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Abstract 

Sea-of-gates is becoming an important design style for 
Application Specific Integrated Circuits (ASECs). The 
sea-of-gates technology offers more flexible placement 
and routing options not available in gate arrays. Very 
few systems are available today that can automatically 
layout sea-of-gates and none of these systems effectively 
use the features available in sea-of-gates architecture. 
ORCA is a place and route system for se&of-gates, 
whose objective is to produce the highest density lay- 
out by fully exploiting the inherent features of this new 
design style. The ORCA system starts with a mod- 
ule generator which preprocesses memory arrays and 
other logic with a regular structure to form hig,h den- 
sity macros. The remaining logic is clustered together 
to form flexible macros, which we call porous., The 
porous macro-cells allow global routing to pass through 
the macro instead of detouring around its perimeter. 
The porous macros are dynamically shaped and resized 
by interaction with global wiring analysis. Finally, a 
general channelless area router has been developed to 
address the multiple layers of interconnect and routing 
areas which will be dominantly over-the-cell. Due to 
the large size of the problem (e.g. 100,000 gates), the 
placement and routing algorithms are hierarchical. 

1 Introduction 

The “gate-array” (also referred to as master-slice, or 
uncommitted logic array) is by far the most cctmmon 
design style for ASICs. The computer aids for gate- 
array design are also the most advanced and the most 
mature. In this approach, a two-dimensional array of 
replicated transistors is fabricated to a point just prior 
to the interconnection levels. Generally a two-level in- 
terconnection scheme is used for signals and, in some 
approaches, a third more coarsely defined layer of inter- 
connections is provided for power and ground connec- 
tions. Because one or more interconnection layers are 
used within a group of transistors to define the function 
of a cell, these intra-cell interconnections often block 

the passage of more global inter-cell connections. For 
that reason, and to simplify the placement and rout- 
ing problems associated with these arrays, the inter- 
cell connections are implemented on a rectilinear grid 
in the “channels” between the cells. Over-the-cell inter- 
connections are typically characterized by straight 2nd 
layer metal “feedthroughs”. 

This recent variation of the gate-array structure is 
often referred to as a %ea--of-gates” array [l] and, as 
well as providing new challenges for t:he CAD commu- 
nity, promises to replace many of the designs previously 
undertaken in the conventional gate-*array style. The 
routing area is not organized a priori into channels as 
in standard gate-arrays. The basic building blocks in 
this design style are similar to the ones used in stan- 
dard gate-arrays. In the sea-of-transistor architecture, 
using CMOS processing technology, transistors are in a 
compact regular arrangement in rows (columns) of com- 
plementary pairs. 

Given the tight arrangement of the transistors, it is 
possible to design large macros effectively with little 
area penalty. For example, it is possible to design RAM 
blocks using the transistor array. This capability makes 
the sea-of-gates approach more competitive than gate- 
array and possibly an alternative to some low volume 
standard-cells and macro-cells. However, the automatic 
generation of chips which fully utilize t,hese inherent c& 
pabilities of sea-of-gates is more difficult than with the 
standard gate-array design style. 

Three iayers of interconnects appear more often in the 
larger VLSI designs in this design sty.le due to the po- 
tential increase in chip utilization and performance (i.e. 
shorter wire length and decreased capacitance). The ac- 
tive area utilization could be dramatically increased, but 
the wiring problem becomes more complex and must ef- 
ficiently deal with over-the-cell routing. 

In this paper, we present the ORCA system, which 
consists of module generators, placement, and routing 
tools. The system is designed to support a variety of 
layout styles: 

1. standard-cell like, where the basic cells are ar- 
ranged in rows of equal height and the routing area 
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is arranged into channels with flexible dimensions; 

2. macro-cell like, where macros can be built using 
basic cells belonging to different rows of active de- 
vices, and macros as well as celis can occupy any 
position of the chip within the constraints of the 
architecture; 

3. porous macroxell, where the basic cells are clus- 
tered together to form macros which are flexible 
in shape and allow routing to pass through the 
macro. The key feature of this method is that it 
allows routing to go straight through macro blocks 
instead of detouring around, thus reducing wiring 
length and consequently the chip area (Figure 1). 
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Figure 1: Porous macro-cell 

2 Overview of the CIRCA algo- 
rithm 

The ORCA system consists of a floorplanner, a placer, a 
global router, a spacing requester, a macro adjuster and 
an area router. The floorplanner partitions the logic cir- 
cuits into groups of ceils and assigns the cehs to areas 
of the layout. The placer places the logic circuits within 
each layout area. The global router performs a “coarse” 
routing of the chip and locates the routing areas that 
are too congested. The spacing requesler decides which 
areas of the layout need to be expanded or contracted 
based on the global routing congestion information. The 
placemenf adjus1er readjusts the location and placement 
of cell groups to accommodate the requested spacing 
changes. The global routing and placement improve- 
ment sequence is continued until it is determined that 

the layout can be routed. Finally, the area router does 
the detailed routing. 

3 Floorplanning and Placement 

The size of a sea-of-gates layout can be as large as 
100,000 gates, and the largest available sea-of-gates ar- 
rays will undoubtedly become even bigger in the future. 
While other steps of the sea-of-gates physical design 
system may subdivide their problem into a smaller more 
managable subtasks, the floorplanning/placement step 
must, at some point, deal with the entire design all at 
the same time. To be able to handle such large circuits, 
fast and memory efficient algorithms are used. 

One algorithm that is effective and fast is the min- 
cut algorithm [2]. A variation of this algorithm [3] has 
been shown to complete in time linearly proportional to 
the size of the network. The min-cut algorithm takes a 
general network and divides it into two groups so that 
the number of nets that connect cells in different groups 
is minimized and the two groups have approximately the 
same size. This has the effect of grouping cells that are 
highly connected so that they are close together, thereby 
minimizing the amount of wiring in the final layout. 

The floorplanning step performs assignment of all the 
cells to restricted areas of the layout space by using 
the min-cut algorithm to hierarchically partition the 
circuit. The process begins by first making a cut in 
the network. Then two groups of cells resulting from 
the cut are constrained to lie inside respective halves of 
the layout space. The two resulting pieces will then be 
partitioned with a cut line perpendicular to the first. 
The floorplanning hierarchy can now be represented as 
a tree with the leaf nodes being groups of cells and the 
internal nodes representing network cuts. The cuts are 
continued recursively with the cut directions changing 
at every level of the tree until the groups of cells at the 
leaves are small. 

When partitioning at lower levels of the tree, one 
should consider the effects of the locations of the neigh- 
boring cells on the cut being done. In our method, all 
cuts that reside at the same level of the tree with the 
same cut direction and on the same horizontal or verti- 
cal line are done simultaneously. At each step the cut 
line is defined so that it cuts a sequence of groups that 
extend entirely from one side of the layout to the other. 
Figure 2 illustrates the idea; the horizontal cuts a, b, 
c and d are all considered simultaneously. We found 
that this method is better than considering partitions 
sequentially with a pin propagation scheme [4]. 

It has also been noticed that the quality of a cut de- 
pends on the parts of the layout whose locations have 
already been determined. The cells and i/o pads that 
have already been placed are allowed to exert an in- 
fluence on the cut being performed. At every cut the 
area of the two groups is balanced, thus at the end of 
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Figure 2: Simultaneous min-cut 

the floorplanning stage all of the groups should have 
approximately the same area. 

Since the min-cut algorithm is a heuristic based de- 
terministic algorithm, the result of the algorithm i.s very 
dependent on the initial starting conditions. A simple 
yet, effective method to fix this problem is to perform 
the min-cut algorithm on the same cut many times; 
each time starting from a different random initial state. 
When using many random initial starts, the measured 
routing length has been observed to decrease from 10 to 
15 per cent. 

At this point the relative locations of the cell groups 
are determined but their exact locations and shapes are 
not. To determine the shape that a particular cell group 
should take, we first generate all possible shapes that 
it can take then choose one. The possible shapes are 
generated by first trying to pack all the cells into a shape 
one row high and as wide as necessary. Then we try 
to pack it into two rows, and on up until it forms a 
shape that is only one column wide and as many rows as 
necessary. Using the array of shapes generated for each 
group and a binary tree that represents the sequence of 
cuts made in the floorplanning stage, the locations and 
shapes of the groups is then determined using a %hape 
adding” approach [5]. The algorithm chooses the shape 
for each group that minimizes the overall chip area and 
produces a chip with a desired aspect ratio or a chip 
with an aspect ratio in a predefined range. 

An optimization that can be performed at this stage 
is to introduce flexibility into the directions of the cuts. 
In situations illustrated in Figure 3, the overall layout 
area is improved when the cut directions are changed 
(Figure 3b). At each appropriate position in the parti- 
tion tree, both cut directions are tried and the results 
incorporated into the shape adding process. Once the 
shape adder has determined the shape of the layout, the 
best direction of all the cuts in the partition tree c,an be 
determined. 

Once each group’s shape is determined, its cells are 
placed in a locally optimum configuration by exhaustive 
enumeration. The objective of the group placement is 
to minimize total wire length. This step is repeated 
since it is dependent on the order in which the groups 
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Figure 3: Alternate cut directions for improved place- 
ment 

are processed. In practice, after two or three iterations 
the total wire length does not improve further. 

To deal with timing constraints, the user can spec- 
ify upper bounds on the lengths of critical nets. At 
each stage of the mincut hierarchy, the placement pro- 
gram estimates the length of critical :nets and adapts 
its placement procedure to meet the upper bound con- 
straints. When the estimated length of a critical net 
approaches its upper bound, the mine-ut aigorithm at- 
tempts to assign cells on the critical net to a side of the 
mincut partition, such that the upper bound constraint 
is maintained. 

4 The routing area estimation 
and placement adjustment 

The floorplanning/placement step does not directly take 
into account the space needed for wiring. In order to 
ensure that the placement produced can be successfully 
routed, we estimate the routing requi.rements using a 
simplified, fast but less accurate version of the global 
router used in the area router (discussed in Section 5). 
The global router determines the amount of additional 
space required in the areas which are too congested 
(where the estimated routing usage exceeds the rout- 
ing capacity). The placement adjustment phase then 
incorporates these requests for space into the layout. 
The relative placement defined by the cut tree is not 
altered; instead, the extra space needed is incorporated 
into the appropriate shape function of the cell group in 
that locality, and then the “shape adding” phase is pre- 
formed again. The placement adjustment is very fast 
since the circuit need not be repartitioned. 

The global router and placement adjustment pro- 
grams iterate until convergence to a design that can 
be successfully routed at the detailed level. The inter- 
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action of the global router and the placer makes the 
layout appear like a large “porous” structure. This is 
because area is added in regions of high routing density, 
and as a result the wires are allowed to form paths that 
minimize their length and need not be detoured due to 
routing congestion. 

5 Area Router 

The general purpose ORCA area router is intended for 
a wide variety of routing problems which includes sea- 
of-gates, macro-cell and gate-array routing. A powerful 
feature of this router is that it is a general channelless 
router that handles over-the-cell routing and routing of 
2, 3, or more layers of interconnect. The router is given a 
set of terminals to interconnect and a description of the 
blockages, which can be of any shape and on any rout- 
ing layer. The area router assumes a preferred routing 
direction for each routing layer. 

The area router is based on the well known short- 
est path algorithm commonly called the mazerouter [S]. 
The shortest path algorithm is used for computing paths 
in the global routing, detailed routing, and intermedi- 
ate routing phases. The global routing algorithm se- 
lected was that used at IBM [7] with further enhance- 
ments suggested by Nair [s]. The global routing algo- 
rithm uses a shortest path algorithm which penalizes 
paths crossing heavily congested areas, and uses rip- 
up-and-reroute to reduce order dependency of the ini- 
tial routing. The global routing results were favorable. 
In the ORCA router, this idea of using a mazerouter 
combined with rip-up-and-reroute has been extended 
down into detailed routing by successively refining the 
initial global routing grid into finer and finer grids until 
each global routing cell becomes a detailed routing grid 
as in [9]. Thus, we have one simple general algorithm 
that is used for both global routing and detailed routing. 

The area routing algorithm uses the classical global 
routing model. The routing area is physically divided by 
a set of horizontal and vertical cut lines into a rectangu- 
lar matrix of routing tiles. The cut lines are positioned 
such that they coincide with channel boundaries ‘. Each 
routing tile is a face in the graph G = (V, E). The rout- 
ing algorithm uses the dual graph G* = (V”, E*). Each 
edge e E E* has the following properties: length, rout- 
ing capacity, routing demand, and expandability. The 
length of an edge e E Ek is the center-to-center distance 
of the tiles corresponding to the endpoints of e. The 
routing capacity of an edge of E is maximum number 
of feasible routes (on all layers of the preferred direc- 
tion) that can cross the corresponding edge in the dual 
graph E. The edge capacity is computed by counting 
the number of routing tracks that span the midpoint of 

‘In cases where there are no channels, the cut lines are posi- 
tioned as close as possible to edges of the boundaries of instances 
of circuits used in the design. 

each tile adjacent to the edge. The expandability prop- 
erty is used to identify edges that have variable routing 
capacity which designate variable width channels. 

A routed path of a net n, P,, is a tree in G* that 
connects the terminals of the net. A routing subpath 
P C P, is a connected path whose endpoints in P, are 
either terminals or vertices with more than 2 edges. 

Given the routing model, the objective of the router 
is to find routing paths for each net such that no edge 
e E E* has demand(e) > capacity(e). 

Approximations to Steiner trees are used for initial 
global routing to minimize total wire length. A greedy 
method [lo] is used to compute the approximation to 
the Steiner tree. The initial global routing is pre- 
formed without regard to congestion; only interconnec- 
tion length is minimized. The next phase of global rout- 
ing addresses the routing congestion. 

A rip-up-and-reroute algorithm is used to move rout- 
ing from highly congested routing areas. Highly con- 
gested areas are identified by the edges in the global 
routing graph which have routing demands that exceed 
their capacities. The rip-up-and-reroute algorithm se- 
lects the most congested edge in the global wiring graph, 
randomly selects a global wire subpath which traverses 
the edge, and deletes the wire path from the database, 
and then tries to find a better wiring path using a short- 
est path algorithm The mazerouter or minimal cost 
path search algorithm [6] is directed by a cost func- 
tion which assigns high cost to heavily congested edges. 
The algorithm is greedy. Only wiring paths with lower 
wiring costs are accepted. The rip-up-and-rerouting 
is continued until none of the capacities of each global 
wiring edge are saturated. 

The cost function used in the shortest path algorithm 
is linear, i.e. the cost of a path is the sum of the cost of 
each component (or edge) in the path. The edge cost is 
a function of its length penalized when the edge is over 
saturated. In mathematical terms, the objective of the 
path search algorithm is, 

min 
paths in G* 

cost(path) = min c edgecost( 
eEpath 

edgecost = 

length(e) + f(overflow(e), expandability(e)), 

overflow(e) = demand(e) - capacity(e). 

f(owerfZow(e), expandability(e)) is the penalty func- 
tion for overflowed edges (,e,fZo,(e) > 0) that also 
takes into account the expandability of edge e. 

The global wiring model is “refined” by subdividing 
each global routing row and column into smaller sub 
rows and subcolumns. Figure 4 shows the added cut 
lines (shown in dotted lines) in the refined global rout- 
ing graph. At each iteration of global routing, the re- 
finement of the global wiring model will give a more 
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exact picture of where the net paths should go. At the 
very last stage of refinement, each global routing tile 
would correspond to the intersection of one vertical and 
one horizontal wiring track. The nets are then routed in 
the refined global wiring model using the shortest path 
search algorithm, confined to the path suggested to the 
higher level global route, without regard to congestion. 

Figure 4: Ripup and reroute path search windowing 

To reduce the complexity of the shortest path search 
algorithm, the higher level global routing paths are used 
as a guide to limit the domain of the lower level path 
search algorithm. The path search is limited by the 
wider path suggested by the higher level routing., This 
reduces the complexity of the path search algorithm to 
O(length of path) instead of O((Zength of path)2). Fig- 
ure 4 shows how a higher level global wire path i;s used 
as a guide in the refined global routing graph. 

In the event that overflows still exist, further iter- 
ations of rip-up-and-reroute are performed on an en- 
larged window extending past the path suggested by 
the higher level routing. An extra component is added 
to the cost function to guide the mazerouter to prefer 
the path suggested by the higher level routing. 

When the global wiring model is refined to the point 
where it matches the detailed routing model, the edge 
cost function is changed to influence the mazerouter in 
chasing vias, wrong-way-wires, and overlaps. As in the 
coarse routing model, an overflow in the detailed rout- 
ing phase is present when the capacity along an edge 
exceeds the demand. However in the detailed rout- 
ing model, the capacity along an edge is either one or 
zero, and when an overflow occurs this means a wire 
going through a blocked region (i.e. capacity = 0 and 
demand >= 1) or a wire shorting another wire (i.e. 
capacity = 1 and demand >= 2). The cost func- 
tion used in the detailed routing phase distinguishes be- 
tween these two cases, and prefers the latter. Also there 
are two types of overflows, “crossovers” and “overlaps”. 
The crossovers occur when a net shorts another net by 
going from one side of the shorted net to the other. An 
overlap is defined when a net shorts another net but 
is not a crossover. By experimental analysis, we found 
that when we allow overlaps rather than crossovers, the 
number of overflows after rip-up-and-reroute is substan- 

tially reduced. The cost function penalizes, in order of 
highest-to-lowest severity, blockages, crossovers, over- 
laps, wrongway wires, and finally vias. 

E:ven though the complexity of the algorithm is kept 
low by the windowing scheme, the memory requirements 
grow geometrically with each refinement of the global 
wiring graph. The solution to the memory problem is 
to subdivide the routing Iproblem into independent sub- 
problems. The routing graph G is partitioned at user 
specified horizontal and vertical cut lines (Figure 5). 
The problem then becomes the assignment of routing 
paths which cross the partition boundaries. New pseudo 
terminals are assigned to locations along the boundaries 
for these routing paths. Bach pseudo terminal along one 
edge e E Enboundary edges is given a termAssignCost 
for each possible location along the edge, where the 
most “desired” location of a terminal is given the lowest 
termtissigncost. Nets which have terminals very near 
edge e are given the highest priority termdssigncost. 
The assignment algorithm assigns each pseudo termi- 
nal to a location which minimizes the total sum of each 
terminal/location cost. 

The assignment of terminals along partition bound- 
aries introduce extra artifical constraints that degrade 
the detailed routing process. By experiment, we found 
that along these boundaries, we had many wiring vio- 
lations after detailed wiring. To solve this problem, we 
defined new partition boundaries that are offset from 
the original boundares, merged the routing across the 
original boundaries and rerouted wires along the merged 
boundaries. 

To handle three and more layers of routing, the area 
router assigns routing subpaths to HV layer pairs just 
before the global routing model is refined to the last 
most detailed stage. The global routing model is dupli- 
cated for each layer, and the capacities of each edge are 
updated to reflect only the routing tracks found on its 
layer. Nets are routed one at a time in the multi-layer 
routing model in a first come first serve manner: the 
lowest HV layer pair is filled first, then the next HV 
layer pair, and so on. 

Figure 5: Hierarchical decomposition 
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6 Results 

The ORCA system has been implemented in the C 
under the UNIX operating system. It is integrated 
with the Berkeley CAD Design Environment [ll]. The 
program was run on a variety of examples shown in 
Table 1. The randomly generated random1 example 
was the most difficult to route due to high connec- 
tions/cell ratio. The mcncl and mcnc2 test cases are 
the gate array benchmark examples from the 1988 Inter- 
national Placement-and-Routing Workshop at the Mi- 
croelectronics Center at North Carolina (MCNC). The 
hughesl and hughes2 examples are from industrial sea 
of-gates designs. The successful routing of the hughes2 
example, with close to 20,000 cells and over 20,000 nets, 
demonstrates the feasibility of the area router to handle 
large problems. The smaller examples were routed with 
3 levels of global routing refinement hierarchies, and the 
large hughes2 was routed with 4. 

Direct comparisons with other sea-of-gates systems 
could not be made for any of the examples. However, 
we could make comparisons of different systems on the 
standard gate array benchmark examples mcncl and 
mcnc2 from the MCNC workshop. Table 2 compares 
different place and route systems by the total net length 
of the routing of the mend example 2. Even though 
there is a slight variation in the performance (measured 
by total net length) of the place and route systems, all 
the systems produced the desired result: a fully routed 
gate array chip. This comparison demonstrates that 
ORCA can do a reasonable job on standard row-based 
gate arrays as well as handle se&of-gates. 

name #nets #cells #layers 

Table 1: Routing results 
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