
ORCA A Sea-of-gates Place and IRoute System

Mitsuru Igusa, Mark Bearcdslee and Albert0 San.giovanni--VincentelK

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, California 94’7’20

Abstract

Sea-of-gates is becoming an important design style for
Application Specific Integrated Circuits (ASECs). The
sea-of-gates technology offers more flexible placement
and routing options not available in gate arrays. Very
few systems are available today that can automatically
layout sea-of-gates and none of these systems effectively
use the features available in sea-of-gates architecture.
ORCA is a place and route system for se&of-gates,
whose objective is to produce the highest density lay-
out by fully exploiting the inherent features of this new
design style. The ORCA system starts with a mod-
ule generator which preprocesses memory arrays and
other logic with a regular structure to form hig,h den-
sity macros. The remaining logic is clustered together
to form flexible macros, which we call porous., The
porous macro-cells allow global routing to pass through
the macro instead of detouring around its perimeter.
The porous macros are dynamically shaped and resized
by interaction with global wiring analysis. Finally, a
general channelless area router has been developed to
address the multiple layers of interconnect and routing
areas which will be dominantly over-the-cell. Due to
the large size of the problem (e.g. 100,000 gates), the
placement and routing algorithms are hierarchical.

1 Introduction

The “gate-array” (also referred to as master-slice, or
uncommitted logic array) is by far the most cctmmon
design style for ASICs. The computer aids for gate-
array design are also the most advanced and the most
mature. In this approach, a two-dimensional array of
replicated transistors is fabricated to a point just prior
to the interconnection levels. Generally a two-level in-
terconnection scheme is used for signals and, in some
approaches, a third more coarsely defined layer of inter-
connections is provided for power and ground connec-
tions. Because one or more interconnection layers are
used within a group of transistors to define the function
of a cell, these intra-cell interconnections often block

the passage of more global inter-cell connections. For
that reason, and to simplify the placement and rout-
ing problems associated with these arrays, the inter-
cell connections are implemented on a rectilinear grid
in the “channels” between the cells. Over-the-cell inter-
connections are typically characterized by straight 2nd
layer metal “feedthroughs”.

This recent variation of the gate-array structure is
often referred to as a %ea--of-gates” array [l] and, as
well as providing new challenges for t:he CAD commu-
nity, promises to replace many of the designs previously
undertaken in the conventional gate-*array style. The
routing area is not organized a priori into channels as
in standard gate-arrays. The basic building blocks in
this design style are similar to the ones used in stan-
dard gate-arrays. In the sea-of-transistor architecture,
using CMOS processing technology, transistors are in a
compact regular arrangement in rows (columns) of com-
plementary pairs.

Given the tight arrangement of the transistors, it is
possible to design large macros effectively with little
area penalty. For example, it is possible to design RAM
blocks using the transistor array. This capability makes
the sea-of-gates approach more competitive than gate-
array and possibly an alternative to some low volume
standard-cells and macro-cells. However, the automatic
generation of chips which fully utilize t,hese inherent c&
pabilities of sea-of-gates is more difficult than with the
standard gate-array design style.

Three iayers of interconnects appear more often in the
larger VLSI designs in this design sty.le due to the po-
tential increase in chip utilization and performance (i.e.
shorter wire length and decreased capacitance). The ac-
tive area utilization could be dramatically increased, but
the wiring problem becomes more complex and must ef-
ficiently deal with over-the-cell routing.

In this paper, we present the ORCA system, which
consists of module generators, placement, and routing
tools. The system is designed to support a variety of
layout styles:

1. standard-cell like, where the basic cells are ar-
ranged in rows of equal height and the routing area

26th ACM/IEE!E Design Automation Conference@
Paper 8.4

122 0 1989 ACM O-89791 -31 O-8/89/0006/01 22 $1.50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74382.74404&domain=pdf&date_stamp=1989-06-01

is arranged into channels with flexible dimensions;

2. macro-cell like, where macros can be built using
basic cells belonging to different rows of active de-
vices, and macros as well as celis can occupy any
position of the chip within the constraints of the
architecture;

3. porous macroxell, where the basic cells are clus-
tered together to form macros which are flexible
in shape and allow routing to pass through the
macro. The key feature of this method is that it
allows routing to go straight through macro blocks
instead of detouring around, thus reducing wiring
length and consequently the chip area (Figure 1).

after placement

1. Macro cell like
I I

all A

2. Porous macro cell

I I

ui
A

t

after respacing

I I

I

,I_ A

:

1
Figure 1: Porous macro-cell

2 Overview of the CIRCA algo-
rithm

The ORCA system consists of a floorplanner, a placer, a
global router, a spacing requester, a macro adjuster and
an area router. The floorplanner partitions the logic cir-
cuits into groups of ceils and assigns the cehs to areas
of the layout. The placer places the logic circuits within
each layout area. The global router performs a “coarse”
routing of the chip and locates the routing areas that
are too congested. The spacing requesler decides which
areas of the layout need to be expanded or contracted
based on the global routing congestion information. The
placemenf adjus1er readjusts the location and placement
of cell groups to accommodate the requested spacing
changes. The global routing and placement improve-
ment sequence is continued until it is determined that

the layout can be routed. Finally, the area router does
the detailed routing.

3 Floorplanning and Placement

The size of a sea-of-gates layout can be as large as
100,000 gates, and the largest available sea-of-gates ar-
rays will undoubtedly become even bigger in the future.
While other steps of the sea-of-gates physical design
system may subdivide their problem into a smaller more
managable subtasks, the floorplanning/placement step
must, at some point, deal with the entire design all at
the same time. To be able to handle such large circuits,
fast and memory efficient algorithms are used.

One algorithm that is effective and fast is the min-
cut algorithm [2]. A variation of this algorithm [3] has
been shown to complete in time linearly proportional to
the size of the network. The min-cut algorithm takes a
general network and divides it into two groups so that
the number of nets that connect cells in different groups
is minimized and the two groups have approximately the
same size. This has the effect of grouping cells that are
highly connected so that they are close together, thereby
minimizing the amount of wiring in the final layout.

The floorplanning step performs assignment of all the
cells to restricted areas of the layout space by using
the min-cut algorithm to hierarchically partition the
circuit. The process begins by first making a cut in
the network. Then two groups of cells resulting from
the cut are constrained to lie inside respective halves of
the layout space. The two resulting pieces will then be
partitioned with a cut line perpendicular to the first.
The floorplanning hierarchy can now be represented as
a tree with the leaf nodes being groups of cells and the
internal nodes representing network cuts. The cuts are
continued recursively with the cut directions changing
at every level of the tree until the groups of cells at the
leaves are small.

When partitioning at lower levels of the tree, one
should consider the effects of the locations of the neigh-
boring cells on the cut being done. In our method, all
cuts that reside at the same level of the tree with the
same cut direction and on the same horizontal or verti-
cal line are done simultaneously. At each step the cut
line is defined so that it cuts a sequence of groups that
extend entirely from one side of the layout to the other.
Figure 2 illustrates the idea; the horizontal cuts a, b,
c and d are all considered simultaneously. We found
that this method is better than considering partitions
sequentially with a pin propagation scheme [4].

It has also been noticed that the quality of a cut de-
pends on the parts of the layout whose locations have
already been determined. The cells and i/o pads that
have already been placed are allowed to exert an in-
fluence on the cut being performed. At every cut the
area of the two groups is balanced, thus at the end of

Paper 8.4

123

no
q o

a

+

rY

0
no

C

+
d

Figure 2: Simultaneous min-cut

the floorplanning stage all of the groups should have
approximately the same area.

Since the min-cut algorithm is a heuristic based de-
terministic algorithm, the result of the algorithm i.s very
dependent on the initial starting conditions. A simple
yet, effective method to fix this problem is to perform
the min-cut algorithm on the same cut many times;
each time starting from a different random initial state.
When using many random initial starts, the measured
routing length has been observed to decrease from 10 to
15 per cent.

At this point the relative locations of the cell groups
are determined but their exact locations and shapes are
not. To determine the shape that a particular cell group
should take, we first generate all possible shapes that
it can take then choose one. The possible shapes are
generated by first trying to pack all the cells into a shape
one row high and as wide as necessary. Then we try
to pack it into two rows, and on up until it forms a
shape that is only one column wide and as many rows as
necessary. Using the array of shapes generated for each
group and a binary tree that represents the sequence of
cuts made in the floorplanning stage, the locations and
shapes of the groups is then determined using a %hape
adding” approach [5]. The algorithm chooses the shape
for each group that minimizes the overall chip area and
produces a chip with a desired aspect ratio or a chip
with an aspect ratio in a predefined range.

An optimization that can be performed at this stage
is to introduce flexibility into the directions of the cuts.
In situations illustrated in Figure 3, the overall layout
area is improved when the cut directions are changed
(Figure 3b). At each appropriate position in the parti-
tion tree, both cut directions are tried and the results
incorporated into the shape adding process. Once the
shape adder has determined the shape of the layout, the
best direction of all the cuts in the partition tree c,an be
determined.

Once each group’s shape is determined, its cells are
placed in a locally optimum configuration by exhaustive
enumeration. The objective of the group placement is
to minimize total wire length. This step is repeated
since it is dependent on the order in which the groups

-

Macro 1

7 -

El Macro

P rtical cut
Horizpntal cu --

In

t

Ttical ‘;“1 Macro 4 kacro 3]

racro 3 1 1 1 1 Cut directions changed

4 b)

Figure 3: Alternate cut directions for improved place-
ment

are processed. In practice, after two or three iterations
the total wire length does not improve further.

To deal with timing constraints, the user can spec-
ify upper bounds on the lengths of critical nets. At
each stage of the mincut hierarchy, the placement pro-
gram estimates the length of critical :nets and adapts
its placement procedure to meet the upper bound con-
straints. When the estimated length of a critical net
approaches its upper bound, the mine-ut aigorithm at-
tempts to assign cells on the critical net to a side of the
mincut partition, such that the upper bound constraint
is maintained.

4 The routing area estimation
and placement adjustment

The floorplanning/placement step does not directly take
into account the space needed for wiring. In order to
ensure that the placement produced can be successfully
routed, we estimate the routing requi.rements using a
simplified, fast but less accurate version of the global
router used in the area router (discussed in Section 5).
The global router determines the amount of additional
space required in the areas which are too congested
(where the estimated routing usage exceeds the rout-
ing capacity). The placement adjustment phase then
incorporates these requests for space into the layout.
The relative placement defined by the cut tree is not
altered; instead, the extra space needed is incorporated
into the appropriate shape function of the cell group in
that locality, and then the “shape adding” phase is pre-
formed again. The placement adjustment is very fast
since the circuit need not be repartitioned.

The global router and placement adjustment pro-
grams iterate until convergence to a design that can
be successfully routed at the detailed level. The inter-

Paper 8.4

124

action of the global router and the placer makes the
layout appear like a large “porous” structure. This is
because area is added in regions of high routing density,
and as a result the wires are allowed to form paths that
minimize their length and need not be detoured due to
routing congestion.

5 Area Router

The general purpose ORCA area router is intended for
a wide variety of routing problems which includes sea-
of-gates, macro-cell and gate-array routing. A powerful
feature of this router is that it is a general channelless
router that handles over-the-cell routing and routing of
2, 3, or more layers of interconnect. The router is given a
set of terminals to interconnect and a description of the
blockages, which can be of any shape and on any rout-
ing layer. The area router assumes a preferred routing
direction for each routing layer.

The area router is based on the well known short-
est path algorithm commonly called the mazerouter [S].
The shortest path algorithm is used for computing paths
in the global routing, detailed routing, and intermedi-
ate routing phases. The global routing algorithm se-
lected was that used at IBM [7] with further enhance-
ments suggested by Nair [s]. The global routing algo-
rithm uses a shortest path algorithm which penalizes
paths crossing heavily congested areas, and uses rip-
up-and-reroute to reduce order dependency of the ini-
tial routing. The global routing results were favorable.
In the ORCA router, this idea of using a mazerouter
combined with rip-up-and-reroute has been extended
down into detailed routing by successively refining the
initial global routing grid into finer and finer grids until
each global routing cell becomes a detailed routing grid
as in [9]. Thus, we have one simple general algorithm
that is used for both global routing and detailed routing.

The area routing algorithm uses the classical global
routing model. The routing area is physically divided by
a set of horizontal and vertical cut lines into a rectangu-
lar matrix of routing tiles. The cut lines are positioned
such that they coincide with channel boundaries ‘. Each
routing tile is a face in the graph G = (V, E). The rout-
ing algorithm uses the dual graph G* = (V”, E*). Each
edge e E E* has the following properties: length, rout-
ing capacity, routing demand, and expandability. The
length of an edge e E Ek is the center-to-center distance
of the tiles corresponding to the endpoints of e. The
routing capacity of an edge of E is maximum number
of feasible routes (on all layers of the preferred direc-
tion) that can cross the corresponding edge in the dual
graph E. The edge capacity is computed by counting
the number of routing tracks that span the midpoint of

‘In cases where there are no channels, the cut lines are posi-
tioned as close as possible to edges of the boundaries of instances
of circuits used in the design.

each tile adjacent to the edge. The expandability prop-
erty is used to identify edges that have variable routing
capacity which designate variable width channels.

A routed path of a net n, P,, is a tree in G* that
connects the terminals of the net. A routing subpath
P C P, is a connected path whose endpoints in P, are
either terminals or vertices with more than 2 edges.

Given the routing model, the objective of the router
is to find routing paths for each net such that no edge
e E E* has demand(e) > capacity(e).

Approximations to Steiner trees are used for initial
global routing to minimize total wire length. A greedy
method [lo] is used to compute the approximation to
the Steiner tree. The initial global routing is pre-
formed without regard to congestion; only interconnec-
tion length is minimized. The next phase of global rout-
ing addresses the routing congestion.

A rip-up-and-reroute algorithm is used to move rout-
ing from highly congested routing areas. Highly con-
gested areas are identified by the edges in the global
routing graph which have routing demands that exceed
their capacities. The rip-up-and-reroute algorithm se-
lects the most congested edge in the global wiring graph,
randomly selects a global wire subpath which traverses
the edge, and deletes the wire path from the database,
and then tries to find a better wiring path using a short-
est path algorithm The mazerouter or minimal cost
path search algorithm [6] is directed by a cost func-
tion which assigns high cost to heavily congested edges.
The algorithm is greedy. Only wiring paths with lower
wiring costs are accepted. The rip-up-and-rerouting
is continued until none of the capacities of each global
wiring edge are saturated.

The cost function used in the shortest path algorithm
is linear, i.e. the cost of a path is the sum of the cost of
each component (or edge) in the path. The edge cost is
a function of its length penalized when the edge is over
saturated. In mathematical terms, the objective of the
path search algorithm is,

min
paths in G*

cost(path) = min c edgecost(
eEpath

edgecost =

length(e) + f(overflow(e), expandability(e)),

overflow(e) = demand(e) - capacity(e).

f(owerfZow(e), expandability(e)) is the penalty func-
tion for overflowed edges (,e,fZo,(e) > 0) that also
takes into account the expandability of edge e.

The global wiring model is “refined” by subdividing
each global routing row and column into smaller sub
rows and subcolumns. Figure 4 shows the added cut
lines (shown in dotted lines) in the refined global rout-
ing graph. At each iteration of global routing, the re-
finement of the global wiring model will give a more

Permission to copy without fee all orpart of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission
of the Association for Computina Machinery. To co~v otherwise. or to republish. reauires a fee and/or suecific oetission. Paper 8.4

125

exact picture of where the net paths should go. At the
very last stage of refinement, each global routing tile
would correspond to the intersection of one vertical and
one horizontal wiring track. The nets are then routed in
the refined global wiring model using the shortest path
search algorithm, confined to the path suggested to the
higher level global route, without regard to congestion.

Figure 4: Ripup and reroute path search windowing

To reduce the complexity of the shortest path search
algorithm, the higher level global routing paths are used
as a guide to limit the domain of the lower level path
search algorithm. The path search is limited by the
wider path suggested by the higher level routing., This
reduces the complexity of the path search algorithm to
O(length of path) instead of O((Zength of path)2). Fig-
ure 4 shows how a higher level global wire path i;s used
as a guide in the refined global routing graph.

In the event that overflows still exist, further iter-
ations of rip-up-and-reroute are performed on an en-
larged window extending past the path suggested by
the higher level routing. An extra component is added
to the cost function to guide the mazerouter to prefer
the path suggested by the higher level routing.

When the global wiring model is refined to the point
where it matches the detailed routing model, the edge
cost function is changed to influence the mazerouter in
chasing vias, wrong-way-wires, and overlaps. As in the
coarse routing model, an overflow in the detailed rout-
ing phase is present when the capacity along an edge
exceeds the demand. However in the detailed rout-
ing model, the capacity along an edge is either one or
zero, and when an overflow occurs this means a wire
going through a blocked region (i.e. capacity = 0 and
demand >= 1) or a wire shorting another wire (i.e.
capacity = 1 and demand >= 2). The cost func-
tion used in the detailed routing phase distinguishes be-
tween these two cases, and prefers the latter. Also there
are two types of overflows, “crossovers” and “overlaps”.
The crossovers occur when a net shorts another net by
going from one side of the shorted net to the other. An
overlap is defined when a net shorts another net but
is not a crossover. By experimental analysis, we found
that when we allow overlaps rather than crossovers, the
number of overflows after rip-up-and-reroute is substan-

tially reduced. The cost function penalizes, in order of
highest-to-lowest severity, blockages, crossovers, over-
laps, wrongway wires, and finally vias.

E:ven though the complexity of the algorithm is kept
low by the windowing scheme, the memory requirements
grow geometrically with each refinement of the global
wiring graph. The solution to the memory problem is
to subdivide the routing Iproblem into independent sub-
problems. The routing graph G is partitioned at user
specified horizontal and vertical cut lines (Figure 5).
The problem then becomes the assignment of routing
paths which cross the partition boundaries. New pseudo
terminals are assigned to locations along the boundaries
for these routing paths. Bach pseudo terminal along one
edge e E Enboundary edges is given a termAssignCost
for each possible location along the edge, where the
most “desired” location of a terminal is given the lowest
termtissigncost. Nets which have terminals very near
edge e are given the highest priority termdssigncost.
The assignment algorithm assigns each pseudo termi-
nal to a location which minimizes the total sum of each
terminal/location cost.

The assignment of terminals along partition bound-
aries introduce extra artifical constraints that degrade
the detailed routing process. By experiment, we found
that along these boundaries, we had many wiring vio-
lations after detailed wiring. To solve this problem, we
defined new partition boundaries that are offset from
the original boundares, merged the routing across the
original boundaries and rerouted wires along the merged
boundaries.

To handle three and more layers of routing, the area
router assigns routing subpaths to HV layer pairs just
before the global routing model is refined to the last
most detailed stage. The global routing model is dupli-
cated for each layer, and the capacities of each edge are
updated to reflect only the routing tracks found on its
layer. Nets are routed one at a time in the multi-layer
routing model in a first come first serve manner: the
lowest HV layer pair is filled first, then the next HV
layer pair, and so on.

Figure 5: Hierarchical decomposition

Paper 8.4

126

6 Results

The ORCA system has been implemented in the C
under the UNIX operating system. It is integrated
with the Berkeley CAD Design Environment [ll]. The
program was run on a variety of examples shown in
Table 1. The randomly generated random1 example
was the most difficult to route due to high connec-
tions/cell ratio. The mcncl and mcnc2 test cases are
the gate array benchmark examples from the 1988 Inter-
national Placement-and-Routing Workshop at the Mi-
croelectronics Center at North Carolina (MCNC). The
hughesl and hughes2 examples are from industrial sea
of-gates designs. The successful routing of the hughes2
example, with close to 20,000 cells and over 20,000 nets,
demonstrates the feasibility of the area router to handle
large problems. The smaller examples were routed with
3 levels of global routing refinement hierarchies, and the
large hughes2 was routed with 4.

Direct comparisons with other sea-of-gates systems
could not be made for any of the examples. However,
we could make comparisons of different systems on the
standard gate array benchmark examples mcncl and
mcnc2 from the MCNC workshop. Table 2 compares
different place and route systems by the total net length
of the routing of the mend example 2. Even though
there is a slight variation in the performance (measured
by total net length) of the place and route systems, all
the systems produced the desired result: a fully routed
gate array chip. This comparison demonstrates that
ORCA can do a reasonable job on standard row-based
gate arrays as well as handle se&of-gates.

name #nets #cells #layers

Table 1: Routing results

7 Acknowledgements

The authors would like to express thanks to Alan
Kramer, Gregory Sorkin and Amit Sharma for their
contributions to the ORCA system. The authors would
also like to thank Chi Ping Hsu from Hughes and Wayne

‘The results of the mcncl gate array example were omitted
since it was much easier to route than the larger mcnc2 example.

3 VAX 8650 cpu minutes

total net length

Table 2: Results on mcnc2 gate array example

Christopher for providing some of the sea-of-gates ex-
amples.

References

PI

t31

[41

PI

[61

[71

PI

PI

[lOI

[ill

A. Hui et al. A 4.lk gates double metal hcmos
sea of gates array. Proc. IEEE CICC, :15-17, May
1985.

B. W. Kernighan and S. Lin. An efficient heuris-
tic procedure for partitioning graphs. Bell Systems
Technical Journal, 49:291-307, Feb 1970.

C. M. Fiduccia and R. M. Mattheyses. A linear-
time heuristic for improving network partitions.
P~oc. 19th Design Automation Conference, 1982.

A. E. Dunlop and B. W. Kernighan, A procedure
for Placement of Standard VLSI Circuits. IEEE
Bans. on Computer-Aided Design, CAD-492-98,
1985.

L. Stockmeyer. Optimal orientations of cells in
slicing floorplan designs. Information and Control,
57(3):91-101, June 1983.

C. Lee. An algorithm for path connection and its
applications. IRE Bans. Electronic Computers,
EC-10:346-365, 1961.

K. H. Khokhani N. Nan K. A. Chen, M. Feuer and
S. Schmidt. The chip layout problem: an auto-
matic wiring procedure. Proc. l&h Design Au-
tomation Comf., :298-302, 1977.

Ravi Nair. A simple yet effective technique for
global wiring. IEEE Tkans. on Computer-Aided
Design, CAD-6:165-172, 1987.

M. Burstein and R. Pelavin. Hierarchical wire
routing. IEEE Bans. on Computer-Aided Design,
CAD-2:223-234, 1983.

Jr. J. B. Kruskal. On the shortest spanning sub-
tree of a graph and the traveling salesman problem.
Proc. Amer. Math. SOL, 7:48-50, 1956.

D. Harrison et al. Data management and graphics
editing in the Berkeley design environment. Proc.
ICCAD, Nov 1986.

Paper 8.4

127

