
Software Design Documentation Approach

for a DOD-STD-2167A Ada Project

Michael Springman

TRW Defense Systems Group
Redondo Beach, California

ABSTRACT

DOD-STD-2167A and its predecessor DOD-STD-
2167 impose significant documentation requirements on

software development projects. The 2167 documen-
tation set, particularly for documenting the software

design through the life cycle, contained a significant,
amount of redundancy. Also, for Ada development
projects, 21Gi’ did not adequately recognize the benefits

achievable from using Ada as a uniform representation
of the design and code products throughout the soft-
ware life cycle. DOD-STD-2167A is an improvement
over 2167, but a contractor and the customer must still

be conscious of the possibility of generating documents
with limited utility to document producers and review-

ers. This paper describes a software design documen-

tation approach being used on the Command Center
Processing and Display System Replacement (CCPDS-

R) project that uses heavily tailored 2167 Data Item
Descriptions (because 2167A was still in the formula-

tion stage when CCPDS-R began) to: (1) provide re-
viewers with appropriate design informat,ion during the

software development process; (2) provide the system
user with the documentation needed to maintain the
delivered software; (3) eliminate redundancy; and (4)
streamline the generation of the deliverable documents

through reliance on information already contained in

the Software Development Files (SDFs). The resulting

design document set satisfies DOD-STD-2167A require-
ments.

PROJECT BACKGROUND

The CCPDS-R project will provide display informa-
tion used during emergency conferences by the National

Command Authorities; Chairman, Joint Chiefs of Staff;
Commander in Chief North American Aerospace Com-

mand; Commander in Chief United States Space Com-
mand; Commander in Chief Strategic Air Command;
and other nuclear capable Commanders in Chief. It is
the missile warning element of the new Integrated At-
tack Warning/Attack Assessment System Architecture
developed by North American Aerospace Defense Com-
mand/Air Force Space Command.

0 1989 ACM O-89791 -329-9/89/001 O-0093 $1.50 ’

The CCPDS-R project is being procured by Head-
quarters Electronic Systems Division (ESD) at Hanscom
AFB and was awarded to TRW Defense Systems Group

in June 1987. The project consists of three separate

subsystems of which the first, identified as the Com-
mon Subsystem, is 24 months into development. The

Common Subsystem consists of approximately 350,000
source lines of Ada with a development schedule of 40

months. When software development for all three sub-
systems is complete in 1992, over 600,001) Ada source
lines plus developed tools and commercial off-the-shelf

(COTS) software will have been delivered to the Air

Force. CCPDS-R is characterized as a highly reli-
able, real-time distributed system with a sophisticated

user interface and stringent performance requirements.
A11 CCPDS-R software is being developed using DEC’s

VAX Ada compiler on DEC VAX/VMS machines, aug-
mented with Rationa.I’s RlOOO Ada environment. The

software will execute on a network of DEC mainframes
and workstations.

CCPDS-R was planned and bid prior lo the estah-

lishment of DOD-STD-2167A [2167A], so the software

is being developed using a heavily tailored DOD-STD-
2167. The 2167 tailoring was done in parallel with the

formulation of DOD-STD-2167A, which has resulted in

a CCPDS-R methodology and documentation set that
is consistent with DOD-STD-2167A.

CCPDS-R exhibits the characteristics of a typical

large 2167/2167A Ada d evelopment project, including:

1. Large number of software requirements (approxi-

mately 2,000)

2. Multiple CSCIs (6 for the Common Subsystem; 15
total)

3. Large number of 2167A components (approxi-
mately 7,000 CSCs/CSUs) and architecture objects

(30 VAX/VMS processes, 110 Ada tasks)

4. Informal test of individual components to test all

nominal, off-nominal and boundary conditions

5. Informal integration of tested components into
working capability strings

93

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74261.74268&domain=pdf&date_stamp=1989-01-03

6. Formal requirements verification per Government-
approved test plans and test procedures

DESIGN DOCUMENTATION OBJECTIVES

Design documentation is good practice for any soft-
ware development project, and is required by all Gov-
ernment contracts. The volume and level of detail vary
by customer and contract, but the universal purposes of
the documentation are to: (1) provide a review mech-
anism for Government and contractor personnel during
development and (2) p rovide a maintenance resource for
the eventual software maintainers. The requirements
levied on a contractor should balance these objectives
to ensure the reviewers get what they need during the
development and the maintainers get what they need to
maintain the as-built product. The specific objectives
of a design document set should be:

Efficiency. Formal deliverable documents should be
natural byproducts of the design/development pro-
cess by taking advantage of items normally pro-
duced by the developers (e.g., Ada as a design lan-
guage (ADL), commented Ada source code, SDF
sections). Milestones for deliverable documentation
serve as forcing functions for the developers to pro-
duce and update required documents. This is useful
to a contractor because of the general tendency of
software developers to place documentation lower
on their priority queue.

Understandability/Uniformity. During the devel-
opment process, documents should satisfy the
needs of a reasonably informed reviewer, i.e., some-
one who is familiar with the system and software re-
quirements and who can read Ada. The documen-
tation should provide a comprehensive overview of
the architecture, including graphic representations,
to help reviewers understand the top level design
and determine potential design/performance issues.
It should also provide a mapping of static design
elements (i.e., CSCs, CSUs, Units) to the dynamic
architecture elements (e.g., Ada tasks, Ada main
programs) so that operational capability strings
can be foliowed in the source code.

Maintainability. For software maintenance following
turnover of the completed system to the customer,
the documents should provide complete as-built de-
scriptions of each component (text and commented
source code) and provide maintenance guidance for
those software areas that are known to be poten-
tially changeable or adaptable.

DEFINITION of DOD-STD-2167/2107A
TERMS

The DOD-STD-2167/216i’A definitions of CSCIs,
TLCSCs/LLCSCs/Units (2167) and CSCs/CSUs
(2167A) can result in categorizations of the software
products for management and documentation purposes
instead of pertaining to the architectural objects (e.g.,
Ada tasks). For example, the CCPDS-R architecture
is described in terms of DEC VAX nodes, VAX/VMS
processes (or Ada main progmms), Ada tasks, and in-
tertask communications circuits and socleets. (The ar-
chitecture components are described in detail in Royce
[1989-l], which discusses the Network Architecture Ser-
vices (NAS) software developed initially for CCPDS-Il.)
The 2167/2167A partitioning of components affects the
documentation structure. CCPDS-R’s definitions of the

2167 components are:

Computer Software Configuration Item
(CSCI): A collection of TLCSCs, LLCSCs and
Units that can be allocated to a single functional
organization (i.e., skill center) to implement. For
example, CCPDS-R has display, communications,
system services, test and simulation, and algorithm
csc1.5.

Top Level Computer Software Component
(TLCSC): A component which maps directly to
Ada library units or collections of functionally co-
hesive Ada library units. A TLCSC may contain
nested LLCSCs and Units, and must be separately
testable (termed “standalone test”, or SAT). For
documentation purposes, a logically related collec-

tion of TLCSCs within a CSCI is termed a “TLCSC
Group”.

Lower Level Computer Software Component

(LLCSC): A program unit declared within a pro-
gram unit (which could be either a TLCSC or a
higher level LLCSC) that is sufficiently complex to
require standalone testing prior to its inclusion in
the standalone testing of its parent.

Subordinate Unit: A component of an LLCSC or
TLCSC whose standalone test is wholly provided
by the standalone test of its parent program unit.
A Unit may also be defined as a library unit as
long as its services are not shared across TLCSC
boundaries.

The 2167A components map to CCPDS-R’S 2167
definitions as follows:

Computer Software Component (CSC):
Equivalent to TLCSC Groups. Per the standard,

94

CSCs may be further decomposed into other CSCs Software Product Specification (SPS). Same as
and CSUs. for 2167, except the final SDD replaces the final

STLDD and SDDD.
Computer Software Unit (CSU): An element of a

CSC that can be standalbne te&ed. CSUs equate
to individual TLCSCs and LLCSCs.

Software Development Files (SDFs). Same as for
2167.

Subordinate Unit: These are the lower level “units”
that comprise the standalone testable CSUs. These
generally must be tested in the context of their par-
ent CSUs.

DESIGN DOCUMENTATION SET

The 2167 and 2167A document sets are very similar
in overall information content, although the individual
document definitions differ (Figure 1). The required
2167 documents are:

Software Top Level Design Document (STLDD).
Per CSCI, the STLDD is intended to provide a
top level description of the architecture and compo-
nent/data flow, a summary of CSCI requirements
traceability to the CSCI’s TLCSCs, and a detailed
description of each TLCSC, including input/output
interfAces, processing, control flow, limitations and
interrupt handling.

Software Detailed Design Document (SDDD).
Per CSCI, the SDDD is intended to provide a de-
tailed design description of each CSCI component
in a hierarchical manner, including each TLCSC,
its constituent LLCSCs, and subordinate program
units.

Software Product Specification (SPS). Per CSCI,
the SPS is required to include the final STLDD,
final SDDD, and the final code listings.

Software Development Files (SDFS). SDFs
are required to be generated and maintained dur-
ing the development of the software, although they
are generally not, formally deliverable items (e.g.,
there is no 2167 DID specifying the format of an
SDF). The SDFs are intended to be the developer’s
repository for all design and test data generated for
a software component.

The 2167A design document set consists of:

DOD-STD-2167 and 2167A include detailed DIDs
for the design documents that are intended to apply to
any DOD software development application. There are
certain aspects of these DIDs that do not lend them-
selves well to an Ada development process, particularly
the incremental development and review process being
employed on CCPDS-R. The DOD-STD-2167 series of
design DJDs can result in duplicative, voluminous docu-
ments which are of dubious value to the document pro-
ducers and reviewers, particularly where Ada itself is
used to describe the design. Each standard encourages
tailoring of the standard and its DIDs for each particular
application. This paper describes: (1) revisions made to
the 2167 software design document DIDs consistent with
the CCPDS-R Ada Process Mpdef (Ref.Royce [1989-21);
(2) the planned evolution of the design documents as thd
software is developed; and (3) a 2167A documentation
approach based on CCPDS-R experience.

Ada PROCESS MODEL OVERVIEW

The CCPDS-R software development approach is
the initial application of TRW’s “Ada Process Model”,
which is based on early definition, demonstration, im-
plementation and test of incremental capabilities termed
builds. DOD-STD-2167 has been tailored for CCPDS-R
to accommodate this process model, including the incre-
mental generation and review of the design and docu-
mentation products. A subsystem build consists of a
collection of CSCs from one or more CSCIs which are
integrated to form an incremental set of subsystem ca-
pabilities. Each CSCI is developed incrementally, with
each CSCI build having its own top level design, detailed
design, code and test cycle.

The builds are defined so that the foundation archi-
tecture components that are relatively independent of
the required System Specification capabilities are devel-
oped, integrated and tested as early as possible, while
the generally more volatile, application-specific compo-
nents are allocated to later builds. The Ada Process
Model requires that software capabilities be demon-
strated at informal design walkthrough milestones and
at formal review milestones to provide tangible evidence
of design progress. Such reviews involving capability
demonstrations provide a much sounder basis than tra-
ditional papet/viewgraph reviews for the customer and
the contractor to assess readiness to proceed with sub-
sequent development activities.

Software Design Document (SDD).
Per CSCI, the SDD includes the top level architec-
ture description, CSC/CSU descriptions and CSCI
data descriptions. It combines the 2167 STLDD
and SDDD.

95

DOD-STD-2167:

I--------l
--I FINAL STLDD I

be-------,
1--------y

--‘I FINAL SOLID I
L--------J

Ada LISTINGS
(FCPJPCA)

DOD-STDQl67A:

SDD
CSCI OVERVIEW
CSC DESCRIP’IlONS
CSU DESCRIPTIONS
CSCI DATA
CSCI DATA FILES

---------m-----w

CSC SDFs &hIADL (PDR. CDR)

I

I ---------------~
i REQUIREMENTS I

I DESIDN DESCRIPTION

i -~OlJRCE CODE

I

I
------------A

TEST PLANS
TEST PROCEDURES

I TEST RESULTS

MISCELIANEOUS

Figure 1: 2167/2167A Design Document Relationships

The Software Architecture Skeleton (SAS) is defined
and baselined early, and consists of the top level exec-

utive structure for all processes and tasks and their in-
terconnections (i.e., circuits and sockets). The process
and task executives are all instantiated generics, with
the Ada source code produced by a tool which has all

the architecture objects described in a database. The
SAS concept enables rapid construction of a complete

functioning network, which facilitates early discovery of

design, interface and integration problems.

Th ’ e primary advantage of Ada in supporting in-
cremental development as defined above is its support.

for partial implementations. Separation of specifica-

tions and bodies, packages, sophisticated data typing
and Ada’s expressiveness and readability provide pow-
erful features which can be exploited to provide an inte-

grated, uniform development approach. The uniformity

gained through the use of Ada throughout the software

development cycle as a representation format is also use-

ful for providing consistent and insightful development

I (FCNPCA)

MEASURED RESOURCE
UnLlZATlON

progress metrics for continuous assessment of project
status from multiple perspectives.

The software design/implementation phases of the

Ada Process Model are described in detail in [Royce

1989-23 and summarized below:

* Top level architecture design of the founda-
tion software components, resulting in definition of

the System Global Interface (SGI) packages and

the Software Architecture Skeleton (SAS). Also
produced is the allocation of software for each

CSCI to specific incremental builds to maximize
early availability of functionality and minimize

downstream breakage. Preliminary Design Walk-
throughs (PDWs) are conducted during this phase
for the contractor and the Government to periodi-

cally review the evolving top level design.

l Top level design for each applications build,
which refines the overall top level architecture de-

sign and iterates the SAS/SGI architecture as the

96

design progresses. An applications oriented PDW
culminates this phase.

l Detailed design for each build, culminating in a

Critical Design Walkthrough (CDW).

l Implementation and informal standalone
test of all build components.

l Turuover of completed build components to the
I&T organization for formal baselining and test ac-

tivities. The turnover process involves a significant
amount of integration by the developers and testers

as the software is built into a functioning configu-
ration.

CCPDS-R DOCUMENTATION APPROACH

The CCPDS-R contract requires that the formal
2167 design documents be delivered initially to the Gov-

ernment as follows:

l STLDD: 30 days before PDR

l SDDD: 60 days before CDR

l SYS: 30 days before FQT

In the CCPDS-R software development process, the
PDR is conducted after the final buiId Preliminary De-
sign Walkthrough (PDW) is conducted. Similarly, the

CDR is conducted after the final build Critical Design

Walkthrough (CDW) is conducted. The PDR and CDR.
summarize the results of the incremental design walk-
throughs and the status of action items resulting from
the walkthroughs.

The intent of TRW’s incremental build development
approach is to evolve the design and the accompanying

documentation from build to build, culminating in a
complete representation of the top level design at PDR
and of the detailed design at CDR. (See Figure 2.)

The PDW/CDW t t ac ivi ies are informal milestones
at which each CSCI developer’s products are reviewed
by his/her peers and other interested reviewers, includ-
ing Government personnel. The design documentation

is generated and maintained in the SDFs by the software
developers as the design incrementally evolves. Review-
ers rely on the walkthrough process and briefing materi-

als (heavily dependent on Ada/ADL source code exam-
ples) to provide insight into the design approach and to

provide a forum for constructive criticism. A major goal
of the design documentation approach is to include as

much of the required design description information as
possible in the Ada/ADL. Ada is a descriptive language,

particularly in the definition of global and local inter-
faces and data structures. The design and coding stan-
dards documented in the CCPDS-R Software Standards

and Procedures Manual (SSPM) support this goal. This
approach enables the design products to stabilize before

publishing documentation over and above that needed

by the design team to prove design feasibility. This re-

lieves the designers from expending effort preparing vo-
luminous documentation that would quickly obsolesce.

It, became apparent during the design process that
it is not practical to attempt to maintain a baselined
top level version or detailed version of the Ada/ADL
through the software product development cycle. It

is much more effective and productive to maintain an
updated version of the STLDD and current versions
of the SDFs, which include the latest hda/ADL. The

Ada/ADL evolves in the SDFs to the actual prod-
uct representation (Table l), consisting of commented,
readable Ada code that is generally considered the most

accurate documentation of the software by software

maintainers. TRW therefore uses a tailored STLDD and
the SDFs as the key documents from which the delivcr-
able design documents are produced. This corresponds

directly to 2167A’s SDD and SDFs.

DESIGN DOCUMENT EVOLUTION

The SDF is the central source for design information
for individual software components. The SDF outline

is shown in Table 3. This outline includes all items re-
quired by the DOD-STD-2167 STLDD and SDDD DIDs

and 2167A SDD DID for software component design de-

scription information. Each SDF evolves through the
design walkthrough and turnover milestones as shown

in Table 2. There is one SDF per TLCSC and LLCSC,
which for 21674 equates to one SDF per CSC per build

(assuming a CSC may consist of multiple sub-level CSCs

allocated to different builds).
STLDD Section 3.6 (top level design descriptions

for all TLCSCs) is generated using Section 3 of each

TLCSC’s SDF, while the STLDD Ada/ADL appendix
includes the PDR snapshot of the Ada/ADL source code
that is generated from Section 4 of each TLCSC’s SDF.

The SDDD simply references the CSCI’s SDFs and in-

cludes the CDR snapshot of the hda/ADL source code.

The SDFs are made available to the Government for
review in support of the CDR. Using this approach to
the STLDD and SDDD, generation and maintenance

of the design description and Ada/ADL information is
centrally performed in the SDFs, which enables single-
point control, currency of the information, and efficient
document generation.

The STLDD, SDDD and SPS evolve through the
waIkthrough, formal review and turnover milestones as

97

N~~NOVER

BUILD 1

.
&‘o”... “$

I
.

F&L BUILD N:

MAJOR MILESTONES
I

I I
CCPDS-R 2167 DOCUMENTS I

I I
! COMPLETE)

I
1 E?TABUSHED

i

SDFs - IWILD 1: * V I I i
+ FINAL

I

- BUILD N:

STLDD:

V FINAL

SPS:

2167A DOCUMENTS:

SDFs: Same as Above

SDD:

SPS:

I I
I
I :

1
I

I
I

I
:

’ INITIAL (CSCs)
I

*

, UPOATE (csua)

(PDR WADL) v (CDRMdALUJ V FINAL

V FINAL

shown in Table 4. The STLDD reflects the complete and
evolving top level design at each milestone and includes

listings of the Ada/ADL to support the walkthroughs
and PDR. The SDDD reflects the complete detailed de-

sign at CDR, including listings of the Ada/ADL detailed
design representation. The SPS consists of the final up-
dated STLDD and SDDD (which refers to the CSCI’s

SDFs) and the complete Ada product listing. The SDFs
are part of the Software Development Library that most
contracts require to be delivered at the end of the con-

tract, and thus are a delivered component of the final
design documentation set.

Duplication among the documents is minimized by
making the STLDD the textual and graphical represen-

tation of the complete top level design for the entire
CSCI, while the SDDD addresses the designs of the in-
dividual components (TLCSCs, LLCSCs, Subordinate

Units) by reference to the SDFs. The top level design
version of the Ada/ADL is captured in the PDK version
of the STLDD, while the detailed design version is cap-

Figure 2: Design Document Generation Schedule

tured in the CDR. version of the SDDD. No attempt is

made to maintain these versions as the design and im-

plementation progress. The current Ada/ADL design
representation is captured instead in the SDFs.

The SDFs are formally established following the ap-

propriate PDW. “Establishing” an SDF consists of pro-
ducing a hard-copy version with appropriate cover sheet

and constituent sections that can be audited by the
software QA organization. Prior to this time, indi-
vidual developers work in their on-line SDF environ-

ments to generate the design description information
required for inclusion in the STLDD. The reason to de-

lay formal establishment of the SDF until after PDW

is to be able to efficiently accommodate architecture
design decisions that result from PDW (e.g., combin-
ing/redefining/eliminating TLCSCs/L LCSCs).

The SDFs are maintained electronically (i.e., on-

line) and are generated using an SDF Build tool de-
veloped for CCPDS-It.. This tool generates requirements

and test traceability tables, software metrics, code audi-

98

Table I: Rda/ADL Evolution

Components

2167 2167A BDW CDW Turnover

TLCSCs cscs/csus A.da Specs Ada. Specs Ada

ADL Bodies Ada Bodies

LLCSCS N/A ADJ, Specs Ada Specs Ada
ADL Bodies -_l_l--_I_.--.------ _I_. --I_I---

Subordinate Subordinate ADL Specs Ada

Units Units ADJ, Bodies Ada -----

Table 2: Software Development File (SDF) Evolution

1. Cover Sheets
2. Requirements
3. CSC Design Descriptions
4. CSC Program Unit
5. Subordinate Program Units
6. SAT Plan
7. SAT Procedures
8. SAT Results
8. SPR Log

lO.Metrics/Code Auditor Results
ll.Notes (Waivers, etc.)

TLCSC -

Complete
Complete
Complete
AdafADL
ADL
Prelim

PreIim
As Applicable

COKI~plClr:
Prelim
Prflim
ADL

Prrlim
h.s Applicable

tor results, and other required items automatically, as-
suming the software adheres to the standards specified
in the CCPDS-R SSPM. Another utility tool is used to

extract appropriate information from the CSCI’s SDFs
to generate design description subsections for section

3.6 of the STLDD. These tools minimize the tedious la-
bor associated with generating formal design documen-
tation,

DESIGN DOCUMENT SET
RECOMMENDATIONS

The CCPDS-R tailored 2167 design document. set,

is basically a 2167A approach (Table 5). Because the

SDDD is primarily a pointer to the SDFs for detailed
design description information, the CCPDS-R docu-
ment set consists of the STLDD, SPS, and SDFs, which
correlates directly to the 2167A SDD, SPS and SDFs.
CCPDS-R also defined a pair of higher level documents
that addressed topics that spanned across all CSC1s.

These were:

System Description Document, which describes
the overall hardware and softw-are architecture and
summarizes each CSCI’s role in the architecture.

TLCSC

Complete
Complete
Complete
Ada
Ada/ADL
Complete
Prelim

Updated
UpdRted
As Applicable

COlTlpJCtr:
Complete
Complete
Ada/ADL
A.DL
PrClim

Updoted
As Applicable

TLCSC/LLCSC

Completr
Complete
Complete
Ada
Adn
Complete
Complete
Complete
Vpde ted
Uptlnlerl
As Applicable

Technical. Rerformance Measurement (TPM)
Report, which reports the progress towards meet-
ing the system’s quantitative performance require-
ments, including processing and memory resource

utilization.

The contents of these documents can be included in

2167A’s “System/Segment Design Document”.

Some recommendations follow that are based on
CCPDS-R experience, which includes customer feed-

back concerning what is required for managing and

monitoring the software development process and for

maintaining the final software product. The result is a

design document set that satisfies contractor, customer
and contractual needs. These recommendations assume
DOD-STD-216TA is required for the contract.

- Include as much c-f: the required design description
information as possible in the Ada/ADL. Use the
Ada/ADL as the basis for detailed review of the
design.

- Use the SDFs as the primary source for the deliver-
able SDD and SPS design description information.

99

Table 3: Software Development File (SDF) Outline

1. Cover Sheets

2. Requirements

2.1 Requirements Allocation

2.2 CSC Problem Statement

3. CSC Design Description

3.1 External Interfaces

3.2 Critical Object Design

3.3 Interrupts

3.4 Timing and Sequencing

3.5 Limitations and Constraints

3.6 Components Description (including subordinate CSCs, CSUs, Units)

4. CSC Ada/ADL

5. Subordinate CSCs, CSUs and Units Ada/ADL

6. Plan for Standalone Test

6.1 Objectives

0.2 Test Classes

6.3 General Acceptance Criteria

6.4 Requirements Traceability Matrix

7. CSC Standalone Test Procedures

8. CSC Standalone Test Results

9. Software Problem Report (SPR) Log

10. Metrics and Code Auditor Results

11. Notes

Permission to cop without fee all or part of this material is

B
ranted provided K t at the copies are not made or distributed

or direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given. that co
Computing

ying is b permission of the Association for
Mac mery. R I!I copy otherwise, or to republish,

requires a fee and/or specific permission.

100

Table 4: STLDD, SDDD, SPS Evolution

DOCUMENT SECTION PDR CDR FCA/PCA

STLDD 3.1 CSCI Architecture Complete Updated Updated
3.2 Functional Allocation Complete Updated Updated
3.3 Memory/Processing Complete Updated Updated

3.4 Component Control & Data. Flow Complete Updated Updated

3.5 Global Data Complete Updated Updated
3.6 Top Level Design Description Complete Updated Updated

3.7 Adaptation Data Complete Updated Updated

APP 16 Ada/ADL Listings Mag Tape

SDDD 3.1 CSCI Static Hierarchy Complete Updated

3.2 CSCI SDF Index Complete Updated
3.3 CSCI Metrics Complete Updated

APP 16 Ada/ADL Listings Mag Tape

SPS 3.1 Physical Media Descriptions Complete

APP 16 STLDD Complete

App 26 SDDD Complete

APP 36 Ada Listings Mag Tape

101

l The PDR version of the SDD should contain: (1)
a complete description of the top level CSCII ar-
chitecture, (2) CSC design descriptions, and. (3)
the PDR version of the Ada/AD& which repre-
sents the top level design developmental configu-
ration. The top level CSCI architecture section
should include graphics as needed to describe the
process/task configuration and control/data flow.

l The CDR version of the SDD should contain (1)
updates to the sections provided at PDR, (2) CSU
design descriptions, and (3) the CDR version of the
Ada/ADL, which represents the detailed design de-
velopmental configuration.

l Design description information for lower level sub-
ordinate units should be included in the SDFs. The
detailed design should be reviewed by contractor
and customer personnel via interactive design walk-
throughs using the Ada/ADL supplemented by top
level design graphics.

l Generate the SPS using the SDD and SDFs as the
basis. The SPS will be the final updated SDD (no
Ada/ADL appendix) and the final source code list-
ings. The SDFs should be considered a component
of the delivered product specification.

o Include system-level software architecture and per-
formance information in a higher level document
such as the System/Segment Design Document.

The outline for the SDD is listed in Table 6. The
organization and contents of the SDD are supported by
the SDF outline described earlier in this paper.

SUMMARY

TRW and the Government recognized early in the
CCPDS-R contract that the documentation require-
ments of an Ada DOD-STD-2167/2167A project could
overwhelm everyone, including document producers, re-
viewers, and data managers. The approach described
in this paper generates information that is useful for
both review and maintenance purposes. The deliverable
documents are generated efficiently using the Software
Development Files as a primary information source.
This ensures a current and consistent documentation
set throughout the software life cycle. Although there
has been no formal customer maintenance experience to
date for the system, TRW’s experience in maintaining
the incremental build dehveries has been positive, rely-
ing primarily on the source code and SDFs. The design
documentation set described will satisfy the needs of a
competent, Ada-trained customer maintenance team.

ACKNOWLEDGEMENTS

The CCPDS-R project invested over 3 years of pre-
contract preparation, proposal generation, and concept
definition before any of the concepts described in this
paper could be put into practice. Since award of the con-
tract, much thinking of the originally proposed methods
has occurred, resulting in the project’s current approach
and success to date. Acknowledgements are due to Steve
Patay, Bruce Kohf and Walker Royce, who were instru-
mental in helping define and sell the original innovative
development approach, and to Don Andres, Joan Bebb,
Tom Herman, Chase Dane and Patty Shishido for help-
ing to make the original ideas work in practice. Also,
TRW’s Government counterparts at USAF/ESD are ac-
knowledged for supporting this approach and for being
open to suggestions for improvements.

BIOGRAPHY

Michael Springman is the Assistant Project
Manager for Software Development on the CCPDS-R
project. He is responsible for the development of over
500,009 Ada source lines to the Air Force for this real-
time system. He received a BS in Mathematics and
Physics from Southwest State University (Minnesota)
in 1973 and an MS in Applied Mathematics and Com-
puter Science from the University of Colorado (Boulder)
in 1975. Mr. Springman has been at TR.W for 13 years,
where he has been involved on a variety of reaf-time C”
and avionics software projects. He has been responsi-
ble for all aspects of the software development life cycle,
including system and software requirements definition,
software design and development, and requirements ver-
ification. He has been dedicated to CCPDS-R for the
last three years, which included the conceptual defini-
tion, proposal, and contract startup activities.

REFERENCES

[Royce 1989-l] Royce, W. E., “Reliable, Reusable Ada
Components for Constructing Large, Distributed
Multi-Task Networks: Network Architecture Ser-
vices (NAS)“, TM-Ada Proceedings, Pittsburgh, Oc-
tober 1989.

[Royce 1989-21 Royce, W. E., “TRW’s Ada Process
Model For Incremental Development of Large Soft-
ware Systems”, TRI-Ada Proceedings, Pittsburgh,
October 1989.

[2167A] “DOD-STD-2167A: Military Standard, Defense
System Software Development”, 29 February 1988.

102

Table 5: 2167/2167A Documentation Mapping

Design Topic

SR.S Heauiremcnts Allocation
CSCI A&hitecturc Overview STLDD 3.1, 3.4 STLDD 3.1, 3.4
System States and Modes STLDD 3.1, 3.4 STLDD 3.1, 3.4
Memory/Processing Allocation STLDD 3.3 System Desc Dot
CSCI Data STLDD 3.6 STLDD 3.5
CSCI Detn Files STLDD 3.5 STLDD 3.5
TLCSC (CSC) Descriptions STLDD 3.6 STLDD 3.0
LLCSC (CSU) Descriptions SDDD SDFs (Ref. in SDDD)
Unit Descriptions SDDD SDFs (Ref. in SDDD)
Source Listings SPS SPS
Measured Resource Utilization N/A TPM Report

Standard CCPDS-R Tailored Standard
2167 Documentation 3187 Documentation 2167A Ducumentation

STLDD 3.2 STLDD 3.2 SDD 3.1
SDD 3.1
SDD 3.1
SDD 3.1
SDD 6
SDD 6
SDD 3.2
SDD 4
SDD 4
SPS
SPS

Table 6: SDD Outline

1. SCOPE

1.1 Identification

1.2 Purpose

1.3 Introduction

2. REFERENCED DOCUMENTS

3. TOP LEVEL DESIGN DESCRIPTION

3.1 CSCT Overview

3.1.1 CSCI Architecture

3.1.2 System States and Modes

3.1.3 Memory and Processing Time Allocation

3.2 CSCI Design Description

3.2.X CSC X (from CSC X SDF “Design Description” Section)

3.2.X.Y Sub-level CSC Y (from CSC Y SDF “Design Description” section)

4. DETAILED DESIGN

4.x csc x

4.X.Y csu Y (f rom CSU Y SDF “Design Description” section; can reference SDF if SDF is delivered)

5. CSCI DATA

6. CSCI DATA FILES

APPENDIX

PDR: PDR version of Ada/ADL

CDR.: CDR. version of Ada/ADL

FCA/PCA: Empty (Ada source code is separate appendix of SPS)

103

