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Abstract 

This paper presents a method for the generation of COT 
troller specifications from high-level behavioral descrip- 
tions in control and timing graph form. Input descrip- 
tions may contain multiple timing constraints, asyn- 
chronous and synchronous inputs, data dependent inter- 
nal loops, and parallel and conditional branches. The 
timing graph model is transformed automatically to a 
state table specification of a synchronous finite state ma- 
chine. The specification method is effective not only for 
independent data processors, but also for processors con- 
strained by interface requirements and performing I/O 
protocol translation. The method has been programmed 
and tested on selected examples. Results from one exam- 
ple are given along with a comparison with results on the 
same example from another system. 

1 Introduction 
The design system described in this paper generates con- 
troller specifications from a description of data path con- 
trol signals, I/O signals, branching behavior, and the re- 
quired timing of events. We are particularly interested in 
controllers for processors which interact with their envi- 
ronment in nontrivial ways, in addition to carrying out 
internal processing (referred to here as interfacing pro- 
cessors), such as protocol transducers and graphics in- 
terfaces. System correctness depends not only on logical 
results but on their timing as well; time constraints may 
be multiple and both minimum and maximum. It is also 
significant that some processor input values may be ma- 
nipulated by data operations such as multiply or shift 
to produce new values, and other inputs may be viewed 
more logically as control signals rather than operator in- 
put:. This dichotomy between control and data is par- 
I icularly relevant to interfacing processors because of the 
VW of orotocols and signalling conventions. ~- 
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Some design systems approach interface processor syn- 
thesis using either data path or control synthesis tech- 
niques. ELF [I] was the first data path synthesis sys- 
tem that accepted multiple timing constraints. ISYN [2] 
schedules data flow and read and write operations based 
on data readiness and timing constraints without con- 
sidering hardware sharing. I/O hardware templates are 
bound to each line read from or written to. The con- 
troller is not synthesized. Another system, called Janus 
[3], designs interface transducers using a timing graph as 
input. No data path design is performed. The output of 
Janus is an asynchronous circuit in which timing is de- 
termined by the rippling of signals from input to output, 
using delay elements in the signal path if necessary. A 
template matching strategy is used to assign hardware to 
behavior, with little optimization of circuitry. 

The control specifier described in this paper is part of 
the Advanced Design AutoMation (ADAM) system at the 
University of Southern California. ADAM accepts a be- 
havioral description of a digital processor and generates a 
register-transfer level design. The control specifier is one 
element of a subsystem of ADAM under development to 
synthesize digital interfaces. The behavioral input specifi- 
cation of the interface synthesis subsystem may contain a 
mixture of data manipulation and T/O signal events with 
timing constraints. The ADAM internal representation, 
called the DDS, is described in the next section. The 
DDS maintains separate representations of data flow and 
timing and control behavior. Data path scheduling and 
nodule binding are performed before control specification 
to provide precise information on the timing and values 
of all data path control signals. This information will 
be incorporated into the timing and control behavioral 
description, which is the input to the control specifier, 
CONSPEC, whose functioning is described in detail in 
Section 3. CONSPEC’s approach is novel and general in 
that a state table is generated from which virtually any 
style of controller can be synthesized. Internal loops are 
allowed and considered for time constraint satisfaction. 
Execution time is reduced to the minimum, subject to 
data path scheduling decisions and minimum time con- 
straints; in particular, there is no time penalty for the 
use of procedure calls. 

The method described here has been programmed and 
tested on selected examples. Results from one example 
are given in Section 4, along with a comparison with re- 
sults on the same example from ISYN. The last section 
gives conclusions and plans for future research. 
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2 Representation of Behavior 

Within the ADAM system design specifications are rep- 
resented internally by a graphical data structure called 
the Design Data Structure (DDS). The significance of this 
data structure for interfacing processor design is itts power 
to represent the diverse kinds of information needed and 
the efficiency of its graphical structure at integrating the 
information into a useful form. The interested reader is 
referred to [4] for details on representation issues relevant 
to interfacing processor synthesis. 

The DDS represents behavioral specifications using 
separate hierarchical models for the data flow behavior, 
timing and control behavior, and logical structure. The 
representation of a wide range of specifications which con- 
tain varying amounts of data flow and control flow is 
possible. The Data Flow Model is a traditional si.ngle as- 
signment directed acyclic graph showing maximum paral- 
lelism. The two basic node types used are operation and 
value, within which subtypes are defined. The model of 
greatest importance to the control specifier is the Control 
and Timing (CT) Model. It is this model which describes 
the control and timing behavior to be implemented by a 
controller. 

The CT model is a directed graph whose point#s repre- 
sent events, such as the initiation or termination of an 
operation, and whose arcs represent relations between 
events, such as operation durations and causality. There 
are four arc types that are most relevant for this work. 
Time constraint arcs are used to represent general time 
constraints between events, such as UOperation X must 
occur within z seconds after operation Y.” The constraint 
may take the form of an equality or an inequality specify- 
ing a minimum and/or maximum time. The interval arc 
is used to specify a range of time: the exact length may 
be specified or not. Clock period and clock phase arcs are 
special cases of interval arcs. 

The nature of the control flow from one interval to an- 
other is specified by the type of the connecting point. 
There are seven point types. The simplest type indi- 
cates time order only: events associated with the ingoing 
arc precede those of the outgoing arc. Parallel branches 
are specified by and points which have a single in-arc 
and multiple out-arcs that terminate (possibly) at and- 
join points. Conditional branches employ or points, the 
branches of which terminate at or-join points. Each mu- 
tually exclusive branch of an or point is associated with a 
synchronous predicate, which is a value or Boolean func- 
tion of values defined in the data flow graph. The predi- 
cate of only one arc can be true at a time, indicating which 
branch is taken. Loops, which may be nested, are repre- 
sented using two subscripted point types: a begin-loop 
and an end-loop, between which are located the events 
and intervals of the loop, all identified by the same sub- 
script. For brevity, subscripts are omitted within figures 
and points are labelled with the first letter of the point 
type, such as b for a begin-loop point. Simple points are 
labelled with a p or left unlabelled. 

Associated with the CT graph are bindings specifying 
the connections between particular time intervals of the 
CT graph and items described in the data flow or struc- 
tural models. The schedule chosen for data path opera- 

tions, for example, will be indicated by binding operations 
in the data flow to the correct interval sequences in the 
CT model. In the next section we explain the nature and 
significance of time interval bindings along with details of 
the control specifier. 

3 Control Specification 

We now describe the control specification method used by 
CONSPEC. A major goal is to retain flexibility in choos- 
ing the controller implementation style rather than hav- 
ing to commit to a single st.yle such as microprogramming 
or PLA. Flexibility is important because we wish to syn- 
thesize digital processors that have the proper function- 
ality and also meet performance and cost constraints. To 
accomplish this, control style should vary from problem to 
problem. A second goal is to use existing control and logic 
optimization techniques. To achieve these goals, we will 
specify the behavior of the controller without commit- 
ting to a logic implementation by creating a Finite State 
Machine specification in the form of a state table. The 
table lists the set of states, outputs, and state transitions 
under all input conditions. The Mealy Machine model 
is followed, in which outputs as well as state transitions 
may be conditional, that is, depend on inputs in addition 
to current state. Existing systems and techniques will be 
used for state assignment and minimization, as well as 
state machine synthesis. 

Control specification proceeds by determining outputs 
and next state transitions for one state .at a time, called 
the current state. The root point is ta’ken as the start 
of the first state and a depth first traversal of the DDS 
control and timing graph is performed. Three aspects of 
the behavior of the current state are determined. First, 
the program decides which behaviors descriiied in the 
graph should be included in the current state, and which 
point(s) of the graph signals the beginning of the next 
state(s). We describe the importance of arc type to this 
state demarcation process in the following section. An 
additional effect of point type on state demarcation will 
be explained within the discussion on state transition. 
Second, we determine which, if any, input values are 
tested in the current state, and how that affects the nezt 
state transitions. In Section 3.2 we show how point type 
and predicate bindings determine the conditions affecting 
state transition. Third, we check for current state outputs 
and the conditions under which they should be asserted. 
Section 3.3 describes how bindings between time intervals 
and values are used to determine outputs. 

3.1 State Demarcation 

The arc type, along with any associated length specifica- 
tion, is used to determine at what point of the CT graph 
the current state ends and a new state begins. There are 
four basic time interval configurations: clock period arc, 
clock phase arc, interval arc of unspecified length, and 
interval arc with a length specified. Data path synthesis 
assigns data operations to clock periods, which are repre- 
sented in the CT graph. Not all processor behavior is as- 
sociated with data path events, however. For this reason 
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intervals may exist in the specification that do not rep- 
resent clock periods. The communication protocol used 
by an interface is one behavior not implemented by data- 
path operators. Asynchronous protocols are represented 
using interval arcs, with length specifications where re- 
quired. If the protocol is synchronized to a clock, clock 
arcs are used in the CT representation. Clock phase arcs 
are used if signal behavior is defined in relation to the 
high and low phases of the clock, otherwise clock period 
arcs are used. Interval arcs may also be present. 

A single clock period arc and the behavior associated 
with it represent one state, whereas two sequential clock 
phase arcs, representing the two phases of the clock pe- 
riod, are necessary to represent one state. Behaviors asso- 
ciated with intervals of unspecified length can execute in 
a single state, provided there is not an indefinite wait on 
an asynchronous event defined on the interval (the latter 
form is described in Section 3.2). 

Two methods are used to arrive at the proper state 
sequence for intervals with time specified: a succession of 
individual states, or a loop consisting of a single state and 
a data path counter. The number of states or loop iter- 
ations is given by [length/clockperiod~.l Other research 
on control synthesis at USC has determined boundary 
conditions for using a loop versus a sequence of states. 
For a loop of length one, if the number of iterations is 
greater than five the most favorable implementation is a 
loop, whereas five iterations or fewer are most efficiently 
implemented as a sequence of states. 

3.2 Next State Transitions 

Point types and predicate bindings determine the condi- 
tions under which state outputs are asserted and state 
transitions occur. Point types reflect the control and se- 
quencing relations among time intervals and their associ- 
ated events. The demarcation of one state from another 
is determined by arc characteristics; the conditional or 
unconditional nature of the transition is generally deter- 
mined by the types of points within the state’s subgraph. 

An unconditional state transition means that next 
state processing is unaffected by the current value of in- 
put signals and there is a single state transition from the 
current state to the next. This behavior is indicated by a 
timing graph segment that has no conditional branches. 
In such a graph segment all points are simple or possibly 
begin- or end-loop type points. 

A conditional state transition occurs because the 
next state processing is affected by the current value of 
input signals. There are therefore multiple next state 
transitions possible; the one taken is determined by in- 
put values. We identify two timing graph configurations 
which are implemented by conditional state transitions, 
based on the synchronous OF asynchronous nature of the 
input(s) being tested. The term synchronous is used to 
indicate a signal whose timing is well defined in relation 
to other events, though not necessarily to a predefined 
clock. The conditional effects of synchronous input sig- 
nals are represented in DDS by an or point with a single 
incoming arc and multiple outgoing arcs corresponding 

to the various values of the input. The conditional value 
is represented by a synchronous predicate bound to each 
out-going branch. The predicate is a Boolean expression 
which may be composed of multiple input values. 

Figure 1 shows two examples of DDS timing graphs 
with conditional branches and the corresponding state 
transitions. Referring to the top graph segment, depend- 
ing on the value of the input op, either read or write 
actions, defined on subsequent arcs, are performed. We 
implement this in a state machine by conditional transi- 
tions from State A, during which the value of op is tested, 
to State B or State C. Multiple state transitions are nec- 
essary because we do not assume a lifetime for the input 
value op that extends beyond the interval in which it is 
tested. The separate states serve therefore to “remem- 
ber” what the input value was. This is a necessity when 
branching behavior shows that subsequent behavior de- 
pends on such knowledge. 

Sometimes, as shown in the bottom graph segment of 
the same figure, the conditional branches converge on the 
same point. This indicates that processor behavior varies 
only during a single time interval, marked State A in the 
figure. The output incr is asserted or not, depending on 
the value of the input less. Subsequent behavior is not 
affected. State A will therefore have a conditional output 
incr which is asserted only when the input signal less has 
the value '1" during State A. The transition under both 
input conditions will, however, be to the same state, B. 
In Figure 1, the influence of point type on state demar- 
cation can be seen. In this example state A is defined 
by the behavior attached to two arcs. In general, when- 
ever conditionals occur, multiple branches of the timing 
graph must be traversed to determine the behavior of sin- 
gle states. 

Input signals that affect state transition may be asyn- 
chronous: characterized by indeterminate timing in rela- 
tion to other events. Examples include reset signals and 
interactions between independent processors. This type 
of input signal behavior is represented in the DDS by 
binding the asynchronous input signal to the time inter- 
val within which it might be asserted, along with a point 
in the timing graph to which a branch is made if it is. The 
input is called an asynchronous predicate and the binding 
is a form of conditional branch. 

We consider two categories of asynchronous input 
behavior2. The first category is asynchronous signals 
whose assertions interrupt processing, such as a reset. 
This is represented in the DDS through the hierarchy 
by binding an asynchronous predicate to a longer time 
interval composed of all shorter time intervals which can 
be interrupted. It is implemented by a conditional state 
transition based on the predicate for every state defined 
within the predicate’s range. The second category of 
asynchronous input behavior is a wait on an input, as 
in the statement: WAIT UNTIL selection-acknowledge. 
The DDS representation of a simple wait (waits with time 
outs can also be handled) is an asynchronous predicate 
bound to an interval of unbounded length with no suc- 
ceeding interval. This is implemented as a conditional 
state loop, with the state transition based on the value of 

‘The chosen cIock period must be shorter than the length ‘Asynchronous inputs are synchronized with the con- 
attached to any interval arc. troller’s clock but are still indeterminate with respect to state. 
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the input. When the input is asserted, the loop i;s exited. number of loop iterations is. Currently it is assumed in 
The Multi-bus slave example of Section 4 illustrates this this latter case that the number of iterations is indetermi- 
category of asynchronous input behavior. nate. Nested loops are handled provided the constructs 

are well-formed. 

3.3 State Outputs 
For minimum time constraints it is assumed that a loop 

is executed the minimum n.umber of times. If the number 

The output of values is specified in the DDS by a binding of iterations is indeterminate and the loop exit is at the 

between the value, the time interval during which it is to beginning of the loop, the minimum loop execution time 

be output, and the structural carrier on which the value is zero. If the exit is at the end, one. For maximum 

should be asserted. We know, through the state demar- time constraints, all loops in the constrained path must 

cation process, which arcs are associated with each state. be determinate or the timing cannot be assured and an 

For a particular state, therefore, we can determine the error is reported. 
state outputs by examining the relevant arcs for bindings. Conditional branches cause problems when paths are of 

All observations on the conditional and unconditional na- different lengths. A synthesis technique that is often used 

ture of state transitions made in the previous section are is to schedule events into time slots. Events succeeding 

also relevant for determining the conditional or uncon- conditional branches are scheduled to slots which follow 

ditional nature of state outputs. The only outputs with the longest branch of the conditional. Any “empty” slots 

bearing upon the control specifier are those which either which result along the shorter conditional paths can be 

control data path elements or are identified with inter- skipped over by the controller. If a design system accepts 

face lines. To output data path values stored in registers, minimum time constraints, however, it is not apparent 

the significant bindings are those referring to the control whether or notthe empty control slots are performing a 

signals of registers and multiplexers. timing function. This situation can lead to inefficient 

Those output values that have not been assigned regis- control design with many empty control slots. In the 

ters or bound to control lines are I/O control signals such approach described here, states are added to paths only 

as are found in communication protocols. These values as needed for minimum constraints: there are no empty 

are defined as constants in the data flow graph, such as control states that need to be skipped over. 

0 or 11012. They are implemented by the controller as If properly nested, there may be multiple conditional 

state outputs. branches. We append timing states to all paths which vio- 
late the minimum constraint. Whenever possible, timing 
states are shared between the conditional paths. Paths 

3.4 Time Constraint Satisfaction are arranged according to their maximal common suf- 

The satisfaction of both minimum and maximum time 
jizes, or ending state sequences. Paths may share the 

constraints may be necessary. We implement minimum 
same timing states only if they belong to the same suf- 
fi 

time constraints by adding timing states when necessary. 
x group. The timing states are inserted just before the 

Maximum constraints are verified after minimum con- 
common suffix. This guarantees that paths that meet or 

straints have been satisfied: path lengths are checked 
exceed the minimum time will not be lengthened. Fig- 

against the constraint and violators marked. Every event 
ure 2 illustrates the process with an example. There is a 

occurs as early as possible unless otherwise specified by 
minimum time constraint of four clock periods between 
th fi t 

minimum constraints. In particular, procedure and sub- 
e rs and last points of this timing graph. The dashed 

routine calls do not involve extra control steps for call 
lines represent the boundaries between states. Two paths, 

and return events but are handled as forms of condi- 
which are marked by the symbols u*n and “+“, are short 

tional transition. The logic implementation later chosen 
and require the addition of time steps. They will not be 

for the controller will finalize the manner of effecting such 
allowed to share timing states, however, because they do 
not have common maximum suffixes. This assures that 

branches. 
In this section we consider two factors which compli- 

the path passing through p2, which meets the minimum 

cate design with timing constraints: internal loops and 
constraint, does not have time steps added to its length. 

conditional branches. 
Internal loops create problems because it is difficult 4 

to determine the number of iterations and therefore the 
Multi-bus Slave Example 

effect on timing constraints. ISYN, for example, does The control specifier is written in Quintus Prolog and 
not analyze loops or include them in constraint sa,tisfac- runs on a Sun 3/280 under UNIX. A simple example 
tion. The DDS provides a complete description of branch- synthesized by ISYN in [2] was chosen to illustrate the 
ing and loop conditions. The timing graph indicates the method. In more complex examples there is less correp- 
predicate values which lead to looping behavior. Com- sondence between the DDS graph and the state diagram. 
plex predicates are defined in the data flow graph. This The DDS control and timing graph describing the 
characteristic of the DDS allows the automatic determi- Multi-bus slave interface is shown in Figure 3. Process- 
nation of whether a loop is fixed or not, and if so, the ing begins at the first p point at the top left. The first 
number of iterations. When the initialization, increment, action is the initialization of zack.set to zero, shown by 
and final values governing loop behavior are specified as the binding xack.set+O. Next is a begin-loop point b cor- 
constants in the data flow graph, there is limited looping responding to the outer processing loop. The following 
behavior. If any of the three values are input from the interval represents a wait for the assertion. of one of two 
environment, however, it cannot be determined what the mutually exclusive asynchronous inputs read and write. 
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The inputs are represented by asynchronous predicates 
bound to the interval. If write is asserted a branch (in- 
dicated by the dashed line) is made to or-jl. After the 
assertion of write, the value dati.1 is placed on either the 
control or data line, depending on the value of the input 
adrl.1. The conditional branch then converges, and the PI 

next interval specifies an output of 1 on the line zack.set. 
Xack.set must be set to 0 in the next interval before wait- 
ing for the asynchronous input mwtc.1 to take on the value 
0. When this value is detected, the outer processing loop 

[3] 

is repeated, represented by a return, via point or-j& to 
the end-loop point e. The behavior which occurs if the 
asynchronous predicate read is asserted instead of write I41 

is very similar. 
An algorithmic state diagram is given instead of the 

corresponding state table produced from the DDS speci- 
fication (Figure 4), since the diagram is easier to follow. 
States are represented by a state label (circle): following 
diamonds represent the testing of input values within the 
state and boxes denote the outputs that are produced 
during the state. For readability, control outputs are 
specified in the figure by the data transfer being con- 
trolled. The waits on asynchronous inputs are imple- 
mented as loops at ~2, 310, and ~6. The conditional be- 
havior based on the value of input adrl.1 is implemented 
as conditional outputs during states 97 and ~3. Ten states 
are required, including loops. 

For the same example, ISYN produces an event sched- 
ule with 26 steps, including some Uwaitsn, or implicit 
loops. Many of the steps serve merely to transfer con- 
trol to the next step. The elimination of these empty 
steps would be complicated because of the need to dou- 
ble check timing constraints. The maximum length path 
(excluding loops, present in both) for the control is six 
states for our design versus eleven in ISYN’s. This exam- 
ple state machine was generated in 3 seconds wall clock 
time on a Sun 3/280, 
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read actions write actions 

State B 

5 Conclusions 

The control specifier described in this paper has the ad- 
vantage of fitting within a synthesis system that inte- 
grates the automatic design of both data path and control 
behavior. This extends the applicability of the method to 
the design of controllers for a variety of systems ranging 
from interface protocol transducers to data processors. 
We also take advantage of existing state machine and 
logic optimization packages to create the logic implemen- 
tation. CONSPEC efficiently deals with minimum and 
maximum constraint satisfaction, handles internal loops, 
and produces a specification with multiple implementa- 
tion possibilities. 

Our current research is focused on adding flexibility to 
the control specification method in handling control/data 
path interactions, maximum time constraint violation, 
parallel branches, and clock period determination based 
on constraint satisfaction. 
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