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Abstract 

We describe the system architecture and the programming 
environment of  the Pixel Machine - a parallel image computer 
with a distributed frame buffer. 

The architecture of  the computer is based on an array of  asyn- 
chronous MIMD nodes with parallel access to a large frame 
buffer. The machine consists of a pipeline of  pipe nodes 
which execute sequential algorithms and an array of m x n 
pixel nodes which execute parallel algorithms. A pixel node 
directly accesses every m-th pixel on every n-th scan line of  an 
interleaved frame buffer. Each processing node is based on a 
high-speed, floating-point programmable processor. 

The programmability of the computer allows all algorithms to 
be implemented in software. We present the mappings of  a 
number of  geometry and image-computing algorithms onto the 
machine and analyze their performance. 
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1. Introduction 

As computing technology progressed, it became apparent that 
even the most powerful computers available, built on principles 
devised by John von Neumann in the early 1940s, are reaching 
the limits of  their speed imposed by the constraints of  physical 
laws. The single-processor model executing only at most one 
instruction in every machine cycle is beginning to outlive its 
usefulness. There is no inherent reason why many calculations 
cannot be performed simultaneously. Computer graphics is a 
perfect example of  such an application area. Pixels can be 
read, written and processed simultaneously; in fact, most 
graphics algorithms impose few limits on the amount of  paral- 
lelism achievable for pixel processing. 

With a parallel architecture, a designer hopes that, instead of  
the typical linear improvement in performance that is inherent 
in technology evolution, a quantum leap in performadce can be 
obtained. Such a quantum leap has been demanded by the 
various communities using image computing. The recent 
report Visualization in Scientific Computing [13] stresses the 
need for innovative high-speed architectures to meet the needs 
of interpreting large amounts of  scientific data. Animators 
require photorealistic rendering of  high scene complexity and 
image quality with quick turnaround times. Doctors and 
radiologists must see a 3D reconstruction from an NMR or CT 
device in seconds. For image computing to he a practical tool 
in these and other areas, it is not feasible to wait for evolution- 
ary improvements in technology. Instead, a break from tradi- 
tional architectures must occur and be built. In this paper, we 
describe such an architecture; what motivated its development,  
how it works and what it portends for the future of image 
computing. 

The design of  the Pixel Mach ine  was inspired and influenced 
by: 

• speed - the advent of fast RISC-style digital signal proces- 
sors that offer a large amount of  the functionality found in a 
microprocessor with an integrated floating-point unit at a 
fraction of  the price [ 10]. 

• para l le l i sm - parallel architectures, in which processing is 
performed in parallel by nodes on the contents of their local 
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memories and messages can be exchanged between proces- 
sors [17,3,9] and local memories can be part of a video 
frame buffer [7,18]. 

• interleaving - the notion of an interleaved frame buffer, dis- 
tributed among the processors of a parallel image-computing 
system, to achieve load balancing as originally developed in 
[6,14}. 

• programmabil i ty  - the concept of a programmable graphics 
machine attached to a host computer as introduced in the 
lkonas frame buffer and graphics processor and later also 
used by Pixar [11] and TAAC-1 [19]. 

• pipelining - pipelined operations as applied in the Geometry 
Engine [2] to geometry computing. 

• flexibility - the value of a rendering and modeling program- 
ming environment, such as FRAMES [15], where different 
computing modules following the old software adage "small 
is beautiful," can be interconnected in different ways to 
achieve diverse modeling and rendering functions. 

• partitioning - image-space or object-space partitioning of 
data among 2D or 3D arrays of asynchronous, independent 
processing elements as described in [5]. 

2. S y s t e m  A r c h i t e c t u r e  

The Pixol Machine was designed as a programmable computer 
with pipeline and parallel processing closely coupled to a 
display system [16,1]. The Pixel Machine consists of four 
major building blocks [Figure 1]: (a) a pipeline of pipe nodes, 
(b) an array of m x n parallel pixel nodes with a distributed 
frame buffer, (c) a pixel funnel, and (d) a video processor. 
The pipeline and pixel-array modules can be incrementally 
added to a system to build a more powerful computer. 

The Pixel Machine functions as an attached processor. In the 
current configuration the host computer is a high-end worksta- 
tion, but in principle diverse hosts could be supported, ranging 
from personal computers to supercomputers. 

2.1 C o m p u t a t i o n s  

The CPU of the computing nodes is a DSP32 digital-signal 
processor with an integrated floating-point unit [I0]. It con- 
sists of a 16-bit integer section and a 32-bit floating point sec- 
tion. The integer section with 21 registers is mainly used to 
generate memory addresses while the floating-point section 
with four 40-bit accumulators is used to process geometry and 
image data. 

The DSP32 has a RISC-style instruction set and instruction 
decoding. Unlike a RISC processor which operates only on 
data in registers and uses load/store register-memory accesses, 
the DSP32 uses register pointers to point to arrays of data in 
memory. The pointers are usually post-incremented during the 
same instruction. In a typical operation, the DSP32 can read 
two operands from memory and one from an accumulator, per- 
form a multiply-accumulate operation and write the result to an 
accumulator and to memory. 

The DSP32 has a 16-bit addressing capability, allowing it to 
address directly only* 64 Kbytes of memory. There are 4 
Kbytes of RAM memory on board of the chip. Each pixel and 

* It should be noted that the next generation of this processor has a 24-bit 
addressing space allowing it to address directly 16 Mbytes of memory. 
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pipe node has additional 32 Kbytes of fast static RAM 
memory. These 36 Kbytes are used for program and scratch 
data storage. 

Pixel nodes also contain a distributed frame buffer and z- 
buffer. In each pixel node, there are 512 Kbytes of video 
RAM memory organized as two banks of 256 × 256 32-bit 
rgb~ pixels and 256 Kbytes of general-purpose dynamic RAM 
memory which can be organized as a 256 x 256 32-bit 
floating-point z-buffer. These additional 3/4 Mbytes of 
memory are addressed via a memory management unit. 

The nodes are running at 5 Mips or 10 Mflops which must 
really be interpreted as 5 million multiply-accumulate opera- 
tions per second. In typical applications, programmed in C, 
the overhead of invoking functions, computing data pointers, 
etc. can reduce the floating-point operations to about 10-25% 
of the peak rate. 

2.2  C o m m u n i c a t i o n s  and  C o n n e c t i o n s  

There are a number of different communication paths in the 
system. Each pixel and pipe node is connected to the VMEbus 
via a DMA port (host-to-node connection). This port can be 
used by the host to access all memory-mapped locations in a 
node and for handshaking and synchronization activities by the 
node. 

Pipe nodes are connected with fifes into nine-node pipelines 
(downstream pipe node-to-node connection). The fifo input to 
the first node is written by the host via the VMEbus, the fifo 
output of the last node is either broadcast - via a broadcast bus 
- to all the pixel nodes (pipe-node to pixel-node connection) or 
written to a fifo read back - via the VMEbus - by the host. 
The pipe nodes in a pipeline are also connected via a unidirec- 
tional serial asynchronous link in the direction opposite to the 
fifes (upstream pipe node-to-node connection). Two pipelines 
can be placed in a system and configured as two parallel pipes 
or one long serial pipe. 

Pixel nodes are connected to their four nearest neighbors, in a 
closed-toms network, via serial bidirectional asynchronous 
links (pixel node-to-node connection). These pathways allow 
flexibility for data movement needed in different algorithms. 
Some pixel-node operations, such as changing display buffers 
or exchanging messages with adjacent nodes, require all the 
nodes to be synchronized: they have to wait for the last node 
to complete its previous computations. There are two 
hardware semaphores, shared by all the pixel nodes, which 
allow global synchronization. Pixel nodes can also be syn- 
chronized with vertical and horizontal video retrace periods. 

2.3  Pixe l  M a p p i n g  and  D i sp lay  

The frame buffer in the Pixel Machine is distributed into the 
array of the m x n pixel nodes. The frame buffer is divided 
into two or more display buffers. One of these buffers is 
always displayed by the video system, at the selected size and 
speed, on the screen. When in double-buffered mode, a 
second buffer is used to draw the next image. Additional 
buffers may contain other pixel-oriented data such as texture 
maps. Pixels in the displayed buffer are read by the video pro- 
cessor and mapped on the video screen. This mapping is 
determined by the position of each pixel node within the array 
and is fixed. Each pixel node contains the size of the pixel- 
node array (re,n) and its position within the array (p,q) where 
0 <_ p < m and 0 <_ q < n. The position (p ,q) also serves as a 
unique identification number of each node. Pixel node (p,q) 
then displays every m-th pixel starting with pixel p on every 
n-th scanline starting with scanline q, i.e., a processor-space 
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Figure t A block diagram of the Pixei Machine. 

pixel (i,j) is mapped into a screen-space pixel (x,y) by: 

x = m i + p  
y = n  j + q  (1) 

This format requires the display subsystem to collect all of the 
distributed frame-buffer pixels and assemble them into a con- 
tiguous screen image. The device that performs this function 
is called the video pixel funnel. The interleaved format of the 
frame buffer provides load balancing for image-computing 
algorithms and matches well the speed limitations of video 
RAM memories with the speed requirements of a high- 
resolution display*. 

The architecture of the pixel nodes is scalable, using between 
16 and 64 nodes [Table 1]. The video processor can be pro- 
grammed to display two high-resolution formats as well as 
NTSC and PAL. 

To aid in the development of uniform software for all the 
pixel-node configurations and to allow hardware modularity, 
the concept of virtual pixel nodes was utilized. A virtual node 
renders into a subset of  a buffer, called a virtual screen, all 
within a physical node. The virtual nodes and their virtual 
screens are also interleaved in an m '  × n" pattern - just as the 
physical nodes - with each virtual node having a unique screen 
position (p',q'). The mappings in equation (1) also apply to 
the virtual nodes. All software is written for one virtual node 
and is invoked one or more times, depending on the system 
size, by a physical node. The physical and virtual pixel-node 
configurations of the Pixel Machine are shown in Table 1. 

3. Software Architecture 

Software developed to run on the Pixel Machine is always 
divided into two major conceptual areas: host software and 
node software. The latter category is further subdivided into 
pipe-node software and pixel-node software. Host software 
controls interaction with the Pixel Machine, pipe-node 
software executes sequential-type algorithms and finally pixel- 
node software executes parallel algorithms. 

A pixel is shifted out of  a v ideo memory  in =40 ns while it is displayed on a 
1280× 1024 pixel screen in =9 ns. Therefore,  at least 5 parallel banks of  
video memor ies  are required to shift out 5 pixels in : 4 0  ns. 

3 .1  H o s t  S o f t w a r e  

Each node in the Pixel Machine is a small autonomous com- 
puter, albeit with a number of limitations. The current proces- 
sor used in each node does not support interrupts and has lim- 
ited addressing capabilities. These limitations forced the 
software designers of the Pixel Machine to come up with a 
number of creative solutions to difficult problems typically not 
encountered on a conventional computer. A programming 
environment had to be developed that simulates much of the 
functionality taken for granted in a standard operating system. 

There are two different types of processes which can run on 
the host computer and interact with or control the Pixel 
Machine: 

• pass ive  server  

This process functions as a data-base server for the Pixel 
Machine. In this capacity, interaction takes place in a linear 
fashion: the host sends a stream of commands and data to 
the Pixel Machine, and the Pixel Machine performs vari- 
ous operations on the received data. There is no interaction 
initiated by the Pixel Machine, it responds only when it is 
explicitly requested to do so (e.g., to a command to return 
the current transformation matrix). This server is employed 
almost exclusively for traditional polygon rendering, where 
databases and commands are generated by the host and sent 
to the machine. In this mode the Pixel Machine acts as 
slave and the host computer as master. 

• active server 

This process is responsible for responding to all requests for 
resources that are made by the Pixel Machine. It polls a 
user-defined set of nodes (pipe or pixel) for messages. 
When a message is received, the active server initiates a host 
function that supplies needed resources to the requesting 
node. We have found this to be a very powerful paradigm 
for host/Pixel Machine interaction. The host needs the 
Pixel Machine for certain demanding geometry and image 
computing, and the Pixel Machine needs the host for con- 
tiguous large blocks of memory and for access to a file sys- 
tem (among a number of other potential needs). In this 
mode the Pixel Machine acts as master and the host com- 
puter as slave. 
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nodes 

16 

20 

32 

40 

64 

Physical Virtual 
m x n pixels/node nodes m '  × n" pixels/node 

4 x 4 256 × 256* 64 8 × 8 128 × 128 

5 × 4 256 × 256** 80 10 × 8 128 × 128 

8 × 4 128 × 256* 64 8 × 8 128 x 128 

10 x 4 128 × 256** 80 10 × 8 128 x 128 

8 × 8 128 × 128" 64 8 × 8 128 × 128 
160 × 128"* 160 x 128 

V/P 
Ratio 

* Display screen size: 1024 x 1024 pixels. 
** Display screen size: t280 × 1024 pixels. 

Table  1 Physical and virtual pixel-node configurations. 

The host process has complete control over  all nodes. It can 
access all memory in each node including program memory 
and frame-buffer memory in pixel nodes. Such accesses take 
place, via DMA, even when the nodes are running. 

The host software is also responsible for halting, initializing 
and starting each node as well as for downloading programs 
into them. It also configures 1he video processor and accesses 
the video lookup tables. 

3 .2  P i x e I - M a c h i n e  S o f t w a r e  

Software that runs on the Pixe[ Mach ine  is quite distinct from 
software that runs on yon Neumann machines, The important 
distinction from the single-processor approach is that software 
is mapped to different architectural components,  each of  which 
has a different character and number of  nodes. The pipeline 
(where each pipe node typically contains a distinct program) 
executes sequential algorithms and the pixel-node array (where 
each pixel node typically contains the same program*) exe- 
cutes parallel algorithms. In some cases, our algorithm is 
entirely sequential; such an algorithm would run only in the 
pipe nodes. Analogously, we have algorithms that are entirely 
parallel in nature; such an application might not utilize the 
pipeline at all. We have found that most applications have 
components that map onto both the pipeline and pixel-node 
array. 

3 .3  P i p e - N o d e  S o f t w a r e  

Pipe nodes are employed for operations that are intrinsically 
sequential in nature. Such operations are those that constrain 
the efficiency of  a parallel algorithm. The use of a pipeline is 
an attempt to remove as much sequential style processing from 
the parallel pixel-node array as possible. 

Pipe-node software requires algorithm partitioning. Each pipe 
node acts as a distinct computational element in a pipeline. A 
separate program runs in each node and messages - commands 
and data - are passed down a pipeline. The last node in a 

* However, there is no reason why each pixel node cannot execute a different 
program. 
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pipeline has the ability to broadcast messages to all the nodes 
in a pixel-node array or to return them back to the host. 

The FRAMES system [15] contains methods for experimenting 
with pipeline partitioning and how to achieve maximum flexi- 
bility in such a scheme. The same philosophy is employed 
here. Our experience shows that special care must be taken to 
ensure that software in the pipeline does not become I/O 
bound. 

Pipe-node software can be written to allow the same program 
to reside in several consecutive nodes and to operate on alter- 
nating input messages (e.g., each instance of  an n-node 
transformation program transforms only every n-th polygon). 
This allows the same software to run efficiently in longer pipe- 
lines and to eliminate or reduce bottlenecks by repeating the 
slowest program in more than one node. 

3.4 P i x e l - N o d e  S o f t w a r e  

This section describes (a) what actions a pixel node performs 
as a computational element and (b) the general mechanisms 
available for increasing the amount of  data that a pixel node 
can directly access. There are two approaches to the issue of  
memory limitation, The first approach is that of  message- 
passing, where nodes exchange portions of  distributed data. 
This approach exploits the ability of  a machine to shuffle large 
amounts of  data among its nodes. The second approach util- 
izes the memory  of  the host computer, letting it serve as an 
adjunct memory device for individual nodes. 

Support software in the pixel nodes comprises several 
categories: screen-space to processor-space coordinate map- 
ping, frame-buffer and z-buffer access to pixel-oriented data, 
display-list access, and optimized mathematical functions. 

Mapping functions transfer coordinates from the (x,y) display 
screen space to the ( i ' , j ' )  virtual screen space of  a virtual pixel 
node (p ' , q ' )  by: 

, p ,  
i ' =  x - p  1 

- -  X 

m" m '  m" 

j ,  _ y - q '  = 1 q" 
n" n" Y n 

where the scale multiplication is the same for all the pixel 
nodes and therefore is actually computed by a pipe node and 
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the offset subtraction is computed individually by each pixel 
node. 

There are four basic mapping functions, used in all image- 
computing algorithms, which transform screen coordinates to 
processor coordinates. Function ilo(x) returns the smallest 
integer i" such that m'i '  + p" _> x: 

1 ilo(x) = x ~n 7 0.5 

Function ihi(x) returns the largest integer i '  such that 
m'i '  + p '  _< x: 

ihi(x) = t x  - p '  + 0"5 I r a '  

Similarly, function rio(y) returns the smallest integer j '  such 
that n ' j '  + q '  _> y, and function jhi (y) returns the largest j '  
such that n'j" + q'  _< y. 

The mapping from the screen space to the processor space is 
not one-to-one: there are more pixels in screen space than in 
processor space. To be certain that processor-space pixel 
(i' ,j ') is actually screen-space pixel (x,y), these two conditions 
must be true: 

ilo(x) = ihi(x), and 

j lo(y)  = jhi(y)  

Each node can independently read or write the contents of its 
individual frame buffer and z-buffer. Access to these 
memories is in row and column addressing modes using virtual 
screens. A 32-bit pixel can be accessed in four instruction 
cycles (one cycle to read each color component) and a 32-bit 
z-buffer value in one cycle. 

Mathematical functions include routines for frequently used 
operations in geometry and image computing such as square 
root (ray-sphere intersection), vector normalization (shading), 
and dot product (back-face removal). These highly-optimized 
functions efficiently utilize the floating-point capability of the 
DSP32 at each node, since many of the operations involve 
multiply/accumulate instructions. 

3.5 I n t e r l e a v e / D e - I n t e r l e a v e  

Each node in the pixel-node array has a four-way serial I/O 
switch. This allows a node to communicate directly with its 
four nearest neighbors. Communications between two nodes 
occur over a half-duplex serial channel. All nodes must syn- 
chronize to exchange data, and message-passing occurs in lock- 
step fashion, with all nodes sending data in the same direction 
at the same time. This type of communication scheme is 
well-suited to problems that map onto a grid or torus architec- 
ture. 

There are times when it is undesirable to compute on pixels in 
an interleaved format. Using the current Pixel Machine, this 
is not possible through hardware due to constraints imposed by 
video memory access requirements. At this point, the old 
hardware adage "do it in software!" is employed. 

Software can take the interleaved frame-buffer format, and 
using serial I/O message-passing, reconfigure the frame buffer 
so that each node has a contiguous block of pixels. We call 
this process de-interleaving. Analogously, it is possible to take 
a frame buffer configured as contiguous blocks and again 
employing serial I/O message-passing, distribute the pixels so 
that they are in their correct interleaved position for display. 
We call this method interleaving. 

3.6 Virtual Memory 

Photorealistic rendering requires large amounts of data. This 
data is typically geometry information, but can also consist of 
texture maps, environment maps, etc. Other rendering tech- 
niques, such as volume rendering, can also require significant 
amounts of data storage. We have also found that an 
efficiently coded implementation of a rendering program (ray 
or volume tracers, for example) can be very small, in terms of 
code space. Hence it became apparent that we could develop 
schemes for virtual memory [4] which would be used only for 
data. 

Each node has a page table in its memory along with a set of 
associated pages. When a memory access is required for data 
that does not reside in the available pages, a parallel page-fault 
is generated, causing a node to make a request to the host to 
deliver the required page of memory. The page is broadcast to 
all nodes in the pixel array from the last node in the pipeline, 
At this point, the page table in each node is updated, deleting a 
page based on a page-replacement policy and adding the newly 
requested page to the table. We call it parallel paging, since 
typically nodes may request pages from the host concurrently. 

The parallel paging scheme is employed for virtual display 
lists in the ray-tracing software implemented on the PJxoI 
Machine. Figure 2 shows a ray-traced image with 17,000 
polygons. Each polygon uses 100 bytes, giving a database size 
of 1.7 Mbytes, substantially more than can fit in one pixel 
node's local memory. Figure 3 also shows a ray-traced image 
generated using virtual display lists. This scene contains over 
50,000 polygons, area-light sources and is antialiased at 16 
samples per pixel. 

The active server can store multiple texture maps or volume 
databases in host's memory. When an individual pixel or 
voxel is requested by an arbitrary node, the host retrieves a 
page of adjacent data and routes it to the requesting node. 
This scheme is especially suitable for either (a) applications 
with memory requirements that far exceed the collective 
memory capacity of the pixel nodes, or (b) applications where 
distribution of memory over the pixel nodes would require an 
overly complex and/or inefficient algorithm. Because all pixel 
nodes have access to this memory, we call it virtual shared 
memory. 

Figure 4 shows a ray-traced image that uses virtual texture 
maps. There are 13 virtual texture maps requiring a total of 4 
Mbytes of texture map data. The scene also contains approxi- 
mately 2,000 polygons. Figure 5 shows a volume rendering of 
a nuclear magnetic resonance (NMR) angiography study that 
uses virtual volumes. The size of the data is 256 x 256 x 160 
voxels or approximately 10 Mbytes. 

3.7 P r o g r a m  Over l ays  

A node can directly address 64 Kbytes of memory. This con- 
straint coupled with the cost and size of fast static RAM 
memories dictated the size of program memory at 36 Kbytes in 
the current Pixel Machine. The solution to this problem of  
small program size is a classic one, first seen in the early days 
of computing. If a node does not have enough program or 
local data memory available for a required function or message 
processing, we use program overlays [8]. 

A program is manually divided into a static instruction and 
data segment which resides in a node at all times and several 
dynamic segments which are swapped-in, one at a time from 
the host. The host server keeps track of the overlay segments 
loaded into any of the nodes and ensures that the correct 
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Figure 2 Virtual display lists: A Stabilized 
Plaq~orm-Deployment Station. 

Figure 4 Virtual texture maps: A Museum Room. 

Figure 3 Virtual display lists: A Tea Room. 

segments are loaded into each node before data requiring them 
arrive. The cost of sending overlays from the host axtd loading 
them into a node's program memory is small: the bandwidth 
from the host to the pipeline is on the order of Mbytes/s and 
the overlay segments are on the order of single Kbytes. 

4. A l g o r i t h m  Mapping 

In this section, we describe the mappings of a few well-known 
geometry and image-computing algorithms to the Pixel 
Machine architecture: 

• polygonal rendering 

Points, lines, polygons and other geometric primitives are 
transformed, clipped, shaded, projected and broadcast by the 
pipeline nodes. Complex geometric primitives (patches, 
superquadrics) are also generated or converted into polygons 
in the pipeline. The pixel-node array is used for raster 

Figure 5 Virtual volumes: A Sagittal View of  NMR Data. 

operations, rendering of geometric primitives, z-buffering, 
texture mapping, image compositing and antialiasing. For 
polygonal rendering, the passive server is employed, routing 
large polygonal databases or multiple frames of animation to 
the Pixel Machine via the pipeline. Image antialiasing is 
accomplished by supersampling and floating-point convolu- 
tion with an arbitrary filter kernel. 

ray tracing 

Ray trees are traced in parallel by the pixel nodes, with each 
node generating ray trees for pixel sampling points in its 
unique set of interleaved pixels. Each pixel node contains a 
copy of the display list of the scene being rendered. If the 
size of the display list exceeds the local pixel-node memory, 
the display list is paged from the host computer, using the 
parallel page-faulting method described earlier. The active 
server is used to service display list page faults and texture 

74 



~ Computer Graphics, Volume 23, Number 3, July 1989 

map virtual shared memory requests respectively. The pipe- 
line is used to compute bounding volumes, tessellate 
geometric primitives and to transform the display list before 
rendering begins. The floating-point capability of each node 
is exercised to its maximum for the ray-object intersection 
tests. Antialiasing is performed by stochastic sampling in 
multiple passes, 

• v o l u m e  render ing  

Rays are marched in parallel [12] by the pixel nodes inside 
volume data. Each node processes its set of interleaved pix- 
els in the image. At each pixel, a ray is cast into the 
volume and ray-marching incrementally steps along the 
direction of the ray, sampling the signal inside. The sam- 
pled values of a ray are then converted into image intensity 
according to the application: thresholding, finding maximum, 
translucency accumulation and integration can be selected. 
The volume is stored on the host computer, with each pixel 
node requesting voxel packets that contain voxels along the 
path of a marching ray. This procedure is accomplished 
using virtual shared memory via the active server. The pipe- 
line is not utilized in this mapping. Antialiasing is accom- 
plished by sampling very finely along each ray and by inter- 
polating voxel values adjacent to an intersection point. 

• image  processing 

An image is processed by the pixel nodes in parallel, with 
each pixel node-computing its set of interleaved pixels. If 
the image is too large to fit in the local pixel-node memory, 
it can be distributed over the collective memory of all the 
nodes in contiguous block fashion and redistributed into 
interleaved format for a final display using the 
interleave/de-interleave strategy. The pipeline can be used 
for run-length decoding and other sequential image functions 
as an image is being sent to the pixel nodes. 

5. Performance Analysis 
In this section we attempt to analyze the theoretical perfor- 
mance of the Pixel Machine architecture and then look at 
some of our actual results. 

5.1 Theoretical Performance Analysis 
The classic recurrence equation for the divide-conquer-marry 
paradigm is as follows: 

T(n) = g(n) + M T(n/M) + h(n) 

where g(n) is the cost of dividing up a problem into M sub- 
problems (divide), T(n/M) is the cost of running the subprob- 
lem (conquer), h (n) is the cost of combining the results of the 
subproblems into a final solution (marry) and n is the number 
of data elements. This generic equation is typically applied to 
a sequential implementation of a recursive algorithm. Interest- 
ingly enough, the equation can also be applied to the analysis 
of algorithms on parallel machines. In this case, the multipli- 
cative term M would drop out, since the divided problems or 
subproblems are being solved concurrently. The modified 
equation becomes: 

T(n) = g(n) + T(n/M) + h(n) 

The ideal parallel algorithm will have minimal g(n) and h (n) 
terms; these are the parallel overhead costs. The algorithm 
development efforts for parallel architecture are primarily con- 
cerned with ensuring that the T(n/M) term will predominate in 
the expression above. This ensures that adding more proces- 
sors to a problem yields a linear improvement in performance. 
A term that has recently entered into the parlance of parallel 

processing is Non von Neumann bottleneck. This refers to the 
costs g(n) and h(n), which are considered bottlenecks if they 
predominate in the expression above. 

The salient difference between the Pixel Machine and other 
parallel machines is that there is no h (n) term for displaying or 
animating the image computed by the pixel nodes. This 
immediately obviates a large amount of the usual parallel over- 
head. This term is eliminated because the interleaved frame 
buffer is assembled into a contiguous scan image by the pixel 
funnel. Only if we read back the computed image from the 
frame buffer to the host computer does the h (n) term reappear. 

The g(n) term represents the cost associated with the screen 
space to processor space conversion. As an example of how 
this term affects efficiency, consider the case of rasterizing a 
geometric primitive in a pixel node. A simple equation 
describing the rasterization is as follows: 

T(p) = g(x) + p l(x) 

where p is the number of pixels rasterized, T(p) is the time 
required to rasterize these pixels, I(x) is the cost per pixel of 
rasterization for an arbitrary algorithm x and g(x) is the paral- 
lel overhead for that algorithm. Let us also define rl, the 
efficiency of a parallel algorithm implementation, to be the 
slope of the graph of normalized inverted execution time vs. 
number of pixel nodes. A unity value of rl implies exactly 
linear improvement in performance for linear increases in the 
number of pixel nodes. This is what we aspire to for all 
implementations. Values less than unity indicate sublinear 
improvement for pixel-node increases. If p is small and g (x) 
is large so that g ( x ) > p  l(x), then the parallel overhead 
predominates and q ~ 1. Conversely, i f p  is large and g(x) is 
small so that g(x) < p l(x), then the parallel overhead is small 
or negligible and rl = 1. 

The optimal algorithms for the Pixel Machine are those that 
require a g(n) term only once per image as opposed to once 
per object. An example of the former is ray-tracing and of the 
latter is vector drawing. It is much easier to amortize the cost 
g (n) once per image than once per object, since there may be 
many objects in an image. 

5 .2  M e a s u r e d  P e r f o r m a n c e  A n a l y s i s  

We have tested the actual efficiency of the machine on a 
number of different image-computing algorithms: 

• raster operat ions  

A basic pixet-node function is to modify rectangular regions 
on the screen in various ways. The pixel-node organization 
allows m'n" pixels to be processed in parallel by m ' ×  n '  
virtual nodes during each iteration. Figure 6 illustrates per- 
formance of the machine performing raster operations on 
1282, 2562, 5122, and 10242 pixel regions. The execution 
times are plotted as solid lines and the normalized efficiency 
is shown as dotted lines. The efficiency of the machine, as 
the slopes of the dotted lines indicate, is very high with 
almost linear improvement and increases as the size of the 
region increases. 

• point  rasterizing 

A pixel node maps a point into its screen space and then 
tests if the point actually belongs there and should be drawn. 
Each pixel node maps and tests all the points but typically 
draws only 1/m'n" of them, giving a very low figure of 
merit. The graphs in Figure 7 indicate that the sequential 
part of the algorithm dominates: the bottleneck is a pipe 
node which converts the host floating-point and integer 
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Figure 6 Parallel performance: raster operations. 
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Figure 8 Parallel performance: aliased vectors. 
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Figure 7 Parallel performance: points. 
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Figure 9 Parallel performance: antialiased vectors. 

4 0 -  
Time 
[ms] 

1024 

128 

16 (2 pipes) 
16 (1 pipe) 

2 (2 pipes) 
2 {1 pipe) 

formats to the DSP32 floating-point format. There is not 
any speed improvement above 20 pixel nodes when a single 
pipeline is used. In a system with two parallel pipelines the 
improvement stops at 32 pixel nodes. Two parallel pipelines 
improve the speed of this algorithm by about 70% for 32 or 
more pixel nodes. 

• vector rasterizing 

A parallel version of the Bresenham algorithm rasterizes 
one-pixel wide aliased vectors. In an m'  x n" array of vir- 
tual pixel nodes, the algorithm writes rain (m',n') pixels dur- 
ing one iteration. The figure of merit for this algorithm is 
only min(m',n')/m'n'. Line drawing, which is essentially a 
one dimensional process, cannot be very efficiently imple- 
mented on this architecture. Performance for randomly- 
oriented 2, 16, 128 and 1024 pixel-long vectors is shown in 
Figure 8. Actual times are again plotted as solid lines while 
the efficiency of the algorithm is plotted as dotted lines. As 
expected, the slope of these lines illustrates the low 
efficiency. For very short vectors the overhead becomes 
dominant and there is almost no improvement in speed as 
the number of processors increases• 

Antialiased vectors are drawn by a modified version of the 
above algorithm which computes pixel intensity based on 

distance from the vector and blends the intensity with the 
background• Figure 9 shows the relative performance of this 
algorithm for the same randomly-oriented vectors as in Fig- 
ure 8. On absolute time scale, aliased vectors are about 
twice as fast as antialiased vectors. However, because more 
processors do more useful work per pixel and per iteration, 
the antialiased algorithm is more efficiently implemented in 
this architecture than the aliased algorithm. In both algo- 
rithms, a small speed improvement is obtained for short vec- 
tors when two parallel pipelines are used. 

polygon rasterizing 

A pipe node converts polygons into triangles, sorts their ver- 
tices in y and computes the slopes of the three edges. The 
pixel nodes transform the slopes into their processor spaces, 
compute forward difference in y along the edges and scan- 
convert the triangle by stepping in y along two active edges 
and filling the span in x between them. Performance for 
random triangles within 82 , 162 , 642 , 2562 and 10242 bound- 
ing squares is given in Figure 10. For large triangles the 
performance is similar to raster operations. As the size of 
the triangles decreases the sequential part (executing in the 
pipe nodes) and the parallel overhead of the rasterizing algo- 
rithm dominates and decreases the efficiency of the architec- 
ture. 
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Figure 10 Parallel performance: Gouraud-shaded 
z-buffered polygons. 
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Figure 12 Parallel performance: ray tracing. 
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Figure 11 Parallel performance: Phong-shaded 
z-buffered spheres. 

• sphere raster izing 

Phong-shaded z-buffered spheres are rasterized using the 
approximations described in [7]. Because many computa- 
tions have to be done at each pixel to evaluate the 
inside/outside equation, depth, normal vector, and finally the 
color, the efficiency of this algorithm is high even for small 
spheres [Figure 11]. Note that the implementation of this 
algorithm is more efficient then, for example, Gouraud- 
shaded z-buffered rasterizing of polygons of similar size. 

• ray tracing 

Our first objective was to see if the performance would 
improve linearly with increases in the number of processing 
nodes for the case where the object database resides entirely 
in a node's memory. In these tests, the database size is kept 
constant while the number of pixel nodes in a system is 
increased. As can be seen from the dotted graph in Figure 
12, our objective of linear improvement was met, and we 
have had similar experiences with many other object data- 
bases. In addition, the actual rendering times for the image 
are plotted (solid graph) and they are two to three orders of 
magnitude faster than on typical workstations. 
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Figure 13 Ray tracing: scene complexity vs. time (solid) 
and parallel paging (dotted) using virtual data memory. 
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Our second objective was to examine what happens to the 
performance when the parallel paging is used for virtual 
display lists. This test was run keeping the number of pixel 
nodes in the system constant, while increasing the number of 
objects in a scene. It can be seen from the graph in Figure 
13 that the paging begins at about 5,000 objects in the 
display list. The performance degrades exponentially when 
the paging begins but becomes again linear above 10,000 
objects. The dotted graph labeled "requested" shows the 
number of page faults generated by all the nodes. Since 
many nodes request the same page at the same time, the dot- 
ted graph labeled "serviced" shows that only about one tenth 
of the generated page faults had to be serviced. The speed 
of the algorithm when paging a display list is about five 
times slower than when all of a display list is in the pixel- 
node memory. 

The measured performance confirms our analysis: the architec- 
ture of the machine is best suited for image-computing algo- 
rithms which require a parallel overhead only once per image 
(e.g., ray tracing, fractals, 213 and 3D solid textures) and 
degenerates as the overhead increases and the number of use- 
fully employed pixel nodes decreases (e.g., line and point 
rasterizing). 
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6. Summary and Conclusions 

We have described a parallel image computer designed for fast 
geometry and image computing. The computer contains a 
large distributed frame buffer which allows many computing 
elements, capable of floating-point operations, to access pixel- 
oriented data in parallel. We have developed software for 
standard 3D polygonal graphics, 3D volume display and ray 
tracing, all based on a common programming environment. 

To overcome the problems inherent to the architecture of the 
machine and its current implementation - particularly the lim- 
ited amounts of program and data memories in each node - we 
resorted to using established software techniques found in trad- 
itional computers such as program overlays for instructions and 
virtual memory for data. We also found a method to remove 
the restrictions of the interleaved frame-buffer design using 
interprocessor communication capabilities. To simplify the 
development of software for our scalable parallel architecture 
we have developed a concept of physical and virtual nodes 
which makes the size of the machine transparent to the pro- 
grammer. 

We have also used the Pixel Machine for real-time playback 
of compressed audio and video data and as a general-purpose 
parallel computer. 
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