
State Assignment Using a New Embedding Method
Based On an Intersecting Cube Theory

G. Saucier
C. Duff

INPG/CSI
46, Avenue Felix-Viallet,

3803 1 Grenoble Cedex, France

Abstract - The controller state assignment methodology
proposed here features two improvements over existing
methods. First, a larger set of predictive minimizations in the
control flowgraph is performed. Secondly, the embedding
phase uses a new theory of intersecting cubes in the Boolean
lattice. Practical results using the VLSI Technology Logic-
Synthesizer on both PLA and multi-level logic demonstrate the
effectiveness of the approach.

Introduction
State assignment is an important step in the Synthesis of

controllers from high-level specifications such as control
flowcharts, control flowgraphs and state graphs. Once binary
codes have been assigned to the states, next-state and output
equations are defined and subsequently minimized with classical
logic synthesis tools. The state assignment must be performed
in a way that favors simplification of the next-state and output
logic (implemented on PLA, standard cells, ROMs,...). The
prediction of these down-line minimizations is one of the most
difficult aspects of state assignment.

State assignment has been studied intensively in the
1960s and 1970s. These research efforts had two main
objectives. The first was the avoidance of critical races for
asynchronous sequential circuits. Skillful state assignment
could ensure the non-existence of races for these circuits
([UNG63], [ARM62], [LIU63]. [SAU72a]). Some proposed
solutions consisted in placing, for a given input, the states
leading to the same stable state on the same face of the
hypercube (excluding the other ones). Universal solutions for
any state machine of N states [SAU68] as well as minimized
dedicated solutions were proposed. A second objective was the
simplification of the next-state and output equations [HAR66].
A point which was clearly brought forth at that time was the
compromise between the number of internal variables and the
simplicity of the next-state equations [SAU72b]. From a
theoretical point of view, two approaches were identified. The
first one was based on the partition theory. A partition of the
set of states is associated to an internal variable: the states for
which this variable is equal to 0 and those for which it is equal
to 1. This corresponds to a bisection of the hypercube, from
which follows the partition pair theory of Hartmannis
[HAR66]. For a given input, any partition of the set of states is
mapped into another one through the state table, and therefore
gives the key to the next-state (and similarly for the output)

‘ermission to copy without fee all or part of this material is granted provided
hat the copies are not made or distributed for direct commercial advantage,
he ACM copyright notice and the title of the publication and its date appear,
:nd notice is given that copying is by permission of the Association for
I:omputing Machinery. To copy otherwise, or to republish, requires a fee
:nd/or specific permission.

F. Poirot
VLSI Technology Inc

Route des Dolines
Sophia Antipolis,

06560 Valbonne, France

equation complexity. In all these approaches, the state
assignment is usually performed progressively, variable by
variable, choosing the next bisection of the hypercube. This is
called column encoding. In parallel, another approach was
proposed based on the Boolean lattice theory. A Boolean N-
cube is isomorphic to the lattice of the set of parts of a set of N
elements. Assigning a binary code to a state consists of
assigning a subset of elements to this state. This different view
allows for an improved optimization of the state assignment in
terms of the number of internal variables for universal
assignment as well as for dedicated assignment.

with the advent of silicon compilers. aI1 these approaches
were re-investigated to produce efficient state assignment tools
for controller synthesis following new achievements in the
minimization area. Two steps are clearly identified. The first is
the search for situations in the controller specification which
will lead to further minimization. An obvious situation for all
approaches is the existence of a set of states leading to the
same next state. This, of course, leads to an expression which
is the sum of the codes of the ancestor states for all internal
variables equal to 1 in the next state. Placing all the nodes on a
same face of the hypercube reduces this expression to one
product term. This situation was recognized in all the proposed
tools (KISS [DEM85], ASYL [SAU87], MUSTANG [DEV87],
[COP86]...). Based on practical experience. the importance of
output logic compared with next-state logic was pointed out in
the ASYL system. The practical designs of complex controllers
(dedicated pprocessor controllers) showed the important ratio
of output logic (4/5 of the area) and the importance of the
minimization of the number of internal variables, because of
the critical wiring problems between the controller and the
datapath and of the decoder size. Therefore, sets of states (or
edges) sending identical outputs were recognized in ASYL
[SAU87]. This was also done in MUSTANG [DEV87]. As
mentioned previously, efficient optimization requirements
have led the authors to attempt to recognize more potential
simplifications. Therefore, more sophisticated situations are
presently recognized (multiple output nodes, edges labelled
with same or intersecting inputs). These will be described in
detail in this paper. A predictive gain must be associated with
all these situations since, during the embedding phase, directed
heuristics will attempt to satisfy the situations with the highest
predicted gain. The computation of this gain is important as it
will be shown that it is based on further minimizations used for
the logic.

For the embedding phase, the two classical approaches
previously mentioned are exploited. The partition theory
approach leads to a column encoding. The nodes belonging to a
given situation called adjacency group are placed on a same face
defined by fixed values of one or several internal variables; this
corresponds to a bisection of the hypercube [DEM85]. The

26th ACM/IEEE Design Automation Conference@
Paper 22.2

3 1989 ACM O-89791 -310~8/89/0006/0321 $1.50 321

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74382.74436&domain=pdf&date_stamp=1989-06-01

drawback of this approach is the fact that the increase of
potential minimizations leads to an increase of the number of
internal state variables which is prohibitive for highly
optimized controllers. Therefore, progressive embedding (row
encoding) in the hypercube with an extendable dimension is
preferable. In MUSTANG [DEV87], the nodes of an ad.jacency
group are placed in “close neighborhood” in the hypercube. In
ASYL. an early version performed an embedding in the
hypercube based on the necessary conditions of a graph to be
isomorphic to a subgraph of a hypercube. In practice, the nodes
were first assigned to layers of the target hypercube and
progressive assignment of relative coordinates to the nodes
was then performed [SAU87]. The new version of the
embedding algorithm presented here is more sophisticated and
more efficient. As the recognized situations have bec0m.e more
numerous. a global treatment of their intersection is malized.
An original theory of intersecting cubes is developed. This
leads to an embedding of the successive adjacency groups that
takes into account the intersections between these groups, and
also to the definition of the backtracking possibilities. This
provides a near-optimal solution.

As far as logic targets are concerned. a PLA
implementation is clearly taken in KISS [DEM85]. Therefore,
once the situations are detected in KISS (multiple input node
only), a dedicated preparation is performed in order to reach a
good global minimization. The PLA target is abandoned in
MUSTANG. The placement of nodes in close neighborhood
leads to large common factors in the set of codes and eases
global minimization through factoring. In ASYL, it has
appeared in practice, that large controllers need multiple PLAs
or multi-level logic implementation. Both targets are therefore
considered. Nodes of an adjacency group are put on a single face
(which is the best solution) or in a close neighborhood. The
multi-level target is prepared by gain consideration which takes
into account the intersections or common product terms
between the functions. In [KEU88]. multi-level logic is targeted
and a method based on kernel finding is proposed. As shown by
the authors, they did not improve on a random encoding.

This paper reports on results of a cooperative research
between VLSI Technology Inc., and the lNPG/CSI laboratory,

The paper is organized as follows: In section 1, a summary
of the richest set of situations presently identified for state
assignment purposes is described. The associated costs will be
discussed. The second section ennrnerates the different types of
embeddings used, with special emphasis on a novel approach
that is based on an intersecting cube theory of the Boolean
lattice. In the last section, comparative results are presented.

I. Situation recognition and adjacency groups

1.1. Types of situations and adjacency groups
Four basic situations are identified : multiple input nodes,

nodes or edges sending the same outputs (Moore or Mealy
models), multiple output nodes, and edges labelled with the
same input or with intersecting inputs.

Situation 1 : Nodes with multiple input edges
This frequent situation in controller flowgraphs has been

widely discussed in the literature. Branching on input variables
split controllers into distinct states converging again on key
points of the flowgraph. Edges leading to a join nod,e are
usually not labelled with any input condition; thus, the prtoduct
terms produced by this situation are the following: For each
internal variable equal to 1 in the join node code, the sum of the
ancestor node codes is produced.

The ancestor nodes of the join node constitute an
adjacency group. The best solution for any further
implementation is to put these nodes on a cube of the
hypercube. For multi-level logic, a weaker solution consists of

Paper 22.2

322

placing these nodes as close as possible in order to increase
common subexpressions [DEV87]. A special version for PLA
minimization has been widely discussed in [DEM83].

Situatton 2 : Nodes or edges sending the same
outputs

In Moore (resp. Mealy) controllers, outputs are associated
with nodes (resp. edges). For Moore controllers, states sending
the same outputs are put in a same adjacency list. If the same set
of states send several outputs, the associated weight (for a
purpose explained later) is increased. For Mealy controllers,
outputs are associated with edges.

Situation 3 : Nodes with multiple output edges
Edges are labelled with exclusive predicates (conditions)

on the input variables; the sum of these predicates must be 1.

Suppose that a node has 2k edges labelled w:ith 2k minterms on
the input variables (Figure 1). These input minterms define k
partitions of the successor nodes, a partition being defined by
an input variable being 0 in one block of the partition and 1 in
the other. In Figure 1. the partitions are for instance ((Sl, S2),
(S3, S4)) for variable “a” and ((Sl, S3). (SZ!, S4)) for variable
“b”. These nartitions define the adiacencv relations between the
nodes of a i-cube.

<

y4=c&(so)

sl

P

$:'d(SO). notb
yl = code (so). not a

not a.not b a.not b a.b

?I 75
s3 a4

11&l lMi1 Olrnl ooml

Figure 1 Nodes with multiple output edges

This situation leads to declare {Sl, !52, S3, S4) as a
constrained adjacency group: The nodes have to be assigned on
a 2-cube defined by the partitions of the input minterms. This
means that ((Sl, S2), (S3. S4)) and ((Sl,S3), (S2. S4)) are
adjacency relations that have to be respected when constructing
the 2-cube associated with the successor no’des. This leads to
the generation of the product term (code(S0)). for all invariant
internal variables of the successor nodes and a product term
{code (SO). -Ei) (-Ei is either Ei or not Ei), for the other
internal variables.

Situation 4 : Edges lahelled with the same inputs
or with intersecting inputs

This situation refers to previous work on partition pairs
[HAR66]. A given input maps current state on next states. A
first step consists in identifying all edges in the flowgraph
labelled with the same input or intersecting inputs. In the
example given in Figure 2, 4 edges labelled with the same input
“I” go from states Sl, S2, S3, S4 to states S5, S6, S7, S8.

I ~00
St

8
s6

lmo
& St3
11/m

owl1
s4

B
I

s3
lull

I Figure 2 Edges labelled with the same inputs

Suppose we assign the four origin nodes to a 2-cube
defined by the two partitions ((Sl. S2). (S3. S4)) and ((Sl,
S3). (S2. S4)). These partitions are mappe.d on two other
partitions by input “I” (namely ((S5. S6). (S7, S8)) and ((S5,

SS), (S6, S7))). If we now assign the end nodes to a 2-cube
defined by the two partitions ((S5, S6), (57, S8)) and ((S5.
S8), (S6, S7)), we will get a set of product terms well suited to
multi-level logic :

Y4=Y3=notY4.notY3
Y2=notY4.notY3.Y2
Yl=notY4.notY3.Y1

More precisely, the invariant variables of the codes of the
end nodes produce a product term equal to the invariant part of
the codes of the start nodes. The other variables Yi produce a
product term equal to the product of the invariant part of the
code by Yi. This property is an extension of a reduced
dependency property [HAR66] due to the fact that the internal
variables respect the partition pairs associated with input “I”.
The difference here is that all the states do not appear in the
partition.

A simple implementation consists in searching sets of 2k
nodes leading through 2k edges labelled with the same or
intersecting inputs to 2k successor nodes, and assigning them
to 2 k-cubes respecting the mapping of the partitions defining
the cubes. An interesting case to point out is a set of loops
labelled with the same input condition. This last situation has
been used successfully.

Conclusion on the situation recognition phase
The first step of situation recognition ends with the

creation of node lists which have to be assigned to a face or
cube, or at least put in close neighborhood. For the two last
situations. this is somewhat more complicated. The third
situation tends to put nodes on a cube with the following
constraint : Once one node has been assigned, the assignments
of all the other ones are mandatory - there is no more freedom
for the code of these nodes. The fourth situation aims at
assigning two sets of nodes in a dependent way ; if one set of
nodes is assigned to a cube. the structure of the second cube is
deduced (the adjacency relations between its nodes are defined).

1.2. Gain associated with a situation
The gains associated with the above-mentioned situations

play an important role as they lead to an ordering of the
adjacency groups. A local gain is associated with each situation
and a global gain takes into account the intersections between
adjacency groups. This has the effect of preparing common
expressions at any level between different functions (output
functions, internal variables, etc.), thus providing further
multi-level minimizations. The major advantage of our
approach is that the intersections or common subexpressions
are preserved during the embedding phase.

1.2.1. Local gain associated with the situations
The local gain is the number of occurrences of variables

saved by placing the corresponding adjacency group on a cube.
More precisely we take an upper bound of this number equal to
the difference between the worst case and the final expression.
Let us show this gain for the first two situations.

Nodes with multiple input edges
For this situation with p ancestor nodes (p = 2k) , for each

internal variable Yi equal to 1. the expression is
Yi = (input condition).(code (Sl) + . . . + code (Sp)).

If N is the number of internal variables and cj the number
of input variables appearing in each of the p conditions, the
worst case is (Xcj+pN) variables in the expression of Yi. In the
best case, if the ancestor nodes are put on a cube, a common
factor of (N-k) variables is obtained. The cost is therefore [(N-
k) + (pk -t ECj)] and the gain is equal to (p-I)(N-k) where k =

rlog2 @)I. As the number of internal variables equal to 1 in the
next-state code is unknown at this stage, we use an average

coefficient of N/2 to weight this gain. The final gain is then N
(p-1)Wk) / 2.

Output situations
The reasoning is very similar to that of the join situation

except that the output functions are considered individually, and
not “clustered” like the internal variables in the previous
situation. The gain associated to an adjacency group is
therefore (p-I)(N-k).

1.2.2. Global gain
To cope with multi-level synthesis, special attention is

given to intersections between adjacency groups. If respected,
these intersections bring potential subexpressions between
functions and as the embedding technique has been elaborated
for that purpose, this potential is realized. Global gain
considerations lead to respect not only a particular adjacency
group, but also other adjacency groups included, or partially
included in it. It will therefore allow simplification in another
function. As such. to the local cost will be added the partial cost
of parts of adjacency groups included in this group.

Consider, for instance, two adjacency groups due to join
situations (1,2,5,6.10,12) and (5,6,10,13). The fist one has a
local gain which will be increased by a partial gain coming
from the second one by placing (5.6) on an edge. The cost of
the first adjacency group is equal to gain ({1,2,5,6,10.12}) +
partial gain ((5,6,10,13)). To handle this easily, a linear
approximation is done. Gain(p) as previously indicated is equal
to N(p-l)(N - [log2 (p)()/2. The global gain considered is

therefore gain(g) f gain(4).

IL State assignment
Two state assignments have been implemented for

comparison purposes: a simple column encoding assignment
with an improved mixed (row/column) assignment inspired by
the CADDY system [ROSSS], and a sophisticated embedding
procedure based on an intersecting cube theory of the Boolean
lattice. The latter has been used for practical optimized designs.
In all cases, the starting point is an ordered list of adjacency
groups.

2.1. The ASYL column encoding and mixed
encoding methods

2.1.1. A simple implementation
The adjacency groups are considered in a decreasing gain

order. The goal is to assign to each group a set of
distinguishing internal variables; their values constitute the
identification pattern of the group. These variables define the
face of the hypercube dedicated to this group. Internal variables

are associated progressively. For the ith adjacency group, the
algorithm is the following :

1) Are there already assigned internal variables which
take the same value for all the states of this adjacency group ? If
yes, they are distinguishing internal variables for this
adjacency group: Go to 2. If no, go to 3.

2) Are there states which do not belong to this adjacency
group and have the same value of the distinguishing variables
of this adjacency group .? If yes, assign a new internal variable
distinguishing these states from those of the adjacency group.
The value of this variable for all other states is indifferent. If
no, go to 4.

3) Assign a new internal variable to distinguish the
states of the adjacency group from the other ones. Go to 4.

4) Consider a new adjacency group. Go to 1.

In a final step, final internal variables are added, if
necessary, to distinguish all the states.

Let US illustrate this with an example. In a lo-state
controller, four adjacency groups have been identified :

Paper 22.2

323

(1.2.3,4). (2.3.7). (8.9.10) and (4,6,8). The different steps can
be followed in Figure 3.

Step 1 : First adjacency group (1,2,3,4)
Variable Yl is assigned to distinguish (1.2.3.4); the

identification pattern is [O].

Step 2 : Second adjacency group (2,3,7)
Variable Y2 is assigned to this group, the identification

pattern of which is [-01.

Step 3 : Third adjacency group (8,9,10)
A part of the identification pattern is [111; a third variable

will be necessary to distinguish (8,9,10) from ($6). Therefore,
variable Y3 is added and the identification pattern becomes

[llO].

step 4 : Fourth adjacency group (4,6,8)
A part of the identification pattern is [-l-l; a fourth

internal variable is necessary to distinguish (4,6,8) from
(1,5,9,1O).

Figure 3 Column encoding

Of course, if the number of interna variables is limited,
the set of considered adjacency groups may be limited
consequently.

2.1.2. Improved column encoding [ROSSS]
Inspired by the CADDY system, a simple improvement of

the column encoding has been implemented. The adjacency
groups are partitioned into clusters such that a state appears
only once in a cluster. A minimal set of internal variables are
then chosen to distinguish the adjacency groups in each cluster.
The states belonging to none of the adjacency groups <of the
cluster constitute an additional group. Additional variables
have to be added to distinguish all the states in the final step.

Consider the following list of adjacency groups obtained
for a set of 10 states : (1,2,3,4), (2,4,5), (5.6,7). (1,7). (6,8,9)
and (8,9)

The clustering procedure will give :
Cl = I (1,ZWh (5,6,7), (8.91, (10) 1
C2 = I (2,4,5), (1,7), (6,899). (3,lO) 1

Two variables (Yl.Y2) are chosen to identify the blocks of
Cl and two variables (Y3,Y4) distinguish the blocks of C2.

I Variable Yl 00000001 1 2 3 4 5 6 7 8 YZ
I I

9 11 10 I
0000111001

y3 1 0 1 0 0 0 1 0 0 1

y4 00100 101 1 1

identical codes 2 1
Figure 4 Improved column encoding I

A single variable is necessary to distinguish 8 and 9 (as
well as 2 and 4) as the intersection of all the partitions in Cl

and 9 is (1>(2.4)(5>(6>(7)(8,9)(10).

2.2. The assignment based on an intersectiug cube
theory of the Boolean lattice

2.2.1. The hypercube considered as a lattice of the
parts of a set of N elements

The following representations given in Figure 5 of a 3-
cube are equivalent and illustrate the hy:yrcube seen as a
Boolean lattice. The coordinates of Figures 5b and 5c are called
rela.tive coordinates. They indicate which bits in the binary
code differ from the origin code. Once the code of an element is
chosen. all the other codes are defined.

b
FiguriS Different representations of a 3-cube

C

An ordering relation corresponding to the classical
inclusion relation is defined among the relative coordinates.
For example, we have 12 c 123 and 3 < 123.

Faces in the hypercube
A face can be defined by the couple of the minimal and

maximal relative coordinates of its nodes (Emin, Em,,) with

&max 2 &rnm. If hax = Emin, the cube is reduced to a node. In

the 3-cube of Figure 5c, [2,123], [1,123] are 2-cubes, [0.123]
is the 3-c&e itself. The set of elements EC = ~~~~ - Emin is

called the characteristic index set of the cube. The dimension of
the cube is given by the cardinality of the set of its
characteristic indices. For example (1,3) and (2.3) are
respectively the characteristic sets of the two cubes [2.123] and
[1.1231. A cube can also be defined either by (~~~ , EC) or by (

EC9 &max .)

2.2.2. The intersecting cube theory

Definition :
The cube intersection of two cubes ((:min, E,,,) and

(&‘min, &‘max) is defined by (Emin u E’min, &maX n elmaX).

The intersection is empty if &max n &‘max does not include

E& U &‘min*

Properties :
The intersection cube has as characteristic indices the

intersection of the sets of characteristic indices of the original
cubes.

Two cubes have a non empty intersection if

Emax 2 &‘min and &‘max 2 Emin
For example, the two 2-cubes [1.1231 and [2,123] intersect

at the edge [12,123]. There is no intersection between cubes
[2,123] and [24,2345] as (2.4) is not included in (l&3).

Basic procedure used in the embedding phase :
Given a fixed k-cube, find a k-cube having an intersection

with the k-cube, the intersection being a k”-cube.
The first cube is given by its two characteristic sets [Emin,

&mm u EC]. For the second cube we shall construct its pair of

sets of indices [Elmin, &lrnaX] by distinguishing four subsets of

I?,,, which can be written as &‘maxI u ~‘~~~~2 u ~‘~~~3 u

Elmax where

Paper 22.2

324

* ~‘maxl is the locally inherited set of indices within this

cube and is equal to E’~,

* &‘maxZ is the set of indices inherited from the Fust cube

and is equal to hin - ~‘~n,

* ~‘~~~3 is the set of characteristic indices of the

intersection and is therefore composed of k” elements of EC -

& min*
* dmax. is the remaining part of ElmaX and is made up of

&‘-IE’maxz l-k”) indices belonging to EN - E,, in which EN is

the whole set of indices of the cube; E’,,,4 may be empty.

The construction of E’,,, is summarized in figure 6:

&maxi E max2 5nax3 hax4

Gin ml,- Gin choose k” elements
from EC- Gin

choose k’ -1 max2 I- k”
elements from Q- Cax

Figure 6 Structure of the intersecting cube

Let us illustrate this with an example: suppose we have a 3-
cube [12,12345] and that we look for another 3-cube having a
2-c&e intersection with the first one in a 5-c&e. Suppose we

take (1,5) as Elmin* then the second cube will be defined as

indicated in figure 7.

&‘max4 is empty, the intersection is [125,12345].

E’min is chosen among Em,,, i.e. Ernh U Ec. In ASYL,

&‘min is chosen so that the origin node of the second cube is in
the leftmost layer. This allows an optimized filling of the
hypercube.

2.2.2. The embedding algorithm
The embedding algorithm is very simple. The adjacency

groups are processed in a decreasing gain order. Once a group
has been assigned, the groups intersecting with it, are
processed first according to the basic procedure. The different
solutions are stored for backtracking. When all the intersecting
groups have been embedded, the next group is considered. If no
solution is found, the dimension is increased within an allowed
range or a closest neighborhood solution is taken (similar to
the MUSTANG approach).

Let us illustrate that with the fist example (section 2.1.1).
The adjacency groups extended to cubes in a decreasing order

gain are (1,2,X4), (2.37,~~). (8,9,10,(p) ad (4,6,8,cp). The
four groups are embedded in a 4-cube as shown in Figure 8.

~1
Figure 8 Embedding results for the first example

The adjacency group (4,6,8,q) has been processed before

(8,9,lO,cp) as it intersects with (1,2,3,4). As an example, let us

comment on the assignment of (4,6,8.(p). We look for a Z-cube
which intersects through one node with (1,2,3.4) and which
does not intersect with (2,3.7,(p). A node which is included in

~~~~ of (1,2,3,4) and not included in Emax of (2,3,7,cp) is 
chosen; for instance, let’s take 2. Then two other indices are 

chosen. They must not be included in Emax of (1,2.3,4). 
Otherwise the intersection with [@,12] will be too large. 
Therefore (3,4) is chosen. 

Let us now consider the second example (section 2.1.2). 
Without any backtracking the solution shown in the following 
table (Figure 9) is found. 

Figure 9 Embedding results for the second example 

As shown in Figure 10, this gives a very dense solution on 
a small portion of the 4-cube. If we take the code 0000 for the 
state 4 (relative coordinate 0), the number of “1” in the codes is 
minimized, As an ultimate optimization criterion, the choice of 
the 0 code is left as an option in the last step. Notice also that 
the fist four adjacency groups can be respected on a 3-cube. 

0 
234 

34 
Figure 10 State assignment in the 4-cube 

III. Results 
A first version of the algorithm presented here has been 

implemented in cooperation with VLSI Technology 
Inc.(France). Some features are not yet available (not all the 
situations are detected and no backtracking for example). But 
the present results seem very encouraging and, as they are 
implemented in a real industrial environment, they can be 
considered as significant. 

Let us first comment about state assignment evaluation. 
State assignment of controllers should be evaluated on a 
reasonable number of controllers having adequate features. The 
problem is mainly how to evaluate it. The controller synthesis 

Paper 22.2 

325 



goes through different steps and, of course, &y the state 
assignment has to be evaluated. 

The first and the best manner to evaluate a state 
assignment algorithm by an absolute information is to 
summarize the number of situations recognized in the control 
flowgraph and the percentage of situations or constraints 
satisfied during the state assignment. Any other estimation 
tends to compare a combination of two or more algorithms. The 
number of literals after factoring depends on the final target 
(area versus time optimization, structure of the library, . ..). The 
number of product terms on PLA depends on the two-level 
minimizer. 

The second manner to evaluate properly state assignment 
is to do comparisons with an average number of random 
encodings. The comparison can therefore be done at any level 
of the synthesis process with the appropriate criteria: :number 
of literals after factoring, number of standard cells. area, speed, 
etc. Any other comparison does not reflect a physical 
implementation. 

Notations 
#i,#o,#s: Number of inputs, outputs, states 
#svm : Minimum number of state variables 
#svc : Number of state variables required to satisfy all 
the recognized situations 
#ptcol : Number of product terms after column encoding 
using the minimum number of state variables 
#ptrow : Number of product terms using the ASYL row 
encoding algorithm 
#ptra : Number of product terms after random encodings 
#egr : Number of equivalent gates after multi-level 
optimization using random encodings 
#egv : Number of equivalent gates using VLSI- 
adjacency-state-encoding 

Figure 11 State assignment results 

The first part of the table in figure 11 gives the 
benchmarks characteristics. 

The second part of the table illustrates the superiority of 
our row encoding with respect to the column encoding for PLA 
implementation when using a minimal number of internal 
variables. As mentioned previously, this is mandatory for 
highly optimized large controllers where the wiring problem is 
predominant. The ratio (x##ptra / z#ptrow) is 1.41, compared to 
the ratio (z#ptra / c#ptcol) which is equal to 1.28. The number 
of product terms have been obtained by using the VLSI 
Technology two-level minimizer. 

The third part of the table gives the result of the presented 
approach in the VLSI Technology multi-level implementation 
environment. The measure used is based on the gate equivalent 
notion defined in the VLSI Technology user environment. A 
gate equivalent represents the number of transistors of a 2- 
input-CMOS-NAND gate (4 transistors). This number is 
associated with any gate of the VLSI Technology library. It 

represents the number of transistors divided by four 
([VSClOO]). This criterion has been chosen as being properly 
related to the area. The Ratio (C#egr / z#e:gv) = 1.35 indicates 
a gain of 35% in the number of ‘gate equivalent’ in the standard 
cells implementation. This result is more significant than a 
literal count and proves an effective gain. The computation 
time is presently negligible compared to the multi-level 
synthesis time. 

The gains (41% for PLA, 35% for multilevel logic) show 
that the unified package implementing this approach affords 
good results for both targets. The comparative evaluation after 
real implementation gives great confidence as no further 
optimization phase can be suspected to decrease this gain. 

Conclusion 
The present results confirm the importance of state 

assignment in the controller synthesis. The method shown 
above is successful for several targets (PLA or multi-level 
logic) and relies on a deep understand.ing of embedding 
problems. Moreover, this state assignment method simplifies 
and tends to shorten the work of the multi-level minimization 
tool, resolving an important practical issue. 

References 
[ARM621 D.B. Armstrong : “A Programmed Algorithm for 
Assigning Internal Codes to Sequential Machines”, IEEE Trans. 
on Elec. Comp., pp. 466-472, August 1962 
[COP861 A.J. Coppola : “An Implementation of a State 
Assignment Heuristic”, 23rd DAC. pp. 643649, July 1986 
CDEV871 S. Dew&s et al. : “MUSTANG : State Assignment 
of Finite State Machines for Optimal Multi-level Logic 
Implementations”, ICCAD 87, pp. 16- 19 
[DEM83] G. de Micheli : “Computer-Aided Synthesis of 
PLA-based Finite State Machines”, ICCAD 83, pp. 154-156 
[DEMSS] G. de Micheli, A. Sangiovani-Vincentelli, R.K. 
Brayton : “Optimal State Assignment of Finite State 
Machines”, IEEE Trans. on CAD, July 1985. pp. 269-285 
[KEUSS] K. Keutzer et al. : “A Kernel-Finding State 

Assignment Algorithm for Multi-Level Logic”, 25th DAC, pp. 
433-438, June 1988 
[HAR66] J. Hartmanis, R.E. Stearns : “Algebraic Structure, 
Theory of Sequential Machines”, Prentice H.all. 1966 
[LTU63] C.N. Liu : “A State Variable Assignment Method 
for Asynchronous Sequential Switching Circuits”. ACM, April 
63 
[ROSSS] W. Rosenstiel et al. : “Datapath and Control 
Synthesis in the CADDY System”, International Workshop on 
logic and architecture synthesis for silicon compilers, 
Grenoble, France, May 88 
[SAU683 G. Saucier : “Encoding of Asynchronous 
Sequential Networks”, IEEE Trans. on E.C., vol 16, pp. 365- 
369 
[SAU72a] G. Saucier : “State Assignment of Asynchronous 
Sequential Machines using Graph Techniques”, IEEE trans. on 
Camp. March 1972 
[SAU72b] G. Saucier : “Next State Equations of 
Asynchronous Sequential Machines”. IEEE: tram on Comp., 
November 1972 
[SAU87] G. Saucier et al. : “ASYL : A Rule-Based System 
for Controller Synthesis”, IEEE Trans on CAiD, November 1987 
[UNG63] S.H. Unger : “A Row Assignment for Delay-Free 
Realizations of Flow Tables Without Essential Hazards”, IEEE 
Trans. on EC. Vol 17. pp. 146-151 
[VSClOO] Portable 1.5~ CMOS Standard Cell Library, V1.l, 
VLSI Technology Inc., 1988 

Paper 22.2 

326 


