fonts, cursors, and any input devices attached to a
workstation.

A windowing system is a form of display manager that
implements the desktop metaphor. The desktop metaphor gets its
name from the analogy between the screen and a user’s desktop. In
the same way a person would shuffle papers around on a desk while
performing daily duties, the workstation running a windowing
system provides multiple windows (the “pieces of paper”) that csn
be resized, moved and restacked as the user changes focus in the
course of working. This is the most common user interface running
on workstations today.

The X Window System was developed at ha’s Project Athena.
It is an ambitious project to link together the 10.000 or so various
workstations on theMITcampus with a single, unifiednetwork. The
X Window System, or simply “X”, was developed to provide a
standard, workstation independent interface for application
programs as well as the student user community. Because it was to
be used in a heterogenous networked environment, the designers hid
the implementation details, increasing portability and providing
network transparency.

Version 11 is the most recent implementation of X, and the one
which is currently undergoing standardization. During its
development at MIT, the following design goals were established:

1. High Portability - The system had to be highly portable to be
used with the variety of workstations found at MIT. This
portability was to be in the areas of (1) graphics hardware it
supported, (2) network communication protocol it ran on. and
(3) host operating system it ran under. This has been achieved,

0 1989 ACM O-89791-329-9/89/001 O-0030 $1.50 30

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74261.74264&domain=pdf&date_stamp=1989-01-03

as may be seen by the wide variety of X implementations
currently available. All the major workstation vendors have
ported X to their machines, and there are versions running on
UNIX2, VMS3 and even Apple’s native Macintosh operating
system.

2. Good Performance - The system had to have performance
suitable for use in what may be one of the most demanding
user environments: students using computer aided instruction
(0-U) applications. As MIT migrated towards the use of
computer simulations to replace laboratory exercises for
teaching concepts by example, the underlying display
software had to be fast and responsive in order to make this
feasible.

3. Extensibility - At the time the systems engineering was
underway on the development of the protocol definition for
Version 11 of X, the architects realized that they were not
going to be able to predict all users’ needs or foresee all the
capabilities which might be required to meet those needs. In
order to provide for future extensions to the core X
functionality which remained compatible with the base
system, a standard mechanism needed to be provided. This
goal was met, and several “standardized” extensions are
already under development (including double buffering and
one for the use of PHfGS/PHIGS+* inside an X window).

: UNIX is a tmdanadt of AT&T Bell Labs.

’
VMS is a tm&.nwk of Digital Equipment Corpontiorr.
PEIIGS, or the Progmm~er’s Hierarchical Interactive Graphics System is a draft

ANSI standard graphics interface and P draft IS0 standard which includes support for
3D. PHIGS+ extends this standard to include suppat for light S~UICCQ shading,
dqxh-queuing and additional output primitives.

4. “Mechanism. Not Policy” - In order to provide maximum
flexibility inits use, the system was designed to provide a wide
enough variety of underlying mechanisms to allow
implementation of almost any user interface policy on top of
it. This goal was acceptabIy met, as is evidenced by the large
number of different window managers that run on top of X,
each implementing its own, sometimes widely divergent,
man-machine interface.

In summary then, the X Window System is a workmg,
well-tested, highly portable, public domain, multidisplay,
network-model windowing system. In addition to the protocol
specification defining X, a sample, reference implementation
(developed at project Athena) is distributed by the X Consortium at
MIT. This reference implementation is written in the C
programming language and runs in a UNIX environment. The
reference implementation supports graphics hardware from Apollo,
Apple, DEC, IBM, Silicon Graphics and Sun Microsystems.

SYSTEM OVERVIEW OF THE X WINDOW SYSTEM

In order to establish a common understanding of Version 11 of
the X Wtndow System, a short synopsis of its salient features
follows. X consists of two parts, an application interface called Xlib
and the actual display manager program called the server (see Figure
1). Applications tasks (referred to as clients) communicate with the
X server via a byte stream protocol which is accessed by the
procedural interface contained in Xlib. Clients can either reside on
the same processor as the server or on other processors within the
network. Xlib converts the various window system requests into

Local I-- Client N

XLIB

Communications
3 . . . Window

Manager

XLIB

x Protocol

t I

4
OS Dependent

Server

OS Dependent

Software

I
Mouse

I
Keyboard

Hardware

Figure 1. X Window System Model

31

correct op-codes and data formats, and manages the buffering and
transmission protocol clients use to communicate with the server.

The X server itself provides two major services to clients, display
management and input management. In addition, it provides a large
number of related services, including window positioning (both
physically on the display and within the hierarchy)‘, irregularly
shaped window clipping (due to overlapping, opaque windows),
resource management (fonts, cursors, colormaps, etc.), and a
collection of services designed to support window managers and
interclient communication.

StructuralIy, the server can be thought of as consisting of three
layers: the scheduler or dispatch, the device independent, and the
device dependent. These three layers, which exist for both display
and input management, are encased by an operating system
dependent shell.

In the display management portion of the X server, the scheduler
is responsible for fairly handling X protocol requests from multiple
clients and dispatching them to the device independent layer. This
layer performs any required device independent portions of the
operations before passing the graphics requests on to the device
dependent layer. Here, whatever processing necessary to display the
graphics requests is performed. For frame buffer graphics hardware,
the rendering is performed by the host processor; for smarter
graphics processors, the requests can be converted to 3 form
understood by the processor and passed on to it for rendering,
relieving the host of this computational burden.

In the input management portion of the X server, the device
dependent layer handles the interface to the devices (an
alphanumeric keyboard and 3 cursor position and selection device),
passing input events to the device independent layer. There, the
events are converted as necessary to make them conform to the X
protocol and are passed to the scheduler for distribution to the
clients. The input manager also provides the cursor management on
the display(s).

The operating system shell is responsible for the interface
between the server and the operating system under which the server
is running. This shell is the same for both the display and input
management sides of the server. Interfaces to the client-server
communication mechanism are provided here, as well as to the file
system and memory management routines. I/O routines for the
various input and display devices are also contained here.

WHY DO A SERVER IMPLEMENTATION IN ADA?

Information Systems Division at Sanders Associates has been
building display-oriented systems for over ten years. Time and time
again, we have had to work with requirements for some form of
display management software, which was always custom
implemented. Because of the types of systems we build, it is highly
likely we will continue to have similar requirements in the future.

In the same way papers can be stacked on a desk, a windowing system allows the
ordering of windows such that those closest to the user obscure the ones below (they
overlap).

In one recent program, Sanders was again faced with display
management requirements. In order to avoid implementing yet
another custom solution and to capitalize on the benefits realized
through their use, we wanted to proposal 3 standards-based solution.
After performing a trade off study to examine alternative windowing
systems, we concluded that the X Window System provided the
optimal solution. It has sufficient performance capabilities, no
unacceptable limitations and offered a natural path for future
extensibility.

Since that time, it has become even more evident that X csn be
applied to a wide variety of applications. Rather than continuing to
invent and apply unique solutions to each new system, we want to
be able to capitalize on the advantages andbenefits obtained through
the use of X in our future system design. This meant that Sanders
had to come up with an X server suitable for use in the type of
systems we build (increasingly Ada-based, with unique
requirements for graphics hardware and host environment).

Another pragmatic reason for using X is that our government
customers are becoming very interested in X. Along with the push
for the use of Ada as the implementation language of choice for
future software systems, we have seen several government agencies
requiring X as the graphics interface. We would expect this trend to
continue as they increase the emphasis placed on standards. This
project incorpor3tes both requirements into a single solution.

PROJECT ADDRESSES SEVERAL KEY PROBLEMS

Sanders’ Independent Research and Development (IRAD)
project to implement an X Window System server in Ada
simultaneously addresses four areas concerning software
development and theuse of standards on Ada programs. As software
development and maintenance costs have continued to rise at ever
increasing rates, a push for the use of standards as a solution to the
problem has developed. The Department of Defense (DOD) has
addressed the problem in the use of programming languages through
its mandate for the use of Ada. DoD Directives 3405-l6 and 3405-27
both require Ada as the progr amming language for future real-time,
embedded systems. The use of a standard programming language,
as with other standards, increases portability and maintainability of
software.

The newness of Ada, however, has created a shortage of existing
code for (re)use on programs. This is especially true of software
standards. Although some Ada implementations of standards are
becoming available, the low quality and general lack of availability
of these implementations make it difficult to produce systems
programmed completely in Ada. The resulting hybrid systems are
in direct conflict with the DOD mandates and serve to minimize the
advantages realized through the use of a single, standard
programming language. These advantages include reduced
non-recurring engineering experience, shorter development cycles,
decreased software maintenance costs and increased system
extensibility and modifiability. By developing systems
implemented entirely in Ada, these advantages could be realized.

’ ‘The Ada progwmtig language shall be the single, common, wnqxner
pmgrmning language for Defense computer wourca used in intelligence systems, for
the+mmand and cont.101 of military forces, or as an integral paa of B weapcm system.”

. . . weivem from using Ada, [shall be permitt&] only at a specific system or
subsystem basis. For uch proposed waiver, 1 full justiuti~ shall be prcpuod.”

32

Another problem introduced by the newness of Ada is a lack of
practical experience in several key areas. For example, effective use
of Ada in solving graphics problems with demanding DOD response
time requirements which lie close to the hardware will come about
only when the issues involved are understood. MITRE raised this
concern over lack of experience in a study for the FAA regarding
the use of Ada on the Advanced Automation System’. The study
was undertaken by MlTRE to examine whether it was feasible to
require the use of Ada in the implementation of a very large real-time
system. One of the risk areas identified by the study concerned the
feasibility of doing the real-time graphics required on AAS using
Ada. This risk was identified due to a perceived lack of practical
experience in the area. Other areas which caused MITRE concern
included the implementation of both low-level device drivers and
Boolean bit manipulation using Ada. The IRAD project to
implement an X Server in Ada is providing Sanders with valuable
hands-on experience in these areas, decreasing our risk on future
Ada programs with significant graphics content and real-time
performance requirements.

The third problem area involves the difficulties associated with
program integration and maintenance in mixed language
environments. Although it is possible to obtain language waivers for
existing code, as we had done when planning to use a C
implementation of the server, many problems can occur while trying
to incorporate even a single non-Ada program into an otherwise
native Ada environment. This is especially true when porting the
non-Ada program to the bare machine nmtime environments typical
of Adareal-time systems. Multiple languages also require multiple
toolsets for the host hardware, as well as multiple knowledge bases
in the programming staff. By implementing a server entirely in Ada,
we eliminate these problems and make a total Ada solution possible.

The final problem area addressed by our project concerns the
maintainability and reliability of the reference server distributed by
the X Consortium. Although much effort went into developing a
usable and stable reference implementation, it is just that: a
“reference” implementation. The server was implemented in the C
programming language by several diverse groups, with no
accompanying coding standards or design documentation produced.
And although there is now a consortium of companies9 dedicated
to maintaining and extending the X Window System, this group has
claimed no Teal responsibility for correcting problems that may crop
up in the reference implementation.

The reference implementation contains ports to common
workstation platforms, but performance optimization was not a
factor in its development. In fact, its performance is relatively poor
as a result of the goal to provide ease of portability to new target
graphics hardware. In order to meet that goal, the server was
implemented in a very general fashion, without making use of any
hardware dependent speed ups. In addition, because it serves as the
reference implementation, the main focus was to ensure correctness
rather than performance. The reference implementation is also
currently supported only under the UNIX operating system. Sanders
will have requirements to retarget the server for other graphics
hardware and port it to different operating systems depending upon
the system under development.

: Use of A& for FAA’s Advanced Automation System.
‘l-be X Cmsatim. established in Jmuuy of 1988, curmtly cmsists of over 50

manb and is based at MIT. ‘Ihis includea all the major wodrstDtion and grqhim
hardwpre vendors.

In recognition of the DoD objectives, and to favorably position
ourselves in a competitive environment, Sanders undertook the Ada
implementation of an X server. This will also allow us to improve
our capability to maintain and retarget the server, as well as increase
our responsiveness to unique customer requirements.

PROJECT PLAN AND APPROACH

Sanders is currently in the second year of a two year IRAD
project” to implement an X server in Ada. Last year we expended
slightly less than one man-year’s time (using two engineers). This
year we have staffed up to five engineers, and are planning to
complete the project with a total of about 4 man-years of effort
expended.

The project can be divided into four distinct efforts. In the first
effort, currently underway, a complete Ada implementation of the
X server is being produced. We are employing formal Ada design
methodologies during the top level and detailed design phases.
During the design phase, Ada packaging provides us with a natural
route to produce a compilable and integrated design. The
implementation phase then consists of completing the subprogram
bodies.

The protocol specification for X defines the requirements for the
server design. It establishes the structure and content of all traffic
between the server and clients, as well as the semantics associated
with each protocol packet. We are also using the reference
implementation of the server contained in Release 3 from the X
Consortium for guidance; however, the protocol specification
provides the final word on what the requirements rue.

The project is also serving as a practical proving ground for the
various design and implementation methodologies being espoused
for use with Ada within Sanders. Object oriented design” is
commonly used with Ada systems. We have combined that with a
methodology for real-time systems design developed at Hughes
Aircraft Company.

The second effort consists of validating the server
implementation for correctness. A series of validation tests and
benchmarks will be run, and the implementation changed as
necessary to correct any problems. These tests will come from the
test suite being developed by the X Consortium to validate X
implementations (in a manner similar to the way Ada compilers are
validatedusing the ACVCTest Suite). In addition, since the protocol

is language independent, it will be possible to run the set of cIients
distributed on the release tape against our Ada server. These clients
include four different window managers, a terminal emulator, some
demonstration programs and several games. The clients are varied
enough in application to provide coverage of the majority of
protocol requests, giving further verification of the correctness and
robustness of OUT implementation.

The third effort is aimed at improving the performance and
implementation quality of the server. One of the goals of the project
is to gain insight into the use of Ada for near real-time graphics and
display management in an environment that is close to the
underlying hardware and run-time system. Inorder to meet that goal,

lo DI-88-26 and IS-89-88, Ada Implanentation of m X Window System Scrvcr
‘I Actually. a subsa of ODD referred to as data abstraction and p-ted by Grady

Booth in his book, Sofhvare Engineering wil Ada

we are undertaking a 100% Ada implementation to uncover any
mismatches of the language with this application. During the testing
and validation stage of the project, however, areas may be uncovered
where alternate implementations need to be considered in order to
meet the required performance. Although we will be revisiting these
are-as for alternate Ada implementations as dictated by performance
or functionality concerns, some areas may still require eventual
implementation in some other language. Clarification of these areas
will enable us to predict where we will have to ask for language
waivers or make special plans on projects involving this type of
problem domain.

As mentioned previously, one of the design goals of X was to
provide for extcnsibiity. In order to demonstrate that our Ada
implementation is extensible and to make it more usable in
government applications, we will be examining and implementing
selected extensions which typically would be used in systems we
build. These extensions include features such as transparent
windows (X currently only supports opaque and input-only
windows) and a method for display recording and playback
(coincidentally, the server provides a natural synchronization and
pick-off point for this function), as well as the standard extension to
support double buffering (which smoothes out the display
presentation on a-large screen).

The fourth and final effort involves documenting the results of
the project. In addition to the final project report required, we are
producing a subset of MIL-STD-2167Adocumentation to document
our design and implementation. A set of Software Development
Folders (SDF) is being kept, and the Software Design Document
(SDD) and Interface Requirements Specification (IRS) will be
written. Only a subset of the full set of documentation in 2167A is
being produced to keep the IRAD costs down. However, it will be
sufficient to support use of the software on future projects withii
Sanders and Lockheed.

The project is using a compiler self-hosted on a network of Sun-2
and Sun-3 workstations. Although the server is being developed
using a single vendor’s compiler, we are following established
guidelines to ensure the portability of the finished server.

The target hardware platform we are initially using is a Sun-3
processor with a standard Sun mouse running UNIX. Many of our
customers want high performance graphics that necessitate using a
graphics processor. In addition, based on previous performance
analysis (as discussed in the Ada ‘Got-chats” section), we
anticipated problems with using Ada to generate graphics in a
memory mapped frame buffer. We decided early on to avoid the
performance problems on this IRAD project by using a graphics
processor.

During our efforts on a previous program where Sanders had
proposed the use of X, we went through an exhaustive specification
and selection process to obtain the bes t match of X device-dependent
functionality in the selected graphics hardware. At the conclusion
of the competition, Matrox Electronic Systems, Ltd. of Canada was
selected. Because their boardsets also provide a suitable interface
for the Ada server, we are targeting a Matrox VG-1281 graphics
processor connected to a Sony 1280 x 1024 color display.

CURRENT STATE OF AFFAIRS

The most common way of measuring progress on any software
project is through line of code counts. As of mid-July, we have
25,400 Ada statements contained in 639 library units (package
specs, package bodies and separate subprogram bodies). Because
Ada tends to be a verbose language, and we are using a style guide
that requires m-line program design language and comments, this
represents 93,700 actual source lines.

Our approach to implementing the server consisted of starting at
the core with the protocol dispatch and device independent resource
type managers. This is where the bulk of the server code resides and
has allowed us to defer the implementation of the operating system
and graphics hardwaredependent portions. This strategy allows us
to get the core of the server up and running while deferring some of
the more difficult implementation issues. At thii point, we have
completed the protocol dispatch packages, as well as the
corresponding resource type managers. We have concentrated on
the threads for displaying and configuring windows on the screen
and for displaying rudiientary graphics. This allows us to get a
demonstratable server running relatively early in the project.

We also have the interface at the device-independent to
device-dependent display portion defined and stubbed out. As
discussed previously, we have decided to target a graphics processor.
Although we have a simple UNIX device driver (written in C) in
place to open the board and memory map it into the Ada server’s
address space, the rest of the code to handle the board is beiig
developed in Ada. Several of the device-dependent portions of the
resource type managers have been implemented and a library of
routines to send commands and parameters to the board is complete.

Two important tools have been developed to aid in the testing
and integration of the server. The first is an interactive program
which allows the generation (and optional recorclmg) of X protocol
packets. This program also takes input from ASCII command files.
which simplifies the generation of the protocol “test scripts”. The
second too1 is a special interface to the server’s dispatch processing
that allows prerecorded protocol to be injected directly into the
server, bypassing the client-server communication mechanism. This
has allowed us to get the core part of the server up and running in
parallel with the outer layer of interfaces to the clients and operating
system. It also allows for greater repeatability of “client” inputs
during implementation and testing.

OVERVIEW OF ADA DESIGN

Although the exact nature of our server design remains
proprietary at this point, a brief description of the top level design
and protocol processing follows.

Figure 2 shows the Boochgrams for the core of the server
processing, or that represented by the dispatch process. It can be
thought of as consisting of three layers. The top layer contains the
packages which deal with the various kinds of protocol packets. The
approximately 120 different kinds of protocol have been grouped
by the server resource to which they are related. In these routines,
each protocol packet is checked for lexical correctness. Then, one
or more operations in the resource managers themselves are called
to actually perform the work.

34

Proprty-Pros-Pkg

Dispatch
--------_-_---_-_-_-_______

Manager

Atom_Opa.Uar.~Pkg Colormap_Opar.ual*~Pkg CUWC.I~Opa~llOllS~Pkg
Resource

Figure 2. Device Independent Dispatch Packaging OOD

The second layer consists of the server resource manager. One
of the key changes to the protocol in X Version 11 was to make
resource creation asynchronous, eliminating a round trip in the
protocol. Because of this, the application program (or client) only
knows about its resources through the ids that it assigns to them. As
the server may use a different notation to identify a resource (for
example, the access value to a dynamically created resource), some
method must be provided to map between client ids and server
resources. The server resource manager provides operations to Add
and Free resources, as well as to look up a resource for a given ID
from a client. This package also helps to prevent errors caused by
using access values to resources that have been destroyed.

The third layer consists of the various resource managers
themselves. We have implemented the resource managers in the
server using a combination of both type and object managers. Most
of the server resources (windows. cursors, graphics contexts, etc.)
are implemented as dynamically allocated objects. Server resources
tend to have fairly long life times and there is no way to reliably
guess the number required ahead of time in or&r to statically
pre-allocate them. Access functions to set and retrieve components
of the resource are implemented as Pragma Inline to preserve the
data abstraction while minimizing the overhead.

Figure 3 shows a Boochgram for the program structure involved
with processing a typical protocol request dealing with a resource.
In this case, the server dispatches to the correct protocol processor
based on the message content. For this example, we will assume it
is to create a window.

The first step is to convert the request as defmed by the standard
header into the specific request type. This is accomplished via
unchecked conversion. The protocol processing subprogram and
any associated operations from the individual resource managers are
then responsible for checking the integrity of the received data. The
data checking is necessitated not only by the unchecked conversion,
but also because the protocol is received from a source external to
the Ada program. Thus, the use of unchecked conversion does not
result in any additional work.

One of the checks performed in this case is to verify that the
resource id provided by the client is valid. As mentioned earlier,
clients allocate resource ids and, before accepting an id, the server
must ensure that it is not already in use and is really an id from the
requesting client. After other checks for a valid request length and
the right number of attributes being supplied to override the defaults,
the protocol processor calls the window resource manager to create
a window.

In the window operations package, a structure for the window is
dynamically created. We are using dynamic memory allocation for
some objects as they tend to have fairly long lifetimes and there is
no way to calculate the number required during either system build
time or at startup. The values sent by the client for attributes of the
new window are checked for validity and stored in the window
object. The window is then returned to the protocol processor.

me last phase of creating anew window is to store the association
between the window’s id (as it will be kuown to the client) and the

35

I
Aac-NNN2

I

I

object itself (as the server will operate on it). The server resource
package consists of a series of instantiated generics for each type of
resource. In this case, a call is made to add the resource to the
database. At a future point, calls to lookup the object or free it when
done can be made.

Processing now returns to the dispatch loop, where the next client
request is obtained and the process starts over again. If at any point
errors are uncovered (in values received from the client) or local
resources are exhausted (in memory allocations), exceptions are
used to cause an error message to be sent to the client and processing
of this request to be terminated.

DIFFERENCES BETWEEN C AND ADA DESIGNS

There are four major areas of difference between the existing C
reference implementation and our Ada implementation. The first is
in the area of error handling capabilities. The reference C server
distributed by MlT has its internal interfaces defined to return error
indications where required. However, in many instance.s, this
information is not used by the calling routine. In fact, C’s capability
to use a function returning an error condition as a procedure when
it is called, and thereby ignore the returned error condition, is
prevalent in the reference server code. This has introduced the
unpredictability and fragility one would expect, especially in the
case of failed operations on a resource. Ada, on the other hand,
makes no such allowances, forcing the calling routine to at least
acknowledge the error condition.

Figure 3. Typical Protocol Processing OOD

In addition, the use of Ada exceptions to propagate unexpected
error conditions has become a prominent feature of our
implementation. Instead of implementing the interfaces as functions
that return a status, interfaces can be defmed as procedures with
exceptions raised on errors. With the use of exceptions, error
conditions must be dealt with at the point of occurrence, and cannot
be ignored. This improved method of dealing with internal program
errors will provide a substantially more robust server, and increase
the possibility of recovering from errors that would have been fatal
in the existing C implementation. Examples of thii include the
ability to back out of failed new resource allocations, or operations
on a resource that fail at the beginning of a block of code.

The second area of difference concerns the methods used to
implement type abstractions supported by the two languages. Ada
is a strongly typed language; C is not. This accounted for numerous
problems due to two major factors. The first of these is that
incomplete

?F
declarations are allowed to be more general in C

than in Ada . This means that the format and content of Ada’s
abstraction of an object will not match the C representation. The
second factor was that various types had different sires in the
protocol and the internal data structures used to store them (and even
between different data structures). Although this does not present a
problem to the completed full Ada implementation (since it is
internally consistent), trying to utilize existing C routines for
integration during development was made impossible.

l2 The C programming language allows pointers (equivalent to Ada’s access types)
to be de&red withcut giving, in the - compil8tion unit. the caltult or m&cup of
the stnl- they point to.

36

Gur original intent was to first implement our system framework
design in Ada and plug in existing C code where possible to do the
actual work. In this way, we would have been able to prove our
design at an early stage and have a working implementation of the
server at all phases of the project. Each package of operations would
then be designed and implemented in Ada to replace the existing C
code. However, it quickly became obvious this would not work due
to the incompatibilities of the object representations between the
two languages.

One possible solution to the problem was to write small
intermediary routines to pack/unpack the Ada and C data structures
and provide the required compatibility. Upon closer examination,
we decided that even this approach would be infeasible due to the
vast differences in the two representations, and the large amount of
“throw away” code it would require. We feel that the strong support
for typing provided by Ada will make our implementation more
robust, with ineeased portability, and the problems inherent with
implicit and explicit type casting will be avoided.

A third area of difference is the support for concurrency that is
supplied by the Ada language itself. The capability of providing a
multithreaded server presupposes the availability of light-weight
processes, and our server design, by incorporating tasking, provides
the foundations for this feature. This capability is not possible with
the existing C implementation andrequires anon-standard interface
to the underlying run-time environment if implemented using kernel
features. A multithreaded server approach allows for the prioritized
scheduling of client requests, rather than the round robin approach
now used in the C server. With this capability, a server could be
tuned to prioritize its display activity.

The final major area of difference is concerned with the use of
dynamic bindiig and inheritance in an object oriented design. This
is one area of true object oriented design that is unsupported in Ada.
The C implementation follows an object oriented approach to its
design. This allows the processing operations performed on various
resource objects within the server (windows, graphics contexts,
etc.), as well as operations to actually render graphics objects on the
display, to change as the attributes of the object change. This
capability is provided through extensive use of “subprogram
pOillted3 . Another area where this capability has been exploited
is in the generation of vector tables for dispatching on various items.

Ada, on the other hand, provides no such capability and requires
calling sequence and semantics to be determined at compile time.
Therefore, we have had to resort to alternate implementations. In
most instances, the dispatching must be handled by using large case
statements. Depending on the compiler quality, this can introduce a
large amount of overhead. This is a special problem in the protocol
dispatch area, as that is the most heavily exercised part of the server.
One side effect that has fallen out of thii fundamental difference
between the two progr amming languages is that we were given
further “encouragement” to do a reimplementation in Ada, rather
than a straight code conversion.

I3 The C prognnnming language allows calls to subprogmns via an nddmss that has
bea pmkualy cored. By chmgin8 this utcmd address, diEamt impl-Mom with
the Mmc sptectic imrfaa cm bc provided.

ADA “GOT-CHA’S”

One of the objectives of this project is to examine tlte feasibility
of using Ada to do high performance graphics in a distributed system
environment. Several mismatches between the language and the
application have been uncovered so far.

Bit Manipulation - Ada provides no underlying bit-level
manipulationmechanisms (such as the logical operators and shifting
or rotation of bits). Instead, bit masks are implemented as arrays of
Booleans. Although this is conceptually a very nice model for
dealing with what bit masks may represent, it introduces a very large
amount of overhead. The bits must be combined by shifting and
masking them one at a time. In the X server environment, which
requires a large amount of bit manipulation to generate graphics in
a frame buffer (or any other environment close to the physical
world), the performance breaks down and presents a clearly
unacceptable solution. Early recognition of this problem
encouraged us to target a graphics processor rather than a frame
buffer.

There is an alternative abstraction for bit masks using record
types with Boolean, one-bit components for each place in the mask.
This substantially reduces the overhead required, as the compiler
can make certain optimizing assumptions while generating code.
However, it still provides no capability for performing the masking
and shifting operations on the object as a whole and fails to satisfy
the requirements found in areas such as graphics generation.

This definition of bit masks is built into the language
specification and, hence, is unlikely to change. Given the semantics
of the specification. it is also unlikely that compiler code generation
can be optimized sufficiently in this area. Recognizing this, some
compiler implementations provide a library of services to perform
this type of operation more efficiently (by interfacing to the
underlying operating system or an alternate language
implementation). Because of the prevalence of this type of operation
in our application, we also will be examining alternate
implementations of these operations, most likely in C or assembler
language,

Client-Server Communication -The X server communicates with
clients using any implementation of a reliable byte stream (in the
reference server, TCP/IP is used). Each protocol element is mapped
into an untyped packet of bytes for transmission to the server. When
received by the server, this group of bytes must be mapped back into
the correct data structure. Due to system timing and other external
influences, only a piece of a protocol element may be available for
reading into the server at any given time. Because Ada is such a
strongly typed language, there is no real support for reading
untyped, variable sired blocks of data. This has obvious
implications for any kid of application involving “middle level”
networking.

Compiler Technology - Adais avery large andcomplex language,
as evidenced by the Language Reference Mart~al’~. Because it is
also a relatively new language, Ada compilers are not yet mature
and stable enough to support the entire language definition. This is
especially true in those areas closest to the underlying physical

” The Ada Pmgmmming Langw!e Reference Manuat.
ANSUMILS’ID-l8SlA-1983.

37

environment as defined in Chapter 13. As compilers becomle more
mature and complete, tbis will be less of an issue. In the me,antime,
it is important to keep in mind that problems can occur when using
the newer, rarely used features of the language.

We have run into several problems with our Ada compiler in the
areas of generics and correct implementations of representation
specifications, both of which have necessitated alternate
implementations. For this reason, we have endured the difficulties
of acting as a beta test site for new compiler releases. This allows
us access to the vendor’s most current compiler technology and
helps to minimiz the impact of compiler bugs.

Another area that has caused problems for us is in compiler
optimization. We are using a memory mapped interface to the
graphics generator where data is sent to the board by writing to a
single address which represents the head of a FIFO type queue.
Compiler vendors, in general, do not provide much control over
degrees and types of optimization performed. Hence, the compiler
treats the series of statements writing to the FIFO as dead code and
eliminates all but the last one. In order to prevent this problem, the
code must be isolated and compiled unoptimized (which generates
horrible code), resulting in rather clumsy interfaces to things.

Design Methodologies - There are several different &sign
methodologies available for use with Ada, with a somewhat smaller
number applicable for implementations requiring real-time
performance or appropriate for the design of concurrent programs.
One problem with several of the methodologies is that they produce
an inordinately large number of Ada tasks. Although this may
provide a conceptually clean design, with concurrency issues
correctly handled, it presents a performance problem. The
implementations of the Ada tasking model Provided by most Ada
runtime environments falls short of providing one suitable for&e
in real-time environments due to the overhead involved with task
context switches. This is especially true when the Ada runtime is
implemented on top of some other underlying operating system
which does not have real-time characteristics, as opposed to a
bare-machine environment.

Code Size - Although the original estimate of the amount of code
to be developed was based on the C implementation (roughly 24.000
lines of code), it has become evident that our Ada implementation
will be substantially larger (on the order of 45,000 lines of code).
One reason for the larger size is our use of Ada’s separate
complation capability (through the use of package specifications
with separate subprogram bodies). In doing this, it is necessary to
generate large amounts of Ada source code at the start of a project
with little executable code being created in the Process. Although
this code does not really show up in the count of truly “executable”
code, it takes time to develop and must be included in any schedule
estimates.

Development Environments - As stated earlier, this project is
being developed on a group of Sun-3 file and compute servers. We
have discovered that the compiler and associated tools (linker and
debugger) tend to be quite large. This can limit the number of
simultaneous users a Sun file/compute server can support as it
becomes unable to allocate enough virtual memory to support them.
In addition, because so many files need to be read and written during
compiiations, we have found, during benchmarked library builds,
that the CPU is idle for 50% of the time waiting for disk 110. Both

of these point to a need for careful consideration of host
development environments and supporting hardware.

Foreign Language Inte$ace - One unique feature of Ada is its
ability to interface to other languages (i.e., C, FORTRAN, or
assembler) in a language defined, compiler supported fashion. This
is achieved through use of the Pragma Interface. Although this does
present an approach to using existing code written in other
languages, one has to be wary of thinking this feature of Ada is a
panacea. One of the things we quickly discovered on this project is
that, lacking the rigors enforced by Ada, other developments may
be inconsistent enough as to prevent their use. This point should be
considered by all established product bases planning a migration to
Ada

SUMMARY

Our project is well on the way to a projected conclusion by year’s
end. We currently have a majority of the dispatch routines and
device-independent resource type managers completed and have
started integration with our targeted graphics processor. Valuable
experience has been gained in the use of Ada for near real-time
graphics and display management in an environment that is close to
the underlying hardware and run-time system. In addition, we are
finding the areas to watch out for as Sanders migrates towards the
use of Ada in applications with substantial graphics content. At the
conclusion of the project, we will be able to offer a total Ada solution
on programs that require the industry standard X Window System.

BIBLIOGRAPHY

Angebranndt, S., Dreary, R., Karlton, P., Newman, T., Definition of
the Porting Layer for the X vll Sample Server, MlT, March 1988.

Booth, Grady, Software Engineering with Ada, The
Benjamin/Cummings Publishing Company, 1987.

Department of Defense, Military Standard: Defense System
Software Development, ML-STD-2167A, 29 February 1988.

MIIU%, Use of Ada for FAA’s Advanced Automation System,
MTR-87W77, April 1987.

Nielsen, K., Shumate, K., Designing Large Real-Time Systems with
Ada, McGraw-Hi& 1987.

Scheifler, R., Gettys, J., Newman, R., X Window System: C Library
and Protocol Reference, Digital Press, 1988.

United States Department of Defense and American National
Standards Institute, Inc.. The Ada Programming Language
Reference Manual, ANSI/ML-STD-1851A-1983.

38

