
A Model Solution for the C31 Domain

Charles Pliinta and Kenneth Lee

Software Engineering Institute

Carnegie Mellon University

Pittsburgh., Pennsylvania 15213

ABSTRACT

This paper’ briefly describes a specific portion of recent
work performed by the Domain Specific Software Architec-
ture (DSSA) Project at the Software Engineering Institute
(SEI) -- the development and use of a model solution for
message translation and validation in the 01 domain.
Based on this experience and our involvement with pro-
grams in the @I domain, future considerations are de-
scribed. These considerations involve identifying potential
models within a domain and making recommendations for
developing and documenting model solutions which will en-
able the models to be reused.

BACKGROUND
The work was performed by Kenneth Lee, Charles Plinta,
and Michael Rissman, in conjunction with the Granite Sen-
try (GS) Program. GS is a phased hardware and software
replacement of some of the systems in the Cheyenne MIoun-
tain complex of North American Aerospace Defense Com-

1 This work is sponsored by the U.S. Department of Defense.
The views and conclusions contained in this paper are solely
those of the author(s) and should not. be interpreted as repre-
senting official policies, either expressed or implied, of Carnegie
Mellon University, the U.S. Air Force, the Department of De-
fense, or the U.S. Government.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed Jar direct
commercial advantage, the ACM copyright ,noti,ce and the tlt!e o! the
publication and its date appear, and notkx !s given tQat copying IS by
permission of the Assoaatlon for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

mand (NORAD). The DSSA Project supports the GS pro-
gram office by providing advice on technical issues. The
DSSA Project members participate in design discussions
and working group meetings with the lead designers. As
part of our involvement, the DSSA Project developed a
model solution to perform message translation and valida-
tion (MTV). The M’I’V model is currently being used by GS
Phase II in its design specification and the MTVmodel solu-
tion will be used to implement that portion of the design.
The MTV model solution is also being used by other pro-
grams developing systems in the CYI domain: Army
WWMCCS Information System (AWIS) and Mobile Com-
mand and Control System/Mission Support Segment
(MCCS/MSS).

AN OVERVIEW OF C31 SYSTEMS

Figure 1 shows a high-level block diagram of a typical 01
system. The Gateway is an interface between the 01 sys-

tem and all external systems. ‘I’he Gateway sends mes-
sages to and receives messages from the external systems.
The messages enter and leave the C3I system as ewterna2
representations (EXJ?) of the information, whose formats,
EXR Descriptions, are defined by the external systems.

The Mission Processor maintains a view of the world, in a
mission database, based on the EXR provided by the exter-

nal systems. This world view is kept in internal representu-

tions (INR) which allow processing of the information based
upon the 01 system’s mission requirements. The INR are a
set of Ada values. The Ada values are defined by a set of
Ada types, called the INR Description. The world view is
available to other systems via the EXR of the information
and to the user via user representations (USR) of the infor-
mation. The USR is a string representation of the INR.

0 1989 ACM O-89791-329-9/89/001 Cl-0056 $1.50 56

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74261.74266&domain=pdf&date_stamp=1989-01-03

C31 System

Figure 1: C31 System Block Diagram

The User Znterface provides a window into the Mission

Processor’s view of the world. It presents all or a subset of
the world view, as requested by the user, in a form which is
understandable to the user. The user can also add infor-
mation to the Mission Processor’s view of the world. The
messages enter and leave the User Interface as USR of the
information.

The Journal is a storage device used for safe storage of all
representations of messages for recovery, analysis, and
testing purposes.

Figure 2 shows an EXR Description for a sample message.
This example message will be used throughout the paper.

range of external values, and the meaning of the external
values for the message. For example, field 1 is the Report-
ing Location. The field size is three characters. The valid
external values are “KJL” and “CPP” and “MMR” and the
meanings of the values are Andrews AFB, Peterson APB,
and Wright Patterson APB, respectively. In addition, the
EXR Description specifies field separators, if they exist,
and an end-of-message indicator.

Figure 3 shows an INR Description for the sample mes-
sage. ‘I’he Ada types represent the information in the fields
of the EXR Description.

Finally, Figure 4 is an example of the message in its EXR,
The EXR Description describes the field name, field size, INR, and USR forms.

Sample Message Format

Field
Field Name

Field Size Range of
Number (chars) Values Amplifying Data

1 Reporting Location 3 KJL Andrews AFB

CPP Peterson AFB

MMR Wright Patterson AFB

Field Separator 1 I Slash

2 Direction 1 N North

S South

E East

W West

3 Date/Time Group Julian Date 8 Time

3 001-366 Julian Day
2 00-23 Hours

2 00-59 Minutes

End Ot Message 1 <CC= Carriage Return

Figure 2: Sample Message External Representation Description

57

type Reporting-Location-Type is (Andrews-Afb, Peterson-Afb, Wright-Patterson-Afb);

- field 2
type Direction-Type is (North, South, East, West);

- field 3
subtype Julian-Day-Type is Integer range 1 . 366;
subtype Hour-Type is tnteger range 0 . . 23;
subtype Minute-Type is Integer range 0 . . 59;

type Julian-Date-Time-Record-Type 1s record
Julian-Day : Julian-Day-Type;
Hour : Hour-Type;
Minute : Minute-Type;

end record;

type Sample-Message-Type is record
Reporting-Location Reporting-Location-Type;
Reporting-Direction :Direction-Type;
Reporting-Time :Julian-Date-Time-Record-Type;

end record;

- field 1
- field 2
- field 3

Figure 3: Sample Message Internal Representation Description

External Representation:
“CPP/N1810244~cr>”

Internal Representation:
Message := (Reporting-Location

Reporting-Direction
Reporting-Time

=> Peterson-Afb,
=> North,
=> (Julian-Day => 181,

Hour => 2,
Minute => 44));

User Representation:
I Peterson-AfbNorth 181 2 44”

Figure 4: :Message Representations

RECURRING PROBLEMS IN C31 SYSTEMS

Recurring problems are those problems which appear
repeatedly within a system or from system to system.

Typical recurring problems in 01 systems are:

* Packet Unbundling: packing and unpacking a
group of EXR messages. Messages are grouped
for ease.of transmission.

* Message Translating and Validating: trans-
lating messages from one representation to an-
other. Validation is performed as part of the
translation process.

4 Message Analyzing: processing information in
an INR, updating a mission database, and gener-
ating alarm and display information to support
the user interface.

+ Journaling: storing and retrieving message in-
formation for generating reports, testing, and re-
start/recovery processing.

+ Report Generating: formatting of message in-
formation.

+ User Interface Processing: gatheringipresent-
ing USR information from/to users at interactive
workstations.

58

Zroup of
EXR

Message
) Packet EXR &Translator INR

Unbundler &
) Message

Analyzer
Validator

Gateway

Figure 5: EXR Message Processing Thread Diagram

Models represent reusable, generalized solutions to prob-
lems and have their greatest impact on recurring prob-
lems. Thread diagrams show how models for recurring
problems are connected to satisfy certain requirements.
For a typical 01 system, several thread diagrams are
needed to capture all stimulus-response processing re-
quirements. Figure 5 shows an EXR message processing
thread diagram. This diagram shows the Packet Un-
bundler, Message Translator and Validator, Message Ana-
lyzer, and Journalor models in the Mission Processor. A
group of messages enters the 01 system from the Gateway
and is recorded in a journal r;le. Packet Unbundler re-
moves one message at a time from the group and makes the
message available for translation and validation. MTV
converts the message to an INR. Message Analyzer proc-
esses the information in the message, updates the mission
database, and creates new INR with alarm and display in-
formation. MTV converts the INR to a USR for display at a
workstation.

Other thread diagrams would show the necessary models
which satisfy different stimulus-response processing re-

quirements.

The next two sections of this paper will focus on one recur-
ring problem, Message !pranslating and Validating, and
present a model solution for this problem.

THE MTV RECURRING PROBLEM

The MTV recurring problem is pervasive throughout 01
systems. At GS, MTV occurs on the Mission Processor, on

User
Interface

user workstations, and on analyst workstations. Based on
an analysis of GS specifically, and the 01 domain in gen-
eral, we arrived at the following MTV requirements:

1. Support real-time requirements:

a. Translation and validation between EXR and
INR to support mission processing.

b. Translation and validation of all message repre-
sentations to support writing to a journal.

2. Support non-real-time requirements:

a. Generation of external message representations
to support construction of simulation scripts for
training purposes.

b. Generation of all message representations to
support system testing.

c. Translation and validation of all message repre-
sentations to support reading from a journal.

3. Support interactive requirements:

a. Translation and validation between EXR and
INR to support manual entry of information at a
workstation and to support presentation and
correction of invalid messages received from a
mission processor.

b. Translation and validation between USR and
INR to support manual entry of information at a
workstation and to support presentation and
correction of invalid messages received from a
mission processor.

The MTV model, in Figure 5, represents the solution to the
real-time requirements. The solution to the non-real-time

59

and interactive requirements would be represented on
other thread diagrams.

EXR

INR

USR

A MTV MODEL SOLUTION + The solution is consistent. The building blocks

‘Check

lIl-GG-

Figure 6: MTV Model Black Box Diagram

A model solution is produced in response to a recurring
problem and represents an architectural building block
which is implemented, in a specific form, for each instance
of the recurring problem. A model solution must convey to
the system designer an adequate sense of the general prob-
lem it solves, and must provide a means to create an in-
stance of the model which solves the specific problem.

This model solution2 for the MTV recurring problem has
the following characteristics:

+ The solution addresses all requirements for all in-
stances of the recurring problem throughout the
GS Phase II system.

+ The solution is based on building blocks. Building
blocks allow for the creation of standardized
translation and validation solutions for different
message formats.

2 An SE1 technical report entitled”A Model Solution for C31 Mes-
sage Translation and Validation”, SEI-89-m-12 , is forthcom-
ing.

provide a consistent interface regardless of the in-
formation translated.

MTV Model Functional Description
This section, describing the functionality, conveys to the
system designer the problem that the model solves.

Figure 6 shows a black box diagram of the MTV model. The
MTV model provides the capability to convert between
either the EXR or USR of a message and the INR of a mes-
sage. The Value functions convert from an EXR to an INR,
and from an USR to an INR; the Image functions convert in
the other direction. The conversion includes real-time vali-
dation with respect to the range of possible values for the
fields and withrespect to any inter-field dependencies. If a
problem is found, the conversion process is stopped, and an
Invalid Representation exception is raised.

The MTV model also supports a diagnostic, non-real-time
syntactic analysis ofboth USR and EXR. A diagnostic indi-
cator is returned which supports error detection and cor-

60

rection. The Check functions diagnose USR and EXR and
return the diagnostic indicator.

The next three sections describe the means provided to cre-
ate instances of the model solution.

MTV Model Solution Bullding Blocks
Building blocks allow for the creation of consistent, stan-
dardized solutions. For example, many message fields con-
tain information which can be represented as enumerated
values, such as Field 1 and Field 2 in the sample message
(see Figure 2). A building block for translating between
field representations and enumerated value representa-
tions need only be parameterized to specify the mapping
between the representations.

The building blocks of the MTV model solution fall into
three categories. All the components are necessary to pro-
vide the functionality of the MTV model described above.

1. Discrete Qpecaster Generics are Ada generic
packages which serve as the foundation of the MTV
model solution. The generic packages convert be-
tween Ada discrete values, INR, and strings repre-

senting these values, EXR and USR. For example,
there is a generic package for converting integer val-
ues and another generic package for converting enu-
merated values.3 The generic packages must be com-
piled into the Ada library for use by other portions of
the MTV model solution.

2. Discrete Typecaster Templates are Ada coding
templates4 which are some of the building blocks of
the MTV model solution. The discrete templates con-
vert between Ada discrete values, INR, and strings
representing these values, EXR and USR. The tem-
plates make use of the generics. There is a one-to-one
relationship between the templates and the discrete
typecaster generics. The templates insulate the exis-
tence of the generics from the application developer.
The templates also provide a test procedure which

3 Other generics exist as well. These handle other kinds ofrepre-
sentation mappings. See the forthcoming report,

SEI-89-TR-12, for more information.

4A template is a file containing an Ada package specification,

body, and test procedure. The file contains engineering points

for the name of the package, the Ada type used in the template,
and so on. The template is instantiated by supplying informa-

tion, in place of the engineering points, via global editor substi-

tutions. Global replacement affects the specification, the body,

and the test procedure.

does exhaustive testing, based on the range of the Ada
discrete type, and interactive testing. Figure 7 is an
example of part of a discrete typecaster template. En-
gineering points are represented by tokens enclosed
in curly brackets, such as (Type), and by double ques-
tion marks. Figure 8 is the instantiated discrete
typecaster using the template in Figure 7.

3. Composite Typecaster Templates are Ada coding
templates which are the rest of the building blocks of
the MTV model solution. The composite templates
convert between Ada composite values, INR, and
strings representing these values, EXR andUSR. For
example, there is a composite typecaster template for
converting records and another for converting ar-
rays.6 Instances of these are layered upon both dis-
crete typecasters and other composite typecasters, as
shown in Figure 9. The templates also provide a test
procedure which does canned testing based on test
cases supplied when the template is instantiated.

The use of the template building blocks, to create software
for translating and validating messages, guarantees con-
sistency for all instances of the model solution.6 The gener-
ated test procedures allow for easier unit testing of the in-
stances.

MTV Model Solution Building Plan
The following are the steps involved in applying the MTV
model solution to a set of messages which need to be trans-
lated and validated:

1. Compile Foundation Utilities. Compile the utili-
ties which form the foundation of the MTV model solu-
tion. These are the components in the Discrete
Typecaster Generics category.

2. Analyze Message. Define the INR Description, as in
Figure 3, based on the information provided in the
EXR Description, Figure 2. An Ada type for each fieId
must be defined.

5 Other composite templates exist as well. For example, there

are record and array templates which guarantee inter-field data

integrity using private data structures. There is also a wrapper

template. The wrapper maps to a discriminated record which al-

lows for null or not present values. See the forthcoming report,

SEI-89-TR-12, for more information.

6 The model solution has been extended to handle the conversion

ofbit-based EXR to INR. The model was sufficient to account for

the new requirements. Two new discrete typecasters (and the

associated generics) were created: an integer-bit typecaster and

an enumeration-bit typecaster.

61

wlth Integer-Typecaster;
package (Type)-Typecaster is

- The range of values corresponahg to an integer image
-

subtype (Type)-Type is Integer range (First)..(Last);
- The instantiation of an lnreger Typecaster
-
package (Type]_Tc is new Integer-Typecaster
(Type_To_Be_Cast =a ITYP~LTYIN;

end (Type)-Typecaster;

with (Type)-Typecaster;
procedure (Type)-Typecaster-Test is
?? Enter Test Cases Here

Test-Cases : is array (l..??) of TestJtecord := (??);
begin

end (Type)-Typecaster-Test;

Figure ‘7: Example Discrete Template

with Integer-Typecaster;
package Hour-Typecaster is

- The range of values corresponding to an integer image
-

subtype Hour-Type is integer range 0..23;
- The instantiation of an Integer Typecaster
-

package Hour-Tc is new Integer-Typecaster
(Type-To-Be-Cast => Hour-Type);

end Hour-Typecaster;

with Hour-Typecaster;
procedure Hour-Typecaster-Test Is

Test-Cases : is array (l-2) of Test-Record := (“04”. “23”);
begin

end Hour_Typecaster-Test;

Figure 8: Example Discrete Template Instance

3. Instantiate MTV Model Solution. Use the tem-
plates provided by the M’I’V model solution to create
an instance of the model solution based on the mes-
sage analysis performed in the previous step.

a. Identify and Build the Discrete Typecas-

ters. The discrete typecasters needed to trans-
late and validate the discrete elements of a mes-
sage are identified based on the INR Description

constructed in Step 2. Check to see if any of the
needed typecasters already exist; some may
have been created for other messages. Generate
the discrete typecasters which don’t exist, using
the appropriate discrete typecaster templates.
Run the generated test routines to check the dis-
Crete typecasters.

62

For the sample message, five discrete typecas-
ters are needed. Three will use the integer
typecaster template. These allow for converting
Hour, Minute, and Julian Day values. The re-
maining two will use the enumeration typecas-
ter template. These will convert Direction and
Reporting Location.

b. Identify and Build Composite Typecasters.
The composite typecasters needed to group dis-
crete and composite elements of the message are
identified based on the INR Description con-
structed in Step 2. Check to see if any of the
needed typecasters already exist; some may
have been created for other messages. Generate
the composite typecasters which don’t exist, us-
ing the appropriate composite typecaster tern-
plates. Run the generated test routines to check
the composite typecasters.

For the sample message one composite typecas-
ter is needed. This Julian Date Time record
typecaster is built using the record typecaster
template.

c. Build the Message Typecaster. The message
typecaster is generated using the appropriate

composite template, usually the record typecas-
ter template. Run the generated test routine to
check the instance of the MTV model solution for
the message.

For the sample message, the message typecaster
is generated from the record typecaster tem-
plate.

The application developer need not be concerned with the
generics unless the code performance (sizing or timing) is
inadequate to meet the system performance requirements.
The application developer need only be concerned with the
discrete and composite templates and instantiating them,
as necessary, to obtain the MW capabilities required by
the system under development.

MTV Software Architecture
Figure 9 shows the general software architecture for the
MW model solution. Figure 10 shows the software archi-
tecture which results when the M!I’V model solution is ap-
plied to a specific message format. The example message is
that shown in Figure 2. The software architecture is
shown as Ada packages and the dependencies among them.

I Message
Typecaster

I

dz2! Composite
Typecasters

LEGEND

Ada padteges generated
horn templates

Figure 9: MTV Model Solution Software Architecture

63

r

(Enumeration

\

Ir Hour TC 111 MinutzTC I \ I “7 ,Enumeration TCT)

LEGEND

Ada packages generate
from templates

I
& : Ada generic packages
L-w-m-

Ada package dependency
___) (item it tail is dependent

upon item at head)

TC = Typecaster

TCT = Typecaster Template

Figure 10: Sample Message Software Architecture

The software architecture is based upon the structure of
the Ada types. When the MTV model solution is instan-

tiated for a particular message, the resulting architectural
components are instances of the discrete typecaster tem-
plates and composite typecaster templates, one for each
Ada type used to describe the INR of the message. The

MTV architecture is hierarchical in nature. The discrete

typecasters are dependent upon the discrete typecaster ge-

nerics. The composite typecasters and the message
typecaster may be dependent upon instances of both dis-

crete typecasters and composite typecasters.

MTV MODEL SOLUTION IN USE
The M!t’V model solution was developed while the DSSA
Project members were involved with Phase I of the GS Pro-

gram. GS Phase II has adopted the model solution and, as

of this writing, has generated instances of the model solu-
tion for translating and validating 11 of 26 messages. This

section summarizes Phase II’s experiences using the MTV

model solution.7

The Use of the MTV Model Solution

The EXR <--> INR translation and validation functional-

ity is currently being used to check and convert message
EXR received from the NORAD Computer System to INR
for analysis. The formats of the EXR are specifiedin the GS

1 We would like to thank Major Mike Goyden and Lt. Jordie
Harrell of Air Force Space Command, and Guy Cox of Martin
Marietta, for their support and cooperation in providing feed-
back regarding the use of the MTV model solution. See
Goyden’s paper, The Software Lifecycle with A&: A Com-
mand & Control Application, also in this conference.

64

Phase II Interface Control Document. The INR are speci-
fied by the application developers and capture the informa-
tion in a form which can be analyzed by the GS system. The
information is used to update the world view and to raise
appropriate alarms which notify the users of critical
events.

The USR c-p INR translation and validation functional-
ity is being used to check and convert USR, received from
the user workstations, to INR for analysis. Thisfunctional-
ity is also being used to convert the INR, which are the re-
sult of message analysis, to USR which are sent to the user
workstations. The USR is the basis for displaying inforrna-
tion to the user and obtaining information from the user at
the workstation.

Finally, both sets of translation and validation functional-
ity (EXR <---> INR and INR <--> USR) are being used to to
support journalling and report generation. Messages are
journalledin all representations. At a later time, messages
are retrieved from journal files, in the various representa-
tions, and must be converted to USR so that the informa-
tion can subsequently bs formatted into humanly readable
reports.

The use of the model solution in multiple places demon-
strates that the model solution solves the MTV problems
found in different parts of the GS Phase II system.

The M!CV software should meet the performance require-
ments for MTV for GS Phase II based upon preliminary
timing runs performed on parts of the model solution at the
SEI. GS Phase II has performed no formal timing studies.

The MTV model solution was used “as delivered” by GS
Phase II except for the following:

1. A new generic discrete typecaster, String Typecaster,
was developed for conversion between Ada string val-
ues (INR) and free text EXR fields. This was neces-
sary when no validation of the field was needed and
the information in the field did not affect the message
analysis. The String Typecaster also ensures that no
non-displayable characters are sent to the display,

2. A new generic discrete typecaster, F’ixed Point
Typecaster, was developed for conversion between
Ada fixed point values (INR) and strings representing
these values (EXR and USR).

3. The Record-Typecaster template’s engineering points
were increased to allow 32 elements in the record.
This was done because of the large amount ofinforma-
tion contained in some messages.

Benefits of the Use of MTV Model Solution

The following are a few of the benefits reported by the GS
Phase II team:

1. Less inline documentation is required of the MTV
model solution.

The delivered version of the model solution had inline
documentation for all discrete and composite tem-
plates. This documentation made up a good portion of
the total number of characters in the template. GS
Phase II engineers reported that this documentation
was examined, initially, for an understanding of the
templates, but once the templates were understood
the documentation was no longer necessary. This is
especially true when the documentation present in
each of the instances of the templates is the same, ex-
cept for the engineering points.

Based on this feedback, the header documentation
and most inline documentation was removed from the
Ada code and was incorporatedin the report currently
being developed by the DSSA Project.8 The header
documentation for each template points to the report
for the general description of the template and only
contains a description of the engineering points used
to create an instance of the template.

2. Less time is spent on code reviews and walkthroughs
for the instances of the model solution. Code review
and walkthrough effectiveness has increased.

The templates were reviewed initially, before each
was used, for correctness of the code and the coding
style. Once the templates passed the review process,
instances of the templates were not fully reviewed.
They were only reviewed based on the information
used to instantiate the templates, i.e., the engineer-
ing points.

3. Reliability of message translation and validation code
has improved.

Reliability comes from the use of the generic discrete
typecasters, which were developed and tested, and
which form the foundation of the MTVmodel solution,
and from the use of the templates, discrete and com-
posite, which constrain how the developer uses the ge-
nerics. The use of these building blocks assures that
solutions, for each message, are consistent in struc-
ture, behavior, and functionality.

8 See the forthcoming report, SEI-89-TR-12.

65

Two errors were foundin the software delivered to GS
Phase II. These were minor errors found early when
testing instances of the templates using the test pro-
cedures included in each template. The errors were
corrected in the templates, so subsequent instances
could benefit from the early testing.

4. Productivity is increased.

The model solution, embodied in the templates, pro-
vides ameans of specifying instances at a high level of
abstraction. The high level of abstraction insulates a
developer from the implementation details of the
building blocks. Generating an instance merely in-
volves selecting the appropriate templates and sub-
stituting for the engineering points. All other rela-
tionships and dependencies are inherent in the in-
stantiated solution.

Working at a higher level of abstraction, like the move
from assembly language tohigher-level languages, al-
lows one to be more productive. The building blocks
used embody the implementation and developers only
need to understand what functionality the building
blocks provide and how to use them.

Similar to the move from assembly language to
higher-order languages, the move from language con-
structs to model solutions removes the need for deter-
mining productivity based on language constructs,
e.g., counting lines of code.

Productivity is a measure of the effort spent perform-
ing code generation, documentation, test generation
and execution, reviews and walkthroughs, and so on.
Generating the code for one message from the tem-
plates requires about one work-day. The test drivers
are part of the templates and the only effort involved
is the specification of test cases. Documenting the in-
stance involves specifying the engineering points for
each template used. Reviews only need to consider
the choice of substitutions for the engineering points.

But, for purposes of illustration, some line of code
numberaare provided: in 18 work-weeks, MTV code
for 11 messages was generated, documented, tested,
andreviewed. This included 150 instances of the tem-
plates for a total of 9600 lines of code (semi-colon
count) or about 100 lines/work-day.

5. Consistency of the model solution makes using the
model easier and consistency of the resulting software
should aid maintenance.

Training implementors to use the model solution is
easier because the building blocks are similar in
structure, behavior, and functionality. Once the fea-
tures of one are understood, development using any of
them is straightforward. Similarly, quality assur-
ance can be performed more easily because all in-
stances are derived from the building blocks.

To date, GS Phase II has not performed maintenance
on developed software. But, it is anticipated that the
consistency, embodied in the building blocks, will en-
able maintainers to understand the model solution, to
localize where changes need to be made, and to modify
the software more effectively.

FUTURE CONSIDERATIONS
To realize these payoffs, model databases must be popu-
lated and the software development process must be re-
fined to take advantage of existing pools of model solutions.
This should occur as an evolutionary process.

First, domain experts need to identify recurring problems
in their domains. We will support this by validating and re-
fining the recurring problem approach for identifying tar-
get models.

Second, model solutions need to be developed and verified.
Based on our experience with GS, prototype solutions
should be built using arepresentative subset of the data for
each recurring problem. Verification is based on both func-
tionality and performance. In addition, the system should
be prototyped by integrating the initial solutions to demon-
strate that the integrated models will meet system require-
ments. After the solutions are verified, the prototype solu-
tions are generalized to produce code tempIates and gener-
ics. The templates and generics help to insure that each
instantiation of the model provides the functionality speci-
fied by the model. They also promote code and comment
consistency. These characteristics encourage reuse.

Third, models solutions need to be documented and pub-
lished so they are recognizable, usable, and adaptable. We
propose the following documentation outline:

1. Problem Description. Describes the problem the
model solves.

2. Model Description. Provides a functional descrip-
tion, an interface description and a description of re-
source requirements of the model. This is equivalent
to a page from an engineering handbook describing a
standard component.

3. Model Solution Overview. Provides an high-level
overview of the model solution. Lists the building

66

blocks, how to apply them, and architectural ramifi-
cations of the use of the model solution.

4. Model Solution Application Description. De-
scribes how to use the model solution to solve a prob-
lem. This is equivalent to a user’s manual.

5. Model Solution Detailed Description. Describes
the implementation details of the model solution.

6. Model Solution Adaptation Description. De-
scribes how to adapt the model solution if it doesn’t
quite solve your problem.

7. Open Issues. Addresses issues of interest. These in-
clude functional limitations, performance limitations,
etc.

We are working with GS Phase 11, GS Phase III, and AWIS
to capture models in this form and group the descriptions in
a 01 Model Handbook.

Finally, the development process needs to be refined to en-

courage systems to be designed by selecting the appropri-
ate models from the model databases, verifying designs
based upon model solutions, and building the system using
the model solutions.

CONCLUSIONS

The DSSA Project has developed a MTV model solution for
a problem which recurs in the 01 domain. GS Phase II is

About the Author: Charles P. Plinta is a member of the
technical staff (MTS) on the Software Architectures
Engineering (SAE) Project at the Software Engineering
hstitute (S El).

This project is applying engineering methods to the
design of software. Plinta’s previous assignments at the
SE/ were as a member of the Dissemination of Ada
Software Engineering Technology (DASET) Project and
the Domain Specific Software Architectures (DSSA)
Project.

Plinta’s work at the SE/ has included consulting and
working with defense contractors and DOD program
offices on technical issues related to system design and
the use of Ada in real-time systems. This work has been
focussed on the flight simulator and @I domains.

Before joining the SEI, Plinta was an engineer at the
Defense Electronics Center of Westinghouse Electronic
Corporation. In that position he participated with and lead
software teams in the design and development of real-
time radar systems, hardware test and diagnostic
languages, and simulations.

Piinta holds a bachelor’s degree in computer science and
mathematics from the University of Pittsburgh. He is a
member of the IEEE Computer Society, and is the
coauthor of several papers and presentations on design
issues and their relationship to Ada-based systems.

using the MTV model solution. The functionality provided
by the MTV model solution meets their needs and, based on

early timing and sizing analysis, it also satisfies their per-
formance requirements. The GS Phase II development
teamismoreproductivein generatingMTVcode andispro-
ducing a reliable, maintainable, and consistent product.

While developing the MTV model solution and participat-
ing in design reviews at GS, we developed a process for
identifying models. This process entails identifying prob-
lems which recur on a project or across similar projects in
one domain. Once identified, detailed solutions to these
problems are developed, depth-first, for a representative
subset of the data. After this prototyping, the solutions are
generalized to model solutions which are used to generate
instances for the rest of the data, i.e., ta complete the sys-
tem. Also, while developing the MTV model solution, we
developed a way of documenting models to make them rec-
ognizable, usable, and adaptable*

Based on our experiences developing, documenting, and
transitioning the MTV model solution in the QI domain,
we feel that the development and use of models in the soft-
ware engineering field will provide high payoffs.

B Rich DTppolito, of the SEI, was instrumental in helping to de-
fine how models shouldbe documented to make themreusable at
both the design and implementation levels. See his paper, Using
Models in Software Engineering, also in this conference.

About the Author: Kenneth J. Lee is a member of the
technical staff @ITS) for the Software Engineering
institute (SE/) where he is currently a member of the
Software Architectures Engineering (SAE) Project. This
ptvject is qoplying engineering methods to the design of
software. Lee’s previous assignments at the SN were as
a member of the Dissemination of Ada Software
Engineering Technology (DASET) Project and the
Domain Specific Software Architectures (DSSA) Project.

Lee has worked on Ada-based designs for simulators, for
command, control, communications, and intelligence
systems (Cs/ systems), and for embedded systems and
other real-time systems. He is the author of several SEI
Technical Reports, papers, and conference presentations
on software design issues in Ada-based systems.

His interests include: Ada-based software engineering,
real-time systems, distributed systems, pattern-based
modeling for software design. and automation of the
design efforts, through too/s and automated methods.
Prior to Joining the SEI, Lee was a post-doctoral student
in the Department of Engineering and Public Policy at
Carnegie Mel/on University.

Lee received a bachelor’s degree in chemistry from
Carleton College in Northfield Minnesota, and a masters
and doctorate in organic chemistry from University of
California, Los Angeles.

67

