
Incremental Software Test Approach
for DOD-S!I!D 2167A Ada Projects

Michael C. Springman
TRW Defense Systems Group

R.edondo Beach, California

ABSTRACT

On& of the key challenges for large Ada software

projects is to define and execute an efficient, cost ef-
fective, bounded test program that results in a qual-
ity product that meets all customer software require-
ments. This is particularly challenging in the current
climate of Government fixed price contracts. The Com-
mand Center Processing and Display System Replace-
ment (CCPDS-R) project is being developed entirely
in Ada by TRW for the U.S. Air Force on a fixed
price basis. To mitigate downstream test risks, TRW
has defined an incremental test approach that satisfies
TRW and Government objectives for informal develop-
ment/integration testing and for formal requirements
verification. Features of Ada are employed to create a
software architecture that supports an incremental test
philosophy and contributes to reduced integration ef-
fort and risk. The resulting test approach conforms to
DOD-STD-2167A standards.

PROJECT BACKGROUND

The CCPDS-R system will provide display informa-
tion used during emergency conferences by the National
Comrriand Authorities; Chairman, Joint Chiefs of Staff,
Commander in Chief North American Aerospace Com-
mand; Commander in Chief United States Space Com-
mand; Commander in Chief Strategic Air Command;
and other nuclear capable Commanders in Chief. It is
the missile warning element of the new Integrated At-
tack Warning/Attack Assessment System Archit,ecture
developed by North American Aerospace Defense Com-
mand/Air Force Space Command.

The CCPDS-R project is being procured by Head-
quarters Electronic Systems Division (ESD) at Hanscom
AFB and was awarded to TRW Defense Systems Group
in June ‘1987. The project consists of three separate
subsystems of which the first, identified as the Com-
mon Subsystem, is 24 months into development. The
Common Subsystem consists of approximately 350,000
source lines of Ada with a development schedule of 40
months. When software development for all three sub-
systems is complete in 1992, over 600,000 Ada source

lines plus developed tools and commercial off-the-shelf
(COTS) software will have been delivered to the Air
Force. CCPDS-R is characterized as a highly reli-
able, real-time distributed system with a sophisticated
user interface and stringent performance requirements.
All CCPDS-R software is being developed using DEC’s
VAX Ada compiler on DEC VAX/VMS machines, aug-
mented with Rational’s RlOOO Ada environment. The
software will execute on a network of DEC mainframes
and workstations.

CCPDS-R was planned and bid prior to the estab-
lishment of DOD-STD-2167A [2167A] so the software
is being developed using a heavily tailored DOD-STD-
2167. The 2167 tailoring was done in parallel with the
formulation of DOD-STD-2167A, which has resulted in
a CCPDS-R methodology and documentation set that
is consistent with DOD-STD-2167A.

CCPDS-R exhibits the characteristics of a typical
large 2167/2167A Ada development project, including:

1.

2.

3.

4.

5.

6.

Large number of software requirements (approxi-
mately 2,000)

Multiple CSCIs (6 for the Common Subsystem; 15
total)

Large number of 2167A components (approxi-
mately 7,000 CSCs/CSUs) and architecture objects
(30 VAX/VMS processes, 110 Ada tasks)

Informal test of’individual components to test all
nominal, off-nominal and boundary conditions

Informal integration of tested components into
working capability strings

Formal requirements verification per Government-
approved test plans and test procedures

TEST PROGRAM OBJECTIVES

A successful Ada development project must have an
effcient (i.e., cost-effective) test program that results
in a reliable, tested product that meets all customer re-
quirements. The best-designed Ada system in the world

0 1989 ACM 0-89791-329-9/89/0010-0104 $1.50 : 104

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74261.74269&domain=pdf&date_stamp=1989-01-03

that doesn’t meet a customer’s test expectations will
have difficulty being sold or fielded. The test program
must have clear bounds to the scope of testing; it &nnot
be open-ended. Both the contractor and the customer
must know when testing is complete. A well-defined,
complete, consistent requirements set that specifies re-
quired l’urlctionality is essential, and should not specify
design solutions (rel’. [Grauling 891). A cooperative ef-
fort by the contractor auri the customer is necessary to

plan the test approach early in the program, to execute
the plan, and to iterate the plan as needed to incorpo-
rate lessons learned and more efficient techniques. This
paper describes an approach being used by CCPDS-R
and provides recommendations for establishing a large-
scale Ada test program with the following specific ob-
jectives:

Maximize test efficiency by using test cases for mul-
tiple purposes (e.g., integration, software installa-
tion, regression, formal qualification)

Reduce integration schedule and risk in order to
concentrate on the test portion of “integration and
test”

Formally verify all requirements to enable t’imely
selloff of the system to the customer

Formally verify requirements incrementally to re-
duct the risk of a single monolithic FQT period

DEFINITION of DOD-STD-2167/2167A
TERMS

DOD-STD-216’7 terminology is being used to de-
scribe the static CCPDS-R software structure. The
CCPDS-R definitions are:

Computer Software Configuration Item

(CSCI): A collection of TLCSCs, LLCSCs and
Units that can be allocated to a single functional
organization (i.e., skill center) to implement. For
example, CCPDS-R has display, communications,
system services, test and simulation, and algorithm
CSCIS.

Top Level Computer Software Component

(TLCSC): A component which maps directly to
Ada library units or collections of functionally co-
hesive Ada library units. A TLCSC may contain
nested LLCSCs and Units, and must be separately
testable (termed “standalone test”, or SAT). For
management purposes, a logically related collection
of TLCSCs within a CSCI is termed a “TLCSC
Group”.

Lower Level Computer Software Component

(LLCSC): A program unit declared within a pro-
gram unit (which could be either a TLCSC or a
higher level LLCSC) that is sufficiently complex to
require standalone testing prior to its inclusion in
the standalone testing of its parent.

Subordinate Unit: A component of an LLCSC! or
TLCSC whose standalone test is wholly provided
by the standalone test of its parent program unit.
A Unit may also be defined as a library unit as
long as its services are not shared across TLCSC
boundaries.

The equivalent 2167A terms are CSCI; Computer
Software Component (CSC), which equates to a
TLCSC Group or TLCSC; Computer Software Unit

(CSU), which equates to a TLCSC or LLCSC; and
Subordinate Unit. Throughout the rest of this pa-
per, 2167A terminology will be used, including software
document names.

DEVELOPMENT APPROACH OVERVIEW

The CCPDS-R software development approach is
the initial application of TRW’s “Ada Process Model”
[Royce 1989-21, which is based on early definition,
demonstration, implementation and test of incremental
capabilities termed builds. DOD-STD-2167 has been
tailored for CCPDS-R to accommodate this process
model, including the incremental generation and review
of the design and documentation products. A subsys-
tem build consists of a collection of CSCs from one or
more CSCIs which are integrated to form an incremental
set of subsystem capabilities. Each CSCI is developed
incrementally, with each CSCI build having its own pre-
liminary design, detailed design, code and test cycle.

The builds are defined so that the foundation archi-
tecture components that are relatively independent of
the required System Specification capabilities are devel-
oped, integrated and tested as early as possible, while
the generally more volatile, application-specific compo-
nents are allocated to later builds. The Ada Process
Model requires that software capabilities be demon-
strated at informal design walkthrough milestones and
at formal review milestones to provide tangible evidence
of design progress. Such reviews involving capability
demonstrations provide a much sounder basis than tra-
ditional paper/viewgraph reviews for the customer and
the contractor to assess readiness to proceed with sub-
sequent development activities.

The CCPDS-R software design is described in terms
of DEC VAX nodes, VAX/VMS processes, Ada &Z.&S,
and intertask communications circuits and socketa. The
Software Architecture Skeleton (SAS) is defined and

105

baselined early, and consists of the top level executive
structure for all processes and tasks and their intercon-
necting circuits and sockets. The process and task exec-
utives are all instantiated generics, with the Ada source
code produced by a tool which has all the architecture
objects described in a database. The SAS concept en-
ables rapid construction of a complete functioning net-
work, which facilil;Ltcs early discovery of design, inter-
face and integration problems [Royce 1989-l].

The primary advantage of Ada in supporting in-
cremental development as defined above is its support
for partial implementations. Separation of specifica-
tions and bodies, packages, sophisticated data typing
and Ada’s expressiveness and readability provide pow-
erful features which can be exploited to provide an inte-
grated, uniform development approach. The uniformity
gained through the use of Ada throughout the software
development cycle as a representation format is also use-
ful for providing consistent and insightful development
progress metrics for .continuous assessment of project
status from multiple perspectives.

The software development phases of the Ada Process
Model are: (Figure 1)

Top level architecture design of the founda-
tion software components, resulting in definition of
the System Global Interface (SGI) packages and
the Software Architecture Skeleton (SAS). Also
produced is the allocation of software for each
CSCI to specific incremental builds to maximize
early availability of functionality and minimize
downstream breakage. Preliminary Design Walk-
throughs (PDWs) are conducted during this phase
for the contractor and the Government to periodi-
cally review the evolving top level design.

Top level design for each applications build,
which refines the overall top level architecture de-
sign and iterates the SAS/SGI architecture as the
design progresses. An applications oriented PDW
culminates this phase.

Detailed design for each build, culminating in a
Critical Design Walkthrough (CDW).

Implementation and informal standalone
test of all build components.

Turnover of completed build components to the
I&T organization for formal baselining and test ac-
tivities. The turnover process involves a significant
amount of integration by the developers and testers
as the software is built into a functioning configu-
ration.

TEST APPROACH OVERVIEW

The CCPDS-R software test approach maps directly
into TRW’s incremental software development method-
ology described above. Complete testing is performed
per DOD-STD-2167A, featuring formal testing at mul-
tiple levels and by FQT of integrated CSCIs. The soft-
ware test program consists of informal and formal test-
ing (Figure 2). Informal testing is performed by devel-
opers and integrators to ensure (1) that individual com-
ponents function correctly in a standalone mode and (2)
that the integrated components function correctly in ca-
pability strings. Formal testing is the responsibility of
an independent formal test organization that verifies all
software requirements are met. All testing is performed
within a hierarchical structure termed the Ada Testbed
(or simply the “testbed”).

Ada TESTBED CONCEPT

The Ada Testbed provides the software execution
environment and the software control environment, for
the physical control of all developed and test support
software. The testbed is an environment where devel-
opers and testers can work in parallel against an estab-
lished baseline. Its structure is designed to eliminate
duplication of software among testbed users, minimize
the software needed by each testbed user, and estab-
lish a uniform set of controls as the software moves
from developer to baseline. The testbed is hierarchi-
cal, and consists of a predefined directory structure at
each level, testbed build procedures, and support tools
(Figure 3). Each procedure works within the hierarchy
to find source, objects and executables at the lowest
level of the testbed. When a user wishes to access the
latest copy of a file, the testbed will start at the lowest
level and look upward until the file is found.

The build procedures utilize the VAX Ada Compile
System (ACS) to provide a uniform method for compil-
ing, linking and executing all software. ACS is struc-
tured around a library system. Every module that is
compiled is placed in an Ada library. The Ada library
is used to form shells around Ada objects to determine
compile order and when modules need to be recompiled.
The ACS COMPILE and RECOMPILE commands are
used to automatically compiIe a module and all other
modules that are associated with that module. This en-
ables partial builds of the system instead of costly, time
consuming full builds.

The software development organization controls the
lowest levels of the testbed. The lowest levels are where
a developer implements and tests individual compo-
nents, using higher level components brought down to
the developer’s levels as needed. The next higher lev-
els are for turnover integration, and are controlled by a

106

SSR
V

PDR
V

I REQUIREMENTS I

CDR FCA/PCA
V

FOR EACH BUILD I& 1:
V

I I
I

FXIRMAL IST,
I

SYSTEM TOP LEVEL ARCHITECTURE DESIGN I I---------------------~

I BUILD 1 DEVELOPMENT 1 I&T I

BUILD 2 DEVELOPMENT I I&T

.

.
FOR EACH BUILD DEVELOPMENT:

I
-------------------------m------y

I “D&d
1

l

I

v

RIP-LEVEL OESION
;

I

I
I BUILD N DEVELOPMENT

I
I&T FQT

I IMPLEMENTATION a TURNOVER
I

I
STANDAWNE TEST V

TURNOVER
I

i
INTEGRAllON

i
---------------------------_-----I

Figure 1: Ada Software Development Process Model

single individual who coordinates the turnover sequence
of components from individual developer areas and or-
chestrates the compilation and preliminary integration
of the total set of components. These levels serve as a
staging area for the formal turnover of the software to
the configuration managed baselined upper levels.

The testbed provides the physical configuration con-
trol of the baselined. software. All changes to software in
the upper baselined levels of the testbed are strictly con-
trolled by the software configuration control board and
a paper trail managed by the configuration management
organization. There is a single individual authorised to
perform testbed builds for new software configurations.
All formal turnovers and the products of a testbed build
are audited by quality assurance personnel using various
verification tools and manual analysis methods.

INFORMAL TESTS

Informal tests are performed by software developers

and testers to debug individual components, check func-
tionality at low levels of the architecture, and integrate
components into functioning strings. The emphasis of
informal testing is on thoroughly exercising the code
through as many possible logic paths as possible. In a

design such as CCPDS-R’s message-based architecture,
this involves inputting messages into each Ada task that
cover the spectrum of possible input values. These are
well-defined in the Ada System Global Interface (SGI)
packages which are constantly visible to all developers
and testers to support local testing. The informal test
phases are:

Standalone Test (SAT). Standalone tests are the
lowest level of test and are performed by the soft-
ware developers. The term “standalone test” was
created because the definition of “CSU test” as
used in DOD-STD-2167A is ambiguous in a hierar-
chy of Ada “program units”. Also, the distinction
between “CSU test” and “CSC integration” as used

107

INFORMAL TEST FORMAL TEST

BUILD N

BUILD 1 FORMAL
STRINQ
TESTS -==

(SUBSET), ’

INFORMAL ISTs

t

I BUILD N
I

.--- --------
TURNOVER

INTEQRATION

4 DEVELOPMENT

ORGANIZATION

BUILD N

BUILD 1

INFORMAL SATs

BUILD N

BUILD 1

FORMAL 1STs

I&T

ORGANIZATION

FORMAL SATs

Figure 2: Software Test Approach

in DOD-STD-2167A is difficult to define in the Ada and CSU interfaces be defined and baselined early.
process model. Standalone tests are performed on These are maintained in System Global Interface
a CSC or CSU, each of which may be composed of Ada packages that are withed by interfacing CSCs
multiple subordinate program units that are tested and CSUs. As a build progresses, the developers
in the context of their parent CSC or CSU. are constantly compiling against the SGI packages

Standalone tests informally verify requirements and
test off-nominal and boundary conditions in the
developer’s environment. The test procedures are
written in Ada (wherever possible), with the proce-
dures and test results included in the CSC Software
Development Files (SDFs) [Springman 19891.

as prototypes are built, the Ada Design Language
(ADL) evolves into Ada, and formal and informal
demos are integrated.

Throughout the Ada process model, there is a con-
stant design integration which eliminates an entire
class of interface errors that are normally not found
until the I&T team attempts to integrate the soft-
ware. This is facilitated by a combination of: (1)
using Ada as the design representation as well as
the implementation language; (2) rigid interface
control through Ada type checking; and (3) the
demonstration-oriented Ada process model.

Turnover Integration. The bulk of what is tradition-
ally called software integration is performed dur-
ing the process of compiling, building and check-
ing out the software in the turnover integration
area (Figure 4). This results in a completely in-
tegrated, fully functioning set of software being
turned over to the I&T team for exhaustive string
testing. The Ada process model requires that CSC

Integrated String Test (IST). ISTs are performed
after the build components have successfully com-

108

BASELINE0 AREA

(CM-CONTROLLED)

SW DEVELOPMENT

CONTROLLED

FOUNDATION COMPONENTS (NAS)

SW ARCH SKELETON (SAS)
GLOBAL INTERFACES (SGI)

APPLICATIONS
,ZZ]

LEVELS - Ada LIBRARY

TESTBED TOOLS
FO A MAL

QUICK FIXES TURNOVER

TURNOVER

INTEGRATION AREA

INFORMAL

TURNOVER
INDIVIDUAL DEVELOPER AREAS

r
I

Figure 3: Ada Testbed Approach

pleted informal SAT testing, have been informally
built and integrated in the turnover integration
area by the development team, and are turned over
to the independent I&T team. These ISTs are
informal, and exercise strings comprised of com-
ponents from multiple CSCIs that represent a re-
quired system capability. IST includes off-nominal,
boundary and stress testing.

Software Reliability Assessment. In parallel with
other integration and test activities, software that
is already integrated and functioning is used as the
basis for assessing the reliability of the system’s
software. This activity concentrates on the founda-
tion components (e.g., Network Architecture Ser-
vices and Software Architecture Skeleton for initial
assessments, and then adds application components
as they are completed. The goal is to execute the
software in a stress environment using varying in-
put scenarios to thoroughly exercise the logic over

extended periods of time (e.g., overnight). Such
testing will uncover errors that are difficult to de-
tect in normal, human-attended testing, such as
errors dependent on timing or input sequencing.
By the time FQT has occurred, the software, es-
pecially the foundation components, will have been
thoroughly stress tested, to provide a high degree
of confidence in the reliability of the product.

Informal test procedures and results are documented
in Software Development Files (SDFS) for standalone
tests and in Test Data Files (TDFs) for integrated string
tests and reliability tests. Integration testing is gov-
erned by a “Build Schedule and Content Plan” which
defines the specific software contents of each build and
the functional strings to be tested during each IST
phase. This plan is closely controlled by the project
so that the test organization is fully prepared for a soft-
ware turnover.

109

INFORMAL

STANDALONE

TESTS
(DEVELOPER AREAS)

Ada SAT PR0CS.j

.

CSCI N

cscs

Ada SAT PROCS.)

TURNOVER

INTEGRATION

(COLLECTION AREA
CONTROLLED BY SW

INFORMAL

INTEGRATED
DEVELOPMENT ORQ.)

PREVIOUS BUILD CSCs

STRING TEST
(BASELINEG AREA
CONTFIOLLED BY
CONFIGURATION MGMT.)

(BASELINED)
-

CURRENT BUILD

cscs

(ALL CSCls)

FORMAL TESTS The formal test levels are:

Formal tests are the responsibility of an indepen-
dent test organization. The purpose of formal software
testing is to verify all software requirements. Ideally,
all software requirements should be testable or demon-
strable at Formal Qualification Test (FQT) using opera-
tionally produced outputs as success criteria. However,
requirements definition is generally far from ideal, and
waiting until FQT to verify the full requirements set is
risky for both the contractor and the customer.

Recognizing that requirements vary in level of de-
tail and that a single FQT is too unwieldy for a ma-
jor program, an incremental requirements verification
approach is being used on CCPDS-Ft. This approach
verifies requirements at three levels (Standalone Test,
Integrated String Test, and FQT), dependent upon the
components and data needed to verify a requirement. In
addition, the concept of implicit testing of lower level re-
quirements at higher level string tests is being employed.

Figure 4: Software Integration Stages (Each Build)

Formal Standalone Test: Verifies requirements at
an individual CSU level (e.g., intermediate algo-
rithm results, results not readily observable via op-
erational displays, or detailed design requirements).
The scope of verification at this level is highly de-
pendent on the amount of detail in the require-
ments documents. Formal SAT cases are the re-
sponsibility of the independent test organization.
They are specific informal SAT cases whose test
procedures are provided to the customer for ap-
proval. For efficiency, they are executed by the de-
velopers of the software being tested, in a formally
configured environment managed by the CM orga-
nization, and while being witnessed by I&T, QA
and customer personnel.

Formal Integrated String Test: Formal ISTs verify
requirements satisfied by multiple CSCs and CSCIs
that can be tested or demonstrated using functional

110

strings and operationally produced outputs for suc-
cess criteria. These tests are performed by the in-
dependent I&T organization when an aggregate of
software capabilities has completed informal SAT
and IST tests. Formal ISTs specifically pertain to
SRS requirements and are a subset of the informal
ISTs. Formal ISTs are run in a formally configured
environment and are fully witnessed.

Formal Qualification Test (FQT): FQT verifies all
software performance requirements and other re-
quirements not allocatable to prior SAT and IST
levels. FQT test cases are generally ISTs rerun
in the FQT configuration. FQT is run using the
complete software and hardware configuration in a
formally configured environment and are fully wit-
nessed.

Implicit Test: For requirements that are associated
with the specifics of the design (e.g., the method
used to access a file that produces outputs visi-
ble on a display) or are purely specification enti-
ties (e.g., internal function-to-function interfaces),
explicit verification is generally impractical and un-
necessary. Such requirements are verifiable by exe-
cuting a test that must perform processing associ-
ated with those requirements in order to complete
successfully. The requirements allocated to implicit
testing are verified at formal IST and FQT. For
test traceability, the test case name that verified
a requirement implicitly is sufficient for test audit
purposes.

All formal testing is fully documented in accordance
with DOD-STD-2167A. The Software Test Plan defines
the scope of formal testing. Individual Software Test
Description and Software Test Report documents are
provided for each formal test level. Requirements are
allocated to one of the three levels described above for
verification and are assigned to specific test cases within
each level. Test traceability is maintained in compre-
hensive Test Verification Matrices, which use traceabil-
ity information generated automatically from the Soft-
ware Requirements Specifications. Each SRS “shall”
requirement is uniquely labeled by the documentation
tools, and the traceability tools carry these labels down
through the design and test documentation. As the SRS
traceability changes, so does the rest of the traceability
trail, ensuring that traceability information is always
current and consistent.

An overview of a generic development and test sched-
ule is shown in Figure 5. This schedule shows the time
phasing of the development and test activities.

TEST METRICS

On a large Ada project with thousands of compo-
nents and software requirements, it is essential to define
and maintain metrics that: (1) bound the scope of the
test program; (2) are readily reportable to management
and the customer; and (3) are easily understandable.
The test metrics should complement any development
metrics used on the project. Examples of test metrics
include:

Informal standalone test progress, which mea-
sures the number of CSCs that have been stan-
dalone tested by the developers. This metric is
part of the overall development progress metric
(the “Tested” columns in Figure 6), which mea-
sures the software development team’s progress in
completing a defined set of software. The de-
velopment is complete when: (1) all Ada Design
Language (ADL) has been transformed into Ada
(“Designed”); (2) all standalone testing is executed
(“Tested”); and (3) all documentation has been
generated (“Documented”). The “Total KSLOC”
is determined by an Ada metrics tool that counts
completed Ada source lines in the specification
and body parts [BoehmjRoyce 19881 and “TBD”
(To Be Determined) Ada lines identified in ADL
statements [Royce 1939-l]. A CSC contributes to
the calculation of percent complete for “Tested”
or “Documented” only when informal SAT test-
ing or SDF documentation is 100% complete for
the CSC. It’s contribution is weighted by its size in
Ada source lines. No partial test or documentation
status is maintained because of the subjectivity of
such status assessments.

Informal IST progress, which measures the
number of IST test cases and test steps that have
been successfully completed against the plan (Fig-
ure 7).

Software requirements verification progress,
which summarizes the actual versus planned num-
ber of requirements verified at each formal test
level. Figure 8 shows the CCPDS-R plan and sta-
tus, with the six CSCIs as the columns. As shown,
the first two SAT phases and the first IST phase
have been completed, with some percentage of the
requirements allocated to each of those phases ac-
cepted by the customer (e.g., 69 out of 76 for Build
A2 SAT).

Overall test program status, which provides
a comprehensive status summary based upon the
metrics described above and the cost/schedule

111

J -------------- YEAR 1 1 YEAR 2 1 YEAR 3 YEAR 4 -s-s- --------_c_-_- ------------- J -------------- 1

m CDW Nnmwn
BUILD 1: A V X7-0

FORJMLMT FDRW wr
A V

NANWER
MlEmmlON

I\ WA7
-------------------_--

BUILD 2: urn-A v
FOAMUMT FoRMALlOT

CL-Y

TURNOVER
INllDRAllON

A IIJT‘TV

BUILD N:

Figure 5: Generic Test Activity Schedule

earned value assessments for each test activity. Fig-
ure 9 shows each test phase for which the inde-
pendent test organization is responsible, including
informal ISTs and formal SATs, ISTs and FQT.
The metric indicates the percentage of test cases
prepared/executed and reported, with a composite
assessment at the bottom. The vertical dashed line
identifies the current date, against which progress
is measured. The example indicates that informal
ET3 is slightly behind in test prep/execut:ion and
SAT2 is approximately 2 months behind, resulting
in a composite assessment of on schedule for infor-
mal ET and approximately 1.5 months behind in
the formal verification activities.

l Software Problem Report (SPR) summaries
and history, which indicate areas where test
resources should be applied and where problem
trends should be addressed. SPR summaries by
test level also indicate the relative value of SAT vs.

IST vs. formal testing, which can be used to adapt
the test program as trends are discovered.

It is important to track metrics status against a plan.
It is progress against the plan that determines whether
or not management attention is required. This requires
a realistic plan, which is not always easy to determine at
the start of a test program. The plan must therefore be
updated as required to enable accurate and meaningful
status assessment.

CCPDS-R Ada TEST EXPERIENCE and
RECOMMENDATIONS

Use of Ada as the CCPDS-R implementation lan-
guage has had both positive and negative effects from
a test perspective (Table 1). CCPDS-R’s Network Ar-
chitecture Services and Software Architecture Skeleton
[Royce 1989-21 rely upon Ada generics, Ada tasking
and Ada interface packaging to create an architecture

112

I Designed/Coded (% Complete)

5 10 15 20 25 30
Contract Month

50

25

Figure 6: Overall Development Progress Metric

that enables early development, integration, demon-
stration and test of foundation capabilities. Interface
problems are discovered earlier in the development cy-
cle. The Ada compiler identifies obsolescent modules
requiring recompilation due to changes to other mod-
ules, which speeds up the change checkout process. Self-
documentation features of the Ada language (assuming
good naming practices) result in more documentation
being included in the source and in Ada test proce-
dures/drivers.

Integration occurs constantly as the design evolves
and the developers compile their ADL and Ada against
the established global interface packages. Assuming
the foundation architecture components (i.e., NAS and
SAS) are integrated and baselined in early builds, appli-
cations components in subsequent builds are integrated
relatively easily into the SAS. On CCPDS-R, a small
team of 3-4 developers familiar with the overall software
architecture has been able to integrate each build over a
period of l-2 months to a point where the test organiza-
tion can begin working with a functioning testbed. This
small team draws upon specific developer and tester ex-
pertise as needed to solve problems that arise during the
integration. The latest build, consisting of over 150,000
Ada source lines, was brought into a functioning state
in about 5 weeks.

On the negative side, Ada consumes significant re-

1 !i’,“,“,d”:~
Legend

5 10 15 20 25
Contract Month

sources for building and maintaining software configu-
rations (i.e., testbeds). As incremental builds are com-
pleted and the number of files increases, the build time
becomes lengthy and the disk space requirements grow
rapidly. Currently, the CCPDS-R testbed consists of
270,000 source lines, over 6,000 files, testbed tools and
build procedures, and associated standalone test drivers
and files. The testbed currently takes 15-20 hours of
CPU time on a VAX 8800 (using a single CPU) to
build the complete software architecture, and requires
over 600,000 disk blocks (512 bytes each) for storage.
Only a portion of the build time (approximately 70%)
is used for compiling and linking source code; the rest is
for hierarchical directory searches, file difference checks,
checksum compares, and other testbed functions. Ex-
perience to date with the DEC Ada compiler in the
CCPDS-R testbed environment has shown compiler per-
formance in the range of 500-900 source lines per CPU
minute. This performance range reflects the complex
and numerous dependencies among the software compo-
nents for a system such as CCPDS-R. Testbed improve-
ments are in progress to improve resource utilization.

Because Ada is used as a uniform representation ve-
hicle throughout the design, implementation and test of
the software, testers and reviewers (including the Cus-
tomer) must be trained to read and understand Ada.
This may result in higher up-front costs and initial inef-

113

----,----?----T----l------------’

7 I

I
I I I I I

670 I ---A---.-,---+--- _I
i-i i

I
I

:--- r---+--+---t
I I I

1
I I I

510 ---J----i----f----~-sJ
I

-)-- '&'----I

I
i

I
4 i / j i

---:----i----T----~---l-----+----1

I I
J

I I
I

San, “1,::~ 1’: ---:----i----c---:---c---i---i-----,

I I
I I I

T= ---~----~---- + -,--&--$--J----f

2m
1 1 1 I ;

TEST PROCtDURE STEP EXECUTION

so-

30 -----i-“--i----~----~---d----~-----~---~
*

Figure 7: Informal Integration Progress Metric

I I I I I I I I I I I I IIIl11llIt 1 III 1 III 1 Ill I

5 IO 15 20 25 30 35

Contract Month

Figure 8: Formal Requirements Verification Progress Metric

114

Legend

IT%

A compietea meSton
TP%= Tests Prep/Execution

TR%= %Test Reporting
Shading= OveralJ Test Progress

(C/SCSC+Mct&s)

i BIT4

32

16%

AAo/AI AA~ A AS

III III I III I III III I III III I III III

10 15 20 25 30 35 40
Contract Months

Figure 9: Overall Test Program Progress Metric

Permission to cop without fee all or part of this material is

B
ranted provided x at the copies are not made or distributed

or direct commercial advantage, the ACM copyright notice
and the tide of the publication and its date appear, and notice
is given that co
Computing

ying is b permission of the Association for
Mac mery. R & copy othetwise, or to republish,

requires a fee and/or specific permission.

115

Table 1: Ada Testing Advantages/Disadvantages

Ada ‘Ifesting Advantages /dT Testing Disadvantages
1. Early identification of interface inconsistencies 1. Ada trammg requrred for testers and customer
(compiler type checking)

2. Notification of obsolesced program units rcquir-
ing rerompilation

3. Ada source code and Ada test procedures self-
documenting

4. Shorter integration timeline (see 1.)

ficiencies as individuals become trained. Once trained,
though, these individuals are ready to step into any sub-
sequent Ada project with no problem.

An Ada implementation for a large application has
extensive dependencies among modules based upon how
the software is packaged. Care must be taken to
avoid constant recompilation of individual developer
and tester components as changes are made to higher
level components. While developers and testers always
want the latest software, constant changes to baselined
software result in constant recompiles at lower user lev-
els, which takes time and CPU resources.

The CCPDS-R software architecture involves many
requirements and design components. With a total es-
timated size of 350,000 Ada source lines and 2,000 indi-
vidual software requirements to be verified, the CCPDS-
R test program is definitely an area of cost and schedule
uncertainty. Recognizing this, both TRW and the Gov-
ernment have sought to ease the verification burden and
spread the Government review/approval load by veri-
fying requirements incrementally. For detailed design-
oriented requirements, CS U standalone testing using de-
tailed Ada test procedures is necessary, which requires
a certain level of Ada expertise of the Governmeut re-

viewers. Schedules have been adjusted to accommodate
lengthened review/analysis timelines. Also, the concept
of “implicit” verification of lower level requirements at
higher level string tests has been defined. The follow-
ing recommendations and lessons learned have resulted
from CCPDS-R’s experience:

l Define the test approach early, and make it a major
topic of the Software Development Plan.

l Get the customer involved early in the test program
definition and get the customer to commit to a cost
effective, bounded test program. Solicit early feed-
back and incorporate lessons learned into the test
approach.

l Keep SRS requirements at a true requirements
level. The more detailed and design-oriented the

reviewers

2. Extensive dependencies may result in frequent
recompilation in individual user areas

3. Significant disk space requirements for source
and compiled products

4. Significant software build times (compilation)

requirements, the more detailed the tests must be,
and the more time required of the contractor and
the customer to generate and review/approve the
tests.

l Employ a design/development methodology that
enables early and continual visibility by test and
customer personnel into the software product. This
can be accomplished through: (1) demonstrations
of functionality; (2) early definition/baselining of
system products (e.g., displays, report forms); and
(3) incremental testing of software to enable early
customer feedback on the adequacy and scope of
testing.

l Devise an Ada software architecture that enables
early prototyping and incremental demonstration
of functional capability and integrated string test-
ing. For example, instantiation of generic task and
process executives with task-to-task interfaces en-
ables rapid construction of a working SAS which
can be used to demonstrate applications software.

l Define early software builds to: (1) baseline foun-
dation components; (2) enable test of complete ca-
pabilities early; (3) minimize potential for breakage
of earlier builds as later builds are implemented and
tested; and (4) set a precedent using a small early
build before attempting the larger later builds.

l Establish a comprehensive configuration manage-
ment process that supports developers’ and testers’
rapid response needs, as well as the project’s need
to maintain strict configuration control of all base-
lined software.

l Prepare test personnel (both contractor and cus-
tomer) for an Ada test program so that they can
generate/review detailed Ada test procedures and
the software under test.

116

l Use test metrics to define the scope of the test pro-
gram and to measure progress against a realistic
plan.

l Define the standards and procedures to be used for
the development and test of the software as early as
possible, preferably within 1-2 months of contract
stirrt. These should include documentation for-
mats, naming conventions, header standards, and
annotation standards.

SUMMARY

This paper has discussed a test approach that is
being used successfully on CCPDS-R, a large software
project developed completely in Ada. The test approach
has been modified and enhanced significantly as both
TRW and the customer better understand the test re-

quirements and implications of specific test techniques.
Tailoring of the approach is necessary as experience is
gained from the earlier test phases, and must be en-
couraged to achieve timely closure of the test process
and enable cost and schedule targets to be met. Ada
has proven to be a significant benefit in the incremen-
tal development/integration/test approach, particularly
in enabling rapid integration of software from multiple
CSCIs. This enables earlier, useful integrated string
testing as each software build completes development
and is turned over to I&T, rather than forcing the I&T
team to undergo an extended period of debugging before
exercising integrated string tests. More time is available
for formal requirements verification activities, a tradi-
tional area of cost and schedule risk on major govern-
ment software programs. Ada itself does not guarantee
rapid integration. Sound engineering discipline is still
required to define and control the software architecture
and interfaces that are expressed in Ada.

ACKNOWLEDGEMENTS

The CCPDS-R project is the result of over 3 years
of pre-contract preparation, proposal generation, and
concept definition before any of the concepts described
in this paper could be put into practice. Since award of
the contract, much rethinking of the originally proposed
methods has occurred, resulting in the project’s current
approach and success to date. Acknowledgements are
due to Steve Patay, Bruce Kohl and Walker Royce, who
were instrumental in helping define and sell the original
innovative development approach, and to Don Andres,
Joan Bebb, Tom Herman and Patty Shishido for help-
ing to make the ideas work in practice. Also, TRW’s

Government counterparts at USAF/ESD are acknowl-
edged for supporting this approach and for being open
to suggestions for improvements.

BIOGRAPHY

Michael Springman is the Assistant Project
Manager for Software Development on the CCPDS-R
project. He is responsible for the development of over
500,000 Ada source lines to be delivered to the Air Force
for this real-time system. He received a BS in Math-
ematics and Physics from Southwest State University
(Minnesota) in 1973 and an MS in Applied Mathemat-
ics and Computer Science from the University of Col-
orado (Boulder) in 1975. Mr. Springman has been at
TRW for 13 years, where he has been involved on a va-
riety of real-time Cs and avionics software projects. He
has been responsible for all aspects of the software de-
velopment life cycle, including system and software re-
quirements definition, software design and development,
and requirements verification. He has been dedicated to
CCPDS-R for the last three years, which included the
conceptual definition, proposal, and contract startup ac-
tivities.

REFERENCES

[Royce 1989-l] Royce, W. E., “Reliable, Reusable
Ada Components for Constructing Large, Dis-
tributed Multi-Task Networks: Network Architec-
ture Services (NAS)“, TRI-Ada Proceedings, Pitts-
burgh, October 1989.
[Royce 1989-21 Royce, W. E., “TRW’s Ada Process
Model For Incremental Development of Large Soft-
ware Systems”, TRI-Ada Proceedings, Pittsburgh,
October 1989.
[Boehm/Royce 19881 Boehm, B. W., Royce, W.
E., “TRW IOC Ada COCOMO: Definition and Re-
finements”, Proceedings of the 4th COCOMO Users
Group, Pittsburgh, November 1988.
[Grauling 19891 Grauling, C. G., “Requirements
Analysis For Large Ada Programs: Lessons Learned
on CCPDS-R”, TRI-Ada Proceedings, Pittsburgh,
October 1989.
[Springman 19891 Springman, M. C., “Software De-
sign Documentation Approach for a DOD-STD-
2167A Ada Project”, TRI-Ada Proceedings, Pitts-
burgh, October 1989.
[2167A] “DOD-STD-2167A: Military Standard, De-
fense System Software Development”, 29 February
1988.

117

