
Experiences in Preparing a’
DOD-STD-21 WA Software Design Document

for an Ada Project

Charles A. Meyer, Sharon C. Lindholm, and Jack L. Jensen

Betac Corporation

Southwest Engineering Division

San Antonio, Texas

ABSTRACT

This paper describes our experiences in using OOD and Ada
in developing a Software Design Document (SDD) in accordance with
DOD-STD-2167A. The paper first provides an overview of the SDD
requirements stated in 2167k It next describes the initial objectives
and assumptions under which we began the project, then discusses the
problems we encountered while trying to achieve our objectives and
satisfy 2167A requirements. Three different categories of problems are
described: those dealing with precise definitions of terms used in
216714; those dealing with 2167A document format requirements; and,
those dealing with satisfying customer expectations. The paper then
describes the specific lessons we learned during this project, and
finishes with some overall conclusions.

1. INTRODUCTION: SDD REQUIREMENTS

The requirements for the content, format, and organization of
the SDD are stated in 2167A’s Data Item Description (DID) DI-
MCCR-800124 [80012A]. It specifies that a separate SDD is to be
prepared for each Computer Software Configuration Item (CSCI) in
the system. A brief summary of the major sections of the SDD arld the
tailoring to the SDD specified by our contract follows.

Sections 1 and 2 of the SDD are straightforward, requiring a
system overview and project references, respectively.

Section 3 contains the preliminary design of the system. This
includes an overview of the CSCI, with the stated purpose of each
external interface. Section 3 also requires a description of system states
and modes, and a description of memory and processing time
allocation.

For the preliminary design of each Computer Software
Component (CSC) and sub-level CSC, the following information is
required:

0 Requirements allocated to the CSC/sub-level CSCs

0 Description of CSC/sub-level CSC preliminary design in terms
of execution control and data flow, along with an identification
of relationships between sub-level CSCs and CSCI internal
interfaces.

l Derived design requirements for each CSC/sub-level CSC,
and any design constraints imposed on or by the CSC/sub-
level CSC.

Section 4 contains the detailed design for each CSC. This
includes:

permission t0 COP

?
ranted provided t K

without fee all or part of this m.aterial is
at the copies are not made or .dlstr~Ked

or direct commercial advantage, the ACM copywht not!ce
and the title of the publication and its date appear, a?d.nobce
is given that ~0
Computing R ?

ying is b permission of the Assoclatlon.for
Mac mery. o copy otherwise, or to repubhsh,

requires a fee and/or specific permission.

l A description of each of the Computer Software Units (CSUs)
of a CSC, including a description of the relationships between
CSUs in terms of execution control and data flow.

0 The purpose of each CSU, its design specification/constraints,
and the design of the CW. This detailed design information
includes identifying/describing:

input/output data elements

local data elements and data structures

interrupts and signals

algorithms

error handling

data conversion operations

other elements used by the CSU

logic flow, including description of the conditions under
which the CSU is initiated

limitations or unusual features that restrict the
performance of the CSU

Sections 5 and 6 describe the data requirements for the
system. Section 7 calls out the requirements traceability between
system-related documents, while Section 8 is reserved for
miscellaneous notes.

For our project, the DID was tailored (by the contract) in
several significant regards:

l Several major sections of the SDD were tailored out. This was
because the information required for these sections was to be
provided in alternate formats.

- Section 5, CSCZ Data, was delivered as a DOD-STD-1703
Data Dictionary [1703].

- Section 6, CSCIDutu Files, was delivered as a MIL-STD-
7935 Data Base Specification [7935].

- Section 7, Requirements Traceability, was formatted in
accordance with a requirements traceability matrix
specified by DI-MCCR-80025 from DOD-STD-2167
[80025].

l The design was only to he taken to “intermediate” design (but
to avoid confusion, the remainder of this paper will refer to
detailed design when discussing our activities). The means of
defining the level of detail desired was established by
specifying specific SDD paragraphs that were to be either
excluded, or provided at contractor discretion. These
paragraphs were primarily from Section 4, DetailedDesign.

0 1989 ACM O-89791-329-9/89/001 O-01 18 $1.50 118

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74261.74270&domain=pdf&date_stamp=1989-01-03

2. ASSUMPTIONS AND OBJECTIVES

We began this project with several explicit and implicit
assumptions and objectives. Ultimately, it was these objectives and
assumptions that drove the overall format and content of our SDD.
We believe that some of these assumptions are still valid while others
have proved to be remiss and lacking in foundation.

2.1 Assumptlons

Many of our decisions concerning the organization and
content of our SDD were based on the following assumptions.

a. During preliminary design, functional requirements from
higher-order documents should be mapped to physical
programming constructs.

b. Ada physical constructs can be mapped directly to 2167A
logical concepts.

C. The DID requirements of 2167A are meant to he a set of
guidelines that may be interpreted with respect to the project
being addressed. 2167A DID requirements are intentionally
broad in scope, and meant to be interpreted liberally as
opposed to literally.

Also, we considered the goals of preliminary and detailed
design to be as follows. For preliminaty design:

l Mapping functional requirements to software concepts

l Defining an overall system architecture

l Defining the interactions between top-level components

l Refining the characteristics of the external interface’s design.

For detailed design:

l Decomposing higher-level design components to
implementable units

Defining detailed characteristics of data structures

l Ensuring the design reflects the intended final structure of the
code.

We assumed that meeting these goals was the critical issue. We
believed the SDD was nothing other than a vehicle for expressing the
design. As such, we did not treat the SDD as a “bible,” but rather as a
guide.

2.2 ObjectIves

The following were the primary management objectives for
performing design activities:

a. To design a relatively large and highly complex interactive
software project, integrating the Ada design into SDD
guidelines.

b. To design the project in two distinct stages - preliminary
design and detailed design

C. To adhere to tradition waterfall life cycle design concepts by
developing a stable preliminaty design that would setve as the
baseline for detailed design.

3. INTERPRETING AND APPLYING THE SDD DID

3.1 Selecting Working Deflnltlono for Key 2167A Terms

Several terms became of utmost importance in documenting
our design. These start with the very basic terminology introduced by
21674 nameiy CSCs and CSUs. The following are the delinitions as
presented in 2167A [2167A].

l Computer Softworc Component (CSC): “A distinct part of a
computer software configuration item. CSCs may be further
decomposed into other CSCs and CSUs.”

l Computer Sofiwar Uiti~ (CSU): “An element specified in the
design of a CSC that is separately testable.”

We established working definitions for these terms based on
viewing CSCa as Ada library units (the visible packages and
subprograms in an Ada implementation) and CSUs as subprograms
and tasks. The following paragraphs summarize the rationale involved
in deciding upon these implementations.

3.1 .l lnterpretlng the Term “CSC”

Initially, we believed there were several possible working
definitions of a CSC to choose from. They could be

l logical entities that perform specific functions unique to the
application (as in (ELI-891)

l logical entities that provide system-wide setvices (e.g., User
Interface CSC, Data Base CSC, Utilities CSC, Executive
Control CSC, etc.)

l Ada library units (as in [MEAS9]).

Note that these definitions are not mutually exclusive.

The definition of CSCs proved to be the most difficult to
address. Acting in accordance with assumptions (a) and (b) above, we
tried valianliy to tie Coca lo a physical Ada implementation. The
following paragraphs describe. the decision-making process which we
used to develop working definitions for CSCs.

3.1 .l .l lnterpretlng CSCs as Library Units

The concept of a CSC fits neatly with the concept of an Ada
library unit. This fulfills the criteria that a CSC is composed of “other
things”. In other words, a CSC is not a fundamental building block, but
rather a collection of related building blocks. By definition, a CSC is
composed of CSUs or other CSCs. By definition, a package is
composed of subprograms, tasks, or other packagr ;; likewise,
subprogram library units can bc further decomposed. These
definitions parallel one another so closely the association is natural:
Ada packages should implement CSCs.

However, this definition introduces complications when
scrutinized against the SDD DID. Per the DlD’s requirements, CSCs
must be described in terms of execution control and dam flow. We
never did figure out a good way to describe thii concept for Ada
packages, since execution control and data flow occurs between
subprograms/tasks, not between packages. We could show ‘withing”
dependencies, but in our minds, this didn’t truly address execution
control and data flow. Moreover, since we were in the preliminaty
design phase, this detailed design information was not available. Yet
this data was required in the Preliminary Design section of the SDD.
This directly contradicted our objective to create a baseiined
preliminary design document and to keep the design phases distinct.
As a result, we found outselvcs developing preliminary and detaiied
design information in parallel.

3.1 .1.2 Interpreting CSCs as Ada Subprograms

The rationale for implementing CSCs as Ada subprograms is
as follows. Upon initial investigation, it would appear that 2167A
makes a case for implementing CSCs as subprograms. Both the
definitional requirements and the Section 3 requirements can be
satisfied easily and intuitively by defining CSCs as subprograms. They
can be composed of nested subprograms (CSUs) or they can be
depend on other external subprograms (CSCs), thus satisfying the
2167A CSC definition. The requirements to show execution control
and data flow now quite appropriately apply to executable
subprograms.

The problem with defining a CSC as subprograms lies in the
requirements called out under section 4 (Detailed Design). As a
procedure, CXs would have specific logic flow and algorithmic
considerations which must be documented. According to the DID,
these topics are addressed in Section 4 of the SDD during detailed
design, not during preliminary design. Moreover, these considerations
are associated with CSUs, not CSCs. We felt that not addressing these
topics for each procedure would create an incomplete and perhaps
faulty design document. This definition lead us to contradictory (or at
the vety least, inconsistent) documentation requirements. We now

119

believe that 2167A does not consider a CSC to be a procedure, but
rather something at a higher conceptual level.

3.f.t.3 Our Interpretation

We refined our concept of CSCs many times during the course
of becoming more familiar with our design methodology. We always
came back to the original idea that CSCs most closely modelled Ada
libraty units. We eventually settled on this definition.

However, we determined we also needed a higher-level design
unit than a CSC (as we defined it) around which to organize our
design. We designated these h&her-level units top-level computer
software components (TLCSCS) . Their purpose was to identify the
software equivalents of the system’s major functions. Thus, TLCSCs
are logical in nature and don’t directly map to any physical Ada
equivalent. In summary,

a. TLCSCs represent major system processes/functions.

b. They are implemented by a collection of Ada library units.

C. Each TLCSC had a principle entty point - a procedure library
unit.

We believe the TLCSCs served to make the system more modular and
understandable.

In order to satisfy the requirement to show execution control
and data flow, we developed a set of diagrams which were called
object-relationship diagrams (ORDs). The primary purpose of these
diagrams was to visually depict the dependencies between library units.

3.1.2 Interpreting the Term “CSlJ”

We conducted a survey of technical literature to identify
possible definitions of a CSU. We found the following definitions were
used:

a Any executable subprogram, possibly containing or calling
other subprograms

0 Ada packagesilibraty units

l Terminal subprograms on the calling hierarchy. This is
intended to satisfy the “separately testable” criterion, where
the assumption is made that “separately testable” implies that
the subprogram makes no calls to other subprograms.

3.1.2.1 Interpreting CSUs as Library Units

We believe the type of information required for CSUs by
Section 4 of the SDD (Detailed Design) clearly implies that the CSUs
must be executable entities. For example, CSU design descriptions
must include logic flow, detailed algorithms, and input/output elements
for each CSU. Packages are not executable entities; hence, they cannot
be designated as CSUs.

3.1.2.2 Interpreting CSUs as Procedures

The possible choices for the definition of a CSU is directly
impacted and limited by the definition of a CSC. Since CSCs are
composed of CSLJs, and packages are composed of procedures, the
parallel was easy to draw. Thus, CSUs should be procedures. We
found very few problems in implementing this concept. The design
methodology chosen for the system was oriented around a functional
decomposition of requirements, in parallel with an object-oriented
viewpoint. Structure charts were used to diagram the design. This
design tool readily leant itself to developing well-defined procedures
and functions. Each module on the structure chart mapped neatly to
an Ada procedure/function, which had welldefined execution and
algorithmic requirements.

The only problem we encountered in this area came from the
original 2167A definition of a CSU with respect to the words
“separately testable”. Our customer interpreted this wording such that
a CSU was a primitive construct and could not issue calls to any other

1 TLCSCs were originally defined in DOD-STD-2167.

executables. Using this criteria, only the terminal nodes on the
structure charts could be considered CSUs. We adopted a liberal
interpretation whereby high level procedures were considered
elements by virtue of the fact that they performed a single, logical
function. This did not, however, preclude external calls to other
procedures. We also took a liberal interpretation of the requirement
for a CSU to be separately testable. Again, we believe that a module
can be separately tested if it is visible (in the Ada sense).

3.2 2167A Format Requirements

3.2.1 CSC Subordination: Logical vs. Physical

To provide design material in Section 3 of the SDD, a decision
must be made as to how the concept of “sub-level” CSCs will be
interpreted and applied. Sub-level relationships between CSCs can be
defined along two different perspectives: a logical view and a physical
view. The logical view would emphasize relationships based on
similarities between CSCs. The physical view would emphasize the
nature or structure of the code itself (e.g. nesting of procedures).

3.2.2 Logical

Sub-Ievel relationships between CSCs using a logical
perspective could be defined as groupings based on:

a. Layers or levels of decomposition (e.g. CSCs at the system-
wide control level, the data transform level, external interface
level, etc.)

b. Families of functionally similar CSCs (e.g. user interface
CSCs, data base CSCs, etc.)

C. “Strings” of related CSCs that perform a distinct function.

In general, these groupings of CSCs into higher-level CSCs
fall into two categories: horizontal subordination and vertical
subordination (See Figure 3-l). “Horizontal” implies an organization of
CSCs around layers that provide services to higher layers and utilize
the resource provided by lower-level layers, as in [SHUSS] and
[SEI86]. “Vertical” implies an organization of CSCs around specific,
(relatively) independent system functions. The advantages and
disadvantages of each of these views needs to be identified in the
context of the project under development.

3.2.3 Physical

Defining sub-level relationships between CSCs from a physical
perspective could be defined as groupings based on:

a. Ada programming unit nesting (such as packages within
packages, or lexically included subprograms)

C. Withing dependencies among Ada library units.

3.2.4 Our Approach

Our approach to developing an SDD follows. We concentrate
here only on Sections 3 and 4, “Preliminary Design” and “Detailed
Design,” respectively.

3.2.4.1 Section 3: Preliminary Design

In the course of mapping the requirements of the SDD DID
to our design effort, we instituted significant modifications to the
organization and content of Section 3. These modifications
accommodated two goals: 1) To adequately address the relationships
between CSCs based on the working definitions we assigned, and 2) To
adequately depict each TLCSC’s relationships with external entities.

3.2.4.1 .l CSC Organization

As discussed in paragraph 3.1.1.3, we defined the CSCs that
implemented top-level system functions as TLCSCs. Thus, our
TLCSCs enforced a “vertical” approach. We further refined the
concept of a TLCSC and a CSC to establish a relationship between
them, the design methodology, and Ada library units:

a. TLCSCs are implemented by a collection of Ada library units

b. Each TLCSC has a principle entry point: a procedure library
unit.

120

Function
01.IC

r
Function Function
Two Three

I
Function
N

Figure 3-l a Vertical Organization of CSCs

Virtual Machine Layer One

Virtual Machine Layer Two

Virtual Machine Layer Three

Virtual Machine Layer N

Figure 3-lb Horizontal Organization of CSCs

C. Physical (sub-level) CSCs were defined as either ob$ct-
oriented packages or as virtual machine-oriented packages or
subprograms.

Finally, we recognized that many CSCs would be used as
resources by several TLCSCs. These were designated as “shared”
CSCs. To avoid complications in document production (such as
extensive cross-referencing and the ripple-effect caused when a shared
CSC is added to or deleted from the design), we put a shared CSCs in
one of two sections: a “Shared Objects” section and a “Shared Virtual
Machine” section. Thus, these CSCs were categorized around a
horizontal organization. Our resulting CSC organization was a

2 The design methodology, LVM/OOD [SHUSS], emphasizes the
existence of both virtual machines and ob’ects in a design.
Virtual machiyes are functio?ally decompose d . , whde objects are
ann%uJttoy ,, of operatloqs g_erfofmed on abstract. data

e aper Expcnences m pplymg the Layered Virtual
ac me ject Oriented Design Methodology to an Ada

Design Effort” details our use of LVM/OOD on this project.

combination of the vertical and horizontal organizations (See Figure 3-
2>*

3.2.4.1.2 External Interfaces

To accommodate the design of our user interface, and to
specify the interaction of TLCSCs with the data base, we added a
numbered subparagraphs to every TLCSC to document this
information. User interfaces were documented in their own paragraph.
Data base interfaces were depicten in a paragraph titled “Context
Diagram.” (Note: the concept of context diagrams was borrowed from
Tom DeMarco [DEM79]. Their purpose is to show a system’s
interfaces with entities external to the system under study. We found
this to be a useful means for identifying the interaction of a TLCSC
with data base files, other TLC?&, and commercial off-the-shelf
(COTS) software.)

3.2.4.1.3 Our Organization of Section 3.

The organization of Section 3 used for
Table 3-1. Note that the SDD DID does not
numbered subparagraphs subordinate to paragraph 3.
specify our paragraphs 3.3 and 3.4.

121

Function
N

Resource N

Resource Three

Resource TWO

Resource One

Figure 3-2 Project’s Organization of CSCs: A Combination of Horizontal and Vertical

TABLE 3-l ORGANIZATION OF SECTION 3

1 PARAGRAPH t CONTENTS I

3.2.X TLCSC X

3.2.x.1 Requirements

1 3.2.X.3 1 Context Diagram

1 3.2.X.4 1 Design Considerations 1

3.2.X.5

3.2.X.6

Design

Subordinate Object-Oriented CSCs --I

3.2.X.7

3.3

Subordinate Virtual Machine CSCs

Shared Object-Oriented CSCs

3.2.4.2 Section 4: Detailed Design.

In the course of mapping the requirements of the SDD DID
to our design effort, we instituted significant modifications to the
organization and content of Section 4. Some modifications were
contractually required (specific portions of Section 4 were tailored out
of the DID by the contract). We introduced additional modifications
to accommodate two goals: 1) To distinguish between object-oriented
and virtual machine CSCs (based on our application of the design
methodology, as mentioned earlier in this paper), and 2) to separate
the design information for file-oriented CSCS from other CSCa. The
latter was desirable since no data base management system interface
was specified by the contract. As such, these CSCs were likely to
change during follow-on design efforts, so grouping them together
would ease their modification at a later date.

The organization of Section 4 used for this project is shown in
Table 3-2. Note that the SDD DID does not identify any explicitly
numbered subparagraphs subordinate to paragraph 4.1.X.Y.2, nor
does it specify the organization of Section 4 into 4.1 (Object-Oriented
CSCs), 4.2 (Virtual Machine CSCS), or 4.3 (File-Oriented CSCS).

3.4 Shared Virtual Machine CSCs

122

I 4.1.X.Y.l I CSU Y Design Constraints I

I 4.1.X.Y.Z.l I CSU Y Input/Output Elements I

4.2

4.3

Virtual Machine CSCs (contains the same
subparagraphs as paragraph 4.3)

File-Oriented CSCs

3.2.5 Difficulties Encountered

As a result of adopting this approach to applying the SDD
DID to out design effort, we experienced difficulties with the inter-
relationships between Sections 3 and 4, and with the volume of
resulting documentation.

TABLE 3-2 ORGANIZATION OF THE TAILORED SECTION 4 came to 3 * 15 * 3,150 = 142,000 pages. This is a stack of paper 79 feet

interesting our customer in
documentation approach. They

had no Ada background, nor w&e they familiar with object-oriented
design concepts. Also, they had only a passing familiarity with the
DOD-STD-2167A SDD with regards to its application to Ada projects.

This was a detriment to our design effort. We ended up
spending a fair amount of time addressing Ada/design
methodoiogy/SDD issues during waikthroughs and reviews. This was a
trivial matter compared to the atmosphere during the final months of
the project: The customer changed management of our project, and we
found ourselves covering substantial past history. Unfortunately, the
bulk of these interchanges with the customer were conducted within
the context of defending our approaches as being compliant with the
DID - hence, the contract.

4. LESSONS LEARNED

Based on our experiences with applying the DOD-STD-2167A
SDD DID, we would implement the following alterations to our use of
the SDD:

3.2.5.1 Relationship Between Sections 3 and 4

We encountered two problems with our selected approach.
First, significant portions of our design activity required parallel
development of preliminary and detailed design documentation.
Second, our definitions of CSCs introduced unwanted redundancies
between Sections 3 St 4.

Much of our preliminary and detailed design work was done in
parallel; distinctions between them were blurred. For example:

a. Structure charts are, by definition, CSU oriented; top-level
design requires material to be organized that isn’t appropriate
(according to the SDD DID) until detailed-design.

l CSC definition: A CSC will be treated as a purely logical
concept that doesn’t as a necessity map to any particular Ada
construct. CSCs wiii be identified during preiiminaty design
and decomposed to a point where they can be mapped to
physical Ada constructs during detailed design. This will
alleviate the constant need to update preliminary design
material in Section 3 whenever a new iibraly unit is identified
during detailed design. Also, it will allow designers to defer
implementation details (such as defining package
specifications) until detailed design. We would propose
performing limited prototyping activities during the tail end of
preliminary design to aid in selecting implementation
strategies for CSCs during the detailed design effort.

Also, we believe that Ada packages have no equivalent in
2167A terminology based on a strict interpretation of the
SDD DID. Thus, we will utilize Ada packages during detailed
design as a method of grouping CSUs. This wiI1 be
accomplished by an agreed upon tailoring of the numbering
scheme of Section 4.

b. The development of package specifications requires the
detailed definition of data types/structures. Package inter-
dependencies often resui. from this design activity. Thus,
relationships between CSCs (packages) cannot always be
established until detailed design.

Also, the discovery of new packages and package inter-
dependencies during detailed design required an update of Section 3.
We would have preferred a more static preiiminaly design.

Significant portions of our preliminary and detailed design
documentation were redundant. For example, the purpose of each
CSC was described in Section 3. In Section 4, we repeated this
documentation to introduce the CSC.

3.2.5.2 Volume of Documentation Produced

Each CSU requires about one page of documentation for
simple CSUs; if limited private/private types are packaged, the CSUs
that manipulate objects of these types tend to be primitive/trivial.
Documenting them is tedious. For Section 4 material, expect ratios of
pages of design documentation to pages of (uncommented, finished)
code to be between 5-to-l to IO-to-l. When other sections of the SDD
are added into this ratio, it falls between 15-to-1 to 20-to-l.

Our SDD contained about 470 CSCS, and was 1800 pages
long. At our customer’s request, al1 numbered paragraphs were
included in the table of contents. One hundred and forty of the 1800
pages were for the table of contents alone. Additionally, the Data
Dictionary and the Data Base Specification (normally Sections 5 and 6,
respectively, in the SDD), w&e about 700 and- 650 pages long,
respectively. Had we included these two documents in the SDD, it
would have been about 3,150 pages iong!

l DID Tailoring and Interpretation: Any deviations to the format
(i.e. paragraph numbering scheme, titles, location of material),
as well as the working definitions of CSCs and CSUs, should
be established at the time of contract negotiation. If during the
course of the design process a better method is discovered,
this should be coordinated with - and formally approved by -
the customer.

As a result of this project, some of our basic assumptions have
changed:

a. We had initially assumed that during preliminary design,
functional requirements should be mapped to physical Ada
software components (in the form of CSCS). Since CSCS were
essentially Ada library units, we found that the discovery of
new library units during detailed design required substantial
updates to Section 3 (Preliminary Design) of the SDD. Since
our document was 1800 pages in length, these updates were
not trivial. We now believe it is extremely desirable to
establish definitions of CSCs and CSUs that mitigate this
effect. Thus, in future projects, we intend to define CSCs as
purely logical units that will be less likely to change as the
result of detailed design activities.

b. We has also initially assumed that the SDD need not be
treated as a “bible,” but rather as a guide. However, depending
on SQA/lV&V/customer expectations, this can be a dangerous
assumption. Our customer adopted the attitude that our
adherence to the letter of the DID was a contractual issue. In

As a point of interest, our contract required 15 copies of each other words, if we didn’t strictly adhere to the DID, we were in
document to be delivered for each review. We had three reviews. This violation of the contract.

123

5. CONCLUSIONS

5.1 Usability of the SDD DID

We had originally wanted to use the 2167A SDD DID because
of the combination of explicit guidance and flexibility it provided.
However, we found its guidance restrictive in some cases, and vague in
others.

5.1 .l Flexibility

At first glance, the SDD DID appears to offer the promise of
great flexibility. This apparent flexibility takes several forms: the
tailoring instructions, the content and format instructions (paragraph
lO.l), the loose definition of key terms (such as CSC and CSIJ), and
finally, the comforting phrase “this standard is not intended to specify
or discourage the use of any particular software development method.
The contractor is responsible for selecting software development
methods _.. that best support the achievement of contract
requirements.” [2167A]. We felt this flexibility would enable us to
produce a comfortable, if not superior, design document tailored to
our design approach.

Unfortunately, we encountered several difficulties with taking
advantage of this perceived flexibility while producing a strictly DID-
compliant document. For example, our definition of a CSC as an Ada
library unit resulted in our inability to provide an accounting of the
execution control and data flow between CSCS as required by Section 3
of the DID. Specifically, packages do not strictly pass data among
themselves, nor is there any execution control between them. Rather,
this is accomplished at the CSU level. Thus, our diagrams that showed
library unit dependencies were considered by our customer to be
inadequate.

Another case in point is the document preparation instruction
stating “All paragraphs and subparagraphs starting with the phrase
‘This (sub)paragraph shall...’ may be written as multiple subparagraphs
to enhance readability. These subparagraphs shall be numbered
sequentially.” We felt this allowed us to add subordinate subparagraphs
where we felt they were needed. At the end of our contract, our
customer informed us that this phrase also required t?VC??y paragraph
in the document to be numbered.

Finally, we found that 2167A in general was lacking in its
documentation requirements for interactive systems. For esample,
there is no clean place to document the appearance and behavior of
the user interface. This is in sharp contrast with MIL-STD-7935, which
explicitly requires the documentation of input screen formats and
system report formats [7935].

5.1.2 Understandability

Much of the difficulty we had with understanding how to
satisfy the documentation requirements of the SDD DID originated in
the vagueness of many of the terms used in the DID. For example,
design limitations, design constraints, design specifications, design
requirements, and derived design requirements must be provided.
Unfortunately, neither a definition nor a statement of the purpose of
these terms are provided in the standard.

Naturally, this allows the unsavory condition to exist where the
customer can easily take issue with the working definitions established
by the contractor. For example, the standard states that CSUs must be
“separately testable”. Separate from what? In the final months of our
contract, we were strongly encouraged by our customer to redefine a
CSU to be any subprogram that didn’t perform calls to other
subprograms. To them, this was the essence of “separately testable.”

5.2 Summary

After our experiences in applying the 2167A SDD DID to an
Ada project, we feel we can safely make the following observations:

a. The consistent trust and goodwill of the customer towards
your design effort will be the single most important factor in
your ability to complete your project on time and within
budget. For example, Lease says they were “fortunate in
having a customer who did not demand a literal interpretation

of DOD-STD-2167, but rather was supportive of . . . attempts to
tailor DOD-STD-2167 for the proper use of Ada.” [LEA881

b. The selection of working definitions for CSCs and CSUs has
the largest impact on the manageability of the document and
the ability to satisfy the literal requirements of the DID.
Working definitions of CSCs and CSUs should be selected
with an eye towards minimizing the degree of change required
when additions of CSCS and/or CSUs are required as a natural
part of the design process.

C. The SDD DID provides veIy little solid ground to stand on
when a difference of opinion over interpretation arises - either
internally, among design team members, or externally, with the
customer or IV&V personnel.

d. The project’s design and development approach, as well as the
interpretation of the requirements of each contractually
required design document, should be incorporated into the
contract as a valid and binding document. This document
could be in the form of a Technical Proposal or a Software
Development Plan.

6. REFERENCES

[17031

[2167A]

[80012A]

[DEM79]

[ELL.89]

[LEA881

[MEA891

[SE1861

[SHUSS]

NSAICSS Software Products Standard Manual, April 15,
1987.

DOD-STD-2167A, Military Standard Defense System
Sofhvare Development, February 29, 1988.

DI-MCCR-80012A, Sojiiare Design Document,
February 29,1988.

DeMarco, T., Smcctured Analysis and System
Specification, Yourdon Press, Englewood Cliffs, NJ,
1979.

Ellison, K. S., and Goulet, W. J., “A Practical Approach
to Methodologies, Ada and DOD-STD-2167A,”
Proceedings of the Seventh Anmtal National Conference
on Ada Technology, Atlantic City, NJ, March 14-16,
1989, pp. 51-57.

Lease, D., “A Marriage of Convenience: Developing a
Practical APSE for Use with Ada and DOD-STD-2167”.
Proceedings of the Si~?h National Conference on Ada
Teclmology, Arlington, VA, March 14-17, 1988, pp. 57-
64.

Mead, N. R., and Lockhart, R. J., “Using a Multi-Level
Design Method Under DOD-STD-2167A,” Proceedings
of the Sirtll Washington Ada Symposiwn, Washington,
D.C., June 26-29,1989, pp. 21-38.

Seidewitz, E., and Stark, M., GeneraI Object-Oriented
Sofhvare Development, National Aeronautics and Space
Administration, Goddard Space Flight Center,
Greenbelt, MD, 1986.

Shumate, K., “Layered Virtual Machine/Object-
Oriented Design,” Proceedings of the Fifth Washington
Ada Symposium, Washington, DC, 1988, pp. 177-190.

124

