
~ ' Computer Graphics, Volume 23, Number 3, July 1989

The Pixel Machine: A Parallel Image Computer

Michael Potmesil and Eric M. Hoffert

AT& T Bell Laboratories
Holmdel, New Jersey

Abstract

We describe the system architecture and the programming
environment of the Pixel Machine - a parallel image computer
with a distributed frame buffer.

The architecture of the computer is based on an array of asyn-
chronous MIMD nodes with parallel access to a large frame
buffer. The machine consists of a pipeline of pipe nodes
which execute sequential algorithms and an array of m x n
pixel nodes which execute parallel algorithms. A pixel node
directly accesses every m-th pixel on every n-th scan line of an
interleaved frame buffer. Each processing node is based on a
high-speed, floating-point programmable processor.

The programmability of the computer allows all algorithms to
be implemented in software. We present the mappings of a
number of geometry and image-computing algorithms onto the
machine and analyze their performance.

CR Categories and Subject Descriptors: C.1.2 [Processor
Architectures]: Multiprocessors - MIMD processors - parallel
processors - pipeline processors; D.4.2 [Operating Systems]:
Storage Management - distributed memories - virtual memory;
1.3.1 [Computer Graphics]: Hardware Architecture - raster
display devices; 1.3.3 [Computer Graphics]: Picture/Image
Generation - display algorithms; 1.3.7 [Computer Graphics]:
Three Dimensional Graphics and Realism - animation - visible
line/sulface algorithms; 1.4.0 [Image Processing]: General -
image displays.

General Terms: Parallel, Pipeline, Architecture, Algorithms,
Geometry and Image Computing, Shared Memory, Distributed
Memory, Interleaved Memory, Virtual Memory, Message Pass-
ing.

Additional Key Words and Phrases: Active server, passive
server, virtual node, virtual shared memory, virtual display
lists, virtual volumes, virtual textures, parallel paging.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1989 ACM -0- 89791-312-4/89/007/0069 $00.75

1. Introduction

As computing technology progressed, it became apparent that
even the most powerful computers available, built on principles
devised by John von Neumann in the early 1940s, are reaching
the limits of their speed imposed by the constraints of physical
laws. The single-processor model executing only at most one
instruction in every machine cycle is beginning to outlive its
usefulness. There is no inherent reason why many calculations
cannot be performed simultaneously. Computer graphics is a
perfect example of such an application area. Pixels can be
read, written and processed simultaneously; in fact, most
graphics algorithms impose few limits on the amount of paral-
lelism achievable for pixel processing.

With a parallel architecture, a designer hopes that, instead of
the typical linear improvement in performance that is inherent
in technology evolution, a quantum leap in performadce can be
obtained. Such a quantum leap has been demanded by the
various communities using image computing. The recent
report Visualization in Scientific Computing [13] stresses the
need for innovative high-speed architectures to meet the needs
of interpreting large amounts of scientific data. Animators
require photorealistic rendering of high scene complexity and
image quality with quick turnaround times. Doctors and
radiologists must see a 3D reconstruction from an NMR or CT
device in seconds. For image computing to he a practical tool
in these and other areas, it is not feasible to wait for evolution-
ary improvements in technology. Instead, a break from tradi-
tional architectures must occur and be built. In this paper, we
describe such an architecture; what motivated its development,
how it works and what it portends for the future of image
computing.

The design of the Pixel Mach ine was inspired and influenced
by:

• speed - the advent of fast RISC-style digital signal proces-
sors that offer a large amount of the functionality found in a
microprocessor with an integrated floating-point unit at a
fraction of the price [10].

• para l le l i sm - parallel architectures, in which processing is
performed in parallel by nodes on the contents of their local

Authors' addresses:

Michael Potmesil, AT&T Bell Laboratories, Room 4F-625, Holmdel, NJ 07733;
Telephone: (201) 949-4826; Email: mp@vax135.att.com

Eric M. Hoffert, Apple Computer Inc., 20525 Mar[ani Avenue, Mail Stop 60V,
Cupertino, CA 95014; Telephone: (408) 974-0493; Email: emh@apple.com

69

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74333.74340&domain=pdf&date_stamp=1989-07-01

'c(~SIGGRAPH '89, Boston, 31 July-4 August, 1989

memories and messages can be exchanged between proces-
sors [17,3,9] and local memories can be part of a video
frame buffer [7,18].

• interleaving - the notion of an interleaved frame buffer, dis-
tributed among the processors of a parallel image-computing
system, to achieve load balancing as originally developed in
[6,14}.

• programmabil i ty - the concept of a programmable graphics
machine attached to a host computer as introduced in the
lkonas frame buffer and graphics processor and later also
used by Pixar [11] and TAAC-1 [19].

• pipelining - pipelined operations as applied in the Geometry
Engine [2] to geometry computing.

• flexibility - the value of a rendering and modeling program-
ming environment, such as FRAMES [15], where different
computing modules following the old software adage "small
is beautiful," can be interconnected in different ways to
achieve diverse modeling and rendering functions.

• partitioning - image-space or object-space partitioning of
data among 2D or 3D arrays of asynchronous, independent
processing elements as described in [5].

2. S y s t e m A r c h i t e c t u r e

The Pixol Machine was designed as a programmable computer
with pipeline and parallel processing closely coupled to a
display system [16,1]. The Pixel Machine consists of four
major building blocks [Figure 1]: (a) a pipeline of pipe nodes,
(b) an array of m x n parallel pixel nodes with a distributed
frame buffer, (c) a pixel funnel, and (d) a video processor.
The pipeline and pixel-array modules can be incrementally
added to a system to build a more powerful computer.

The Pixel Machine functions as an attached processor. In the
current configuration the host computer is a high-end worksta-
tion, but in principle diverse hosts could be supported, ranging
from personal computers to supercomputers.

2.1 C o m p u t a t i o n s

The CPU of the computing nodes is a DSP32 digital-signal
processor with an integrated floating-point unit [I0]. It con-
sists of a 16-bit integer section and a 32-bit floating point sec-
tion. The integer section with 21 registers is mainly used to
generate memory addresses while the floating-point section
with four 40-bit accumulators is used to process geometry and
image data.

The DSP32 has a RISC-style instruction set and instruction
decoding. Unlike a RISC processor which operates only on
data in registers and uses load/store register-memory accesses,
the DSP32 uses register pointers to point to arrays of data in
memory. The pointers are usually post-incremented during the
same instruction. In a typical operation, the DSP32 can read
two operands from memory and one from an accumulator, per-
form a multiply-accumulate operation and write the result to an
accumulator and to memory.

The DSP32 has a 16-bit addressing capability, allowing it to
address directly only* 64 Kbytes of memory. There are 4
Kbytes of RAM memory on board of the chip. Each pixel and

* It should be noted that the next generation of this processor has a 24-bit
addressing space allowing it to address directly 16 Mbytes of memory.

70

pipe node has additional 32 Kbytes of fast static RAM
memory. These 36 Kbytes are used for program and scratch
data storage.

Pixel nodes also contain a distributed frame buffer and z-
buffer. In each pixel node, there are 512 Kbytes of video
RAM memory organized as two banks of 256 × 256 32-bit
rgb~ pixels and 256 Kbytes of general-purpose dynamic RAM
memory which can be organized as a 256 x 256 32-bit
floating-point z-buffer. These additional 3/4 Mbytes of
memory are addressed via a memory management unit.

The nodes are running at 5 Mips or 10 Mflops which must
really be interpreted as 5 million multiply-accumulate opera-
tions per second. In typical applications, programmed in C,
the overhead of invoking functions, computing data pointers,
etc. can reduce the floating-point operations to about 10-25%
of the peak rate.

2.2 C o m m u n i c a t i o n s and C o n n e c t i o n s

There are a number of different communication paths in the
system. Each pixel and pipe node is connected to the VMEbus
via a DMA port (host-to-node connection). This port can be
used by the host to access all memory-mapped locations in a
node and for handshaking and synchronization activities by the
node.

Pipe nodes are connected with fifes into nine-node pipelines
(downstream pipe node-to-node connection). The fifo input to
the first node is written by the host via the VMEbus, the fifo
output of the last node is either broadcast - via a broadcast bus
- to all the pixel nodes (pipe-node to pixel-node connection) or
written to a fifo read back - via the VMEbus - by the host.
The pipe nodes in a pipeline are also connected via a unidirec-
tional serial asynchronous link in the direction opposite to the
fifes (upstream pipe node-to-node connection). Two pipelines
can be placed in a system and configured as two parallel pipes
or one long serial pipe.

Pixel nodes are connected to their four nearest neighbors, in a
closed-toms network, via serial bidirectional asynchronous
links (pixel node-to-node connection). These pathways allow
flexibility for data movement needed in different algorithms.
Some pixel-node operations, such as changing display buffers
or exchanging messages with adjacent nodes, require all the
nodes to be synchronized: they have to wait for the last node
to complete its previous computations. There are two
hardware semaphores, shared by all the pixel nodes, which
allow global synchronization. Pixel nodes can also be syn-
chronized with vertical and horizontal video retrace periods.

2.3 Pixe l M a p p i n g and D i sp lay

The frame buffer in the Pixel Machine is distributed into the
array of the m x n pixel nodes. The frame buffer is divided
into two or more display buffers. One of these buffers is
always displayed by the video system, at the selected size and
speed, on the screen. When in double-buffered mode, a
second buffer is used to draw the next image. Additional
buffers may contain other pixel-oriented data such as texture
maps. Pixels in the displayed buffer are read by the video pro-
cessor and mapped on the video screen. This mapping is
determined by the position of each pixel node within the array
and is fixed. Each pixel node contains the size of the pixel-
node array (re,n) and its position within the array (p,q) where
0 <_ p < m and 0 <_ q < n. The position (p ,q) also serves as a
unique identification number of each node. Pixel node (p,q)
then displays every m-th pixel starting with pixel p on every
n-th scanline starting with scanline q, i.e., a processor-space

~ Computer Graphics, Volume 23, Number 3, July 1989

VMEbus

I , , ,

I I I

Pipe-Node Pipeline

Broadcast._
Bus

I I'.terleave<l P,xe, Video
Video ~ Funnel Processor i . a e o

PixeI-Node Array with
Distributed Frame Buffer

Figure t A block diagram of the Pixei Machine.

pixel (i,j) is mapped into a screen-space pixel (x,y) by:

x = m i + p
y = n j + q (1)

This format requires the display subsystem to collect all of the
distributed frame-buffer pixels and assemble them into a con-
tiguous screen image. The device that performs this function
is called the video pixel funnel. The interleaved format of the
frame buffer provides load balancing for image-computing
algorithms and matches well the speed limitations of video
RAM memories with the speed requirements of a high-
resolution display*.

The architecture of the pixel nodes is scalable, using between
16 and 64 nodes [Table 1]. The video processor can be pro-
grammed to display two high-resolution formats as well as
NTSC and PAL.

To aid in the development of uniform software for all the
pixel-node configurations and to allow hardware modularity,
the concept of virtual pixel nodes was utilized. A virtual node
renders into a subset of a buffer, called a virtual screen, all
within a physical node. The virtual nodes and their virtual
screens are also interleaved in an m ' × n" pattern - just as the
physical nodes - with each virtual node having a unique screen
position (p',q'). The mappings in equation (1) also apply to
the virtual nodes. All software is written for one virtual node
and is invoked one or more times, depending on the system
size, by a physical node. The physical and virtual pixel-node
configurations of the Pixel Machine are shown in Table 1.

3. Software Architecture

Software developed to run on the Pixel Machine is always
divided into two major conceptual areas: host software and
node software. The latter category is further subdivided into
pipe-node software and pixel-node software. Host software
controls interaction with the Pixel Machine, pipe-node
software executes sequential-type algorithms and finally pixel-
node software executes parallel algorithms.

A pixel is shifted out of a v ideo memory in =40 ns while it is displayed on a
1280× 1024 pixel screen in =9 ns. Therefore, at least 5 parallel banks of
video memor ies are required to shift out 5 pixels in : 4 0 ns.

3 .1 H o s t S o f t w a r e

Each node in the Pixel Machine is a small autonomous com-
puter, albeit with a number of limitations. The current proces-
sor used in each node does not support interrupts and has lim-
ited addressing capabilities. These limitations forced the
software designers of the Pixel Machine to come up with a
number of creative solutions to difficult problems typically not
encountered on a conventional computer. A programming
environment had to be developed that simulates much of the
functionality taken for granted in a standard operating system.

There are two different types of processes which can run on
the host computer and interact with or control the Pixel
Machine:

• pass ive server

This process functions as a data-base server for the Pixel
Machine. In this capacity, interaction takes place in a linear
fashion: the host sends a stream of commands and data to
the Pixel Machine, and the Pixel Machine performs vari-
ous operations on the received data. There is no interaction
initiated by the Pixel Machine, it responds only when it is
explicitly requested to do so (e.g., to a command to return
the current transformation matrix). This server is employed
almost exclusively for traditional polygon rendering, where
databases and commands are generated by the host and sent
to the machine. In this mode the Pixel Machine acts as
slave and the host computer as master.

• active server

This process is responsible for responding to all requests for
resources that are made by the Pixel Machine. It polls a
user-defined set of nodes (pipe or pixel) for messages.
When a message is received, the active server initiates a host
function that supplies needed resources to the requesting
node. We have found this to be a very powerful paradigm
for host/Pixel Machine interaction. The host needs the
Pixel Machine for certain demanding geometry and image
computing, and the Pixel Machine needs the host for con-
tiguous large blocks of memory and for access to a file sys-
tem (among a number of other potential needs). In this
mode the Pixel Machine acts as master and the host com-
puter as slave.

71

~L~r~. ~SIGGRAPH '89, Boston, 31 July-4 August, 1989

nodes

16

20

32

40

64

Physical Virtual
m x n pixels/node nodes m ' × n" pixels/node

4 x 4 256 × 256* 64 8 × 8 128 × 128

5 × 4 256 × 256** 80 10 × 8 128 × 128

8 × 4 128 × 256* 64 8 × 8 128 x 128

10 x 4 128 × 256** 80 10 × 8 128 x 128

8 × 8 128 × 128" 64 8 × 8 128 × 128
160 × 128"* 160 x 128

V/P
Ratio

* Display screen size: 1024 x 1024 pixels.
** Display screen size: t280 × 1024 pixels.

Table 1 Physical and virtual pixel-node configurations.

The host process has complete control over all nodes. It can
access all memory in each node including program memory
and frame-buffer memory in pixel nodes. Such accesses take
place, via DMA, even when the nodes are running.

The host software is also responsible for halting, initializing
and starting each node as well as for downloading programs
into them. It also configures 1he video processor and accesses
the video lookup tables.

3 .2 P i x e I - M a c h i n e S o f t w a r e

Software that runs on the Pixe[Mach ine is quite distinct from
software that runs on yon Neumann machines, The important
distinction from the single-processor approach is that software
is mapped to different architectural components, each of which
has a different character and number of nodes. The pipeline
(where each pipe node typically contains a distinct program)
executes sequential algorithms and the pixel-node array (where
each pixel node typically contains the same program*) exe-
cutes parallel algorithms. In some cases, our algorithm is
entirely sequential; such an algorithm would run only in the
pipe nodes. Analogously, we have algorithms that are entirely
parallel in nature; such an application might not utilize the
pipeline at all. We have found that most applications have
components that map onto both the pipeline and pixel-node
array.

3 .3 P i p e - N o d e S o f t w a r e

Pipe nodes are employed for operations that are intrinsically
sequential in nature. Such operations are those that constrain
the efficiency of a parallel algorithm. The use of a pipeline is
an attempt to remove as much sequential style processing from
the parallel pixel-node array as possible.

Pipe-node software requires algorithm partitioning. Each pipe
node acts as a distinct computational element in a pipeline. A
separate program runs in each node and messages - commands
and data - are passed down a pipeline. The last node in a

* However, there is no reason why each pixel node cannot execute a different
program.

72

pipeline has the ability to broadcast messages to all the nodes
in a pixel-node array or to return them back to the host.

The FRAMES system [15] contains methods for experimenting
with pipeline partitioning and how to achieve maximum flexi-
bility in such a scheme. The same philosophy is employed
here. Our experience shows that special care must be taken to
ensure that software in the pipeline does not become I/O
bound.

Pipe-node software can be written to allow the same program
to reside in several consecutive nodes and to operate on alter-
nating input messages (e.g., each instance of an n-node
transformation program transforms only every n-th polygon).
This allows the same software to run efficiently in longer pipe-
lines and to eliminate or reduce bottlenecks by repeating the
slowest program in more than one node.

3.4 P i x e l - N o d e S o f t w a r e

This section describes (a) what actions a pixel node performs
as a computational element and (b) the general mechanisms
available for increasing the amount of data that a pixel node
can directly access. There are two approaches to the issue of
memory limitation, The first approach is that of message-
passing, where nodes exchange portions of distributed data.
This approach exploits the ability of a machine to shuffle large
amounts of data among its nodes. The second approach util-
izes the memory of the host computer, letting it serve as an
adjunct memory device for individual nodes.

Support software in the pixel nodes comprises several
categories: screen-space to processor-space coordinate map-
ping, frame-buffer and z-buffer access to pixel-oriented data,
display-list access, and optimized mathematical functions.

Mapping functions transfer coordinates from the (x,y) display
screen space to the (i ' , j ') virtual screen space of a virtual pixel
node (p ' , q ') by:

, p ,
i ' = x - p 1

- - X

m" m ' m"

j , _ y - q ' = 1 q"
n" n" Y n

where the scale multiplication is the same for all the pixel
nodes and therefore is actually computed by a pipe node and

~ Computer Graphics, Volume 23, Number 3, July 1989

the offset subtraction is computed individually by each pixel
node.

There are four basic mapping functions, used in all image-
computing algorithms, which transform screen coordinates to
processor coordinates. Function ilo(x) returns the smallest
integer i" such that m'i ' + p" _> x:

1 ilo(x) = x ~n 7 0.5

Function ihi(x) returns the largest integer i ' such that
m'i ' + p ' _< x:

ihi(x) = t x - p ' + 0"5 I r a '

Similarly, function rio(y) returns the smallest integer j ' such
that n ' j ' + q ' _> y, and function jhi (y) returns the largest j '
such that n'j" + q' _< y.

The mapping from the screen space to the processor space is
not one-to-one: there are more pixels in screen space than in
processor space. To be certain that processor-space pixel
(i' ,j ') is actually screen-space pixel (x,y), these two conditions
must be true:

ilo(x) = ihi(x), and

j lo(y) = jhi(y)

Each node can independently read or write the contents of its
individual frame buffer and z-buffer. Access to these
memories is in row and column addressing modes using virtual
screens. A 32-bit pixel can be accessed in four instruction
cycles (one cycle to read each color component) and a 32-bit
z-buffer value in one cycle.

Mathematical functions include routines for frequently used
operations in geometry and image computing such as square
root (ray-sphere intersection), vector normalization (shading),
and dot product (back-face removal). These highly-optimized
functions efficiently utilize the floating-point capability of the
DSP32 at each node, since many of the operations involve
multiply/accumulate instructions.

3.5 I n t e r l e a v e / D e - I n t e r l e a v e

Each node in the pixel-node array has a four-way serial I/O
switch. This allows a node to communicate directly with its
four nearest neighbors. Communications between two nodes
occur over a half-duplex serial channel. All nodes must syn-
chronize to exchange data, and message-passing occurs in lock-
step fashion, with all nodes sending data in the same direction
at the same time. This type of communication scheme is
well-suited to problems that map onto a grid or torus architec-
ture.

There are times when it is undesirable to compute on pixels in
an interleaved format. Using the current Pixel Machine, this
is not possible through hardware due to constraints imposed by
video memory access requirements. At this point, the old
hardware adage "do it in software!" is employed.

Software can take the interleaved frame-buffer format, and
using serial I/O message-passing, reconfigure the frame buffer
so that each node has a contiguous block of pixels. We call
this process de-interleaving. Analogously, it is possible to take
a frame buffer configured as contiguous blocks and again
employing serial I/O message-passing, distribute the pixels so
that they are in their correct interleaved position for display.
We call this method interleaving.

3.6 Virtual Memory

Photorealistic rendering requires large amounts of data. This
data is typically geometry information, but can also consist of
texture maps, environment maps, etc. Other rendering tech-
niques, such as volume rendering, can also require significant
amounts of data storage. We have also found that an
efficiently coded implementation of a rendering program (ray
or volume tracers, for example) can be very small, in terms of
code space. Hence it became apparent that we could develop
schemes for virtual memory [4] which would be used only for
data.

Each node has a page table in its memory along with a set of
associated pages. When a memory access is required for data
that does not reside in the available pages, a parallel page-fault
is generated, causing a node to make a request to the host to
deliver the required page of memory. The page is broadcast to
all nodes in the pixel array from the last node in the pipeline,
At this point, the page table in each node is updated, deleting a
page based on a page-replacement policy and adding the newly
requested page to the table. We call it parallel paging, since
typically nodes may request pages from the host concurrently.

The parallel paging scheme is employed for virtual display
lists in the ray-tracing software implemented on the PJxoI
Machine. Figure 2 shows a ray-traced image with 17,000
polygons. Each polygon uses 100 bytes, giving a database size
of 1.7 Mbytes, substantially more than can fit in one pixel
node's local memory. Figure 3 also shows a ray-traced image
generated using virtual display lists. This scene contains over
50,000 polygons, area-light sources and is antialiased at 16
samples per pixel.

The active server can store multiple texture maps or volume
databases in host's memory. When an individual pixel or
voxel is requested by an arbitrary node, the host retrieves a
page of adjacent data and routes it to the requesting node.
This scheme is especially suitable for either (a) applications
with memory requirements that far exceed the collective
memory capacity of the pixel nodes, or (b) applications where
distribution of memory over the pixel nodes would require an
overly complex and/or inefficient algorithm. Because all pixel
nodes have access to this memory, we call it virtual shared
memory.

Figure 4 shows a ray-traced image that uses virtual texture
maps. There are 13 virtual texture maps requiring a total of 4
Mbytes of texture map data. The scene also contains approxi-
mately 2,000 polygons. Figure 5 shows a volume rendering of
a nuclear magnetic resonance (NMR) angiography study that
uses virtual volumes. The size of the data is 256 x 256 x 160
voxels or approximately 10 Mbytes.

3.7 P r o g r a m Over l ays

A node can directly address 64 Kbytes of memory. This con-
straint coupled with the cost and size of fast static RAM
memories dictated the size of program memory at 36 Kbytes in
the current Pixel Machine. The solution to this problem of
small program size is a classic one, first seen in the early days
of computing. If a node does not have enough program or
local data memory available for a required function or message
processing, we use program overlays [8].

A program is manually divided into a static instruction and
data segment which resides in a node at all times and several
dynamic segments which are swapped-in, one at a time from
the host. The host server keeps track of the overlay segments
loaded into any of the nodes and ensures that the correct

73

~ t ~ S|GGRAPH '89, Boston, 31 July-4 August, 1989

Figure 2 Virtual display lists: A Stabilized
Plaq~orm-Deployment Station.

Figure 4 Virtual texture maps: A Museum Room.

Figure 3 Virtual display lists: A Tea Room.

segments are loaded into each node before data requiring them
arrive. The cost of sending overlays from the host axtd loading
them into a node's program memory is small: the bandwidth
from the host to the pipeline is on the order of Mbytes/s and
the overlay segments are on the order of single Kbytes.

4. A l g o r i t h m Mapping

In this section, we describe the mappings of a few well-known
geometry and image-computing algorithms to the Pixel
Machine architecture:

• polygonal rendering

Points, lines, polygons and other geometric primitives are
transformed, clipped, shaded, projected and broadcast by the
pipeline nodes. Complex geometric primitives (patches,
superquadrics) are also generated or converted into polygons
in the pipeline. The pixel-node array is used for raster

Figure 5 Virtual volumes: A Sagittal View of NMR Data.

operations, rendering of geometric primitives, z-buffering,
texture mapping, image compositing and antialiasing. For
polygonal rendering, the passive server is employed, routing
large polygonal databases or multiple frames of animation to
the Pixel Machine via the pipeline. Image antialiasing is
accomplished by supersampling and floating-point convolu-
tion with an arbitrary filter kernel.

ray tracing

Ray trees are traced in parallel by the pixel nodes, with each
node generating ray trees for pixel sampling points in its
unique set of interleaved pixels. Each pixel node contains a
copy of the display list of the scene being rendered. If the
size of the display list exceeds the local pixel-node memory,
the display list is paged from the host computer, using the
parallel page-faulting method described earlier. The active
server is used to service display list page faults and texture

74

~ Computer Graphics, Volume 23, Number 3, July 1989

map virtual shared memory requests respectively. The pipe-
line is used to compute bounding volumes, tessellate
geometric primitives and to transform the display list before
rendering begins. The floating-point capability of each node
is exercised to its maximum for the ray-object intersection
tests. Antialiasing is performed by stochastic sampling in
multiple passes,

• v o l u m e render ing

Rays are marched in parallel [12] by the pixel nodes inside
volume data. Each node processes its set of interleaved pix-
els in the image. At each pixel, a ray is cast into the
volume and ray-marching incrementally steps along the
direction of the ray, sampling the signal inside. The sam-
pled values of a ray are then converted into image intensity
according to the application: thresholding, finding maximum,
translucency accumulation and integration can be selected.
The volume is stored on the host computer, with each pixel
node requesting voxel packets that contain voxels along the
path of a marching ray. This procedure is accomplished
using virtual shared memory via the active server. The pipe-
line is not utilized in this mapping. Antialiasing is accom-
plished by sampling very finely along each ray and by inter-
polating voxel values adjacent to an intersection point.

• image processing

An image is processed by the pixel nodes in parallel, with
each pixel node-computing its set of interleaved pixels. If
the image is too large to fit in the local pixel-node memory,
it can be distributed over the collective memory of all the
nodes in contiguous block fashion and redistributed into
interleaved format for a final display using the
interleave/de-interleave strategy. The pipeline can be used
for run-length decoding and other sequential image functions
as an image is being sent to the pixel nodes.

5. Performance Analysis
In this section we attempt to analyze the theoretical perfor-
mance of the Pixel Machine architecture and then look at
some of our actual results.

5.1 Theoretical Performance Analysis
The classic recurrence equation for the divide-conquer-marry
paradigm is as follows:

T(n) = g(n) + M T(n/M) + h(n)

where g(n) is the cost of dividing up a problem into M sub-
problems (divide), T(n/M) is the cost of running the subprob-
lem (conquer), h (n) is the cost of combining the results of the
subproblems into a final solution (marry) and n is the number
of data elements. This generic equation is typically applied to
a sequential implementation of a recursive algorithm. Interest-
ingly enough, the equation can also be applied to the analysis
of algorithms on parallel machines. In this case, the multipli-
cative term M would drop out, since the divided problems or
subproblems are being solved concurrently. The modified
equation becomes:

T(n) = g(n) + T(n/M) + h(n)

The ideal parallel algorithm will have minimal g(n) and h (n)
terms; these are the parallel overhead costs. The algorithm
development efforts for parallel architecture are primarily con-
cerned with ensuring that the T(n/M) term will predominate in
the expression above. This ensures that adding more proces-
sors to a problem yields a linear improvement in performance.
A term that has recently entered into the parlance of parallel

processing is Non von Neumann bottleneck. This refers to the
costs g(n) and h(n), which are considered bottlenecks if they
predominate in the expression above.

The salient difference between the Pixel Machine and other
parallel machines is that there is no h (n) term for displaying or
animating the image computed by the pixel nodes. This
immediately obviates a large amount of the usual parallel over-
head. This term is eliminated because the interleaved frame
buffer is assembled into a contiguous scan image by the pixel
funnel. Only if we read back the computed image from the
frame buffer to the host computer does the h (n) term reappear.

The g(n) term represents the cost associated with the screen
space to processor space conversion. As an example of how
this term affects efficiency, consider the case of rasterizing a
geometric primitive in a pixel node. A simple equation
describing the rasterization is as follows:

T(p) = g(x) + p l(x)

where p is the number of pixels rasterized, T(p) is the time
required to rasterize these pixels, I(x) is the cost per pixel of
rasterization for an arbitrary algorithm x and g(x) is the paral-
lel overhead for that algorithm. Let us also define rl, the
efficiency of a parallel algorithm implementation, to be the
slope of the graph of normalized inverted execution time vs.
number of pixel nodes. A unity value of rl implies exactly
linear improvement in performance for linear increases in the
number of pixel nodes. This is what we aspire to for all
implementations. Values less than unity indicate sublinear
improvement for pixel-node increases. If p is small and g (x)
is large so that g (x) > p l(x), then the parallel overhead
predominates and q ~ 1. Conversely, i f p is large and g(x) is
small so that g(x) < p l(x), then the parallel overhead is small
or negligible and rl = 1.

The optimal algorithms for the Pixel Machine are those that
require a g(n) term only once per image as opposed to once
per object. An example of the former is ray-tracing and of the
latter is vector drawing. It is much easier to amortize the cost
g (n) once per image than once per object, since there may be
many objects in an image.

5 .2 M e a s u r e d P e r f o r m a n c e A n a l y s i s

We have tested the actual efficiency of the machine on a
number of different image-computing algorithms:

• raster operat ions

A basic pixet-node function is to modify rectangular regions
on the screen in various ways. The pixel-node organization
allows m'n" pixels to be processed in parallel by m ' × n '
virtual nodes during each iteration. Figure 6 illustrates per-
formance of the machine performing raster operations on
1282, 2562, 5122, and 10242 pixel regions. The execution
times are plotted as solid lines and the normalized efficiency
is shown as dotted lines. The efficiency of the machine, as
the slopes of the dotted lines indicate, is very high with
almost linear improvement and increases as the size of the
region increases.

• point rasterizing

A pixel node maps a point into its screen space and then
tests if the point actually belongs there and should be drawn.
Each pixel node maps and tests all the points but typically
draws only 1/m'n" of them, giving a very low figure of
merit. The graphs in Figure 7 indicate that the sequential
part of the algorithm dominates: the bottleneck is a pipe
node which converts the host floating-point and integer

75

: L ~ . ~ S I G G RAPH '89, Boston, 31 July-4 August, 1989

Time
[ms]

60 -- efficiency. :: k
. : : . . ,

1 0 2 4 2 ~ . : : : . " " " . . . '*

4 0 - - : i : : : " "

...~.,IZ ~,1~2 I

20 -- ' t~ : ~ ' : : ~

5 1 2 : ~

2562.

16 32 64

Nodes

Figure 6 Parallel performance: raster operations.

10242
5122
2562

1282

Time
[ms]

60- -

40- -

20--

1024 1024

. . . .

.: :~.!.!.:..! 16 (1 pipe)
~ ~ ~ (1(2 pipeS)pipe)

16 k--~----,..___ - ±

I I I
16 32 64

Nodes

Figure 8 Parallel performance: aliased vectors.

Time
[ms]

6 0 - -

40- -

20- -

± & 1 pipe

± ± 2 pipes

. e-ffici.eg~-Y... 2 pipes
, . , t - ' " . 1 pipe

I I
16 32 64

Nodes

Figure 7 Parallel performance: points.

1024
6 0 -

. .

l~! ,t - ±

I I I
16 32 64

Nodes

Figure 9 Parallel performance: antialiased vectors.

4 0 -
Time
[ms]

1024

128

16 (2 pipes)
16 (1 pipe)

2 (2 pipes)
2 {1 pipe)

formats to the DSP32 floating-point format. There is not
any speed improvement above 20 pixel nodes when a single
pipeline is used. In a system with two parallel pipelines the
improvement stops at 32 pixel nodes. Two parallel pipelines
improve the speed of this algorithm by about 70% for 32 or
more pixel nodes.

• vector rasterizing

A parallel version of the Bresenham algorithm rasterizes
one-pixel wide aliased vectors. In an m' x n" array of vir-
tual pixel nodes, the algorithm writes rain (m',n') pixels dur-
ing one iteration. The figure of merit for this algorithm is
only min(m',n')/m'n'. Line drawing, which is essentially a
one dimensional process, cannot be very efficiently imple-
mented on this architecture. Performance for randomly-
oriented 2, 16, 128 and 1024 pixel-long vectors is shown in
Figure 8. Actual times are again plotted as solid lines while
the efficiency of the algorithm is plotted as dotted lines. As
expected, the slope of these lines illustrates the low
efficiency. For very short vectors the overhead becomes
dominant and there is almost no improvement in speed as
the number of processors increases•

Antialiased vectors are drawn by a modified version of the
above algorithm which computes pixel intensity based on

distance from the vector and blends the intensity with the
background• Figure 9 shows the relative performance of this
algorithm for the same randomly-oriented vectors as in Fig-
ure 8. On absolute time scale, aliased vectors are about
twice as fast as antialiased vectors. However, because more
processors do more useful work per pixel and per iteration,
the antialiased algorithm is more efficiently implemented in
this architecture than the aliased algorithm. In both algo-
rithms, a small speed improvement is obtained for short vec-
tors when two parallel pipelines are used.

polygon rasterizing

A pipe node converts polygons into triangles, sorts their ver-
tices in y and computes the slopes of the three edges. The
pixel nodes transform the slopes into their processor spaces,
compute forward difference in y along the edges and scan-
convert the triangle by stepping in y along two active edges
and filling the span in x between them. Performance for
random triangles within 82 , 162 , 642 , 2562 and 10242 bound-
ing squares is given in Figure 10. For large triangles the
performance is similar to raster operations. As the size of
the triangles decreases the sequential part (executing in the
pipe nodes) and the parallel overhead of the rasterizing algo-
rithm dominates and decreases the efficiency of the architec-
ture.

76

@ ~ Computer Graphics, Volume 23, Number 3, July 1989

Time
[ms]

6 0 - -

4 0 - -

2 0 - -

1024 z
efficiency., ~ 2562

. . ~ " . , 642
... ~ '.", •

h

d

il

2562
642 ~

16 32 64

Nodes

Figure 10 Parallel performance: Gouraud-shaded
z-buffered polygons.

6 0 -

Time
40 - -

[sl

2 0 -

I I I

1 6 32 64

Nodes

Figure 12 Parallel performance: ray tracing.

Time
[ms]

6 0 - -

4 0 - -

2 0 - -

256
256

efficiency .:I ~6
,'::!!! [!!!!![!!!!:'" 4

, D ' . ' . "

i-' i 3
16 32 64

Nodes

Figure 11 Parallel performance: Phong-shaded
z-buffered spheres.

• sphere raster izing

Phong-shaded z-buffered spheres are rasterized using the
approximations described in [7]. Because many computa-
tions have to be done at each pixel to evaluate the
inside/outside equation, depth, normal vector, and finally the
color, the efficiency of this algorithm is high even for small
spheres [Figure 11]. Note that the implementation of this
algorithm is more efficient then, for example, Gouraud-
shaded z-buffered rasterizing of polygons of similar size.

• ray tracing

Our first objective was to see if the performance would
improve linearly with increases in the number of processing
nodes for the case where the object database resides entirely
in a node's memory. In these tests, the database size is kept
constant while the number of pixel nodes in a system is
increased. As can be seen from the dotted graph in Figure
12, our objective of linear improvement was met, and we
have had similar experiences with many other object data-
bases. In addition, the actual rendering times for the image
are plotted (solid graph) and they are two to three orders of
magnitude faster than on typical workstations.

15 -- - - 60

1 - . . ~ : . ~y!~ed. _ 4

. . . . i - - 7 i
10 20 30 40 50

Objects [1031

Figure 13 Ray tracing: scene complexity vs. time (solid)
and parallel paging (dotted) using virtual data memory.

1 0 -

Time
[103 s]

5 -

- 40
Page

Faults
[106]

- - 20

Our second objective was to examine what happens to the
performance when the parallel paging is used for virtual
display lists. This test was run keeping the number of pixel
nodes in the system constant, while increasing the number of
objects in a scene. It can be seen from the graph in Figure
13 that the paging begins at about 5,000 objects in the
display list. The performance degrades exponentially when
the paging begins but becomes again linear above 10,000
objects. The dotted graph labeled "requested" shows the
number of page faults generated by all the nodes. Since
many nodes request the same page at the same time, the dot-
ted graph labeled "serviced" shows that only about one tenth
of the generated page faults had to be serviced. The speed
of the algorithm when paging a display list is about five
times slower than when all of a display list is in the pixel-
node memory.

The measured performance confirms our analysis: the architec-
ture of the machine is best suited for image-computing algo-
rithms which require a parallel overhead only once per image
(e.g., ray tracing, fractals, 213 and 3D solid textures) and
degenerates as the overhead increases and the number of use-
fully employed pixel nodes decreases (e.g., line and point
rasterizing).

77

 ' S,GaRAP. '89, Boston, 31 July-4 August, 1989

[3]

78

6. Summary and Conclusions

We have described a parallel image computer designed for fast
geometry and image computing. The computer contains a
large distributed frame buffer which allows many computing
elements, capable of floating-point operations, to access pixel-
oriented data in parallel. We have developed software for
standard 3D polygonal graphics, 3D volume display and ray
tracing, all based on a common programming environment.

To overcome the problems inherent to the architecture of the
machine and its current implementation - particularly the lim-
ited amounts of program and data memories in each node - we
resorted to using established software techniques found in trad-
itional computers such as program overlays for instructions and
virtual memory for data. We also found a method to remove
the restrictions of the interleaved frame-buffer design using
interprocessor communication capabilities. To simplify the
development of software for our scalable parallel architecture
we have developed a concept of physical and virtual nodes
which makes the size of the machine transparent to the pro-
grammer.

We have also used the Pixel Machine for real-time playback
of compressed audio and video data and as a general-purpose
parallel computer.

Acknowledgements and Credits

We would like to thank Bill Ninke, Kicha Ganapathy and Jim
Boddie for providing a fertile environment that allowed the
exchange of ideas between people involved in graphics, paral-
lel processing and digital signal processing. Leonard McMillan
contributed major ideas to both the software and hardware
architecture and should be identified as one of the principal
architects of the system. Bob Farah should be credited with
the design of the pipeline card and for handling enormous
numbers of odds and ends. Marc Howard should be thanked
for bringing to life very high-quality, reliable video at 2 A.M.
on a Friday night. Jennifer Inman should be thanked for writ-
ing a great deal of the pipe and pixel-node software. Pete
Segal must be credited with much work on the ray tracer. Jon
Leech pulled his hair on message-passing and the
interleave/de-interleave code. John Spicer and Tom Rosenfeld
contributed towards a nice parallel-programming environment.

Miss Piggy was an immense help in the early days when
everything great was done at around 4 A.M. and common
sense prevailed. Spouses and lovers are most importantly
thanked for being understanding at the worst of times. The
controversial ghost-writer Tango A. Scampers wrote the origi-
nal version of this paper.

We would also like to thank NASA for generating the image in
Figure 2 and for providing the database for testing purposes.
Kamran Manoocheri must be thanked for creating the image A
Museum Room in Figure 4 and Leonard McMillan for A Tea
Room in Figure 3.

References

[1] AT&T Pixel Machines, "The Pixel Machine System
Architecture," A Technical Report, Holmdel, N J,
November 1988

[2] Clark, J. H., "The Geometry Engine: A VLSI Geometry
System for Graphics," ACM Computer Graphics, 16, (3),
July 1982, 127-133

DeBenedictis, E. P., The Bell Laboratories' Hypercube,
personal communication, April 1986

[4] Denning, P. J., "Virtual Memory," Computing Surveys, 2,
(3), September 1970, 153-189

[5] Dippr, M., and Swensen, J., "An Adaptive Subdivision
Algorithm and Parallel Architecture for Realistic Image
Synthesis," ACM Computer Graphics, 18, (3), July 1984,
149-158

[6] Fuchs, H., "Distributing a Visible Surface Algorithm
Over Multiple Processors," Proceedings of ACM 1977,
Seattle, WA, October 1977, 449-451

[7] Fuchs, H., et. al., "Fast Spheres, Sh~tdows, Textures,
Transparencies, and Image Enhancements in Pixel-
Planes," ACM Computer Graphics, 19, (3), July 1985,
111-120

[8] Heising, W. P., and Lamer, R. A., "A Semi-Automatic
Storage Allocation System at Loading Time," Communi-
cations of the ACM, 4, (10), October 1961, 446-449

[9] Hillis, W. D., The Connection Machine, The MIT Press,
Cambridge, MA, 1985

[10] Kershaw, R. N., et. al., "A Programmable Digital Signal
Processor with 32-bit Floating Point Arithmetic,"
Proceedings of IEEE International Solid-State Circuits
Conference, February 1985, 92-93

[11] Levinthal, A., and Porter, T., "Chap - A SIMD Graphics
Processor," ACM Computer Graphics, 18, (3), July 1984,
77-82

[12] Levoy, M., "Volume Rendering: Display of Surface from
Volume Data," IEEE Computer Graphics and Applica-
tions, 8, (3), May 1988, 29-36

[13] McCormick, B. H., DeFanti T. A., and Brown, M. D.,
"Visualization in Scientific Computing," ACM Computer
Graphics, 21, (6), November 1987

[14] Parke, F. I., "Simulation and Expected Performance
Analysis of Multiple Processor Z-Buffer Systems," ACM
Computer Graphics, 14, (3), July 1980, 48-56

[15] Potmesil, M., and Hoffert, E. M., "FRAMES: Software
Tools for Modeling, Rendering and Animation of 3D
Scenes," ACM Computer Graphics, 21, (4), July 1987,
85-93

[16] Potmesil, M., McMillan, L., Hoffert, E. M., Inman, J. F.,
Farah, R. L., and Howard, M., "A Parallel Image Com-
puter with a Distributed Frame Buffer: System Architec-
ture and Programming," Proceedings of Eurographics
'89, Hamburg, Federal Republic of Germany, September
1989

[17] Seitz, C. L., "The Cosmic Cube," Communication of the
ACM, 28, (1), January 1985, 22-33

[18] Sato, H., et. al., "Fast Image Generation of Constructive
Solid Geometry Using a Cellular Array Processor," ACM
Computer Graphics, 19, (3), July 1985, 95-102

[19] Whitton, M. C., England, N., and DeMonico C.,
"Manage Design Trade-Offs in High-End Graphics
Board," Electronic Design, 36, (6), March 1988, 77-84

Pixar is a registered trademark of Pixar.
TAAC-1 is a trademark of Sun Mierosystems, Inc.
Geometry Engine is a trademark of Silicon Graphics, Inc.
VmEbus is a registered trademark of the VME Manufacturers Group.
Miss Piggy is a registered trademark of Jim Henson Productions.

