
AUTOMATIC GENERATION OF BEHAVIORAL MODELS FROM SWITCH-LEVEL DESCRIPTIONS

David T. Blaauw*, Daniel G. Saab*, Robert B. Mueller-Thud’, Jacob A. Abraham** and Joseph T. Rahmeh**

* Computer Systems Group, University of Illinois, Urbana, IL 61801
** Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712

ABSTRACT: This paper discusses the automatic generation of
high-level software models from switch-level circuit descriptions.
The proposed algorithms operate directly on the hierarchical
description, and incorporate information about the design such as
the structure, regularity, functionality, and control signals in the
generation process. New algorithms are proposed and have been
implemented for combinational modules and bus shuctures. A
signilicant speedup has been obtained for these modules of a
commercially available chip.

1. Introduction

Advances in Very Large Scale Integration (VLSI) technol-
ogy have made possible the implementation of large and increas-
ingly complex systems on a single integrated circuit chip. This
has led to the need for accurate and efficient simulation tools
capable of handling complex designs.

Simulation of MOS circuits is currently performed at the
switch-level. Recently, hierarchical simulators has been pro-
posed to accelerate the simulation of circuits at this level [I].
Using hierarchy, the structure of commonly used subcircuits
needs to be stored only once and can be referenced when needed.
Furthermore. modules horn the hierarchy can be substituted by
high-level software models. When a large percentage of the cir-
cuit modules is replaced by accurate, efficient and compact
software models, the simulation speed is greatly increased.

Because the module size and complexity has increased
with the advance of VLSI technology, generation of such
software models has become a difficult task. Manual coding of
these models is both time consuming and error-prone. There-
fore, they must be generated automatically.

Several algorithms to abstract behavioral models from a
circuit description have been proposed. Path finding algorithms
are presented in [2,3.4,5,6]. For each channel connected com-
ponent they construct logic equations describing the steady state
of each node in a partition. The equations associated with a
component can then be compiled into executable code. A limit-
ing factor of path &ding algorithms is that the model size can
grow exponentially with the circuit size. In [7] work is
presented on translating a flat, transistor circuit description into a
register transfer level model. However, since a register transfer
level description does not support the accuracy required for
switch-level simulation, most of the presented algorithms

Permission to copy without fez all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish, requires a fee
and/or specific permission.

cannot be used for switch-level model generation.

An additional drawback of these algorithms is that they
operate on a flat transistor description. Abstracting smart models
from these descriptions has not yet been accomplished. Espe-
cially for large and complex circuits, the generated model
becomes large and inefficient compared to hand generated
models. To improve model generation, advantage must be taken
of design information, such as the structure, regularity, func-
tionality, and control signals of the circuit.

The automatic model generator proposed in this paper
effectively obtains and incorporates this information in the gen-
eration process. The key to our approach is that this design
information is preserved in a hierarchical circuit description. By
operating directly on the hierarchical description, the generator
can identify the design information for many of the circuit
modules. The obtained information is then utilized in the gen-
eration process, which produces more efficient software models.
Information obtained from a hierarchical description of a design
improves the software model generation in the following ways:

(1)

(2)

(3)

(4)

The structure of a module can be exploited. For instance,
different approaches can be taken for modules constructed
of gates versus those constructed of transistors.

The regularity of structure is more visible and easily
obtained, and can be used to increase efficiency of the
software model.

The hierarchical description preserves the functional parti-
tion of the &sign which can be used to guide the genera-
tion of software models. Uncommon input patterns can
be treated in a less efficient manner so that more efficient
treatment is given to frequently occurring input patterns.
Furthermore, it is possible to make reasonable
simplifications in the circuit model based on the
behavioral information.

Control signals and their function can be identified more
easily if the function of circuit is known.

Using a simulation system that combines event-driven
hierarchical simulation and high-level software models allows
the generator to judiciously choose which modules are translated
into a high-level model and which are simulated at the lower
primitive level in an event-driven manner. Some circuit modules
will have no recognizable structure or behavior and do not lend
themselves to smart model generation. Such modules are more
efficiently simulated with an event-driven simulator. The con-
junction of event-driven simulation and high-level model genera-
tion allows, as appropriate, either of these methods to be used for
a module.

Not only logic but also fault simulation can benefit from
high-level software models. Here the circuit description of the
module and the software model are used side by side. If the

26th ACM/IEEE Design Automation Conference@
Paper 12.2

0 1989 ACM O-89791 -31 o-8/89/0006/0179 $1.50 179

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74382.74413&domain=pdf&date_stamp=1989-06-01

module contains no faults, the software description is used for
evaluation; however, if a fault is present in the module, the cir-
cuit description of the module must be used. In practice., only a
small subset of faults is simulated at any one time. Since these
can easily be located in one or a few modules, most modules
can still be evaluated with software description. In this way,
simulation time can be decreased significantly for fault simula-
tion using high speed software models.

2. Issues In Generation of High-Level Models

Since the hierarchical description emerges during the
design process, the modules in the hierarchy contain logically
distinct substructures. Each substructure has unique structure,
regularity, functional behavior and control signals. In practice,
only a small number of distinct types of substructures occur and
a library of these types can be constructed. Once a module is
classified as a particular type, its characteristics can be incor-
porated into the software model.

Modules are first classified according to their functional
behavior. Modules that have no internal state, such as PLAs and
combinational gate circuits, are called combinational modules.
Model generation for combinational modules involves analyzing
the circuit to obtain the 3oolean function equivalent of the cir-
cuit. Modules that have an internal state are called sequential
modules. These substructures are diverse enough to justify,indi-
vidual model generation algorithms for each type of substructure.

We have focused on model generation for two types of
modules commonly used in complex systems: combinational
modules and sequential modules containing busses. In the case
of busses, structural information is used to produce efficient
code. Therefore, path finding algorithms were not used
indiscriminately for the entire substructure and, rather than parti-
tioning the circuit into channel connected components, the circuit
was partitioned according to functionality. Figure 1 shows how
a simple circuit is partitioned into a two bit multiplexer and two
input circuits. The following paragraphs present some of the
general principles used to generate fast and efficient code for
sequential modules:

(1) Using Simple Code: Our object is to keep the generated
code as simple as possible. No function calls or pointer
manipulations were incorporated in the software models.
The most complex structures in currently generated
models are if statements and for loops.

Panition A
co

Partition C

Partition B

Figure 1. Circuit partitioned according to functionality.

(2)

(3)

(4)

(3

Improve Code Ordering Using Control Signals: Control
signals determine the flow of signals through the circuit.
The value of a control signal determines which partitions
of the circuit will effect the output. If, in Figure 1, con-
trol signal CO is logic 1. partition A Imust be evaluated,
while if CO is logic 0, partition B must be evaluated. If
CO is unknown, both Partition A and partition B must be
evaluated. To evaluate the circuit efficiently, control sig-
nal CO is tested; then code corresponding to partition A,
partition 13, or both is executed followed by code
corresponding to partition C. In this way unnecessary
execution of code is avoided using knowledge of the con-
trol signal.

Gathering of Control Signals: Control signals are used
repeatedly in a module. Those parts of the circuit that use
the same controL signal may be gathered into one parti-
tion. Partitioning in this fashion is called control gather-
ing [7]. In thii way, the control signal is inspected only
once in order to determine how to proceed with the
evaluation. For instance, in the ALU circuit of Figure 2,
control signal CO determines whether the output of the
ALU is connected to the output of gate Gl or if it retains
its previous value. Assume that mu1tipl.e bit slices of this
structure are used. Control gathering may now be per-
formed using control signal CO, so that control signal CO
is inspected only once. If the signal has a state of logic 0,
all outputs retain their current value. However, if the sig-
nal has a state of logic one, the gathered logic is
evaluated.

Special Control Signals: Some control signals perform
special functions, such as precharging, predischarging,
reset, and clock signals. Knowledge of the function of
these control signals may be used in the model generation
process. Reset signals, for instance, often override other
control signals and bring tie circuit to a predetermined
state. This state can be assigned immediately if the reset
signal is active.

Directional Analysis: Although signals can flow in both
directions between source and drain in a conducting
transistor, in practice one 6nds that the majority of transis-
tors in a circuit are unidirectional. Circuit analysis is per-
formed to classify each transistor as unidirectional or
bidirectional. The evaluation of unidirectional transistors
is much simpler than that of bidirectional transistors.
Using directional knowledge in the model generation pro-
cess can thus increase the efficiency of the software
model.

3. Implementation and Scope of the Model Generator

The model generator was implemented using the C-
language. Currently. models are generated for combinational

Figure 2. Control gathering with an ALU circuit.

Paper 12.2

180

modules, including PLAs and combinational gate modules, as
explained in Section 4. and for sequential modules containing
bus structures, as explained in Section 5.

The model generator consists of three phases:

(1)

(2)

(3)

Parsing and Preliminary Analysis: The circuit is
checked and stored into an internal data structure. Any
analysis needed by the generation algorithms, such as
directional analysis, is performed.

Module Classification: The modules are classified into
types of substructures such as bus type, combinational
gate type, ALU type, etc., based on the modules structure
and components. This classification is not yet performed
automatically. The user has to inspect the circuit descrip-
tion and inform the generator of its type for each module.

Code Generation: The model generation algorithms are
applied to the modules. Each type of module has a
separate algorithm associated with it.

4. Model Generation for Combinational Modules

In this section a new model generation algorithm for com-
binational modules is introduced. Traditionally, combinatorial
circuits have been modeled using an exhaustive truth table. For
each combination of input vahres, this table contains the
corresponding output values. In three valued logic (0, 1, X), the
total size of the table is 3’0 bytes, where i is the number of
inputs and o is the number of outputs.

When used appropriately for small circuits, this table
method provides fast evaluation. Since the table size grows
exponentially with the number of inputs, many combinational
gate modules in a circuit will be too large. Since we stress the
need to generate models for large modules, different algorithms
were found to handle these modules. One method, presented in
[8], stores the personality matrix of the circuit in the software
model. The size of the personality matrix as well as the number
of operations required for evaluation is 0 ((i+o)p), where i is
the number of inputs, o is the number of outputs, and p is the
number of product lines.

In order to produce more compact and efficient code, a
new algorithm, called the coded personality matrix method
(CPM), was developed. This algorithm uses a binary coding to
store the personality matrix and Boolean comparisons in its
evaluation algorithm. The encoding drastically reduces the size
of the stored table and the BooIean comparisons provide for fast
evaluation. The software model is automatically generated from
a switch-level description. Figure 3 shows the code for the
software model corresponding to a circuit with the personality
matrix shown in Figure 4. The function of the AND plane is
encoded using two integer lists: the maskList and the moldlist.
The function of the OR plane is encoded and stored in the
integer matrix outlist.

The AND plane of the personality matrix is fully
described by a set of products of the input variables called pro-
duct terms. Each product line has a product term associated
with it that describes for which input pattern it is activated. We
use a two bit encoding to record the state of each input variable
in the Product. One bit, called the mask bit, indicates whether
the variable is present in the product term. The other bit, called
the mold bit, indicates whether the variable appears in comple-
mented or uncomplemented form. A product term is thus
represented by a string of mold and mask bits. Each string is
stored in one or more machine words. The lists of mold and

I procedure CPM(inputP, outputP)
2

3(
4

5
6

7
8
9
10
11
12
13
14
15

16
17

18
19
20
21

22
23
24

2s
26

27

28

29
30

char %lputP, *outputP;

int i, j. index;

static int moldList 141 = (OxoO,OxO8,OxO2, 0x06 1;
static int maskList [4] = (OxOC, OxOE, OxOA, 0x06 1:
static int outist [41[3] = (

(0, -1, -1 I, (1, -1, -1 I,
(2, -1, -1 }. (0, 1, -1));

int iMask;

int iMold;

P create iMold and iMask */

iMask = iMold = 0;
for (i = 0, i < number-of-inputs, i++) (

iMask = iMask << 1;
iMask = iMask I ((inputP[i] & unknown-mask)s>l);

iMold = Mold << 1;
iMold = iMold I (inputF’[i] & logic-state-mask);

1
iMask = - iMask:

for (i = 0; i < number-of-outputs, i++)
outputP[i] = drhing-zero; P preset the outputs to D,O */

for (i = Q i c number-ofBroduct_lines; i ++)
if (!((ihIold A moldList[i]) & iMask & masklistIiJ))

/* hit has been found *I

31

32
33

34

if ((-iMask) & maskL.ist[i]) p prop of X *I
for (j = 0; (index = outList[ilb]) != -1 ; j ++)

if (outPutP[index] & logic-zero-mask)

onode[index] = driving-unknown;

else I* no prop of X *I

for (j = 0; (index = outList[i]/j]) != -1; j ++)
outputP[index] = driving-one;

Figure 3. Model code of coded personality matrix method.

input variables output variables
I

n: not connected

Figure 4. Personality matrix of a small PLA.

mask words are stored in array moldList and maskList respec-
tively (see Figure 3). The AND plane is encoded with
S,-w&2wp words, where p is the number of product lines. and
w is the number of words needed to store the mold and mask bit
strings.

The OR plane of a PLA is encoded and stored in a two
dimensional array of integers (array outList in Figure 3). The
integers in a row are the indices of the outputs that are connected
to a product line. The size of the output matrix is
So~==(m+l)p , where m is the maximurn number of outputs to
which a product line is connected. The total storage size for the

Paper 12.2

181

CPM method is S ~o~(m +l+Zw)p .

The evaluation algorithm consists of the following steps:

(1) The input pattern is encoded.

(2) The outputs are preset to driving zero.

(3) Each product term is compared to the input to determine
whether they match.

(4) Each time the input matches a product term (called a hit),
further comparisons are made to see if any unknowns in
the input propagate to the output and the outputs are
updated accordingly.

The input pattern to a circuit is described by a product and
is encoded using two words, iMask and iMold. A hit o:n a pro-
duct line is now determined with only 4 Boolean operations (see
Figure 3, line 33). When a hit is discovered, a second com-
parison is performed to determine whether there is an unknown
in the input pattern that Propagates to the product line. A pro-
duct line becomes unknown if the input contains an unknown
and the product term at that position does not contain a ‘don’t
care’ condition. Two Boolean operations are required to deter-
mine this, as shown in Figure 3, line 35. When a hit on a pro-
duct line is detected, the algorithm traces through the output list
and sets all the corresponding outputs to driving one (Figure 3,
line 42) or driving unknown (Figure 3, line 38). The e&le in
Figure 5(a) sho_ws the comparison between input ABCX and
product term AEXX . The input generates a hit; howeve,r. since
the unknown in input corresponds with a ‘don’t care’ condition
in the product term, the unknown does not propagate.--Figure
5(b) shows the same comparison process when input ABXD is
applied. In this case the unknown in the input propagates to the
product line.

The advantage of the coded personality matrix method is
that a hit can be detected with only 4 Boolean operations. If the

input variable = AB’X input variable = ALi’_XD
product term = ABCX product term = ABCX

finding a hit:

iMold: 1101
moldlht~]: 1100

Oool
iMask: 1110

moo

masklistlj]: 1110

oooo

finding a hit:

iMold: 1101
moldListfi]: 1100

xor - xolr

Oool
iMask: 1101

and - and

0001
masklistb]: 1110

and - and

Qooo

propagation of unknown: propagation of unknown:

iMask: 1110 iMask: 1101

- not - not

0001 0010

masklistb]: 1110 maskLAb]: 1110

- and - and
oooo 0010

6) @I

Figure 5 Illustration of CPM comparison process.

input does not have many unknowns, only ai few product lines
generate a hit. The evaluation cost in the best case is thus
0 6). If, in the worst case, each product line generates a hit,
the total evaluation cost is 19 (pm), where ~1 is the number of
product lines and m is the length of the output lists. In either

case the computation speed compares favorably to the cost of the
method presented. in [8] which is 0 ((i +O)p).

5. Model Generation for Bus Type Modules

A new algorithm has been developed to generate software
models for bus type substructures. A bus structure may consist
of one or more .busses, which can be corrected together with
transistors, called link transistors. Each bus may contain
transistors that write to the bus (input transistors), read from
the bus (output transistors), or precharge the bus (precharge
transistors). A wide range of busses can be accepted by the
model generator. An input/output transistor can be modeled with
a combination of an input and an output tram&or.

Software model evaluation may be performed efficiently
by utilizing the structure of the bus. Two modes of operation are
defined for a bus structure: the normal mode and the exception
mode. A bus is in normal mode operation if it operates accord-
ing to its intended design. Normal mode operation consists of

two clock phases: the precharge phase and the evaluation
phase. During the precharge phase, the bus wires are precharged
or predischarged. During the evaluation phase, the precharge
transistor is inactive, and the bus is controlled solely by the input
and link transistors. Only one input transistor can be active dur-
ing this phase. Bus wires may also be comrected together by
link transistors, allowing signals to flow between busses.

In exception mode, the bus operates in a manner deviating
from the normal mode operation due to design errors or faults
studied in fault simulation. Specifically, exception mode opera-
tion will occur when two or more input transistors are simultane-
ously active or when an unknown is placed on the gate of a
transistor.

An understanding of the normal and exception mode

operations aids in the &sign of a high speed model. The
behavior of the bus in normal mode is simple, so that evaluation
may be performed very fast. Since the bus is in normal mode
for most of its operation time, evaluation of this mode is given
priority. Operation in the exception mode is detected and han-
dled accurately. but it infringes on the fast evaluation of the nor-
mal mode as little as possible. Evaluation of the exception mode
may suffer a slight loss in speed but the overall performance of
the model will benefit.

The evaluation consists of three steps:

(1) The input transistors are evaluated.

(2) Inter-bus signal flow is resolved.

(3) The output transistor signal flow is evaluated.

The three steps are each explained below in more detail,

5.1. Input Transistor Evaluation

In this step of the evaluation, each bus is: evaluated indivi-
dually. The first step in the evaluation is to determine whether
the bus is in a precharge phase or an evaluation phase. This can
be done by inspecting the state of the precharge transistor’s gate.

In normal mode operation. the precharge phase can be
performed by a single assignment statement. Exception mode
operation occurs when one or more input ports are active in

Paper 12.2

182

addition to the precharge transistor. If they try to drive the bus
to a value different from the precharge value, a conflict occurs
and the final value of the bus depends on the relative strength of
the input and precharge transistors. Since precharge transistors
are able to supply a large charge quickly, they are stronger than
input transistors and will override the input transistors. The
active input ports can slow down the precharging, but in switch-
level simulation this delay can be ignored.

In the evaluation phase, the precharge transistor is inac-
tive. The bus is therefore controlled only by the input transis-
tors. The fact that input transistors are unidirectional allows
them to be evaluated easily with a lookup table. The size of the
lookup table is determined by the number of strengths and states
used to represent a signal. In our implementation, 4 strengths
and 3 states are used. The table length is 1 Kbyte, which does
not significantly increase the memory requirement since the list
is stored only once for all generated models.

The unidirectional lookup method can be used for a bus in
both normal mode operation and exception mode operation.
There is still an advantage to the distinction of these modes of
operation. Since in normal mode operation only one of the input
transistors is active, the input transistors will be off during most
of their operation time. By checking the gates of the transistors
first, the speed of the evaluation is increased. If the gate of a
transistor is active, the lookup operation is used for its evalua-
tion. If the gate is inactive, the lookup operation does not need
to be performed and the model can immediately proceed to the
next transistor.

Additional speed increase may be obtained by gathering
the gate signals. Usually the bus structure of a circuit consists of
many identical bit slices. The input transistors can be collected
into groups with common gate signals. A gate signal must then
be checked only once for all transistors in a group. If the gate
signal is inactive, none of the input transistors needs to be
evaluated. while if the control signal is active, lookup operations
are performed for each individual transistor. When the number
of bit slices is large, such as 16, 32. or 64 bits, a significant
speedup is obtained.

5.2. Evaluation of Inter-Bus Signal Flow
In step 1 of the evaluation, the busses are evaluated

independently, thereby ignoring that two or more busses can be
connected using bidirectional link transistors. In step 2 of the
evaluation this bidirectional signal flow is resolved.

Figure 6 shows an example of a simple circuit with three
busses. It is assumed that each bus has already been evaluated
individually using evaluation step 1. To ensure that a bus in the
network reaches a steady state, information from all busses must

Figure 6. Link transistor network in a bus structure.

reach that bus. This means that information must traverse a path
between every possible pair of busses [9].

The link transistor network is evaluated with the path
finding algorithm used in the compiled simulator SLS 161.
Advantage was taken of the fact that cyclic link transistor stmc-
tures are not permitted in bus structures. A steady state can
therefore be obtained by executing a fixed sequence of unidirec-
tional transistor evaluations as explained in [9]. Since the
sequence of evaluations is independent of the state of the transis-
tors, the graph corresponding to the transistor network need not
be stored in the software model. A fixed sequence of lookup
operation can therefore be executed directly at run time.

5.3. Evaluation of Output Transistors

After steps 1 and 2, the bus lines reach their final value.
In the last step of the evaluation algorithm, the output ports are
evaluated. The output transistors support unidirectional signal
flow, feeding signals from the bus to the output. The output port
transistors are evaluated similarly to the input ports in step 1. To
increase the speed of the evaluation, control gathering is per-
formed and the state of the gate is checked before performing the
lookup function.

6. Performance Evaluation

A number of software models for bus and combinational
modules were generated and executed to test the accuracy and
efficiency of the code. Tested bus modules varied in size from
56 to 657 transistors, and combinational modules had personality
matrix sizes ranging from 35 to 28K entries. All circuits were
taken from the circuit description of a commercially available
chip.

Input vectors for the simulation of the modules were
obtained by simulating the whole circuit and extracting the vec-
tors applied to the modules during this simulation. The input
patterns used in the speed measurements were, therefore,
representative of the patterns applied to the module during actual
operation of the chip. For each measurement approximately
loo0 input vectors were simulated. The simulation speeds
shown in Tables 1 and 2 represent the true evaluation time. It
was obtained by eliminating from the total simulation time the
overhead due to file access, etc.

The characteristics of the combinational gate circuits used
in the performance evaluation are shown in Table l(a). The
transistor count refers to the number of elements in the transistor
implementation. The circuit depth refers to the median number
of levels in the tree structure of the circuit. It indicates the
number of gates visited by a signal flowing from an input to an
output.

Table l(a) shows the simulation time in CPU seconds for
the transistor and CPM implementations when run on a SUN
3/50 work station. Table l(a) shows that the CPM model
becomes more efficient when the circuit modules are large and
have a large depth. Table l(b) shows the storage requirements in
Kbytes. The storage requirement for the CPM software model is
between 7.5 and 9.0 times less than that required by the transis-
tor implementation.

In Table 2 the simulation speed of the transistor and
software model implementation of various bus structures is
shown. Table 2(a) shows the simulation times for bus modules
of varying sixes when the number of bit slices is two. Table 2(b)
shows the simulation results when the number of bit slices of the
bus structure is varied. Table 2(a) indicates that that a larger

Paper 12.2

183

circuit

‘At1 3330

ckt2 2370

ckt3 640

ckt4 1350

ckd 376
ckt6 447

ckt7 46

simulation time T

ckt2 54
ckt3 32

ckt4 15
ckt5 30

ckt6 1.5

CPM

7.78

5.88
11.96

4.86

5.50
2.28

0.74

1
--

speedllp
-- --

93.0

87.9
15.1

45.4

16.3
61.6

32.0 --

Table 1. Performance of combinational gate modules.

circuit speed (CPU set)

trans. input output speedup
trans. model

count count count - 1
110 152 6 24.44 1.94 12.6

92 125 6 20.94 1.76 11.9
74 98 6 17.46 1.40 12.5
56 71 6 14.22 1.12 12.6

64

circuit speed (CPU set)

#bit trans. input output
trans. model

speedup

slices count count count

12 6.57 639 36 311.52 18.46 1.69

8 437 443 24 178.40 8.94 1.9.9
4 220 250 12 89.36 4.86 18.4

1 55 103 3 24.18 1.66 14.6

@I

Table 2. Performance of bus modules.

speedup is attained for models with a large number of bit slices. [71

7. Conclusions
This paper describes work performed as part of a larger

logic and fault simulation project. With the advent of more com-
plex and widely used VLSI circuits, fast switch-level simulation
is a pressing need. The methods to generate high-level software
model presented in this paper attempt to bridge this speed gap.

A software model generator was developed with the fol-
lowing goals in mind:

(1) The model algorithms must take advantage of the struc-
tural and behavioral information preserved in a

hierarchical circuit description.

(2) The generator must be capable of generating efficient
models for large modules.

The presented algorithms were implemented and success-
fully used for modules from a commercially available chip. The
event-driven simulator CHAMP [l] performed one to two orders
of magnitude faster when a module was replaced with a software
model. It was demonstrated that classifying the modules accord-
ing to structure and components allows a specialized algorithm
to be applied to each type of module and produces more efficient
code.

Ongoing work includes the development of additional
algorithms for module types not yet included in the generator. In
the long run, the generator is intended to develop into a
comprehensive system that automatically performs classification
and code generation for large circuits.

ACKNOWLEDGMENTS

This work was supported in part by Motorola, Inc. Austin,
TX, and in part by the SLmiwnductor Research Corporation
Contracts 87-DP-109 at the University of Illinois at Urbana and
88-DJ-142 at the University of Texas at Austin.

PI

PI

c31

[41

151

L61

PI

[91

REFERENCES

D. G. Saab, R. B. Mueller-Thuns, D. T. Blaauw, J. A.
Abraham, and J. T. Rahmeh, “CHAMP: Concurrent
Hierarchical And Multilevel Program for Simulation of
VLSI Circuits,’ ’ in Proc. IEEE Int. Conference on
Computer-Aided Design, Santa Clara, CA, 1988.

R.E. Bryant, D. Beatty, K. Brace,, K. Cho, and T.
Scheffler, “COSMOS: A Compiled Simulator for MOS
Circuits,” Proc. ACM IEEE 24th Design Automation
Conference, pp. 9-16, 1987.

G. Ditlow, W. Donath. and A. Ruehli, “Logic equations
for MOSFET circuits, ’ ’ in Proc. of the IEEE
International Symposium on Circuits and .Systems, ’
Newport Beach, CA, pp. 752-755, May 1983.

R. M. Apte, N-S Chang , and J. Abraham, “REDUCE-
Logic extraction for NMOS circuits,” in IEEE Int. Co&
on Circuits and Computers. New York , Oct. 1982.

I.N. Haij and D.G. Saab. “Symbolic Logic Simulation of
MOS Circuits,” Proc. International Symposium on
Circuits and Systems, pp. 246-249. 1983.

2. Barzilai, D. K. Beece, L. M. Huisman, V. S. Iyengar,
and G. M. Silberman. “SLS - A Fast Switch-Level
Simulator,” IEEE Transactions. on #CAD, vol. CAD-7,
No. 8. pp. 838-849. Aug. 1988.

A. Brish, R. Keinan, and Y. Ravid, “A Smart System
that Compiles RTL Models from Schematics,” VLSI
System Design, pp. 32-35, Feb. 1988.

H. P. Chang and J. A. Abraham, “IJse of High Level
Descriptions for Speedup of Fault Simulation,” in Proc.
haternationaI Test Conference, Washington D.C., pp. l-
7, Sept. 1987.

I. Spillinger and G. M. Silberman, “Improving the
Performance of a Switch-Level Simulator Targeted for a
Logic Simulation Machine,” IEEE Transactions. on
CAD. vol. CAD-Z No. 3, pp. 396404, JuIy 1986.

Paper 12.2

184

