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ABSTRACT: This paper discusses the automatic generation of 
high-level software models from switch-level circuit descriptions. 
The proposed algorithms operate directly on the hierarchical 
description, and incorporate information about the design such as 
the structure, regularity, functionality, and control signals in the 
generation process. New algorithms are proposed and have been 
implemented for combinational modules and bus shuctures. A 
signilicant speedup has been obtained for these modules of a 
commercially available chip. 

1. Introduction 

Advances in Very Large Scale Integration (VLSI) technol- 
ogy have made possible the implementation of large and increas- 
ingly complex systems on a single integrated circuit chip. This 
has led to the need for accurate and efficient simulation tools 
capable of handling complex designs. 

Simulation of MOS circuits is currently performed at the 
switch-level. Recently, hierarchical simulators has been pro- 
posed to accelerate the simulation of circuits at this level [I]. 
Using hierarchy, the structure of commonly used subcircuits 
needs to be stored only once and can be referenced when needed. 
Furthermore. modules horn the hierarchy can be substituted by 
high-level software models. When a large percentage of the cir- 
cuit modules is replaced by accurate, efficient and compact 
software models, the simulation speed is greatly increased. 

Because the module size and complexity has increased 
with the advance of VLSI technology, generation of such 
software models has become a difficult task. Manual coding of 
these models is both time consuming and error-prone. There- 
fore, they must be generated automatically. 

Several algorithms to abstract behavioral models from a 
circuit description have been proposed. Path finding algorithms 
are presented in [2,3.4,5,6]. For each channel connected com- 
ponent they construct logic equations describing the steady state 
of each node in a partition. The equations associated with a 
component can then be compiled into executable code. A limit- 
ing factor of path &ding algorithms is that the model size can 
grow exponentially with the circuit size. In [7] work is 
presented on translating a flat, transistor circuit description into a 
register transfer level model. However, since a register transfer 
level description does not support the accuracy required for 
switch-level simulation, most of the presented algorithms 
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cannot be used for switch-level model generation. 

An additional drawback of these algorithms is that they 
operate on a flat transistor description. Abstracting smart models 
from these descriptions has not yet been accomplished. Espe- 
cially for large and complex circuits, the generated model 
becomes large and inefficient compared to hand generated 
models. To improve model generation, advantage must be taken 
of design information, such as the structure, regularity, func- 
tionality, and control signals of the circuit. 

The automatic model generator proposed in this paper 
effectively obtains and incorporates this information in the gen- 
eration process. The key to our approach is that this design 
information is preserved in a hierarchical circuit description. By 
operating directly on the hierarchical description, the generator 
can identify the design information for many of the circuit 
modules. The obtained information is then utilized in the gen- 
eration process, which produces more efficient software models. 
Information obtained from a hierarchical description of a design 
improves the software model generation in the following ways: 

(1) 

(2) 

(3) 

(4) 

The structure of a module can be exploited. For instance, 
different approaches can be taken for modules constructed 
of gates versus those constructed of transistors. 

The regularity of structure is more visible and easily 
obtained, and can be used to increase efficiency of the 
software model. 

The hierarchical description preserves the functional parti- 
tion of the &sign which can be used to guide the genera- 
tion of software models. Uncommon input patterns can 
be treated in a less efficient manner so that more efficient 
treatment is given to frequently occurring input patterns. 
Furthermore, it is possible to make reasonable 
simplifications in the circuit model based on the 
behavioral information. 

Control signals and their function can be identified more 
easily if the function of circuit is known. 

Using a simulation system that combines event-driven 
hierarchical simulation and high-level software models allows 
the generator to judiciously choose which modules are translated 
into a high-level model and which are simulated at the lower 
primitive level in an event-driven manner. Some circuit modules 
will have no recognizable structure or behavior and do not lend 
themselves to smart model generation. Such modules are more 
efficiently simulated with an event-driven simulator. The con- 
junction of event-driven simulation and high-level model genera- 
tion allows, as appropriate, either of these methods to be used for 
a module. 

Not only logic but also fault simulation can benefit from 
high-level software models. Here the circuit description of the 
module and the software model are used side by side. If the 
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module contains no faults, the software description is used for 
evaluation; however, if a fault is present in the module, the cir- 
cuit description of the module must be used. In practice., only a 
small subset of faults is simulated at any one time. Since these 
can easily be located in one or a few modules, most modules 
can still be evaluated with software description. In this way, 
simulation time can be decreased significantly for fault simula- 
tion using high speed software models. 

2. Issues In Generation of High-Level Models 

Since the hierarchical description emerges during the 
design process, the modules in the hierarchy contain logically 
distinct substructures. Each substructure has unique structure, 
regularity, functional behavior and control signals. In practice, 
only a small number of distinct types of substructures occur and 
a library of these types can be constructed. Once a module is 
classified as a particular type, its characteristics can be incor- 
porated into the software model. 

Modules are first classified according to their functional 
behavior. Modules that have no internal state, such as PLAs and 
combinational gate circuits, are called combinational modules. 
Model generation for combinational modules involves analyzing 
the circuit to obtain the 3oolean function equivalent of the cir- 
cuit. Modules that have an internal state are called sequential 
modules. These substructures are diverse enough to justify,indi- 
vidual model generation algorithms for each type of substructure. 

We have focused on model generation for two types of 
modules commonly used in complex systems: combinational 
modules and sequential modules containing busses. In the case 
of busses, structural information is used to produce efficient 
code. Therefore, path finding algorithms were not used 
indiscriminately for the entire substructure and, rather than parti- 
tioning the circuit into channel connected components, the circuit 
was partitioned according to functionality. Figure 1 shows how 
a simple circuit is partitioned into a two bit multiplexer and two 
input circuits. The following paragraphs present some of the 
general principles used to generate fast and efficient code for 
sequential modules: 

(1) Using Simple Code: Our object is to keep the generated 
code as simple as possible. No function calls or pointer 
manipulations were incorporated in the software models. 
The most complex structures in currently generated 
models are if statements and for loops. 

Panition A 
co 

Partition C 

Partition B 

Figure 1. Circuit partitioned according to functionality. 

(2) 

(3) 

(4) 

(3 

Improve Code Ordering Using Control Signals: Control 
signals determine the flow of signals through the circuit. 
The value of a control signal determines which partitions 
of the circuit will effect the output. If, in Figure 1, con- 
trol signal CO is logic 1. partition A Imust be evaluated, 
while if CO is logic 0, partition B must be evaluated. If 
CO is unknown, both Partition A and partition B must be 
evaluated. To evaluate the circuit efficiently, control sig- 
nal CO is tested; then code corresponding to partition A, 
partition 13, or both is executed followed by code 
corresponding to partition C. In this way unnecessary 
execution of code is avoided using knowledge of the con- 
trol signal. 

Gathering of Control Signals: Control signals are used 
repeatedly in a module. Those parts of the circuit that use 
the same controL signal may be gathered into one parti- 
tion. Partitioning in this fashion is called control gather- 
ing [7]. In thii way, the control signal is inspected only 
once in order to determine how to proceed with the 
evaluation. For instance, in the ALU circuit of Figure 2, 
control signal CO determines whether the output of the 
ALU is connected to the output of gate Gl or if it retains 
its previous value. Assume that mu1tipl.e bit slices of this 
structure are used. Control gathering may now be per- 
formed using control signal CO, so that control signal CO 
is inspected only once. If the signal has a state of logic 0, 
all outputs retain their current value. However, if the sig- 
nal has a state of logic one, the gathered logic is 
evaluated. 

Special Control Signals: Some control signals perform 
special functions, such as precharging, predischarging, 
reset, and clock signals. Knowledge of the function of 
these control signals may be used in the model generation 
process. Reset signals, for instance, often override other 
control signals and bring tie circuit to a predetermined 
state. This state can be assigned immediately if the reset 
signal is active. 

Directional Analysis: Although signals can flow in both 
directions between source and drain in a conducting 
transistor, in practice one 6nds that the majority of transis- 
tors in a circuit are unidirectional. Circuit analysis is per- 
formed to classify each transistor as unidirectional or 
bidirectional. The evaluation of unidirectional transistors 
is much simpler than that of bidirectional transistors. 
Using directional knowledge in the model generation pro- 
cess can thus increase the efficiency of the software 
model. 

3. Implementation and Scope of the Model Generator 

The model generator was implemented using the C- 
language. Currently. models are generated for combinational 

Figure 2. Control gathering with an ALU circuit. 
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modules, including PLAs and combinational gate modules, as 
explained in Section 4. and for sequential modules containing 
bus structures, as explained in Section 5. 

The model generator consists of three phases: 

(1) 

(2) 

(3) 

Parsing and Preliminary Analysis: The circuit is 
checked and stored into an internal data structure. Any 
analysis needed by the generation algorithms, such as 
directional analysis, is performed. 

Module Classification: The modules are classified into 
types of substructures such as bus type, combinational 
gate type, ALU type, etc., based on the modules structure 
and components. This classification is not yet performed 
automatically. The user has to inspect the circuit descrip- 
tion and inform the generator of its type for each module. 

Code Generation: The model generation algorithms are 
applied to the modules. Each type of module has a 
separate algorithm associated with it. 

4. Model Generation for Combinational Modules 

In this section a new model generation algorithm for com- 
binational modules is introduced. Traditionally, combinatorial 
circuits have been modeled using an exhaustive truth table. For 
each combination of input vahres, this table contains the 
corresponding output values. In three valued logic (0, 1, X), the 
total size of the table is 3’0 bytes, where i is the number of 
inputs and o is the number of outputs. 

When used appropriately for small circuits, this table 
method provides fast evaluation. Since the table size grows 
exponentially with the number of inputs, many combinational 
gate modules in a circuit will be too large. Since we stress the 
need to generate models for large modules, different algorithms 
were found to handle these modules. One method, presented in 
[8], stores the personality matrix of the circuit in the software 
model. The size of the personality matrix as well as the number 
of operations required for evaluation is 0 ((i+o)p), where i is 
the number of inputs, o is the number of outputs, and p is the 
number of product lines. 

In order to produce more compact and efficient code, a 
new algorithm, called the coded personality matrix method 
(CPM), was developed. This algorithm uses a binary coding to 
store the personality matrix and Boolean comparisons in its 
evaluation algorithm. The encoding drastically reduces the size 
of the stored table and the BooIean comparisons provide for fast 
evaluation. The software model is automatically generated from 
a switch-level description. Figure 3 shows the code for the 
software model corresponding to a circuit with the personality 
matrix shown in Figure 4. The function of the AND plane is 
encoded using two integer lists: the maskList and the moldlist. 
The function of the OR plane is encoded and stored in the 
integer matrix outlist. 

The AND plane of the personality matrix is fully 
described by a set of products of the input variables called pro- 
duct terms. Each product line has a product term associated 
with it that describes for which input pattern it is activated. We 
use a two bit encoding to record the state of each input variable 
in the Product. One bit, called the mask bit, indicates whether 
the variable is present in the product term. The other bit, called 
the mold bit, indicates whether the variable appears in comple- 
mented or uncomplemented form. A product term is thus 
represented by a string of mold and mask bits. Each string is 
stored in one or more machine words. The lists of mold and 

I procedure CPM(inputP, outputP) 
2 

3( 
4 

5 
6 

7 
8 
9 
10 
11 
12 
13 
14 
15 

16 
17 

18 
19 
20 
21 

22 
23 
24 

2s 
26 

27 

28 

29 
30 

char %lputP, *outputP; 

int i, j. index; 

static int moldList 141 = (OxoO,OxO8,OxO2, 0x06 1; 
static int maskList [4] = (OxOC, OxOE, OxOA, 0x06 1: 
static int outist [41[3] = ( 

( 0, -1, -1 I, ( 1, -1, -1 I, 
( 2, -1, -1 }. ( 0, 1, -1 ) ); 

int iMask; 

int iMold; 

P create iMold and iMask */ 

iMask = iMold = 0; 
for (i = 0, i < number-of-inputs, i++) ( 

iMask = iMask << 1; 
iMask = iMask I ((inputP[i] & unknown-mask)s>l); 

iMold = Mold << 1; 
iMold = iMold I (inputF’[i] & logic-state-mask); 

1 
iMask = - iMask: 

for (i = 0; i < number-of-outputs, i++) 
outputP[i] = drhing-zero; P preset the outputs to D,O */ 

for (i = Q i c number-ofBroduct_lines; i ++) 
if (!((ihIold A moldList[i]) & iMask & masklistIiJ)) 

/* hit has been found *I 

31 

32 
33 

34 

if ((-iMask) & maskL.ist[i]) p prop of X *I 
for (j = 0; (index = outList[ilb]) != -1 ; j ++) 

if (outPutP[index] & logic-zero-mask) 

onode[index] = driving-unknown; 

else I* no prop of X *I 

for (j = 0; (index = outList[i]/j]) != -1; j ++) 
outputP[index] = driving-one; 

Figure 3. Model code of coded personality matrix method. 

input variables output variables 
I 

n: not connected 

Figure 4. Personality matrix of a small PLA. 

mask words are stored in array moldList and maskList respec- 
tively (see Figure 3). The AND plane is encoded with 
S,-w&2wp words, where p is the number of product lines. and 
w is the number of words needed to store the mold and mask bit 
strings. 

The OR plane of a PLA is encoded and stored in a two 
dimensional array of integers (array outList in Figure 3). The 
integers in a row are the indices of the outputs that are connected 
to a product line. The size of the output matrix is 
So~==(m+l)p , where m is the maximurn number of outputs to 
which a product line is connected. The total storage size for the 
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CPM method is S ~o~(m +l+Zw )p . 

The evaluation algorithm consists of the following steps: 

(1) The input pattern is encoded. 

(2) The outputs are preset to driving zero. 

(3) Each product term is compared to the input to determine 
whether they match. 

(4) Each time the input matches a product term (called a hit), 
further comparisons are made to see if any unknowns in 
the input propagate to the output and the outputs are 
updated accordingly. 

The input pattern to a circuit is described by a product and 
is encoded using two words, iMask and iMold. A hit o:n a pro- 
duct line is now determined with only 4 Boolean operations (see 
Figure 3, line 33). When a hit is discovered, a second com- 
parison is performed to determine whether there is an unknown 
in the input pattern that Propagates to the product line. A pro- 
duct line becomes unknown if the input contains an unknown 
and the product term at that position does not contain a ‘don’t 
care’ condition. Two Boolean operations are required to deter- 
mine this, as shown in Figure 3, line 35. When a hit on a pro- 
duct line is detected, the algorithm traces through the output list 
and sets all the corresponding outputs to driving one (Figure 3, 
line 42) or driving unknown (Figure 3, line 38). The e&ample in 
Figure 5(a) sho_ws the comparison between input ABCX and 
product term AEXX . The input generates a hit; howeve,r. since 
the unknown in input corresponds with a ‘don’t care’ condition 
in the product term, the unknown does not propagate.--Figure 
5(b) shows the same comparison process when input ABXD is 
applied. In this case the unknown in the input propagates to the 
product line. 

The advantage of the coded personality matrix method is 
that a hit can be detected with only 4 Boolean operations. If the 

input variable = AB’X input variable = ALi’_XD 
product term = ABCX product term = ABCX 

finding a hit: 

iMold: 1101 
moldlht~]: 1100 

Oool 
iMask: 1110 

moo 

masklistlj]: 1110 

oooo 

finding a hit: 

iMold: 1101 
moldListfi]: 1100 

xor - xolr 

Oool 
iMask: 1101 

and - and 

0001 
masklistb]: 1110 

and - and 

Qooo 

propagation of unknown: propagation of unknown: 

iMask: 1110 iMask: 1101 

- not - not 

0001 0010 

masklistb]: 1110 maskLAb]: 1110 

- and - and 
oooo 0010 

6) @I 

Figure 5 Illustration of CPM comparison process. 

input does not have many unknowns, only ai few product lines 
generate a hit. The evaluation cost in the best case is thus 
0 6). If, in the worst case, each product line generates a hit, 
the total evaluation cost is 19 (pm), where ~1 is the number of 
product lines and m is the length of the output lists. In either 

case the computation speed compares favorably to the cost of the 
method presented. in [8] which is 0 ((i +O )p ). 

5. Model Generation for Bus Type Modules 

A new algorithm has been developed to generate software 
models for bus type substructures. A bus structure may consist 
of one or more .busses, which can be corrected together with 
transistors, called link transistors. Each bus may contain 
transistors that write to the bus (input transistors), read from 
the bus (output transistors), or precharge the bus (precharge 
transistors). A wide range of busses can be accepted by the 
model generator. An input/output transistor can be modeled with 
a combination of an input and an output tram&or. 

Software model evaluation may be performed efficiently 
by utilizing the structure of the bus. Two modes of operation are 
defined for a bus structure: the normal mode and the exception 
mode. A bus is in normal mode operation if it operates accord- 
ing to its intended design. Normal mode operation consists of 

two clock phases: the precharge phase and the evaluation 
phase. During the precharge phase, the bus wires are precharged 
or predischarged. During the evaluation phase, the precharge 
transistor is inactive, and the bus is controlled solely by the input 
and link transistors. Only one input transistor can be active dur- 
ing this phase. Bus wires may also be comrected together by 
link transistors, allowing signals to flow between busses. 

In exception mode, the bus operates in a manner deviating 
from the normal mode operation due to design errors or faults 
studied in fault simulation. Specifically, exception mode opera- 
tion will occur when two or more input transistors are simultane- 
ously active or when an unknown is placed on the gate of a 
transistor. 

An understanding of the normal and exception mode 

operations aids in the &sign of a high speed model. The 
behavior of the bus in normal mode is simple, so that evaluation 
may be performed very fast. Since the bus is in normal mode 
for most of its operation time, evaluation of this mode is given 
priority. Operation in the exception mode is detected and han- 
dled accurately. but it infringes on the fast evaluation of the nor- 
mal mode as little as possible. Evaluation of the exception mode 
may suffer a slight loss in speed but the overall performance of 
the model will benefit. 

The evaluation consists of three steps: 

(1) The input transistors are evaluated. 

(2) Inter-bus signal flow is resolved. 

(3) The output transistor signal flow is evaluated. 

The three steps are each explained below in more detail, 

5.1. Input Transistor Evaluation 

In this step of the evaluation, each bus is: evaluated indivi- 
dually. The first step in the evaluation is to determine whether 
the bus is in a precharge phase or an evaluation phase. This can 
be done by inspecting the state of the precharge transistor’s gate. 

In normal mode operation. the precharge phase can be 
performed by a single assignment statement. Exception mode 
operation occurs when one or more input ports are active in 
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addition to the precharge transistor. If they try to drive the bus 
to a value different from the precharge value, a conflict occurs 
and the final value of the bus depends on the relative strength of 
the input and precharge transistors. Since precharge transistors 
are able to supply a large charge quickly, they are stronger than 
input transistors and will override the input transistors. The 
active input ports can slow down the precharging, but in switch- 
level simulation this delay can be ignored. 

In the evaluation phase, the precharge transistor is inac- 
tive. The bus is therefore controlled only by the input transis- 
tors. The fact that input transistors are unidirectional allows 
them to be evaluated easily with a lookup table. The size of the 
lookup table is determined by the number of strengths and states 
used to represent a signal. In our implementation, 4 strengths 
and 3 states are used. The table length is 1 Kbyte, which does 
not significantly increase the memory requirement since the list 
is stored only once for all generated models. 

The unidirectional lookup method can be used for a bus in 
both normal mode operation and exception mode operation. 
There is still an advantage to the distinction of these modes of 
operation. Since in normal mode operation only one of the input 
transistors is active, the input transistors will be off during most 
of their operation time. By checking the gates of the transistors 
first, the speed of the evaluation is increased. If the gate of a 
transistor is active, the lookup operation is used for its evalua- 
tion. If the gate is inactive, the lookup operation does not need 
to be performed and the model can immediately proceed to the 
next transistor. 

Additional speed increase may be obtained by gathering 
the gate signals. Usually the bus structure of a circuit consists of 
many identical bit slices. The input transistors can be collected 
into groups with common gate signals. A gate signal must then 
be checked only once for all transistors in a group. If the gate 
signal is inactive, none of the input transistors needs to be 
evaluated. while if the control signal is active, lookup operations 
are performed for each individual transistor. When the number 
of bit slices is large, such as 16, 32. or 64 bits, a significant 
speedup is obtained. 

5.2. Evaluation of Inter-Bus Signal Flow 
In step 1 of the evaluation, the busses are evaluated 

independently, thereby ignoring that two or more busses can be 
connected using bidirectional link transistors. In step 2 of the 
evaluation this bidirectional signal flow is resolved. 

Figure 6 shows an example of a simple circuit with three 
busses. It is assumed that each bus has already been evaluated 
individually using evaluation step 1. To ensure that a bus in the 
network reaches a steady state, information from all busses must 

Figure 6. Link transistor network in a bus structure. 

reach that bus. This means that information must traverse a path 
between every possible pair of busses [9]. 

The link transistor network is evaluated with the path 
finding algorithm used in the compiled simulator SLS 161. 
Advantage was taken of the fact that cyclic link transistor stmc- 
tures are not permitted in bus structures. A steady state can 
therefore be obtained by executing a fixed sequence of unidirec- 
tional transistor evaluations as explained in [9]. Since the 
sequence of evaluations is independent of the state of the transis- 
tors, the graph corresponding to the transistor network need not 
be stored in the software model. A fixed sequence of lookup 
operation can therefore be executed directly at run time. 

5.3. Evaluation of Output Transistors 

After steps 1 and 2, the bus lines reach their final value. 
In the last step of the evaluation algorithm, the output ports are 
evaluated. The output transistors support unidirectional signal 
flow, feeding signals from the bus to the output. The output port 
transistors are evaluated similarly to the input ports in step 1. To 
increase the speed of the evaluation, control gathering is per- 
formed and the state of the gate is checked before performing the 
lookup function. 

6. Performance Evaluation 

A number of software models for bus and combinational 
modules were generated and executed to test the accuracy and 
efficiency of the code. Tested bus modules varied in size from 
56 to 657 transistors, and combinational modules had personality 
matrix sizes ranging from 35 to 28K entries. All circuits were 
taken from the circuit description of a commercially available 
chip. 

Input vectors for the simulation of the modules were 
obtained by simulating the whole circuit and extracting the vec- 
tors applied to the modules during this simulation. The input 
patterns used in the speed measurements were, therefore, 
representative of the patterns applied to the module during actual 
operation of the chip. For each measurement approximately 
loo0 input vectors were simulated. The simulation speeds 
shown in Tables 1 and 2 represent the true evaluation time. It 
was obtained by eliminating from the total simulation time the 
overhead due to file access, etc. 

The characteristics of the combinational gate circuits used 
in the performance evaluation are shown in Table l(a). The 
transistor count refers to the number of elements in the transistor 
implementation. The circuit depth refers to the median number 
of levels in the tree structure of the circuit. It indicates the 
number of gates visited by a signal flowing from an input to an 
output. 

Table l(a) shows the simulation time in CPU seconds for 
the transistor and CPM implementations when run on a SUN 
3/50 work station. Table l(a) shows that the CPM model 
becomes more efficient when the circuit modules are large and 
have a large depth. Table l(b) shows the storage requirements in 
Kbytes. The storage requirement for the CPM software model is 
between 7.5 and 9.0 times less than that required by the transis- 
tor implementation. 

In Table 2 the simulation speed of the transistor and 
software model implementation of various bus structures is 
shown. Table 2(a) shows the simulation times for bus modules 
of varying sixes when the number of bit slices is two. Table 2(b) 
shows the simulation results when the number of bit slices of the 
bus structure is varied. Table 2(a) indicates that that a larger 
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circuit 

‘At1 3330 

ckt2 2370 

ckt3 640 

ckt4 1350 

ckd 376 
ckt6 447 

ckt7 46 

simulation time T 

ckt2 54 
ckt3 32 

ckt4 15 
ckt5 30 

ckt6 1.5 

CPM 

7.78 

5.88 
11.96 

4.86 

5.50 
2.28 

0.74 

1 
-- 

speedllp 
-- -- 

93.0 

87.9 
15.1 

45.4 

16.3 
61.6 

32.0 -- 

Table 1. Performance of combinational gate modules. 

circuit speed (CPU set) 

trans. input output speedup 
trans. model 

count count count - 1 
110 152 6 24.44 1.94 12.6 

92 125 6 20.94 1.76 11.9 
74 98 6 17.46 1.40 12.5 
56 71 6 14.22 1.12 12.6 

64 

circuit speed (CPU set) 

#bit trans. input output 
trans. model 

speedup 

slices count count count 

12 6.57 639 36 311.52 18.46 1.69 

8 437 443 24 178.40 8.94 1.9.9 
4 220 250 12 89.36 4.86 18.4 

1 55 103 3 24.18 1.66 14.6 

@I 

Table 2. Performance of bus modules. 

speedup is attained for models with a large number of bit slices. [71 

7. Conclusions 
This paper describes work performed as part of a larger 

logic and fault simulation project. With the advent of more com- 
plex and widely used VLSI circuits, fast switch-level simulation 
is a pressing need. The methods to generate high-level software 
model presented in this paper attempt to bridge this speed gap. 

A software model generator was developed with the fol- 
lowing goals in mind: 

(1) The model algorithms must take advantage of the struc- 
tural and behavioral information preserved in a 

hierarchical circuit description. 

(2) The generator must be capable of generating efficient 
models for large modules. 

The presented algorithms were implemented and success- 
fully used for modules from a commercially available chip. The 
event-driven simulator CHAMP [l] performed one to two orders 
of magnitude faster when a module was replaced with a software 
model. It was demonstrated that classifying the modules accord- 
ing to structure and components allows a specialized algorithm 
to be applied to each type of module and produces more efficient 
code. 

Ongoing work includes the development of additional 
algorithms for module types not yet included in the generator. In 
the long run, the generator is intended to develop into a 
comprehensive system that automatically performs classification 
and code generation for large circuits. 
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