
Automatic Production of Controller Specifications
From Control and Timing Behavioral Descriptions*

Sally Hayati and Alice Parker
University of Southern California

Los Angeles, CA 90089-0781

Abstract

This paper presents a method for the generation of COT
troller specifications from high-level behavioral descrip-
tions in control and timing graph form. Input descrip-
tions may contain multiple timing constraints, asyn-
chronous and synchronous inputs, data dependent inter-
nal loops, and parallel and conditional branches. The
timing graph model is transformed automatically to a
state table specification of a synchronous finite state ma-
chine. The specification method is effective not only for
independent data processors, but also for processors con-
strained by interface requirements and performing I/O
protocol translation. The method has been programmed
and tested on selected examples. Results from one exam-
ple are given along with a comparison with results on the
same example from another system.

1 Introduction
The design system described in this paper generates con-
troller specifications from a description of data path con-
trol signals, I/O signals, branching behavior, and the re-
quired timing of events. We are particularly interested in
controllers for processors which interact with their envi-
ronment in nontrivial ways, in addition to carrying out
internal processing (referred to here as interfacing pro-
cessors), such as protocol transducers and graphics in-
terfaces. System correctness depends not only on logical
results but on their timing as well; time constraints may
be multiple and both minimum and maximum. It is also
significant that some processor input values may be ma-
nipulated by data operations such as multiply or shift
to produce new values, and other inputs may be viewed
more logically as control signals rather than operator in-
put:. This dichotomy between control and data is par-
I icularly relevant to interfacing processors because of the
VW of orotocols and signalling conventions. ~-

‘Supported by the Department of Advanced Research and
Project Agency Contract NO00 14-87-K-0861

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to repubk.h, requires a fee
and/or specific permission.

Some design systems approach interface processor syn-
thesis using either data path or control synthesis tech-
niques. ELF [I] was the first data path synthesis sys-
tem that accepted multiple timing constraints. ISYN [2]
schedules data flow and read and write operations based
on data readiness and timing constraints without con-
sidering hardware sharing. I/O hardware templates are
bound to each line read from or written to. The con-
troller is not synthesized. Another system, called Janus
[3], designs interface transducers using a timing graph as
input. No data path design is performed. The output of
Janus is an asynchronous circuit in which timing is de-
termined by the rippling of signals from input to output,
using delay elements in the signal path if necessary. A
template matching strategy is used to assign hardware to
behavior, with little optimization of circuitry.

The control specifier described in this paper is part of
the Advanced Design AutoMation (ADAM) system at the
University of Southern California. ADAM accepts a be-
havioral description of a digital processor and generates a
register-transfer level design. The control specifier is one
element of a subsystem of ADAM under development to
synthesize digital interfaces. The behavioral input specifi-
cation of the interface synthesis subsystem may contain a
mixture of data manipulation and T/O signal events with
timing constraints. The ADAM internal representation,
called the DDS, is described in the next section. The
DDS maintains separate representations of data flow and
timing and control behavior. Data path scheduling and
nodule binding are performed before control specification
to provide precise information on the timing and values
of all data path control signals. This information will
be incorporated into the timing and control behavioral
description, which is the input to the control specifier,
CONSPEC, whose functioning is described in detail in
Section 3. CONSPEC’s approach is novel and general in
that a state table is generated from which virtually any
style of controller can be synthesized. Internal loops are
allowed and considered for time constraint satisfaction.
Execution time is reduced to the minimum, subject to
data path scheduling decisions and minimum time con-
straints; in particular, there is no time penalty for the
use of procedure calls.

The method described here has been programmed and
tested on selected examples. Results from one example
are given in Section 4, along with a comparison with re-
sults on the same example from ISYN. The last section
gives conclusions and plans for future research.

26th ACM/IEEE Design Automation Conference@

Paper 6.4
0 1989 ACM 0-89791-310~8/89/0006/0075 $1.50 75

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74382.74396&domain=pdf&date_stamp=1989-06-01

2 Representation of Behavior

Within the ADAM system design specifications are rep-
resented internally by a graphical data structure called
the Design Data Structure (DDS). The significance of this
data structure for interfacing processor design is itts power
to represent the diverse kinds of information needed and
the efficiency of its graphical structure at integrating the
information into a useful form. The interested reader is
referred to [4] for details on representation issues relevant
to interfacing processor synthesis.

The DDS represents behavioral specifications using
separate hierarchical models for the data flow behavior,
timing and control behavior, and logical structure. The
representation of a wide range of specifications which con-
tain varying amounts of data flow and control flow is
possible. The Data Flow Model is a traditional si.ngle as-
signment directed acyclic graph showing maximum paral-
lelism. The two basic node types used are operation and
value, within which subtypes are defined. The model of
greatest importance to the control specifier is the Control
and Timing (CT) Model. It is this model which describes
the control and timing behavior to be implemented by a
controller.

The CT model is a directed graph whose point#s repre-
sent events, such as the initiation or termination of an
operation, and whose arcs represent relations between
events, such as operation durations and causality. There
are four arc types that are most relevant for this work.
Time constraint arcs are used to represent general time
constraints between events, such as UOperation X must
occur within z seconds after operation Y.” The constraint
may take the form of an equality or an inequality specify-
ing a minimum and/or maximum time. The interval arc
is used to specify a range of time: the exact length may
be specified or not. Clock period and clock phase arcs are
special cases of interval arcs.

The nature of the control flow from one interval to an-
other is specified by the type of the connecting point.
There are seven point types. The simplest type indi-
cates time order only: events associated with the ingoing
arc precede those of the outgoing arc. Parallel branches
are specified by and points which have a single in-arc
and multiple out-arcs that terminate (possibly) at and-
join points. Conditional branches employ or points, the
branches of which terminate at or-join points. Each mu-
tually exclusive branch of an or point is associated with a
synchronous predicate, which is a value or Boolean func-
tion of values defined in the data flow graph. The predi-
cate of only one arc can be true at a time, indicating which
branch is taken. Loops, which may be nested, are repre-
sented using two subscripted point types: a begin-loop
and an end-loop, between which are located the events
and intervals of the loop, all identified by the same sub-
script. For brevity, subscripts are omitted within figures
and points are labelled with the first letter of the point
type, such as b for a begin-loop point. Simple points are
labelled with a p or left unlabelled.

Associated with the CT graph are bindings specifying
the connections between particular time intervals of the
CT graph and items described in the data flow or struc-
tural models. The schedule chosen for data path opera-

tions, for example, will be indicated by binding operations
in the data flow to the correct interval sequences in the
CT model. In the next section we explain the nature and
significance of time interval bindings along with details of
the control specifier.

3 Control Specification

We now describe the control specification method used by
CONSPEC. A major goal is to retain flexibility in choos-
ing the controller implementation style rather than hav-
ing to commit to a single st.yle such as microprogramming
or PLA. Flexibility is important because we wish to syn-
thesize digital processors that have the proper function-
ality and also meet performance and cost constraints. To
accomplish this, control style should vary from problem to
problem. A second goal is to use existing control and logic
optimization techniques. To achieve these goals, we will
specify the behavior of the controller without commit-
ting to a logic implementation by creating a Finite State
Machine specification in the form of a state table. The
table lists the set of states, outputs, and state transitions
under all input conditions. The Mealy Machine model
is followed, in which outputs as well as state transitions
may be conditional, that is, depend on inputs in addition
to current state. Existing systems and techniques will be
used for state assignment and minimization, as well as
state machine synthesis.

Control specification proceeds by determining outputs
and next state transitions for one state .at a time, called
the current state. The root point is ta’ken as the start
of the first state and a depth first traversal of the DDS
control and timing graph is performed. Three aspects of
the behavior of the current state are determined. First,
the program decides which behaviors descriiied in the
graph should be included in the current state, and which
point(s) of the graph signals the beginning of the next
state(s). We describe the importance of arc type to this
state demarcation process in the following section. An
additional effect of point type on state demarcation will
be explained within the discussion on state transition.
Second, we determine which, if any, input values are
tested in the current state, and how that affects the nezt
state transitions. In Section 3.2 we show how point type
and predicate bindings determine the conditions affecting
state transition. Third, we check for current state outputs
and the conditions under which they should be asserted.
Section 3.3 describes how bindings between time intervals
and values are used to determine outputs.

3.1 State Demarcation

The arc type, along with any associated length specifica-
tion, is used to determine at what point of the CT graph
the current state ends and a new state begins. There are
four basic time interval configurations: clock period arc,
clock phase arc, interval arc of unspecified length, and
interval arc with a length specified. Data path synthesis
assigns data operations to clock periods, which are repre-
sented in the CT graph. Not all processor behavior is as-
sociated with data path events, however. For this reason

Paper 6.4

76

intervals may exist in the specification that do not rep-
resent clock periods. The communication protocol used
by an interface is one behavior not implemented by data-
path operators. Asynchronous protocols are represented
using interval arcs, with length specifications where re-
quired. If the protocol is synchronized to a clock, clock
arcs are used in the CT representation. Clock phase arcs
are used if signal behavior is defined in relation to the
high and low phases of the clock, otherwise clock period
arcs are used. Interval arcs may also be present.

A single clock period arc and the behavior associated
with it represent one state, whereas two sequential clock
phase arcs, representing the two phases of the clock pe-
riod, are necessary to represent one state. Behaviors asso-
ciated with intervals of unspecified length can execute in
a single state, provided there is not an indefinite wait on
an asynchronous event defined on the interval (the latter
form is described in Section 3.2).

Two methods are used to arrive at the proper state
sequence for intervals with time specified: a succession of
individual states, or a loop consisting of a single state and
a data path counter. The number of states or loop iter-
ations is given by [length/clockperiod~.l Other research
on control synthesis at USC has determined boundary
conditions for using a loop versus a sequence of states.
For a loop of length one, if the number of iterations is
greater than five the most favorable implementation is a
loop, whereas five iterations or fewer are most efficiently
implemented as a sequence of states.

3.2 Next State Transitions

Point types and predicate bindings determine the condi-
tions under which state outputs are asserted and state
transitions occur. Point types reflect the control and se-
quencing relations among time intervals and their associ-
ated events. The demarcation of one state from another
is determined by arc characteristics; the conditional or
unconditional nature of the transition is generally deter-
mined by the types of points within the state’s subgraph.

An unconditional state transition means that next
state processing is unaffected by the current value of in-
put signals and there is a single state transition from the
current state to the next. This behavior is indicated by a
timing graph segment that has no conditional branches.
In such a graph segment all points are simple or possibly
begin- or end-loop type points.

A conditional state transition occurs because the
next state processing is affected by the current value of
input signals. There are therefore multiple next state
transitions possible; the one taken is determined by in-
put values. We identify two timing graph configurations
which are implemented by conditional state transitions,
based on the synchronous OF asynchronous nature of the
input(s) being tested. The term synchronous is used to
indicate a signal whose timing is well defined in relation
to other events, though not necessarily to a predefined
clock. The conditional effects of synchronous input sig-
nals are represented in DDS by an or point with a single
incoming arc and multiple outgoing arcs corresponding

to the various values of the input. The conditional value
is represented by a synchronous predicate bound to each
out-going branch. The predicate is a Boolean expression
which may be composed of multiple input values.

Figure 1 shows two examples of DDS timing graphs
with conditional branches and the corresponding state
transitions. Referring to the top graph segment, depend-
ing on the value of the input op, either read or write
actions, defined on subsequent arcs, are performed. We
implement this in a state machine by conditional transi-
tions from State A, during which the value of op is tested,
to State B or State C. Multiple state transitions are nec-
essary because we do not assume a lifetime for the input
value op that extends beyond the interval in which it is
tested. The separate states serve therefore to “remem-
ber” what the input value was. This is a necessity when
branching behavior shows that subsequent behavior de-
pends on such knowledge.

Sometimes, as shown in the bottom graph segment of
the same figure, the conditional branches converge on the
same point. This indicates that processor behavior varies
only during a single time interval, marked State A in the
figure. The output incr is asserted or not, depending on
the value of the input less. Subsequent behavior is not
affected. State A will therefore have a conditional output
incr which is asserted only when the input signal less has
the value '1" during State A. The transition under both
input conditions will, however, be to the same state, B.
In Figure 1, the influence of point type on state demar-
cation can be seen. In this example state A is defined
by the behavior attached to two arcs. In general, when-
ever conditionals occur, multiple branches of the timing
graph must be traversed to determine the behavior of sin-
gle states.

Input signals that affect state transition may be asyn-
chronous: characterized by indeterminate timing in rela-
tion to other events. Examples include reset signals and
interactions between independent processors. This type
of input signal behavior is represented in the DDS by
binding the asynchronous input signal to the time inter-
val within which it might be asserted, along with a point
in the timing graph to which a branch is made if it is. The
input is called an asynchronous predicate and the binding
is a form of conditional branch.

We consider two categories of asynchronous input
behavior2. The first category is asynchronous signals
whose assertions interrupt processing, such as a reset.
This is represented in the DDS through the hierarchy
by binding an asynchronous predicate to a longer time
interval composed of all shorter time intervals which can
be interrupted. It is implemented by a conditional state
transition based on the predicate for every state defined
within the predicate’s range. The second category of
asynchronous input behavior is a wait on an input, as
in the statement: WAIT UNTIL selection-acknowledge.
The DDS representation of a simple wait (waits with time
outs can also be handled) is an asynchronous predicate
bound to an interval of unbounded length with no suc-
ceeding interval. This is implemented as a conditional
state loop, with the state transition based on the value of

‘The chosen cIock period must be shorter than the length ‘Asynchronous inputs are synchronized with the con-
attached to any interval arc. troller’s clock but are still indeterminate with respect to state.

Paper 6.4

77

the input. When the input is asserted, the loop i;s exited. number of loop iterations is. Currently it is assumed in
The Multi-bus slave example of Section 4 illustrates this this latter case that the number of iterations is indetermi-
category of asynchronous input behavior. nate. Nested loops are handled provided the constructs

are well-formed.

3.3 State Outputs
For minimum time constraints it is assumed that a loop

is executed the minimum n.umber of times. If the number

The output of values is specified in the DDS by a binding of iterations is indeterminate and the loop exit is at the

between the value, the time interval during which it is to beginning of the loop, the minimum loop execution time

be output, and the structural carrier on which the value is zero. If the exit is at the end, one. For maximum

should be asserted. We know, through the state demar- time constraints, all loops in the constrained path must

cation process, which arcs are associated with each state. be determinate or the timing cannot be assured and an

For a particular state, therefore, we can determine the error is reported.
state outputs by examining the relevant arcs for bindings. Conditional branches cause problems when paths are of

All observations on the conditional and unconditional na- different lengths. A synthesis technique that is often used

ture of state transitions made in the previous section are is to schedule events into time slots. Events succeeding

also relevant for determining the conditional or uncon- conditional branches are scheduled to slots which follow

ditional nature of state outputs. The only outputs with the longest branch of the conditional. Any “empty” slots

bearing upon the control specifier are those which either which result along the shorter conditional paths can be

control data path elements or are identified with inter- skipped over by the controller. If a design system accepts

face lines. To output data path values stored in registers, minimum time constraints, however, it is not apparent

the significant bindings are those referring to the control whether or notthe empty control slots are performing a

signals of registers and multiplexers. timing function. This situation can lead to inefficient

Those output values that have not been assigned regis- control design with many empty control slots. In the

ters or bound to control lines are I/O control signals such approach described here, states are added to paths only

as are found in communication protocols. These values as needed for minimum constraints: there are no empty

are defined as constants in the data flow graph, such as control states that need to be skipped over.

0 or 11012. They are implemented by the controller as If properly nested, there may be multiple conditional

state outputs. branches. We append timing states to all paths which vio-
late the minimum constraint. Whenever possible, timing
states are shared between the conditional paths. Paths

3.4 Time Constraint Satisfaction are arranged according to their maximal common suf-

The satisfaction of both minimum and maximum time
jizes, or ending state sequences. Paths may share the

constraints may be necessary. We implement minimum
same timing states only if they belong to the same suf-
fi

time constraints by adding timing states when necessary.
x group. The timing states are inserted just before the

Maximum constraints are verified after minimum con-
common suffix. This guarantees that paths that meet or

straints have been satisfied: path lengths are checked
exceed the minimum time will not be lengthened. Fig-

against the constraint and violators marked. Every event
ure 2 illustrates the process with an example. There is a

occurs as early as possible unless otherwise specified by
minimum time constraint of four clock periods between
th fi t

minimum constraints. In particular, procedure and sub-
e rs and last points of this timing graph. The dashed

routine calls do not involve extra control steps for call
lines represent the boundaries between states. Two paths,

and return events but are handled as forms of condi-
which are marked by the symbols u*n and “+“, are short

tional transition. The logic implementation later chosen
and require the addition of time steps. They will not be

for the controller will finalize the manner of effecting such
allowed to share timing states, however, because they do
not have common maximum suffixes. This assures that

branches.
In this section we consider two factors which compli-

the path passing through p2, which meets the minimum

cate design with timing constraints: internal loops and
constraint, does not have time steps added to its length.

conditional branches.
Internal loops create problems because it is difficult 4

to determine the number of iterations and therefore the
Multi-bus Slave Example

effect on timing constraints. ISYN, for example, does The control specifier is written in Quintus Prolog and
not analyze loops or include them in constraint sa,tisfac- runs on a Sun 3/280 under UNIX. A simple example
tion. The DDS provides a complete description of branch- synthesized by ISYN in [2] was chosen to illustrate the
ing and loop conditions. The timing graph indicates the method. In more complex examples there is less correp-
predicate values which lead to looping behavior. Com- sondence between the DDS graph and the state diagram.
plex predicates are defined in the data flow graph. This The DDS control and timing graph describing the
characteristic of the DDS allows the automatic determi- Multi-bus slave interface is shown in Figure 3. Process-
nation of whether a loop is fixed or not, and if so, the ing begins at the first p point at the top left. The first
number of iterations. When the initialization, increment, action is the initialization of zack.set to zero, shown by
and final values governing loop behavior are specified as the binding xack.set+O. Next is a begin-loop point b cor-
constants in the data flow graph, there is limited looping responding to the outer processing loop. The following
behavior. If any of the three values are input from the interval represents a wait for the assertion. of one of two
environment, however, it cannot be determined what the mutually exclusive asynchronous inputs read and write.

Paper 6.4

78

The inputs are represented by asynchronous predicates
bound to the interval. If write is asserted a branch (in-
dicated by the dashed line) is made to or-jl. After the
assertion of write, the value dati.1 is placed on either the
control or data line, depending on the value of the input
adrl.1. The conditional branch then converges, and the PI

next interval specifies an output of 1 on the line zack.set.
Xack.set must be set to 0 in the next interval before wait-
ing for the asynchronous input mwtc.1 to take on the value
0. When this value is detected, the outer processing loop

[3]

is repeated, represented by a return, via point or-j& to
the end-loop point e. The behavior which occurs if the
asynchronous predicate read is asserted instead of write I41

is very similar.
An algorithmic state diagram is given instead of the

corresponding state table produced from the DDS speci-
fication (Figure 4), since the diagram is easier to follow.
States are represented by a state label (circle): following
diamonds represent the testing of input values within the
state and boxes denote the outputs that are produced
during the state. For readability, control outputs are
specified in the figure by the data transfer being con-
trolled. The waits on asynchronous inputs are imple-
mented as loops at ~2, 310, and ~6. The conditional be-
havior based on the value of input adrl.1 is implemented
as conditional outputs during states 97 and ~3. Ten states
are required, including loops.

For the same example, ISYN produces an event sched-
ule with 26 steps, including some Uwaitsn, or implicit
loops. Many of the steps serve merely to transfer con-
trol to the next step. The elimination of these empty
steps would be complicated because of the need to dou-
ble check timing constraints. The maximum length path
(excluding loops, present in both) for the control is six
states for our design versus eleven in ISYN’s. This exam-
ple state machine was generated in 3 seconds wall clock
time on a Sun 3/280,

hardware compiler based on graph grammars and
scheduling. In Proceedings, 1984 International Con-
ference on Computer Design - ICCD, pages 726-729,
October 1984.

J. Nestor and D. Thomas, Behavioral Synthesis
with Interfaces. In IEEE International Conference
on CAD, November 1986.

G. Borriello and R. Katz. Synthesizing Transducers
from Interface Specifications. In International Con-
ference on VLSI, August 1987.

S. Hayati, A. Parker, and J. Granacki. Representa-
tion of control and timing behavior with applications
to interface synthesis. In Proceedings of the Interna-
tional Conference on Computer Design, 1988.

read actions write actions

State B

5 Conclusions

The control specifier described in this paper has the ad-
vantage of fitting within a synthesis system that inte-
grates the automatic design of both data path and control
behavior. This extends the applicability of the method to
the design of controllers for a variety of systems ranging
from interface protocol transducers to data processors.
We also take advantage of existing state machine and
logic optimization packages to create the logic implemen-
tation. CONSPEC efficiently deals with minimum and
maximum constraint satisfaction, handles internal loops,
and produces a specification with multiple implementa-
tion possibilities.

Our current research is focused on adding flexibility to
the control specification method in handling control/data
path interactions, maximum time constraint violation,
parallel branches, and clock period determination based
on constraint satisfaction.

References

Figure 1: DDS Conditional Branches and State
Transitions

2: Conditional Paths and Minimum Timing

[l] E. Girczyc and J. Knight. An ada to standard cell
Constraints

Paper 6.4

79

write=l: -or-j 1

read=l: --+or-j2

/’ ’ De P / / 0
,/’ /’

@r--Q

\

/’ / ’ ‘\
/’ , \ *

/ / \ \
\

/’ / \ .
J / \ \ ,- - / -\ \

<’ adrl.1 ,J’ control+-dati.1 . \ \
xack.setL,O

\

,“adrI.l
/

/
/

datacdati.1
\
\
\
\
\

/

L”
adrl.1 dato.l+-data

o--cc-

xack.set+ 1 xack.set+0 &dcJ==O: --*or-j5

or-j2 Or

adrl .I dato.l+-status

Figure 3: DDS R,epresentation of Multibus Slave

dato.l+-status

Figure 4: State Diagram Derived for Multibus Slave Example

Paper 6.4

80

