
A QUANTITATIVE EVALUATION
OF INTERRUPT HANDLING CAPABILITIES IN ADA

David G. Struble
Texas Instruments Incorporated

Dallas, Texas

Michael J. Wagner
Texas Instruments Incorporated

Dallas, Texas

ABSTRACT

Projects considering the use of Ada for embedded weapon sys-
tems have performance as their primary concern. Despite the
genuine interest throughout industry to commit to Ada for
reasons of portability and maintainability, the language is still
viewed with reservations when being considered for use in applica-
tions with high interrupt_ throughput or tasking requirements.
There is increased demand from users for quantitative data on
Ada’s ability to handle deadlines in realtime. Such data can be
used as the basis for language and processor selections. This
paper presents a summary of interrupt handling capabifities and
quantitative interrupt benchmark measurements for three
popular Ada compilers targeted to the Intel 80386 microproces-
sor.

INTRODUCTION

The manner in which interrupt handling is implemented varies
between compilers. Some allow the user to field interrupts using
standard Ada tasking mechanisms, while others implement fast
interfaces that circumvent some of the tasking functions al-
together in favor of faster, more direct control. The latter ap-
proach may involve machine code insertions or special pragmas.
Where possible, this paper discusses both approaches for each
compiler that offers the choice. In some cases, custom runtimes
have been developed by vendors and interrupt response times
through these interfaces are examined where appropriate.

To date, this report appears to be one of the first of its kind to
document quantitative information on interrupt handling
through Ada. In fact, in the current draft of the Software En-
gineering Institute’s Ada Compiler Selection Handbook, the
author makes the following observations:

“Interrupt handling is another feature [to be considered during
compiler selection] that is important to most embedded system
applications, but not to non-embedded systems. Interrupt latency
and exit times as well as the functionality available in the interrupt
service routine should be determined. It is difficult to include in
test suites because there are many options for handling interrupts
and special hardware is usually required to implement interrupts
and to measure the time required to process interrupts. Interrupt
handling is target architecture, compiler vendor, application, and
programmer dependent.”

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publiyt!on and its date appear, and notlce is given that copying is by
permlsston of the Assoctation for Computing Machinery. To copy
otherwise. or to republish, requires a fee an&or specific permission.

INTERRUPT MANAGEMENT IN ADA

Determining whether or not a given Ada compiler and target
processor can adequately support interrupt demands in a real-
time application requires attention to several points. Guidelines
discussed in [2] suggest that any successful attempt at quantifying
the interrupt handling capabilities of an Ada compiler must com-
prehend the following:

language support for interrupts

availability offast intermp? pragmas

time required to get to an interrupt service routine
(If=)

time required to return from an ISR

deterministic nature of interrupt response times

support for nested interrupts

interrelationship of interrupt, hardware, and Ada
task priority

synchronization of ISR’s with other Ada tasks

support for representation specifications

BACKGROUND INFORMATION

The objective of this interrupt trade study is to quantify time
intervals in an interrupt scenario using different combinations of
Ada compilers (runtimes) and target processors. This quantita-
tive information can serve as the basis for either justifying a
customer’s Ada requirement for a given application or showing
that current compiler and runtime technology is not yet mature
enough for time-critical, embedded applications of that type.
The central concern among most projects continues to be Ada’s
ability to perform efficiently in real-time. Reports like this are
intended to answer those concerns and motivate a need among
compiler vendors for improvements in compiler and runtime
technology across popular targets.

0 1989 ACM O-89791-329-9/89/001 O-061 0 $1.50 610

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74261.74308&domain=pdf&date_stamp=1989-01-03

DEFINING INTERRUPTS TO ADA

The conventional approach to handling interrupts in Ada relies
on Ada’s tasking model. The Ada language includes the notion
of address clauses for establishing the connection between an
absolute hardware address and a corresponding Ada object. In
the context of interrupt handling, an address clause can be used
to inform the Ada compiler of the address of an interrupt service
routine (ISR) to be associated with a particular interrupt. This
ls done by specifying the physical address of a location in an
interrupt vector table or, in some cases, may specify the actual
interrupt number. This location is then assigned the address of
the corresponding ISR. Alternately, the Ada runtime may assign
its own ISR address to a vector table entry and map to the user’s
ISR during execution.

As a simple example, the Intel 8086 processor maintains its
interrupt vector table beginning at absolute location zero. Each
entry in the table is four bytes long and consists of a 2-byte
program counter offset value followed by a 2-byte segment selec-
tor number. The four bytes beginning at absolute location 24H,
for example, contain the address of the ISR used to service
keyboard interrupts. To make the connection between interrupt
vector location 24H and an ISR named REID-INTERRUPT, the
following address clause would be used:

for KBD-INTERRUPT use at 16#24#;

The actual interpretation of an address ctause is system depend-
ent, so the expression in the for-statement could specify an offset
instead of an absolute location. In the current example, the
for-statement serves only to identify a location to hold the address
of the actual ISR, while the ISR itself is defined in terms of Ada’s
tasking semantics. The following code segment shows how the
address clause is associated with the corresponding entry in the
task handling the interrupt:

task KBD-ISR is
entry KBD-INTERRUPT;
for KBD-INTERRUPT use at 16#24#;

end KBD-ISR;

The above code serves as the specification portion of an Ada task
that will run in response to a specific event (i.e., a keyboard
interrupt). The body of the accept statement in the task named
KBD-ISR will provide the actual sequence of steps needed to
handle keyboard interrupts. Assume that the keyboard interrupt
handler need only accept a keystroke and place it in the next
available byte of a fmed length buffer. The Ada task needed to
accomplish this could be written as shown below.

with GBL;
with DOS;
task body KBD-ISR is

CHAR : character;
begin

loop
accept KBD-INTERRUPT do

DCS.READ-FROM-KBD (CHAR);
GBL.BUFF (GBL.PTR) := CHAR;
GBL.PTR := GBL.PTR + 1;
if GBL.PTR = GBL.MAX-PTR

then GBL.BUF+OVFLOW : = TRUE;
end if;

end KBD-INTERRUPT;
end loop;

end KBD-ISR;

Interrupts that are queued are considered as ordinary entry calls
while interrupts that are lost if not processed immediately are
considered as conditional entry calls. An interrupt can be ex-
ecuted before any scheduling is done by the compiler to improve
response time, i.e., scheduling activities can be deferred until after
the interrupt is handled.

The preceding example is oversimplified, but illustrates the basic
Ada approach to implementing an interrupt handler. However,
depending on the particular compiler and runtime being used, it
is possible to implement IX’s more efficiently. Most Ada com-
piler vendors now make custom runtime interfaces available that
allow real-time embedded applications to be written more effi-
ciently and with less or no concern for the overhead implicit in the
standard tasking approach.

INTERRUPT TASK CREATION AND ACTIVATION

Tasks designed to handle interrupts are normal Ada tasks -
normal in the sense that they behave in the same manner as any
other task and are subject to the same scheduling criteria. In the
example of the preceding section, the task named KBD-ISR will
be activated when the application program is given control. As-
suming that a keyboard interrupt is not pending at startup, the
KBD-ISR task will be placed on the ready queue at a priority
higher than any normal Ada task (for some runtime implementa-
tions, task priority will not be adjusted until uj?er the interrupt.)
When a keyboard interrupt occurs, the Ada runtime will attempt
to activate the KBD-ISR subject to the restrictions imposed by
the Ada tasking model. This context switch then passes control to
the interrupt service routine which runs to completion or until a
higher priority interrupt preempts the currently running ISR.

It is important to make the distinction between the runtime’s ISR
and the Ada task associated with the interrupt. The runtime ISR
will cause the Ada task to be scheduled on the ready queue. The
Ada task is blocked at the accept statement waiting for someone
to rendezvous with it (usually the hardware interup, although it
could be another Ada task). In other words, the runtime ISR
simulates the rendezvous with the Ada task.

This scenario applies in those cases where an ISR is designed to
run within the normal framework of Ada tasking. Forfasr inter-
rupt entries and certain custom runtime interfaces, the normal
rescheduling and queue maintenance operations associated with
the tasking model can be circumvented, but this is at the expense
of producing very specific code that will be difficult to port to new
compilers and targets. From the standpoint of efficiency, how-
ever, the time savings can be substantial: the average time to
rendezvous using a normal interrupt task (Intel compiler) is 264.8
microseconds (based on 16 Mhz clock rate). Using afar interrupt
interface, this time drops to 21.4 microseconds.

Examples of alternative approaches to handling interrupts under
different compiler configurations are presented in the sections
that follow.

VENDOR-SPECIFIC APPROACHES TO INTERRUPTS

The details of implementing an interrupt handler are dependent
on the target architecture and the individual compiler vendor.
Nearly all of the vendors, except for Verdix, use the standard task
structure for interrupt handling. An address clause is used to map
a task entry to a physical interrupt. This is also dependent on the
microprocessor architecture. The Intel SO386 has software tables

611

for the interrupt vectors and the address clause usually references
an entry into this interrupt table.

Since there is runtime overhead associated with the tasking struc-
ture and the rendezvous concept, most of the compiler vendors
provide a fasr interrupt handling method. The specific details of
the implementation of a fast i.nterrupt handler vary for each
vendor, but most use a pragma in the task specification to signal
that a fast interrupt interface is to be generated by the compiler.

DDC-I

The DDC-I Ada compiler allows two methods of interrupt han-
dling: the standard Ada method as defined in the LRM and a fast
interrupt handler to capture interrupts more quickly. The corn-
piler supports address clauses which allow the programmer to
map the task entry to an entry in the 80386 Interrupt Descriptor
Table (IDT). Both the normal interrupt method and the fast
interrupt method use address clauses to assign a task as an
interrupt handler. Each method has the same program structure,
although the fast method requires use of the pragma INTER-
RUPT-VDLER to distinguish the task from normal tasks.
Thefast interrupt method puts some restrictions on how it can be
used. The normal interrupt method allows the task to be used the
same way as any other task and as an interrupt handler.

DDC-I NORMAL INTERRUPT ENTRY

When using the normal interrupt entry method to handle an
interrupt, the interrupt vector is mapped ontoa normal condition-
al entry call. In this manner, the task.can be used within the
program environment just like any other tasks that are defined.
There are only two constraints on the task structure:

0 The affected entries must be defined in a task
object only (not a task type)

0 All entries of the task object must be single entries
with no parameters

When the interrupt handler task is linked in the main program,
the compiler generates the necessary vector that is entered into
the 80386 IDT. This interrupt vector points to a routine in the
Ada nmtime that completes the necessary Ada context switch
before giving control to the task entry. If the protected mode
version of this compiler is used, then the user must modify a
system build file to make entries into the 80386 IDT. Because
this method is more flexible than the fast interrupt handling
method, it takes longer to execute compared to the fast interrupt
method. This is a result of having to complete an entire context
switch as if it were a normal task switch. An example code section
follows to illustrate the form of the task specification and body.

with system;
package INT-HANDLER-PACKAGE is

task INT-HANDLER-TASK is
entry INTERRUPT;
for INTERRUPT use

at (offset = 16#81#, segment = lS#OOOO#);
end iNT_HANDLER-TASK;

end INT-HANDLER-PACKAGE;

612

package body INT-liANDLER_PACKAGE is
task body INT-HANDLER-TASK is

begin
loop

accept INTERRUPT do
- - code to handle interrupt is here
end INTERRUPT;

end loop;
end INT-HANDLER-TASK;

end INT-HANDLER-PACKAGE;

DDC-I FAST INTERRUPT ENTRY

The fast interrupt handler method is less flexible than the normal
interrupt method, but because of this reduced flexibility, an in-
crease in performance is realized. Thii method uses a pragma
INTERRUPT_HANDLER to make the compiler transfer con-
trol directly to the accept statement in the interrupt handler task.
The constraints placed on the task when using this pragma are:

a The affected entries must be defined in a task
object only (not a task type)

a The pragma must appear first in the specification
of the task object

a All entries of the task object must be single entries
with no parameters

l The entries must not be called from any other task

The body of the task object must not contain anything other than
simple accept statements (possibly in a loop) referencing only
global variables, no local variables. In the statement lit of a
simple accept statement, it is allowed to call simple, single and
parameterless entries of other tasks, but no other tasking con-
structs are allowed. The call to another task entry, in this case, will
not lead to an immediate task context switch, but will return to
the caller when complete. Once the accept is completed, the task
priority rules will be obeyed and a context switch may occur.

When the pragma INTERRUPT-HANDLER is used, the
803% IDT segment is updated at link time. The entry in the IDT
will be updated to point directly to the interrupt routine generated
by the compiler to make the task entry call. This leads to faster
response time in handling an interrupt and shorter context switch
times. If the protected mode version of the compiler is used, then
the user must modify a system build file to make entries into the
80386 IDT. A short section of the code shown above is listed
below to illustrate the location of the pragma INTER-
RUPT-HANDLER in the context of the task specification.

task INT-HANDLER-TASK is
pragma INTERRUPT-HANDLER;
- - above pragma applies to entry INTERRUPT
entry INTERRUPT;
for INTERRUPT use

at (cffset = 16#81#, segment = lS#OOOO#)
end INT-HANDLER-TASK;

The remainder of the package specification and body is the same
as the code section listed in the normal interrupt handler section.

With the fast interrupt handling method, the compiler generates
code to exit the interrupt handler and to call an end of interrupt
routine. This routine checks to see if the interrupt was caused by

the timer before exiting back to the interrupted program. This
extra code is not necessary when the programmer knows that the
interrupt was not caused by the timer and can be eliminated by
adding a machine code insertion at the end of the interrupt
handler. Thii procedure call takes care of the normal interrupt
exit housekeeping - except for the timer check. The code
generated by the compiler still includes the call to the end of
interrupt routine, but since the code insertion ends with an IRET
instruction, the compiler generated code never gets executed.
This procedure was provided by DDC-I to improve the exit time
for the fast interrupt handler. It is nor included in their normal
compiler. They are planning, however, to eliminate the timer
check in future releases. The following section of code shows what
is necessary to accomplish this faster exit time.

task body INT-HANDLER-TASK is
begin

iQoP
accept INTERRUPT do

- - code to handle interrupt is here
FINISH-INTERRUPT; - - extra procedure

end INTERRUPT;
end loop;

end INT-HANDLER-TASK;

with machine-code; use machine-code;
procedure FINISH-INTERRUPT is

begin
machine instruction’(register, m_POPD, GS);
machine-instruction’(register, m_POPD, FS);
machine-instruction’(register, m POPD, ES);
machine-instruction’(register, mIPOPD, DS);
machine-instruction’(none, m_POPA);
machineIinstruction’(none, melRET);

end FINISH-INTERRUPT;

Performance measurements were made with and without this
additional procedure. It is not included in the standard compiler
package, but it can be used to improve the interrupt exit time.

TELESOFT

The Intel Ada386 compiler by TeleSoft allows two methods of
interrupt handling: the standard Ada method as defined in the
LRM and a fast method using a function mapped optimization to
handle interrupts more quickly. The compiler uses address
clauses to designate an interrupt entry. The address clause refers
to the address of an interrupt descriptor in the 80386 Interrupt
Descriptor Table (IDT) rather than the address of a physical
interrupt vector. Both the standard method and the function
mapped optimization method use address clauses to assign a task
as an interrupt handler.

Each method has the same program structure, but the function
mapped optimization method requires the use of the pragma
INTERRUPT (FUNCTION-MAPPING) to distinguish the
task from normal tasks. The function mapped optimization
method puts some restrictions on how it can be used, while the
normal method allows the task to be used the same way as any
other task, as well as to be used as an interrupt handler. The
compiler also makes a provision for a synchronization optimizu-
tion which causes the handler task to become ready to execute
without requiring an actual context switch as part of servicing the
interrupt. This optimization is applied in both methods of inter-

rupt handling whenever possible and does not need to bc specified
explicitly.

When an interrupt occurs, the runtime enters the interrupt ser-
vicing p&zdures with interrupts disabled. After the runtime
determinesif the interrupt handler is a fast interrupt, it either gives
control to the fast interrupt handler or does a full task context
switch. The standard and function mapped interrupt handling
methods are discussed below.

TELESOFT NORMAL INTERRUPT ENTRY

When using the normal interrupt entry method to handle an
interrupt, the interrupt vector is mapped onto a normal condition-
al entry call. In this manner, the task can be used within the
program environment just like any other tasks that are defined.
If the interrupt handler is not ready when an interrupt occurs, then
a backup handler in a failure task is invoked instead. This failure
handler can be explicitly defined just like any other interrupt
handler. The normal interrupt handler does not have any restric-
tions regarding what is allowed in the body of an accept statement.
Although it is not suggested for an interrupt handler, the code
could contain entry calls to other tasks or even delay statements.
In the general case, this method of handling an interrupt requires
a full Ada context switch to the interrupt handler task and then a
full context switch back to the interrupted task when the rendez-
vous is completed. A sample code section is shown below to
illustrate the form of the task specification and body for both an
interrupt handler and for a faiture handler.

with INTERRUPT;
package INT-HANDLER-PACKAGE is

FAIL-DESC : INTERRUPT.FAILURE-DESCRIPTOR;
INT-DESC : INTERRUPT.DESCRIPTOR

:= INTERRUPT.SOURCE (16#27#, FAIL-DESC);

task FAIL-HANDLER-TASK is
entry UNHANDLED-INTERRUPT;
for UNHANDLED INTERRUPT use

at FAIL-DESE’address;
end FAILURE-HANDLER-TASK;

task INT-HANDLER-TASK is
entry INTERRUPT;
for INTERRUPT use

at INT-DESC’address;
end INT-HANDLER-TASK;

end INT-HANDLER-PACKAGE;

package body INT-HANDLER-PACKAGE is
task body FAIL-HANDLER-TASK is
begin

accept UNHANDLED-INTERRUPT do
- - code for unhandled
- - interrupts is here

end UNHANDLED-INTERRUPT;
end FAIL-HANDLER-TASK;

task body INT-HANDLER-TASK is
begin

accept INTERRUPT do
- - code to handle interrupt
__ is here

end INTERRUPT;
end INT-HANDLER-TASK;

end INT-HANDLER-PACKAGE;

TELESOFT FUNCTION MAPPED OPTIMIZATION

The function mapped optimization method is less flexible than the
normal interrupt method, but because of this reduced flexibility,
an increase in performance is realized. This method uses the
pragma INTERRUPT (FUNCTION-MAPPING) to make the
compiler transfer control directly to the interrupt handler accept
statement in the interrupt handler task via a function call. During
elaboration of the task, the entry made in the IDT or interrupt
table is a vector that points directly to the code generated by the
compiler to handle the interrupt. When using this method of
handling an interrupt, there are several restrictions placed on the
types of structures allowed in the task. These constraints are:

0 The accept statement cannot reference any
dynamically allocated variables of the task

l The accept statement cannot interact with other
tasks during the rendezvous

0 A priority cannot be specified for a function
mapped task

l The function mapped optimization can only be
used with three constructs: a simple accept state-
ment, a while loop enclosing a single accept, or a
select statement that includes an interrupt accept
alternative

When the pragma INTERRUPT (FUNCTION-YAPPING) is
used, the body of the accept statement is mapped into a function
rather than a procedure. This is done so that the return value of
the function can contain the value of the loop control expression.
This value is used by the runtime to determine whether or not
there will be another cycle through the loop. If the function
returns a value of true, the task does not need to be rescheduled
and this results in a fast exit from the interrupt handler. If the
loop is completed, then rescheduling is necessary and is per-
formed by the runtime. A short section of the code shown above
is listed below to show the location of the pragma in the context
of the task body.

task body INT-HANDLER-TASK is
begin

pragma INTERRUPT (FUNCTION-MAPPING);
accept INTERRUPT do

- - code to handle interrupt is here
end INTERRUPT;

end INT-HANDLER-TASK;

The package specification and the remainder of the package body
are the same as the code section listed in the normal interrupt
handler section.

VERDtX

The Verdix Ada compiler for 80386 targets allows only a single
method of interrupt handling which is not the same as the method
specified in the LRM. It also includes an extension facility using
sign&s for communication between an interrupt handier and a
task. The Verdix compiler has a runtime kernel that is linked
separately from the user program. This kernel has several board
specific support packages for configuration, interrupts, timer, and
the operating system. Any interrupt handlers must bewith’ed into
the kernel and are elaborated at the end of the kernel startup
initialization. At this time, the interrupt handlers are attached to
the hardware vectors. When an interrupt occurs, the CPU vec-
tors directly to the interrupt handier with no runtime overhead.
Since there is no kernel code added to the interrupt handler, the
user must be careful to save any processor information that will
be modified during the interrupt. This also requires the program
to restore the processor state when it is finished.

Verdix provides a subroutine that the interrupt handler can use
to replace the interrupt vector at elaboration time. They also
provide a shell interrupt handler which can be used as a template
for the program’s interrupt handler routines. The interrupt hand-
ier procedure saves the necessary machine states and then gives
control to the user’s interrupt handler. After the interrupt is
processed, control returns to the interrupt handler program and
a call is made to the runtime kernel. The kernel finishes restoring
the original machine state and gives control back to the inter-
rupted program, not to the interrupt handler procedure.

Control is passed to the interrupt handlerwith interruptsdisabled.
During execution of the handler, interrupts can be enabled and
disabled with the STI and CL1 instructions. The handler can also
change the priority of the interrupt handler program. The kernel
does not support exception handling, so any interrupt handler
program must be compiled with constraint checks suppressed and
should not explicitly raise an exception. If any floating point
instructions are used, then the entire state of the floating point
coprocessor must also be saved and restored.

The Verdix kernel also supports signals to allow interrupt hand-
lers to communicate with executing Ada tasks. A signal can be
created for use in an interrupt handler and then the handler can
post the signal when it gets executed. A normal Ada task can be
used to have an entry that corresponds to the interrupt’s signal.
When the signal is posted, the task containing the accept for that
particular signal will get called and a rendezvous will occur. This
task will essentially contain the code to handle the interrupt. The
user’s interrupt handler can either handle the interrupt complete-
ly or make use of the signal to process the interrupt.

These tasks are not limited to being used as interrupt handlers.
They can be used by other parts of the program just like any other
task. The only restriction placed on interrupt entries is that they
may not have parameters. This method is more flexible, but takes
longer to execute since after the signal is posted, the interrupt
handler continues and eventually calls the procedure COM-
PLETE-INTERRUPT. Control is passed to the kernel and
when it reschedules the tasks, it will find the signal pending and
simulate a rendezvous with the associated task entry. The kernel
does not provide any queuing mechanism for signals, hence if the
signal is posted more than once before the rendezvous occurs, the
extra interrupt events will be lost.

If any data is to be used by both the interrupt handier and the user
task, a portion of memory in a fixed location must be defined to
contain shared variables. The kernel does not provide a method

for protecting this data so a mechanism must be set up to prevent
bad data at this area in the event that an interrupt occurs while
the user task is reading or modifying the data. Verdix provides
two routines, ENABLE-INTERRUPTS and DISABLE-IN-
TERRUPTS, that the user task &in use to protect itself when it
is accessing the shared data. Some sample code segments are
listed in Figure 2 to illustrate the use of the interrupt handler,
signals, tasks and a shared data structure.

PERFORMAtiCE DATA

This section of the report presents timings for the various inter-
rupt handling methods just discussed. Results are shown for
DDC-I version 4.2, Intel AdaP86 version 3.20.03, and Verdix
VADS version 5.5, all targeted to the 80386.

INTERRUPT TIMEUNE DEFINITIONS

The interrupt response times documented in the results section
show two values for each compiler/target combination. The first
value, labeled Tl, is the time measured from the start of the
processor’s interrupt acknowledge signal to the start of the first
instruction of the interrupt service routine. This is the interru~~t
latency or period during which runtimepPologue code is executing
to prepare for handling the interrupt. When standard Ada tasking
is used to implement the ISR, Tl will include the overhead
involved for a context switch and any other task maintenance
operations including enqueuing, updating, and dequeuing of the
affected Task Control Blocks (TCB’s).

Figure 1. Interrupt Timeline.

The second value shown, T2, is the period following the interrupt
service routine during which runtime epilogue code is executing
to perform a context switch back to the originally interrupted
program. Figure 1 shows the positions of Tl and ‘I2 on the
interrupt timeline. When standard Ada tasking is used to imple-
ment the ISR, T2 will include the overhead involved for another
context switch and, again, any other task maintenance operations
including enqueuing, updating, and dequeuing of the affected
TCB’s.

TEST SOFTWARE AND HARDWARE METHODOLOGY

The primary objective of writing software to test Ada interrupt
handling capabilities is to produce reliable and repeatable results
showing the best possible performance of each compiler. This
objective was met by writing a short program that actually causes
an interrupt, not by having a random interrupt occur sometime
while the program is executing. The details of each program are

different for each compiler, but the basic idea is the same for all
of them.

With the 80386 target, a physical I/O pin was wire-wrapped to one
of the interrupt input pins. The software consisted of a short main
program and an Ada interrupt handling routine specific to the
particular compiler. The main program had machine language
insertions to toggle a pulse on the I/O pin and effectively cause an
external interrupt. The interrupt handler was invoked by the
runtime to handle the interrupt. When it was finished, the main
program was able to complete execution.

INTEL SBC386/31 BOARD

The SBC386/31 board is a Multibus I single board computer with
an Intel 80386 microprocessor and 80387 math coprocessor. The
clock speed is normally 20 Mhz, but has been reduced to 16 Mhz
to allow use of a I6 Mhz in-circuit emulator (ICE). The
microprocessor includes a three stage pipeline to improve perfor-
mance. The board contains three types of memory: dynamic
RAM (DRAM), static RAM (SRAM) and EPROM. Since the
clock speed has been reduced, the memory access times listed in
the SBC386/31 board hardware reference manual do not apply
for this modified configuration. SRAM is used in the on-board
64K cache and is transparent to the user - no configuration
options are available to alter it. The DRAM is configurable and
occupies the lower 1 Mb of address space. The memory access
times of the DRAM can vary as follows:

0 312.5 nsec (3 wait-states) for DRAM access with
no pipelining

0 250 nsec (2 wait-states) for DRAM access with
pipelining

l 125 nsec (0 wait-states) for SRAM cache access

The EPROMs used are Intel type 27512 and provide 128 Kb of
ROM at the board’s highest addresses (FFFEOOOO to
FFFFm). The board is configured to have 6 wait-states giving
an access time of 500 nanoseconds with the board running at 16
Mhz.

HP LOGIC ANALYZER AND 80386 SOFTWARE

All timing measurements were accomplished using a Hewlett-
Packard 165OA logic analyzer with an 80386 microprocessor
preprocessor interface and inverse assembly software. This con-
figuration allows the capture of the interrupt acknowledge signal
given by the microprocessor and the disassembly of every machine
language instruction executed between the interrupt and the
beginning of the interrupt handier. It also allows the capture of all
the instructions executed between the end of the interrupt hand-
ler and the point in the main program where execution was
interrupted and resumed.

The logic analyzer allows time-stamping of each instruction ex-
ecuted and has a resolution of 10 nanoseconds. Timing measure-
ments are gathered by comparing the printed output of the logic
analyzer to the actual code generated by the compiler to verify
where the interrupt handler was and then subtracting the dif-
ference in the time-stamps. This method is used to measure the
time both to enter and to exit the handler.

615

with SYSTEM; use SYSTEM;

package SHARED-DATA is

INTERRUPT-SIGNAL : constant : = 1;
type COMMON-DATA-TYPE is record

ELEMENT-1 : integer;
ELEMENT-2 : integer;

end record;
COMMON-DATA : COMMON-DATA TYPE;
for COMMON-DATA use at address&f (16#FO_OOO#);

end SHARED-DATA;

with SYSTEM; use SYSTEM;
with SHARED-DATA; use SHARED-DATA;
with INTR INTERFACE;
with MACTi CONFIG;
with MACHiNECODE;

package body HANDLER-EXAMPLE is

HANDLER ID : constant := 130;
INTERRUPT SIGNAL : constant := 1;
INT SIGNAL-ADDR : address;
Al+CH NC ADDR : address := NO ADDR;
DETACHINOIADDR : address := NOLADDR;

procedure PROCESS-INTERRUPT is
begin

- - code for interrupt handler is inserted here
- - modify common-data here
intr~intetface.POST~SlGNAL(INT~SlGNAL_ADDR);

end PROCESS-INTERRUPT;

procedure INTERRUPT-HANDLER is
pragma IMPLICIT-CODE (off);
use MACHINE-CODE;

begin
- - Push all remaining registers (SS, ESP, EFLAGS,
- - CS, and EIP are already saved by interrupt)
code-l’(push, DS);
code-l’(push, ES);
code O’(op = pushad);
- - Switch to kernel data segment (CS and SS are

already switched to kernel segments by interrupt)
code P’(mov, AX, +mach-config.KRN-DATA-SELECTOR);
codeI2’(mov, DS, AX);
code_2’(mov, ES, AX);
- - Process interrupt
code-l’(call, PROCESS-INTERRUPT’ref);
- - Complete interrupt
code-l’(call, intr-interfaceCOMPLETE-INTERRUPT’ref);
- - No return back here

end INTERRUPT-HANDLER;

begin

intr interface.REPiACE VECTOR(HANDLER ID, INTERRUPT-HANDLERaddress);
IN-T- SIGNAL ADDR : = %tr interface.CREATl? SIGNAL

IINTERRUPT-SIGNAL, WTACH-NO-ADD~$ DETACH-NO-ADDR);

end HANDLER-EXAMPLE;

Figure 2. Sample Verdix Interface.

616

with SHARED-DATA; use SHARED-DATA;
with USER-STATUS;

package body EXAMPLE-PACKAGE is

task EXAMPLE-TASK is
entry TASK-SIGNAL;
for TASK-SIGNAL use at address’ref(iNTERRUPT-SIGNAL);

end EXAMPLE-TASK;

task body EXAMPLE-TASK is
OLD-STATUS : USER-STATUS.STATUS-T;

begin
loop

accept TASK-SIGNAL;
USER-STATUS.DISABLE_INTERRUPTS(OLD-STATUS);
- - code for interrupt handler
- - read or modify common-data
USERSTATUS.ENABLE-INTERRUPTS(OLD-STATUS);

end loop;
end EXAMPLE-TASK;

end EXAMPLE-PACKAGE;

Figure 2. Sample Verdix Interface (cont’d).

SUMMARY OF COMPILERS TESTED

DDC-I V4.2 (80386 TARGET)

TI has been using a protected mode version of the compiler, but
DDC-I also sells a version that operates in the real addressing
mode of the 80386. The Ada compiler and linker are shipped with
several extra tools, including a Program Library Utility, an EDT
Editor Interface (EDA), a disassembler, and an extract tool.
DDC-I also offers an optional cross debugger with windowing
hosted on a VAX and an optional DARTS runtime system with
Hard Deadline scheduling capability.

The DDC-I compiler does require the use of VAX hosted Intel
or compatible 80386 development tools, such as ASM386,
BLD386, BND386, LIB386 and MAP386, which must be pur-
chased separately. An alternative to the cross debugger for
downloading is an In-Circuit Emulator, which is the method TI
uses for debugging and executing. All source listings are provided
by DDC-I so that the compiler can be configured for any 80386
target hardware.

INTEL V3.20.03 (SO386 TARGET)

This compiler is a full production release and has been validated.
Intel is providing customer support for the compiler although it
was originally developed by Telesoft. The major components of
the Ada-386 development system include an Ada compiler,
library manager, binder, linker, object module tools, global op-
timizer and source level debugger. Tbe system also includes
numerous language tools including a cross reference utility, Ada
source dependency lister, and source formatter (pretty printer).
The execution environment is tailorable by the user for execution
on several 80386 target machines.

VERDIX V5.5 (803B6 TARGET)

The Verdix Ada Development System (VADS) for Intel 80386
targets is a full production release, validated Ada compiler. The
system includes the software components for library manage-
ment, compilation, program generation, object file analysis,
debugging, source code formatting, and additional tools and
libraries.

RESULTS

This section of the report presents interrupt response time meas-
urements for the three compilers discussed previously.

Figures 3 through 5 show the measured interrupt entry and exit
time for each interrupt service method supported by each com-
piler.

In Figure 3, the value shown forfart infe@zce I includes exit code
to check the timer; fmt interjkce 2 shows the exit code with the
timer check removed. See the section on An+& of Generuted
Code for additional information.

Figure 4 shows the fast and slow response times for the Intel
compiler. It appears that the unusually fast entry time for the
interrupt handler is the result of the synchronization optimization
mentioned in section 2.4.2. A longer interrupt entry time would
be likely if the task had not been ready to accept the interrupt.
Likewise, the exit time for the fast handler is just as long as the
slow handler if the handler is not in a loop and rescheduling isdone
on exit.

617

Time In Mlcroaeconda

:

,
Fart Interface 1 Fast Interface 2

S.66 8.66

12.64 9.4

Normal Talking

62.92

60.64

- ENTRY m EXIT

Figure 3. DDC-I.

Time in Mlcrorecondr
1000 ::::::::::::::::::::::::::::::-:::::::::~~~~~~:;~:;::.~~~~~:~::;:~~~~~~~~~~~.~~;.::;:::::~~~~~~~:;:::~~~~~~~~~

100

10

1

ENTRY
EXIT

Function Mapped

13.66
7.66

Normal Tasking

13.66
261.8

1
Figure 5 shows the results for Verdi on the 80386. The same
interrupt handler was measured with the runtime kernel execut-
ing from EPROM and from DRAM. The interrupt response
time for the signal mechanism was not measured.

Figure 6 shows the fastest combined interrupt entry/exit times for
each of the 803% targeted compilers. As of this writing, the
DDC-I compiler ,shows the best response times of all compilers
tested. Recall that the original objective of this report was to
establish whether or not Ada is capable of handling embedded

I - ENTRY m EXIT

Figure 4. Intel.

Time in Mlcrorecondr
25

1”

ENTRY L- EXIT

Kernel In RAM

13.00

11.44

Kernel in ROM

16.56

23.72

Figure 5. Verdix.

Time In MiCrOEeCOnd8
30

26 .,. 20
:Y#Iq ###;~.~r~~I 1

ENTRY EXIT 1 TOTAL TIME

DDC-I 946 9.4 18.96

Intel 13.66 7.60 21.44
Wrdix 13.86 11.44 25.32

m DDC-I m Intel m Verdix

Figure 6. Fastest Combined Entry/Exit Times.

applications with high interrupt rates. The best combined
entry/exit time measured for this report was 18.% microseconds
and was observed using the DDC-I Ada-386 compiler. It should
be noted that reported times can be affected depending on
whether or not the measured code segment is completely cache
resident. For this report, memory caches were enabled on those
targets that used them. None of the benchmarks were executed
with caches disabled.

Figure 7 shows anticipated throughput values for an application
using an interrupt handler whose duration ranges from 0.2 to 10
milliseconds. Each ordinatevalue in the graph is computed by first

Interrupt8 Per Second (N) (Thousand81
5 ,

ISR Duration in Millisecorids

Figure 7. interrupt Throughput.

adding 18.96 microseconds to the corresponding x-value (con-
verted to microseconds) and then calculating the maximum num-
ber of interrupts per second. For example, to find the maximum
number of interrupts per second that can be processed by an
interrupt handler with a duration of 1 millisecond:

lo6 / (18.96 + (1 X 109) = 981

Put another way, if entry to an interrupt handler requires 9.56
microseconds, exit from the handler requires 9.4 microseconds,

lb CPU Utilization

‘20ti

96 196 294 392 490 636 636 73.5 003 991

Interrupts Per Second

Figure 8. CPU Utilization.

and the interrupt service routine itself takes 1 millisecond,
throughput will be approximately 981 interrupts per second.

Another way to view interrupt throughput is to consider how
much of the CPU is being utilized with respect to interrupt-driven
activity alone. Figure 8 shows percentage of CPU utilization as a
function of the number of interrupts per second processed (for 1
millisecond ISR and 18.% microsecond combined entry and exit
time). For example, at 588 interrupts per second, CPU utilization
is approximately 60%, leaving 40% of the CPU time available for
other tasks.

ANALYSIS OF GENERATED CODE

‘Both Intel and DDC-I have a similar fast interrupt mechanism.
Each makes an entry into the IDT that points to the code in the
body of the accept statement for the interrupt handler. The code
executed on entry consists of pushing registers on the stack and
setting up the correct segments for code and data. Both compilers
generate code to determine which interrupt is being handled. Intel
checks for a fast interrupt before entering the handler, causing its
entry time to be longer. DDC-I checks for the timer after the
interrupt code is executed, but claims this is not always necessary
- a machine code insertion can be made for only the code that is
needed, avoiding the extra instructions. This results in a 3.2
microsecond improvement in exit time.

Verdix handles interrupts still differently. The registers are
pushed on the stack, segments are set up, and a call is made to the

The amount of overhead code generated for an interrupt handler
varies between compilers and it is important to understand what
actually happens in the context switch before and after servicing
an interrupt.

619

interrupt handler. On exit, COMPLETE-INTERRUPT is
called to handle popping of registers from the stack and resetting
of the segment registers to correct values. The variance in the
numbers shown in the comparison between the kernel being in
RAM and in ROM reflect the proportion of the code that is
executed in ROM, i.e., the more code in ROM, the longer it takes
to execute (EPROM is accessed with sixwait states while DRAM
is accessed with at most three.)

For the compilers that support normal interrupt handling, the
code generated includes all the overhead necessary for normal
Ada tasking. The interrupt is handled by using a mechanism to
associate the interrupt with an entry call to the task interrupt
handler. This simulated entry call is pointed-to by the interrupt
vector.

Additional details regarding the specific methods used by each
compiler to implement its tasking functions were not investigated
for this report.

RUNTIME TRENDS

Ada compilers and runtime systems continue to evolve, as do
issues involving the applicability of Ada to real-time embedded
systems. Alongstanding concern among developers has been that
Ada’s existing mechanisms for handling multitasking,
synchronization, interrupts, etc. are not efficient enough for real-
time applications. In response to accusations of this type, vendors
and special interest groups have worked toward defining custom
runtimes and interfaces that allow more efficient use of Ada in
timeGritical applications.

BACKGROUND INFORMATION

The use of non-Ada interfaces raises a number of questions
regarding portability, reuse, and reliability. In the strictest sense,
vendors that provide customized runtime interfaces are en-
couraging the development of applications that are not 100%
Ada. Furthermore, a customer may not accept applications that
are not fully compliant with the existing Ada standard. Perfor-
mance requirements imposed by the end user may not necessarily
outweigh the importance of portability across multiple targets.
Nevertheless, a case can be made for using custom runtime calls
in those applications where meeting deadlines in real-time is
critical. Calls to a custom runtime executive do present a more
readable and less costly alternative to coding and integrating
timecritica1 code sections in assembly language.

The remaining paragraphs in this section present a brief overview
of various custom runtime systems developed by DDC-I, Intel,
and Verdix.

VENDOR-SPECIFIC PROGRESS

DDC-I DARTS

The DDC-I Ada Runtime System (DARTS) for Intel 80x86
targets does not implement a custom procedural interface to its
runtime environment. Instead, DDC-I’s approach has been to
highly optimize its runtime within the confines of the existing Ada
tasking model. Based on the T-tests in the PIWG benchmark
suite (see [l]), DDC-I’s performance is two to four times better
than either Verdix or Intel. Despite this already significant ad-
vantage in tasking efficiency, DDC-I provides extensions to its

runtime that support the notion of hard &adline scheduling -
the ability to guarantee reliability of real-time applications using
tasking while maximizing processor utilization. Marketing infor-
mation [16-181 obtained from DDC-I summarizes the rationale
for these extensions as follows:

“In a series of recent research papers, Carnegie-Mellon Univer-
sity (CMU) has recommended that rate monotonic scheduling be
used by tasking applications toguarantee meeting critical proccss-
ing deadlines. Rate monotonic scheduling is a simple algorithm
which assigns higher priorities to more frequently executed tasks.
. . . CMU identified four issues in the Ada language which limit use
of rate monotonic scheduling: fixed task priorities, arbitrary
SELECT alternatives, FIFO queues, and priority inversion. . . .
DDC-I has implemented the four solutions recommended by
CMU which permit fuli use of rate monotonic scheduling in Ada
[by adding support for] dynamic task priorities, priority SELECT
alternatives, priority queues [and] priority inheritance.”

According to DDC-I, measurements of rate monotonic schedul-
ing demonstrate that processo r utilization can exceed 90% in
some systems before critical deadlines are missed, where only
30% processor utilization was achieved without rate monotonic
scheduling.

The hard deadline extensions are provided with a source code
license to the DDC-I-Ada runtime system,

INTEL IRMK

iRMK is Intel’s real-time kernel for the 80386. The iRMK inter-
face is a separately orderabie unit and consists of the Fe-
IMPORTed iRMK kernel plus all the needed interface specs and
documentation. According to marketing information published
by Intel, iRMK features deterministic memory allocation,
bounded interrupt latency times, and fast, efficient task
synchronization mechanisms. In addition, iRMK offers direct
access to Multibus- resources including message passing.

iRMKdefines a cuL!r inteflace to support real-time programming
in Ada. In particular, the calls interface allows the application
programmer to use either Ada tasking or the iRMK kernel task-
ing, but not both at the same time (this restriction to be removed
in release 3.0).

The iRMK real-time kernel (version 1) provides custom inter-
faces for task, interrupt, and time management, as well as inter-
task communication and synchronization, Multibus II message
passing and Multibus II interconnect space management.

Intel is in the process of negotiating a Release 3.0 product that
will incorporate iRMK with the Ada-386 runtime environment.
With this release, Ada calls to the Ada runtime environment will
map into iRMK primitives (for example, the delay statement will
invisibly map onto KN-SLEEP). Direct calls to iRMKwill still be
supported.

VERDIX VADS AND VRTX

The Verdix Ada Development System (VADS) currently sup-
ports Ready System’s VRTX (not evaluated in this report) as well
as their own proprietary executive. The latter contains the pack-
age MACHINE-CODE described in section 13.8 of the Ada
LRM. Machine-code insertions provide, from within the Ada
language, low-level access to processor features that are normally
only accessible from assembly language. According to marketing

information received from Verdi, VADS machine-code inser-
tions provide features such as the ‘REF attribute, a full range of
addressing modes, and parameters that enable the programmer
to integrate the machinecode into surrounding code with mini-
mal effort.

SUMMARY AND CONCLUSIONS

Based on measurements of interrupt throughput shown earlier in
this report, it appears that Ada compiler and runtime technology
have reached a level of maturity that can support embedded
applications with relatively high interrupt rates. In particular,&
hterrupt service routines rangingfrom 1 .O to 0.2 milliseconds dum-
tin, an A& applicattin can real&e thmughput aging fmm 1000
to &IO+ inlemcptsperse~ndus&J&he Intel80386. However, this
level of throughput can only be demonstrated today using custom
interrupt handler interfaces or runtimes that circumvent much of
the overhead associated with the standard Ada tasking model.
This implies non-portable, processordependent code that may
not be acceptable to the end user.

Consideration has been given to measurements in a single inter-
rupt scenario. There are still questions to be answered regarding
quantitative measurements of multiple, nested interrupt
scenarios such as those required in a GPS receiver application. To
model this type of application in the lab requires the ability to
stimulate the external interrupt lines in real-time. Although this
approach was not used to obtain data for this particular report,
the single interrupt measurements still have considerable value in
helping to establish a baseline for anticipated performance.

REFERENCES

1. Texas Instruments Incorporated, Software Systems Technol-
ogy. Ada Compiler Benchmark Report Version Z.Z. October 1988.

2. N. Weiderman.Ada Compiler Selection Handbook Version I.0
(DRAFT). Real-Time Embedded System Testbed Project,
Software Engineering Institute, March 1989 (unpublished tech-
nical report).

3. D. Bryan. “DearAda”. Ada Letters, July-August 1988, Volume
VIII, Number 4.

4. J.R. Hunt. Interrupts und Ada Ada Letters, 1988 Special
Edition, Volume VIII, Number 7.

5. Ada Joint Program Office. Ada Programming Language
(ANWMZL-STDZllZSA-1983). Department of Defense, Ada
Joint Program Office, Washington, D.C., February 17,1983. The
official reference manual for the Ada programming language.

6. E-W. Olsen and S.B. Whitehill.AdaforProgrammers. Reston
Publishing Company, Inc. Reston, Virginia; 1983.

7. Intel Corporation. Ada-386 User’s Guide for VAXIVMS Sys-
tems. Order No. 481048-002; 1988.

8. Verdix Corporaticn. VADS Verdix Ada Development System
Version 5.5 for i!MS L1PX80386, VAda-OlO-03315; November
1987.

9. DDC-International. DDC-IAda CompilerSystem User’s Guide
for DACS-80x86, Document No. DDC-I 58Ol/RPT/62, Issue 9,
April 18, 1988.

10. Intel Corporation. iSBC 386131 Single Board Computer
Hardware Reference Manual, Order No. 453452-001,1987.

11. D. Comhill and L. Sha. Rio&y Inversion in Ado or What
Should be the Priority of an Ada Server Task? Carnegie-Mellon
University, Department of Computer Science. Internal research
paper.

12. D. Cornhill, et al. Limitations ofAda forReal-Time Schedul-
ing. Carnegie-Mellon University, Department of Computer
Science. Internal research paper.

13. L. Sha, J. P. Lehoczky, R. Rajkumar. Tmk Scheduling in
Distributed Real-Time Systems Carnegie-Mellon University,
Department of Computer Science. Internal research paper.

14. Texas Instruments Incorporated, Software Systems Technol-
ogy. A Real-Time Programmers Guide to Ada, SP43-EG87,
December 1987.

Information contained in this article is deemed reliable. In no
event shall Texas Instruments be liable to anyone for special,
collateral, incidental, or consequential damages in connection
with or arising out of the use of this information. Data for this
article was obtained with the latest versions of the DDC-I, Intel,
and Verdix compilers available in February 1989.

Product and company names referenced in this article are
generally trademarks of their respective companies.

ABOUT THE AUTHORS:

DAVID G. STRUBLE is the Ada Technology Section Manager in
the Military Computer Systems Department at Texas Instru-
ments and is responsible for steering Ada support activities within
TI. He received a B.S. degree in mathematics and computer
science from the University of Dayton and the M.S. degree in
computer and information sciences from The Ohio State Univer-
sity. Author’s Present Address: Texas Instruments Incorporated,
P.O. 869305 Mail Station 8435, Plano, TX 75086.

MICHAEL J. WAGNER is a member of the Ada Applications
Work Group, Ada Technology Section, in the Military Computer
Systems Department at Texas Instruments. Mr. Wagner is
responsible for evaluation of Ada compilers and target architec-
tures for use in embedded weapon systems. He received a B.S.
degree in electrical engineering from Iowa State University in
1988. Author’s Present Address: Texas Instruments Incor-
porated, P.O. Box 869305 Mail Station 8435, Plano, TX 75086.

621

