
A QUANTITATIVE EVALUATION 
OF INTERRUPT HANDLING CAPABILITIES IN ADA 

David G. Struble 
Texas Instruments Incorporated 

Dallas, Texas 

Michael J. Wagner 
Texas Instruments Incorporated 

Dallas, Texas 

ABSTRACT 

Projects considering the use of Ada for embedded weapon sys- 
tems have performance as their primary concern. Despite the 
genuine interest throughout industry to commit to Ada for 
reasons of portability and maintainability, the language is still 
viewed with reservations when being considered for use in applica- 
tions with high interrupt_ throughput or tasking requirements. 
There is increased demand from users for quantitative data on 
Ada’s ability to handle deadlines in realtime. Such data can be 
used as the basis for language and processor selections. This 
paper presents a summary of interrupt handling capabifities and 
quantitative interrupt benchmark measurements for three 
popular Ada compilers targeted to the Intel 80386 microproces- 
sor. 

INTRODUCTION 

The manner in which interrupt handling is implemented varies 
between compilers. Some allow the user to field interrupts using 
standard Ada tasking mechanisms, while others implement fast 
interfaces that circumvent some of the tasking functions al- 
together in favor of faster, more direct control. The latter ap- 
proach may involve machine code insertions or special pragmas. 
Where possible, this paper discusses both approaches for each 
compiler that offers the choice. In some cases, custom runtimes 
have been developed by vendors and interrupt response times 
through these interfaces are examined where appropriate. 

To date, this report appears to be one of the first of its kind to 
document quantitative information on interrupt handling 
through Ada. In fact, in the current draft of the Software En- 
gineering Institute’s Ada Compiler Selection Handbook, the 
author makes the following observations: 

“Interrupt handling is another feature [to be considered during 
compiler selection] that is important to most embedded system 
applications, but not to non-embedded systems. Interrupt latency 
and exit times as well as the functionality available in the interrupt 
service routine should be determined. It is difficult to include in 
test suites because there are many options for handling interrupts 
and special hardware is usually required to implement interrupts 
and to measure the time required to process interrupts. Interrupt 
handling is target architecture, compiler vendor, application, and 
programmer dependent.” 
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otherwise. or to republish, requires a fee an&or specific permission. 

INTERRUPT MANAGEMENT IN ADA 

Determining whether or not a given Ada compiler and target 
processor can adequately support interrupt demands in a real- 
time application requires attention to several points. Guidelines 
discussed in [2] suggest that any successful attempt at quantifying 
the interrupt handling capabilities of an Ada compiler must com- 
prehend the following: 

language support for interrupts 

availability offast intermp? pragmas 

time required to get to an interrupt service routine 
(If=) 

time required to return from an ISR 

deterministic nature of interrupt response times 

support for nested interrupts 

interrelationship of interrupt, hardware, and Ada 
task priority 

synchronization of ISR’s with other Ada tasks 

support for representation specifications 

BACKGROUND INFORMATION 

The objective of this interrupt trade study is to quantify time 
intervals in an interrupt scenario using different combinations of 
Ada compilers (runtimes) and target processors. This quantita- 
tive information can serve as the basis for either justifying a 
customer’s Ada requirement for a given application or showing 
that current compiler and runtime technology is not yet mature 
enough for time-critical, embedded applications of that type. 
The central concern among most projects continues to be Ada’s 
ability to perform efficiently in real-time. Reports like this are 
intended to answer those concerns and motivate a need among 
compiler vendors for improvements in compiler and runtime 
technology across popular targets. 

0 1989 ACM O-89791-329-9/89/001 O-061 0 $1.50 610 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74261.74308&domain=pdf&date_stamp=1989-01-03


DEFINING INTERRUPTS TO ADA 

The conventional approach to handling interrupts in Ada relies 
on Ada’s tasking model. The Ada language includes the notion 
of address clauses for establishing the connection between an 
absolute hardware address and a corresponding Ada object. In 
the context of interrupt handling, an address clause can be used 
to inform the Ada compiler of the address of an interrupt service 
routine (ISR) to be associated with a particular interrupt. This 
ls done by specifying the physical address of a location in an 
interrupt vector table or, in some cases, may specify the actual 
interrupt number. This location is then assigned the address of 
the corresponding ISR. Alternately, the Ada runtime may assign 
its own ISR address to a vector table entry and map to the user’s 
ISR during execution. 

As a simple example, the Intel 8086 processor maintains its 
interrupt vector table beginning at absolute location zero. Each 
entry in the table is four bytes long and consists of a 2-byte 
program counter offset value followed by a 2-byte segment selec- 
tor number. The four bytes beginning at absolute location 24H, 
for example, contain the address of the ISR used to service 
keyboard interrupts. To make the connection between interrupt 
vector location 24H and an ISR named REID-INTERRUPT, the 
following address clause would be used: 

for KBD-INTERRUPT use at 16#24#; 

The actual interpretation of an address ctause is system depend- 
ent, so the expression in the for-statement could specify an offset 
instead of an absolute location. In the current example, the 
for-statement serves only to identify a location to hold the address 
of the actual ISR, while the ISR itself is defined in terms of Ada’s 
tasking semantics. The following code segment shows how the 
address clause is associated with the corresponding entry in the 
task handling the interrupt: 

task KBD-ISR is 
entry KBD-INTERRUPT; 
for KBD-INTERRUPT use at 16#24#; 

end KBD-ISR; 

The above code serves as the specification portion of an Ada task 
that will run in response to a specific event (i.e., a keyboard 
interrupt). The body of the accept statement in the task named 
KBD-ISR will provide the actual sequence of steps needed to 
handle keyboard interrupts. Assume that the keyboard interrupt 
handler need only accept a keystroke and place it in the next 
available byte of a fmed length buffer. The Ada task needed to 
accomplish this could be written as shown below. 

with GBL; 
with DOS; 
task body KBD-ISR is 

CHAR : character; 
begin 

loop 
accept KBD-INTERRUPT do 

DCS.READ-FROM-KBD ( CHAR ); 
GBL.BUFF ( GBL.PTR ) := CHAR; 
GBL.PTR := GBL.PTR + 1; 
if GBL.PTR = GBL.MAX-PTR 

then GBL.BUF+OVFLOW : = TRUE; 
end if; 

end KBD-INTERRUPT; 
end loop; 

end KBD-ISR; 

Interrupts that are queued are considered as ordinary entry calls 
while interrupts that are lost if not processed immediately are 
considered as conditional entry calls. An interrupt can be ex- 
ecuted before any scheduling is done by the compiler to improve 
response time, i.e., scheduling activities can be deferred until after 
the interrupt is handled. 

The preceding example is oversimplified, but illustrates the basic 
Ada approach to implementing an interrupt handler. However, 
depending on the particular compiler and runtime being used, it 
is possible to implement IX’s more efficiently. Most Ada com- 
piler vendors now make custom runtime interfaces available that 
allow real-time embedded applications to be written more effi- 
ciently and with less or no concern for the overhead implicit in the 
standard tasking approach. 

INTERRUPT TASK CREATION AND ACTIVATION 

Tasks designed to handle interrupts are normal Ada tasks - 
normal in the sense that they behave in the same manner as any 
other task and are subject to the same scheduling criteria. In the 
example of the preceding section, the task named KBD-ISR will 
be activated when the application program is given control. As- 
suming that a keyboard interrupt is not pending at startup, the 
KBD-ISR task will be placed on the ready queue at a priority 
higher than any normal Ada task (for some runtime implementa- 
tions, task priority will not be adjusted until uj?er the interrupt.) 
When a keyboard interrupt occurs, the Ada runtime will attempt 
to activate the KBD-ISR subject to the restrictions imposed by 
the Ada tasking model. This context switch then passes control to 
the interrupt service routine which runs to completion or until a 
higher priority interrupt preempts the currently running ISR. 

It is important to make the distinction between the runtime’s ISR 
and the Ada task associated with the interrupt. The runtime ISR 
will cause the Ada task to be scheduled on the ready queue. The 
Ada task is blocked at the accept statement waiting for someone 
to rendezvous with it (usually the hardware interup, although it 
could be another Ada task). In other words, the runtime ISR 
simulates the rendezvous with the Ada task. 

This scenario applies in those cases where an ISR is designed to 
run within the normal framework of Ada tasking. Forfasr inter- 
rupt entries and certain custom runtime interfaces, the normal 
rescheduling and queue maintenance operations associated with 
the tasking model can be circumvented, but this is at the expense 
of producing very specific code that will be difficult to port to new 
compilers and targets. From the standpoint of efficiency, how- 
ever, the time savings can be substantial: the average time to 
rendezvous using a normal interrupt task (Intel compiler) is 264.8 
microseconds (based on 16 Mhz clock rate). Using afar interrupt 
interface, this time drops to 21.4 microseconds. 

Examples of alternative approaches to handling interrupts under 
different compiler configurations are presented in the sections 
that follow. 

VENDOR-SPECIFIC APPROACHES TO INTERRUPTS 

The details of implementing an interrupt handler are dependent 
on the target architecture and the individual compiler vendor. 
Nearly all of the vendors, except for Verdix, use the standard task 
structure for interrupt handling. An address clause is used to map 
a task entry to a physical interrupt. This is also dependent on the 
microprocessor architecture. The Intel SO386 has software tables 
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for the interrupt vectors and the address clause usually references 
an entry into this interrupt table. 

Since there is runtime overhead associated with the tasking struc- 
ture and the rendezvous concept, most of the compiler vendors 
provide a fasr interrupt handling method. The specific details of 
the implementation of a fast i.nterrupt handler vary for each 
vendor, but most use a pragma in the task specification to signal 
that a fast interrupt interface is to be generated by the compiler. 

DDC-I 

The DDC-I Ada compiler allows two methods of interrupt han- 
dling: the standard Ada method as defined in the LRM and a fast 
interrupt handler to capture interrupts more quickly. The corn- 
piler supports address clauses which allow the programmer to 
map the task entry to an entry in the 80386 Interrupt Descriptor 
Table (IDT). Both the normal interrupt method and the fast 
interrupt method use address clauses to assign a task as an 
interrupt handler. Each method has the same program structure, 
although the fast method requires use of the pragma INTER- 
RUPT-VDLER to distinguish the task from normal tasks. 
Thefast interrupt method puts some restrictions on how it can be 
used. The normal interrupt method allows the task to be used the 
same way as any other task and as an interrupt handler. 

DDC-I NORMAL INTERRUPT ENTRY 

When using the normal interrupt entry method to handle an 
interrupt, the interrupt vector is mapped ontoa normal condition- 
al entry call. In this manner, the task.can be used within the 
program environment just like any other tasks that are defined. 
There are only two constraints on the task structure: 

0 The affected entries must be defined in a task 
object only (not a task type) 

0 All entries of the task object must be single entries 
with no parameters 

When the interrupt handler task is linked in the main program, 
the compiler generates the necessary vector that is entered into 
the 80386 IDT. This interrupt vector points to a routine in the 
Ada nmtime that completes the necessary Ada context switch 
before giving control to the task entry. If the protected mode 
version of this compiler is used, then the user must modify a 
system build file to make entries into the 80386 IDT. Because 
this method is more flexible than the fast interrupt handling 
method, it takes longer to execute compared to the fast interrupt 
method. This is a result of having to complete an entire context 
switch as if it were a normal task switch. An example code section 
follows to illustrate the form of the task specification and body. 

with system; 
package INT-HANDLER-PACKAGE is 

task INT-HANDLER-TASK is 
entry INTERRUPT; 
for INTERRUPT use 

at (offset = 16#81#, segment = lS#OOOO#); 
end iNT_HANDLER-TASK; 

end INT-HANDLER-PACKAGE; 
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package body INT-liANDLER_PACKAGE is 
task body INT-HANDLER-TASK is 

begin 
loop 

accept INTERRUPT do 
- - code to handle interrupt is here 
end INTERRUPT; 

end loop; 
end INT-HANDLER-TASK; 

end INT-HANDLER-PACKAGE; 

DDC-I FAST INTERRUPT ENTRY 

The fast interrupt handler method is less flexible than the normal 
interrupt method, but because of this reduced flexibility, an in- 
crease in performance is realized. Thii method uses a pragma 
INTERRUPT_HANDLER to make the compiler transfer con- 
trol directly to the accept statement in the interrupt handler task. 
The constraints placed on the task when using this pragma are: 

a The affected entries must be defined in a task 
object only (not a task type) 

a The pragma must appear first in the specification 
of the task object 

a All entries of the task object must be single entries 
with no parameters 

l The entries must not be called from any other task 

The body of the task object must not contain anything other than 
simple accept statements (possibly in a loop) referencing only 
global variables, no local variables. In the statement lit of a 
simple accept statement, it is allowed to call simple, single and 
parameterless entries of other tasks, but no other tasking con- 
structs are allowed. The call to another task entry, in this case, will 
not lead to an immediate task context switch, but will return to 
the caller when complete. Once the accept is completed, the task 
priority rules will be obeyed and a context switch may occur. 

When the pragma INTERRUPT-HANDLER is used, the 
803% IDT segment is updated at link time. The entry in the IDT 
will be updated to point directly to the interrupt routine generated 
by the compiler to make the task entry call. This leads to faster 
response time in handling an interrupt and shorter context switch 
times. If the protected mode version of the compiler is used, then 
the user must modify a system build file to make entries into the 
80386 IDT. A short section of the code shown above is listed 
below to illustrate the location of the pragma INTER- 
RUPT-HANDLER in the context of the task specification. 

task INT-HANDLER-TASK is 
pragma INTERRUPT-HANDLER; 
- - above pragma applies to entry INTERRUPT 
entry INTERRUPT; 
for INTERRUPT use 

at (cffset = 16#81#, segment = lS#OOOO#) 
end INT-HANDLER-TASK; 

The remainder of the package specification and body is the same 
as the code section listed in the normal interrupt handler section. 

With the fast interrupt handling method, the compiler generates 
code to exit the interrupt handler and to call an end of interrupt 
routine. This routine checks to see if the interrupt was caused by 



the timer before exiting back to the interrupted program. This 
extra code is not necessary when the programmer knows that the 
interrupt was not caused by the timer and can be eliminated by 
adding a machine code insertion at the end of the interrupt 
handler. Thii procedure call takes care of the normal interrupt 
exit housekeeping - except for the timer check. The code 
generated by the compiler still includes the call to the end of 
interrupt routine, but since the code insertion ends with an IRET 
instruction, the compiler generated code never gets executed. 
This procedure was provided by DDC-I to improve the exit time 
for the fast interrupt handler. It is nor included in their normal 
compiler. They are planning, however, to eliminate the timer 
check in future releases. The following section of code shows what 
is necessary to accomplish this faster exit time. 

task body INT-HANDLER-TASK is 
begin 

iQoP 
accept INTERRUPT do 

- - code to handle interrupt is here 
FINISH-INTERRUPT; - - extra procedure 

end INTERRUPT; 
end loop; 

end INT-HANDLER-TASK; 

with machine-code; use machine-code; 
procedure FINISH-INTERRUPT is 

begin 
machine instruction’(register, m_POPD, GS); 
machine-instruction’(register, m_POPD, FS); 
machine-instruction’(register, m POPD, ES); 
machine-instruction’(register, mIPOPD, DS); 
machine-instruction’(none, m_POPA); 
machineIinstruction’(none, melRET); 

end FINISH-INTERRUPT; 

Performance measurements were made with and without this 
additional procedure. It is not included in the standard compiler 
package, but it can be used to improve the interrupt exit time. 

TELESOFT 

The Intel Ada386 compiler by TeleSoft allows two methods of 
interrupt handling: the standard Ada method as defined in the 
LRM and a fast method using a function mapped optimization to 
handle interrupts more quickly. The compiler uses address 
clauses to designate an interrupt entry. The address clause refers 
to the address of an interrupt descriptor in the 80386 Interrupt 
Descriptor Table (IDT) rather than the address of a physical 
interrupt vector. Both the standard method and the function 
mapped optimization method use address clauses to assign a task 
as an interrupt handler. 

Each method has the same program structure, but the function 
mapped optimization method requires the use of the pragma 
INTERRUPT (FUNCTION-MAPPING) to distinguish the 
task from normal tasks. The function mapped optimization 
method puts some restrictions on how it can be used, while the 
normal method allows the task to be used the same way as any 
other task, as well as to be used as an interrupt handler. The 
compiler also makes a provision for a synchronization optimizu- 
tion which causes the handler task to become ready to execute 
without requiring an actual context switch as part of servicing the 
interrupt. This optimization is applied in both methods of inter- 

rupt handling whenever possible and does not need to bc specified 
explicitly. 

When an interrupt occurs, the runtime enters the interrupt ser- 
vicing p&zdures with interrupts disabled. After the runtime 
determinesif the interrupt handler is a fast interrupt, it either gives 
control to the fast interrupt handler or does a full task context 
switch. The standard and function mapped interrupt handling 
methods are discussed below. 

TELESOFT NORMAL INTERRUPT ENTRY 

When using the normal interrupt entry method to handle an 
interrupt, the interrupt vector is mapped onto a normal condition- 
al entry call. In this manner, the task can be used within the 
program environment just like any other tasks that are defined. 
If the interrupt handler is not ready when an interrupt occurs, then 
a backup handler in a failure task is invoked instead. This failure 
handler can be explicitly defined just like any other interrupt 
handler. The normal interrupt handler does not have any restric- 
tions regarding what is allowed in the body of an accept statement. 
Although it is not suggested for an interrupt handler, the code 
could contain entry calls to other tasks or even delay statements. 
In the general case, this method of handling an interrupt requires 
a full Ada context switch to the interrupt handler task and then a 
full context switch back to the interrupted task when the rendez- 
vous is completed. A sample code section is shown below to 
illustrate the form of the task specification and body for both an 
interrupt handler and for a faiture handler. 

with INTERRUPT; 
package INT-HANDLER-PACKAGE is 

FAIL-DESC : INTERRUPT.FAILURE-DESCRIPTOR; 
INT-DESC : INTERRUPT.DESCRIPTOR 

:= INTERRUPT.SOURCE (16#27#, FAIL-DESC); 

task FAIL-HANDLER-TASK is 
entry UNHANDLED-INTERRUPT; 
for UNHANDLED INTERRUPT use 

at FAIL-DESE’address; 
end FAILURE-HANDLER-TASK; 

task INT-HANDLER-TASK is 
entry INTERRUPT; 
for INTERRUPT use 

at INT-DESC’address; 
end INT-HANDLER-TASK; 

end INT-HANDLER-PACKAGE; 

package body INT-HANDLER-PACKAGE is 
task body FAIL-HANDLER-TASK is 
begin 

accept UNHANDLED-INTERRUPT do 
- - code for unhandled 
- - interrupts is here 

end UNHANDLED-INTERRUPT; 
end FAIL-HANDLER-TASK; 



task body INT-HANDLER-TASK is 
begin 

accept INTERRUPT do 
- - code to handle interrupt 
__ is here 

end INTERRUPT; 
end INT-HANDLER-TASK; 

end INT-HANDLER-PACKAGE; 

TELESOFT FUNCTION MAPPED OPTIMIZATION 

The function mapped optimization method is less flexible than the 
normal interrupt method, but because of this reduced flexibility, 
an increase in performance is realized. This method uses the 
pragma INTERRUPT (FUNCTION-MAPPING) to make the 
compiler transfer control directly to the interrupt handler accept 
statement in the interrupt handler task via a function call. During 
elaboration of the task, the entry made in the IDT or interrupt 
table is a vector that points directly to the code generated by the 
compiler to handle the interrupt. When using this method of 
handling an interrupt, there are several restrictions placed on the 
types of structures allowed in the task. These constraints are: 

0 The accept statement cannot reference any 
dynamically allocated variables of the task 

l The accept statement cannot interact with other 
tasks during the rendezvous 

0 A priority cannot be specified for a function 
mapped task 

l The function mapped optimization can only be 
used with three constructs: a simple accept state- 
ment, a while loop enclosing a single accept, or a 
select statement that includes an interrupt accept 
alternative 

When the pragma INTERRUPT (FUNCTION-YAPPING) is 
used, the body of the accept statement is mapped into a function 
rather than a procedure. This is done so that the return value of 
the function can contain the value of the loop control expression. 
This value is used by the runtime to determine whether or not 
there will be another cycle through the loop. If the function 
returns a value of true, the task does not need to be rescheduled 
and this results in a fast exit from the interrupt handler. If the 
loop is completed, then rescheduling is necessary and is per- 
formed by the runtime. A short section of the code shown above 
is listed below to show the location of the pragma in the context 
of the task body. 

task body INT-HANDLER-TASK is 
begin 

pragma INTERRUPT (FUNCTION-MAPPING); 
accept INTERRUPT do 

- - code to handle interrupt is here 
end INTERRUPT; 

end INT-HANDLER-TASK; 

The package specification and the remainder of the package body 
are the same as the code section listed in the normal interrupt 
handler section. 

VERDtX 

The Verdix Ada compiler for 80386 targets allows only a single 
method of interrupt handling which is not the same as the method 
specified in the LRM. It also includes an extension facility using 
sign&s for communication between an interrupt handier and a 
task. The Verdix compiler has a runtime kernel that is linked 
separately from the user program. This kernel has several board 
specific support packages for configuration, interrupts, timer, and 
the operating system. Any interrupt handlers must bewith’ed into 
the kernel and are elaborated at the end of the kernel startup 
initialization. At this time, the interrupt handlers are attached to 
the hardware vectors. When an interrupt occurs, the CPU vec- 
tors directly to the interrupt handier with no runtime overhead. 
Since there is no kernel code added to the interrupt handler, the 
user must be careful to save any processor information that will 
be modified during the interrupt. This also requires the program 
to restore the processor state when it is finished. 

Verdix provides a subroutine that the interrupt handler can use 
to replace the interrupt vector at elaboration time. They also 
provide a shell interrupt handler which can be used as a template 
for the program’s interrupt handler routines. The interrupt hand- 
ier procedure saves the necessary machine states and then gives 
control to the user’s interrupt handler. After the interrupt is 
processed, control returns to the interrupt handler program and 
a call is made to the runtime kernel. The kernel finishes restoring 
the original machine state and gives control back to the inter- 
rupted program, not to the interrupt handler procedure. 

Control is passed to the interrupt handlerwith interruptsdisabled. 
During execution of the handler, interrupts can be enabled and 
disabled with the STI and CL1 instructions. The handler can also 
change the priority of the interrupt handler program. The kernel 
does not support exception handling, so any interrupt handler 
program must be compiled with constraint checks suppressed and 
should not explicitly raise an exception. If any floating point 
instructions are used, then the entire state of the floating point 
coprocessor must also be saved and restored. 

The Verdix kernel also supports signals to allow interrupt hand- 
lers to communicate with executing Ada tasks. A signal can be 
created for use in an interrupt handler and then the handler can 
post the signal when it gets executed. A normal Ada task can be 
used to have an entry that corresponds to the interrupt’s signal. 
When the signal is posted, the task containing the accept for that 
particular signal will get called and a rendezvous will occur. This 
task will essentially contain the code to handle the interrupt. The 
user’s interrupt handler can either handle the interrupt complete- 
ly or make use of the signal to process the interrupt. 

These tasks are not limited to being used as interrupt handlers. 
They can be used by other parts of the program just like any other 
task. The only restriction placed on interrupt entries is that they 
may not have parameters. This method is more flexible, but takes 
longer to execute since after the signal is posted, the interrupt 
handler continues and eventually calls the procedure COM- 
PLETE-INTERRUPT. Control is passed to the kernel and 
when it reschedules the tasks, it will find the signal pending and 
simulate a rendezvous with the associated task entry. The kernel 
does not provide any queuing mechanism for signals, hence if the 
signal is posted more than once before the rendezvous occurs, the 
extra interrupt events will be lost. 

If any data is to be used by both the interrupt handier and the user 
task, a portion of memory in a fixed location must be defined to 
contain shared variables. The kernel does not provide a method 



for protecting this data so a mechanism must be set up to prevent 
bad data at this area in the event that an interrupt occurs while 
the user task is reading or modifying the data. Verdix provides 
two routines, ENABLE-INTERRUPTS and DISABLE-IN- 
TERRUPTS, that the user task &in use to protect itself when it 
is accessing the shared data. Some sample code segments are 
listed in Figure 2 to illustrate the use of the interrupt handler, 
signals, tasks and a shared data structure. 

PERFORMAtiCE DATA 

This section of the report presents timings for the various inter- 
rupt handling methods just discussed. Results are shown for 
DDC-I version 4.2, Intel AdaP86 version 3.20.03, and Verdix 
VADS version 5.5, all targeted to the 80386. 

INTERRUPT TIMEUNE DEFINITIONS 

The interrupt response times documented in the results section 
show two values for each compiler/target combination. The first 
value, labeled Tl, is the time measured from the start of the 
processor’s interrupt acknowledge signal to the start of the first 
instruction of the interrupt service routine. This is the interru~~t 
latency or period during which runtimepPologue code is executing 
to prepare for handling the interrupt. When standard Ada tasking 
is used to implement the ISR, Tl will include the overhead 
involved for a context switch and any other task maintenance 
operations including enqueuing, updating, and dequeuing of the 
affected Task Control Blocks (TCB’s). 

Figure 1. Interrupt Timeline. 

The second value shown, T2, is the period following the interrupt 
service routine during which runtime epilogue code is executing 
to perform a context switch back to the originally interrupted 
program. Figure 1 shows the positions of Tl and ‘I2 on the 
interrupt timeline. When standard Ada tasking is used to imple- 
ment the ISR, T2 will include the overhead involved for another 
context switch and, again, any other task maintenance operations 
including enqueuing, updating, and dequeuing of the affected 
TCB’s. 

TEST SOFTWARE AND HARDWARE METHODOLOGY 

The primary objective of writing software to test Ada interrupt 
handling capabilities is to produce reliable and repeatable results 
showing the best possible performance of each compiler. This 
objective was met by writing a short program that actually causes 
an interrupt, not by having a random interrupt occur sometime 
while the program is executing. The details of each program are 

different for each compiler, but the basic idea is the same for all 
of them. 

With the 80386 target, a physical I/O pin was wire-wrapped to one 
of the interrupt input pins. The software consisted of a short main 
program and an Ada interrupt handling routine specific to the 
particular compiler. The main program had machine language 
insertions to toggle a pulse on the I/O pin and effectively cause an 
external interrupt. The interrupt handler was invoked by the 
runtime to handle the interrupt. When it was finished, the main 
program was able to complete execution. 

INTEL SBC386/31 BOARD 

The SBC386/31 board is a Multibus I single board computer with 
an Intel 80386 microprocessor and 80387 math coprocessor. The 
clock speed is normally 20 Mhz, but has been reduced to 16 Mhz 
to allow use of a I6 Mhz in-circuit emulator (ICE). The 
microprocessor includes a three stage pipeline to improve perfor- 
mance. The board contains three types of memory: dynamic 
RAM (DRAM), static RAM (SRAM) and EPROM. Since the 
clock speed has been reduced, the memory access times listed in 
the SBC386/31 board hardware reference manual do not apply 
for this modified configuration. SRAM is used in the on-board 
64K cache and is transparent to the user - no configuration 
options are available to alter it. The DRAM is configurable and 
occupies the lower 1 Mb of address space. The memory access 
times of the DRAM can vary as follows: 

0 312.5 nsec (3 wait-states) for DRAM access with 
no pipelining 

0 250 nsec (2 wait-states) for DRAM access with 
pipelining 

l 125 nsec (0 wait-states) for SRAM cache access 

The EPROMs used are Intel type 27512 and provide 128 Kb of 
ROM at the board’s highest addresses (FFFEOOOO to 
FFFFm). The board is configured to have 6 wait-states giving 
an access time of 500 nanoseconds with the board running at 16 
Mhz. 

HP LOGIC ANALYZER AND 80386 SOFTWARE 

All timing measurements were accomplished using a Hewlett- 
Packard 165OA logic analyzer with an 80386 microprocessor 
preprocessor interface and inverse assembly software. This con- 
figuration allows the capture of the interrupt acknowledge signal 
given by the microprocessor and the disassembly of every machine 
language instruction executed between the interrupt and the 
beginning of the interrupt handier. It also allows the capture of all 
the instructions executed between the end of the interrupt hand- 
ler and the point in the main program where execution was 
interrupted and resumed. 

The logic analyzer allows time-stamping of each instruction ex- 
ecuted and has a resolution of 10 nanoseconds. Timing measure- 
ments are gathered by comparing the printed output of the logic 
analyzer to the actual code generated by the compiler to verify 
where the interrupt handler was and then subtracting the dif- 
ference in the time-stamps. This method is used to measure the 
time both to enter and to exit the handler. 
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with SYSTEM; use SYSTEM; 

package SHARED-DATA is 

INTERRUPT-SIGNAL : constant : = 1; 
type COMMON-DATA-TYPE is record 

ELEMENT-1 : integer; 
ELEMENT-2 : integer; 

end record; 
COMMON-DATA : COMMON-DATA TYPE; 
for COMMON-DATA use at address&f (16#FO_OOO#); 

end SHARED-DATA; 

with SYSTEM; use SYSTEM; 
with SHARED-DATA; use SHARED-DATA; 
with INTR INTERFACE; 
with MACTi CONFIG; 
with MACHiNECODE; 

package body HANDLER-EXAMPLE is 

HANDLER ID : constant := 130; 
INTERRUPT SIGNAL : constant := 1; 
INT SIGNAL-ADDR : address; 
Al+CH NC ADDR : address := NO ADDR; 
DETACHINOIADDR : address := NOLADDR; 

procedure PROCESS-INTERRUPT is 
begin 

- - code for interrupt handler is inserted here 
- - modify common-data here 
intr~intetface.POST~SlGNAL(INT~SlGNAL_ADDR); 

end PROCESS-INTERRUPT; 

procedure INTERRUPT-HANDLER is 
pragma IMPLICIT-CODE (off); 
use MACHINE-CODE; 

begin 
- - Push all remaining registers (SS, ESP, EFLAGS, 
- - CS, and EIP are already saved by interrupt) 
code-l’(push, DS); 
code-l’(push, ES); 
code O’(op = pushad); 
- - Switch to kernel data segment (CS and SS are 

already switched to kernel segments by interrupt) 
code P’(mov, AX, +mach-config.KRN-DATA-SELECTOR); 
codeI2’(mov, DS, AX); 
code_2’(mov, ES, AX); 
- - Process interrupt 
code-l’(call, PROCESS-INTERRUPT’ref); 
- - Complete interrupt 
code-l’(call, intr-interfaceCOMPLETE-INTERRUPT’ref); 
- - No return back here 

end INTERRUPT-HANDLER; 

begin 

intr interface.REPiACE VECTOR(HANDLER ID, INTERRUPT-HANDLERaddress); 
IN-T- SIGNAL ADDR : = %tr interface.CREATl? SIGNAL 

IINTERRUPT-SIGNAL, WTACH-NO-ADD~$ DETACH-NO-ADDR); 

end HANDLER-EXAMPLE; 

Figure 2. Sample Verdix Interface. 
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with SHARED-DATA; use SHARED-DATA; 
with USER-STATUS; 

package body EXAMPLE-PACKAGE is 

task EXAMPLE-TASK is 
entry TASK-SIGNAL; 
for TASK-SIGNAL use at address’ref(iNTERRUPT-SIGNAL); 

end EXAMPLE-TASK; 

task body EXAMPLE-TASK is 
OLD-STATUS : USER-STATUS.STATUS-T; 

begin 
loop 

accept TASK-SIGNAL; 
USER-STATUS.DISABLE_INTERRUPTS(OLD-STATUS); 
- - code for interrupt handler 
- - read or modify common-data 
USERSTATUS.ENABLE-INTERRUPTS(OLD-STATUS); 

end loop; 
end EXAMPLE-TASK; 

end EXAMPLE-PACKAGE; 

Figure 2. Sample Verdix Interface (cont’d). 

SUMMARY OF COMPILERS TESTED 

DDC-I V4.2 (80386 TARGET) 

TI has been using a protected mode version of the compiler, but 
DDC-I also sells a version that operates in the real addressing 
mode of the 80386. The Ada compiler and linker are shipped with 
several extra tools, including a Program Library Utility, an EDT 
Editor Interface (EDA), a disassembler, and an extract tool. 
DDC-I also offers an optional cross debugger with windowing 
hosted on a VAX and an optional DARTS runtime system with 
Hard Deadline scheduling capability. 

The DDC-I compiler does require the use of VAX hosted Intel 
or compatible 80386 development tools, such as ASM386, 
BLD386, BND386, LIB386 and MAP386, which must be pur- 
chased separately. An alternative to the cross debugger for 
downloading is an In-Circuit Emulator, which is the method TI 
uses for debugging and executing. All source listings are provided 
by DDC-I so that the compiler can be configured for any 80386 
target hardware. 

INTEL V3.20.03 (SO386 TARGET) 

This compiler is a full production release and has been validated. 
Intel is providing customer support for the compiler although it 
was originally developed by Telesoft. The major components of 
the Ada-386 development system include an Ada compiler, 
library manager, binder, linker, object module tools, global op- 
timizer and source level debugger. Tbe system also includes 
numerous language tools including a cross reference utility, Ada 
source dependency lister, and source formatter (pretty printer). 
The execution environment is tailorable by the user for execution 
on several 80386 target machines. 

VERDIX V5.5 (803B6 TARGET) 

The Verdix Ada Development System (VADS) for Intel 80386 
targets is a full production release, validated Ada compiler. The 
system includes the software components for library manage- 
ment, compilation, program generation, object file analysis, 
debugging, source code formatting, and additional tools and 
libraries. 

RESULTS 

This section of the report presents interrupt response time meas- 
urements for the three compilers discussed previously. 

Figures 3 through 5 show the measured interrupt entry and exit 
time for each interrupt service method supported by each com- 
piler. 

In Figure 3, the value shown forfart infe@zce I includes exit code 
to check the timer; fmt interjkce 2 shows the exit code with the 
timer check removed. See the section on An+& of Generuted 
Code for additional information. 

Figure 4 shows the fast and slow response times for the Intel 
compiler. It appears that the unusually fast entry time for the 
interrupt handler is the result of the synchronization optimization 
mentioned in section 2.4.2. A longer interrupt entry time would 
be likely if the task had not been ready to accept the interrupt. 
Likewise, the exit time for the fast handler is just as long as the 
slow handler if the handler is not in a loop and rescheduling isdone 
on exit. 
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Figure 5 shows the results for Verdi on the 80386. The same 
interrupt handler was measured with the runtime kernel execut- 
ing from EPROM and from DRAM. The interrupt response 
time for the signal mechanism was not measured. 

Figure 6 shows the fastest combined interrupt entry/exit times for 
each of the 803% targeted compilers. As of this writing, the 
DDC-I compiler ,shows the best response times of all compilers 
tested. Recall that the original objective of this report was to 
establish whether or not Ada is capable of handling embedded 
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Figure 4. Intel. 
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Figure 5. Verdix. 
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Figure 6. Fastest Combined Entry/Exit Times. 

applications with high interrupt rates. The best combined 
entry/exit time measured for this report was 18.% microseconds 
and was observed using the DDC-I Ada-386 compiler. It should 
be noted that reported times can be affected depending on 
whether or not the measured code segment is completely cache 
resident. For this report, memory caches were enabled on those 
targets that used them. None of the benchmarks were executed 
with caches disabled. 

Figure 7 shows anticipated throughput values for an application 
using an interrupt handler whose duration ranges from 0.2 to 10 
milliseconds. Each ordinatevalue in the graph is computed by first 

Interrupt8 Per Second (N) (Thousand81 
5 , 
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Figure 7. interrupt Throughput. 



adding 18.96 microseconds to the corresponding x-value (con- 
verted to microseconds) and then calculating the maximum num- 
ber of interrupts per second. For example, to find the maximum 
number of interrupts per second that can be processed by an 
interrupt handler with a duration of 1 millisecond: 

lo6 / (18.96 + (1 X 109) = 981 

Put another way, if entry to an interrupt handler requires 9.56 
microseconds, exit from the handler requires 9.4 microseconds, 

lb CPU Utilization 

‘20ti 

96 196 294 392 490 636 636 73.5 003 991 

Interrupts Per Second 

Figure 8. CPU Utilization. 

and the interrupt service routine itself takes 1 millisecond, 
throughput will be approximately 981 interrupts per second. 

Another way to view interrupt throughput is to consider how 
much of the CPU is being utilized with respect to interrupt-driven 
activity alone. Figure 8 shows percentage of CPU utilization as a 
function of the number of interrupts per second processed (for 1 
millisecond ISR and 18.% microsecond combined entry and exit 
time). For example, at 588 interrupts per second, CPU utilization 
is approximately 60%, leaving 40% of the CPU time available for 
other tasks. 

ANALYSIS OF GENERATED CODE 

‘Both Intel and DDC-I have a similar fast interrupt mechanism. 
Each makes an entry into the IDT that points to the code in the 
body of the accept statement for the interrupt handler. The code 
executed on entry consists of pushing registers on the stack and 
setting up the correct segments for code and data. Both compilers 
generate code to determine which interrupt is being handled. Intel 
checks for a fast interrupt before entering the handler, causing its 
entry time to be longer. DDC-I checks for the timer after the 
interrupt code is executed, but claims this is not always necessary 
- a machine code insertion can be made for only the code that is 
needed, avoiding the extra instructions. This results in a 3.2 
microsecond improvement in exit time. 

Verdix handles interrupts still differently. The registers are 
pushed on the stack, segments are set up, and a call is made to the 

The amount of overhead code generated for an interrupt handler 
varies between compilers and it is important to understand what 
actually happens in the context switch before and after servicing 
an interrupt. 
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interrupt handler. On exit, COMPLETE-INTERRUPT is 
called to handle popping of registers from the stack and resetting 
of the segment registers to correct values. The variance in the 
numbers shown in the comparison between the kernel being in 
RAM and in ROM reflect the proportion of the code that is 
executed in ROM, i.e., the more code in ROM, the longer it takes 
to execute (EPROM is accessed with sixwait states while DRAM 
is accessed with at most three.) 

For the compilers that support normal interrupt handling, the 
code generated includes all the overhead necessary for normal 
Ada tasking. The interrupt is handled by using a mechanism to 
associate the interrupt with an entry call to the task interrupt 
handler. This simulated entry call is pointed-to by the interrupt 
vector. 

Additional details regarding the specific methods used by each 
compiler to implement its tasking functions were not investigated 
for this report. 

RUNTIME TRENDS 

Ada compilers and runtime systems continue to evolve, as do 
issues involving the applicability of Ada to real-time embedded 
systems. Alongstanding concern among developers has been that 
Ada’s existing mechanisms for handling multitasking, 
synchronization, interrupts, etc. are not efficient enough for real- 
time applications. In response to accusations of this type, vendors 
and special interest groups have worked toward defining custom 
runtimes and interfaces that allow more efficient use of Ada in 
timeGritical applications. 

BACKGROUND INFORMATION 

The use of non-Ada interfaces raises a number of questions 
regarding portability, reuse, and reliability. In the strictest sense, 
vendors that provide customized runtime interfaces are en- 
couraging the development of applications that are not 100% 
Ada. Furthermore, a customer may not accept applications that 
are not fully compliant with the existing Ada standard. Perfor- 
mance requirements imposed by the end user may not necessarily 
outweigh the importance of portability across multiple targets. 
Nevertheless, a case can be made for using custom runtime calls 
in those applications where meeting deadlines in real-time is 
critical. Calls to a custom runtime executive do present a more 
readable and less costly alternative to coding and integrating 
timecritica1 code sections in assembly language. 

The remaining paragraphs in this section present a brief overview 
of various custom runtime systems developed by DDC-I, Intel, 
and Verdix. 

VENDOR-SPECIFIC PROGRESS 

DDC-I DARTS 

The DDC-I Ada Runtime System (DARTS) for Intel 80x86 
targets does not implement a custom procedural interface to its 
runtime environment. Instead, DDC-I’s approach has been to 
highly optimize its runtime within the confines of the existing Ada 
tasking model. Based on the T-tests in the PIWG benchmark 
suite (see [l]), DDC-I’s performance is two to four times better 
than either Verdix or Intel. Despite this already significant ad- 
vantage in tasking efficiency, DDC-I provides extensions to its 



runtime that support the notion of hard &adline scheduling - 
the ability to guarantee reliability of real-time applications using 
tasking while maximizing processor utilization. Marketing infor- 
mation [16-181 obtained from DDC-I summarizes the rationale 
for these extensions as follows: 

“In a series of recent research papers, Carnegie-Mellon Univer- 
sity (CMU) has recommended that rate monotonic scheduling be 
used by tasking applications toguarantee meeting critical proccss- 
ing deadlines. Rate monotonic scheduling is a simple algorithm 
which assigns higher priorities to more frequently executed tasks. 
. . . CMU identified four issues in the Ada language which limit use 
of rate monotonic scheduling: fixed task priorities, arbitrary 
SELECT alternatives, FIFO queues, and priority inversion. . . . 
DDC-I has implemented the four solutions recommended by 
CMU which permit fuli use of rate monotonic scheduling in Ada 
[by adding support for] dynamic task priorities, priority SELECT 
alternatives, priority queues [and] priority inheritance.” 

According to DDC-I, measurements of rate monotonic schedul- 
ing demonstrate that processo r utilization can exceed 90% in 
some systems before critical deadlines are missed, where only 
30% processor utilization was achieved without rate monotonic 
scheduling. 

The hard deadline extensions are provided with a source code 
license to the DDC-I-Ada runtime system, 

INTEL IRMK 

iRMK is Intel’s real-time kernel for the 80386. The iRMK inter- 
face is a separately orderabie unit and consists of the Fe- 
IMPORTed iRMK kernel plus all the needed interface specs and 
documentation. According to marketing information published 
by Intel, iRMK features deterministic memory allocation, 
bounded interrupt latency times, and fast, efficient task 
synchronization mechanisms. In addition, iRMK offers direct 
access to Multibus- resources including message passing. 

iRMKdefines a cuL!r inteflace to support real-time programming 
in Ada. In particular, the calls interface allows the application 
programmer to use either Ada tasking or the iRMK kernel task- 
ing, but not both at the same time (this restriction to be removed 
in release 3.0). 

The iRMK real-time kernel (version 1) provides custom inter- 
faces for task, interrupt, and time management, as well as inter- 
task communication and synchronization, Multibus II message 
passing and Multibus II interconnect space management. 

Intel is in the process of negotiating a Release 3.0 product that 
will incorporate iRMK with the Ada-386 runtime environment. 
With this release, Ada calls to the Ada runtime environment will 
map into iRMK primitives (for example, the delay statement will 
invisibly map onto KN-SLEEP). Direct calls to iRMKwill still be 
supported. 

VERDIX VADS AND VRTX 

The Verdix Ada Development System (VADS) currently sup- 
ports Ready System’s VRTX (not evaluated in this report) as well 
as their own proprietary executive. The latter contains the pack- 
age MACHINE-CODE described in section 13.8 of the Ada 
LRM. Machine-code insertions provide, from within the Ada 
language, low-level access to processor features that are normally 
only accessible from assembly language. According to marketing 

information received from Verdi, VADS machine-code inser- 
tions provide features such as the ‘REF attribute, a full range of 
addressing modes, and parameters that enable the programmer 
to integrate the machinecode into surrounding code with mini- 
mal effort. 

SUMMARY AND CONCLUSIONS 

Based on measurements of interrupt throughput shown earlier in 
this report, it appears that Ada compiler and runtime technology 
have reached a level of maturity that can support embedded 
applications with relatively high interrupt rates. In particular,& 
hterrupt service routines rangingfrom 1 .O to 0.2 milliseconds dum- 
tin, an A& applicattin can real&e thmughput aging fmm 1000 
to &IO+ inlemcptsperse~ndus&J&he Intel80386. However, this 
level of throughput can only be demonstrated today using custom 
interrupt handler interfaces or runtimes that circumvent much of 
the overhead associated with the standard Ada tasking model. 
This implies non-portable, processordependent code that may 
not be acceptable to the end user. 

Consideration has been given to measurements in a single inter- 
rupt scenario. There are still questions to be answered regarding 
quantitative measurements of multiple, nested interrupt 
scenarios such as those required in a GPS receiver application. To 
model this type of application in the lab requires the ability to 
stimulate the external interrupt lines in real-time. Although this 
approach was not used to obtain data for this particular report, 
the single interrupt measurements still have considerable value in 
helping to establish a baseline for anticipated performance. 
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