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Abstract - The controller state assignment methodology 
proposed here features two improvements over existing 
methods. First, a larger set of predictive minimizations in the 
control flowgraph is performed. Secondly, the embedding 
phase uses a new theory of intersecting cubes in the Boolean 
lattice. Practical results using the VLSI Technology Logic- 
Synthesizer on both PLA and multi-level logic demonstrate the 
effectiveness of the approach. 

Introduction 
State assignment is an important step in the Synthesis of 

controllers from high-level specifications such as control 
flowcharts, control flowgraphs and state graphs. Once binary 
codes have been assigned to the states, next-state and output 
equations are defined and subsequently minimized with classical 
logic synthesis tools. The state assignment must be performed 
in a way that favors simplification of the next-state and output 
logic (implemented on PLA, standard cells, ROMs,...). The 
prediction of these down-line minimizations is one of the most 
difficult aspects of state assignment. 

State assignment has been studied intensively in the 
1960s and 1970s. These research efforts had two main 
objectives. The first was the avoidance of critical races for 
asynchronous sequential circuits. Skillful state assignment 
could ensure the non-existence of races for these circuits 
([UNG63], [ARM62], [LIU63]. [SAU72a]). Some proposed 
solutions consisted in placing, for a given input, the states 
leading to the same stable state on the same face of the 
hypercube (excluding the other ones). Universal solutions for 
any state machine of N states [SAU68] as well as minimized 
dedicated solutions were proposed. A second objective was the 
simplification of the next-state and output equations [HAR66]. 
A point which was clearly brought forth at that time was the 
compromise between the number of internal variables and the 
simplicity of the next-state equations [SAU72b]. From a 
theoretical point of view, two approaches were identified. The 
first one was based on the partition theory. A partition of the 
set of states is associated to an internal variable: the states for 
which this variable is equal to 0 and those for which it is equal 
to 1. This corresponds to a bisection of the hypercube, from 
which follows the partition pair theory of Hartmannis 
[HAR66]. For a given input, any partition of the set of states is 
mapped into another one through the state table, and therefore 
gives the key to the next-state (and similarly for the output) 
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equation complexity. In all these approaches, the state 
assignment is usually performed progressively, variable by 
variable, choosing the next bisection of the hypercube. This is 
called column encoding. In parallel, another approach was 
proposed based on the Boolean lattice theory. A Boolean N- 
cube is isomorphic to the lattice of the set of parts of a set of N 
elements. Assigning a binary code to a state consists of 
assigning a subset of elements to this state. This different view 
allows for an improved optimization of the state assignment in 
terms of the number of internal variables for universal 
assignment as well as for dedicated assignment. 

with the advent of silicon compilers. aI1 these approaches 
were re-investigated to produce efficient state assignment tools 
for controller synthesis following new achievements in the 
minimization area. Two steps are clearly identified. The first is 
the search for situations in the controller specification which 
will lead to further minimization. An obvious situation for all 
approaches is the existence of a set of states leading to the 
same next state. This, of course, leads to an expression which 
is the sum of the codes of the ancestor states for all internal 
variables equal to 1 in the next state. Placing all the nodes on a 
same face of the hypercube reduces this expression to one 
product term. This situation was recognized in all the proposed 
tools (KISS [DEM85], ASYL [SAU87], MUSTANG [DEV87], 
[COP86]...). Based on practical experience. the importance of 
output logic compared with next-state logic was pointed out in 
the ASYL system. The practical designs of complex controllers 
(dedicated pprocessor controllers) showed the important ratio 
of output logic (4/5 of the area) and the importance of the 
minimization of the number of internal variables, because of 
the critical wiring problems between the controller and the 
datapath and of the decoder size. Therefore, sets of states (or 
edges) sending identical outputs were recognized in ASYL 
[SAU87]. This was also done in MUSTANG [DEV87]. As 
mentioned previously, efficient optimization requirements 
have led the authors to attempt to recognize more potential 
simplifications. Therefore, more sophisticated situations are 
presently recognized (multiple output nodes, edges labelled 
with same or intersecting inputs). These will be described in 
detail in this paper. A predictive gain must be associated with 
all these situations since, during the embedding phase, directed 
heuristics will attempt to satisfy the situations with the highest 
predicted gain. The computation of this gain is important as it 
will be shown that it is based on further minimizations used for 
the logic. 

For the embedding phase, the two classical approaches 
previously mentioned are exploited. The partition theory 
approach leads to a column encoding. The nodes belonging to a 
given situation called adjacency group are placed on a same face 
defined by fixed values of one or several internal variables; this 
corresponds to a bisection of the hypercube [DEM85]. The 
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drawback of this approach is the fact that the increase of 
potential minimizations leads to an increase of the number of 
internal state variables which is prohibitive for highly 
optimized controllers. Therefore, progressive embedding (row 
encoding) in the hypercube with an extendable dimension is 
preferable. In MUSTANG [DEV87], the nodes of an ad.jacency 
group are placed in “close neighborhood” in the hypercube. In 
ASYL. an early version performed an embedding in the 
hypercube based on the necessary conditions of a graph to be 
isomorphic to a subgraph of a hypercube. In practice, the nodes 
were first assigned to layers of the target hypercube and 
progressive assignment of relative coordinates to the nodes 
was then performed [SAU87]. The new version of the 
embedding algorithm presented here is more sophisticated and 
more efficient. As the recognized situations have bec0m.e more 
numerous. a global treatment of their intersection is malized. 
An original theory of intersecting cubes is developed. This 
leads to an embedding of the successive adjacency groups that 
takes into account the intersections between these groups, and 
also to the definition of the backtracking possibilities. This 
provides a near-optimal solution. 

As far as logic targets are concerned. a PLA 
implementation is clearly taken in KISS [DEM85]. Therefore, 
once the situations are detected in KISS (multiple input node 
only), a dedicated preparation is performed in order to reach a 
good global minimization. The PLA target is abandoned in 
MUSTANG. The placement of nodes in close neighborhood 
leads to large common factors in the set of codes and eases 
global minimization through factoring. In ASYL, it has 
appeared in practice, that large controllers need multiple PLAs 
or multi-level logic implementation. Both targets are therefore 
considered. Nodes of an adjacency group are put on a single face 
(which is the best solution) or in a close neighborhood. The 
multi-level target is prepared by gain consideration which takes 
into account the intersections or common product terms 
between the functions. In [KEU88]. multi-level logic is targeted 
and a method based on kernel finding is proposed. As shown by 
the authors, they did not improve on a random encoding. 

This paper reports on results of a cooperative research 
between VLSI Technology Inc., and the lNPG/CSI laboratory, 

The paper is organized as follows: In section 1, a summary 
of the richest set of situations presently identified for state 
assignment purposes is described. The associated costs will be 
discussed. The second section ennrnerates the different types of 
embeddings used, with special emphasis on a novel approach 
that is based on an intersecting cube theory of the Boolean 
lattice. In the last section, comparative results are presented. 

I. Situation recognition and adjacency groups 

1.1. Types of situations and adjacency groups 
Four basic situations are identified : multiple input nodes, 

nodes or edges sending the same outputs (Moore or Mealy 
models), multiple output nodes, and edges labelled with the 
same input or with intersecting inputs. 

Situation 1 : Nodes with multiple input edges 
This frequent situation in controller flowgraphs has been 

widely discussed in the literature. Branching on input variables 
split controllers into distinct states converging again on key 
points of the flowgraph. Edges leading to a join nod,e are 
usually not labelled with any input condition; thus, the prtoduct 
terms produced by this situation are the following: For each 
internal variable equal to 1 in the join node code, the sum of the 
ancestor node codes is produced. 

The ancestor nodes of the join node constitute an 
adjacency group. The best solution for any further 
implementation is to put these nodes on a cube of the 
hypercube. For multi-level logic, a weaker solution consists of 
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placing these nodes as close as possible in order to increase 
common subexpressions [DEV87]. A special version for PLA 
minimization has been widely discussed in [DEM83]. 

Situatton 2 : Nodes or edges sending the same 
outputs 

In Moore (resp. Mealy) controllers, outputs are associated 
with nodes (resp. edges). For Moore controllers, states sending 
the same outputs are put in a same adjacency list. If the same set 
of states send several outputs, the associated weight (for a 
purpose explained later) is increased. For Mealy controllers, 
outputs are associated with edges. 

Situation 3 : Nodes with multiple output edges 
Edges are labelled with exclusive predicates (conditions) 

on the input variables; the sum of these predicates must be 1. 

Suppose that a node has 2k edges labelled w:ith 2k minterms on 
the input variables (Figure 1). These input minterms define k 
partitions of the successor nodes, a partition being defined by 
an input variable being 0 in one block of the partition and 1 in 
the other. In Figure 1. the partitions are for instance ((Sl, S2), 
(S3, S4)) for variable “a” and ((Sl, S3). (SZ!, S4)) for variable 
“b”. These nartitions define the adiacencv relations between the 
nodes of a i-cube. 

< 

y4=c&(so) 

sl 

P 

$:'d(SO). notb 
yl = code (so). not a 

not a.not b a.not b a.b 

?I 75 
s3 a4 

11&l lMi1 Olrnl ooml 

Figure 1 Nodes with multiple output edges 

This situation leads to declare {Sl, !52, S3, S4) as a 
constrained adjacency group: The nodes have to be assigned on 
a 2-cube defined by the partitions of the input minterms. This 
means that ((Sl, S2), (S3. S4)) and ((Sl,S3), (S2. S4)) are 
adjacency relations that have to be respected when constructing 
the 2-cube associated with the successor no’des. This leads to 
the generation of the product term (code(S0)). for all invariant 
internal variables of the successor nodes and a product term 
{code (SO). -Ei) (-Ei is either Ei or not Ei), for the other 
internal variables. 

Situation 4 : Edges lahelled with the same inputs 
or with intersecting inputs 

This situation refers to previous work on partition pairs 
[HAR66]. A given input maps current state on next states. A 
first step consists in identifying all edges in the flowgraph 
labelled with the same input or intersecting inputs. In the 
example given in Figure 2, 4 edges labelled with the same input 
“I” go from states Sl, S2, S3, S4 to states S5, S6, S7, S8. 

I ~00 
St 

8 
s6 

lmo 
& St3 
11/m 

owl1 
s4 

B 
I 

s3 
lull 

I Figure 2 Edges labelled with the same inputs 

Suppose we assign the four origin nodes to a 2-cube 
defined by the two partitions ((Sl. S2). (S3. S4)) and ((Sl, 
S3). (S2. S4)). These partitions are mappe.d on two other 
partitions by input “I” (namely ((S5. S6). (S7, S8)) and ((S5, 



SS), (S6, S7))). If we now assign the end nodes to a 2-cube 
defined by the two partitions ((S5, S6), (57, S8)) and ((S5. 
S8), (S6, S7)), we will get a set of product terms well suited to 
multi-level logic : 

Y4=Y3=notY4.notY3 
Y2=notY4.notY3.Y2 
Yl=notY4.notY3.Y1 

More precisely, the invariant variables of the codes of the 
end nodes produce a product term equal to the invariant part of 
the codes of the start nodes. The other variables Yi produce a 
product term equal to the product of the invariant part of the 
code by Yi. This property is an extension of a reduced 
dependency property [HAR66] due to the fact that the internal 
variables respect the partition pairs associated with input “I”. 
The difference here is that all the states do not appear in the 
partition. 

A simple implementation consists in searching sets of 2k 
nodes leading through 2k edges labelled with the same or 
intersecting inputs to 2k successor nodes, and assigning them 
to 2 k-cubes respecting the mapping of the partitions defining 
the cubes. An interesting case to point out is a set of loops 
labelled with the same input condition. This last situation has 
been used successfully. 

Conclusion on the situation recognition phase 
The first step of situation recognition ends with the 

creation of node lists which have to be assigned to a face or 
cube, or at least put in close neighborhood. For the two last 
situations. this is somewhat more complicated. The third 
situation tends to put nodes on a cube with the following 
constraint : Once one node has been assigned, the assignments 
of all the other ones are mandatory - there is no more freedom 
for the code of these nodes. The fourth situation aims at 
assigning two sets of nodes in a dependent way ; if one set of 
nodes is assigned to a cube. the structure of the second cube is 
deduced (the adjacency relations between its nodes are defined). 

1.2. Gain associated with a situation 
The gains associated with the above-mentioned situations 

play an important role as they lead to an ordering of the 
adjacency groups. A local gain is associated with each situation 
and a global gain takes into account the intersections between 
adjacency groups. This has the effect of preparing common 
expressions at any level between different functions (output 
functions, internal variables, etc.), thus providing further 
multi-level minimizations. The major advantage of our 
approach is that the intersections or common subexpressions 
are preserved during the embedding phase. 

1.2.1. Local gain associated with the situations 
The local gain is the number of occurrences of variables 

saved by placing the corresponding adjacency group on a cube. 
More precisely we take an upper bound of this number equal to 
the difference between the worst case and the final expression. 
Let us show this gain for the first two situations. 

Nodes with multiple input edges 
For this situation with p ancestor nodes (p = 2k) , for each 

internal variable Yi equal to 1. the expression is 
Yi = (input condition).(code (Sl) + . . . + code (Sp) ). 

If N is the number of internal variables and cj the number 
of input variables appearing in each of the p conditions, the 
worst case is (Xcj+pN) variables in the expression of Yi. In the 
best case, if the ancestor nodes are put on a cube, a common 
factor of (N-k) variables is obtained. The cost is therefore [(N- 
k) + (pk -t ECj)] and the gain is equal to (p-I)(N-k) where k = 

rlog2 @)I. As the number of internal variables equal to 1 in the 
next-state code is unknown at this stage, we use an average 

coefficient of N/2 to weight this gain. The final gain is then N 
(p-1)Wk) / 2. 

Output situations 
The reasoning is very similar to that of the join situation 

except that the output functions are considered individually, and 
not “clustered” like the internal variables in the previous 
situation. The gain associated to an adjacency group is 
therefore (p-I)(N-k). 

1.2.2. Global gain 
To cope with multi-level synthesis, special attention is 

given to intersections between adjacency groups. If respected, 
these intersections bring potential subexpressions between 
functions and as the embedding technique has been elaborated 
for that purpose, this potential is realized. Global gain 
considerations lead to respect not only a particular adjacency 
group, but also other adjacency groups included, or partially 
included in it. It will therefore allow simplification in another 
function. As such. to the local cost will be added the partial cost 
of parts of adjacency groups included in this group. 

Consider, for instance, two adjacency groups due to join 
situations (1,2,5,6.10,12) and (5,6,10,13). The fist one has a 
local gain which will be increased by a partial gain coming 
from the second one by placing (5.6) on an edge. The cost of 
the first adjacency group is equal to gain ( {1,2,5,6,10.12} ) + 
partial gain ( (5,6,10,13) ). To handle this easily, a linear 
approximation is done. Gain(p) as previously indicated is equal 
to N(p-l)(N - [log2 (p)()/2. The global gain considered is 

therefore gain(g) f gain(4). 

IL State assignment 
Two state assignments have been implemented for 

comparison purposes: a simple column encoding assignment 
with an improved mixed (row/column) assignment inspired by 
the CADDY system [ROSSS], and a sophisticated embedding 
procedure based on an intersecting cube theory of the Boolean 
lattice. The latter has been used for practical optimized designs. 
In all cases, the starting point is an ordered list of adjacency 
groups. 

2.1. The ASYL column encoding and mixed 
encoding methods 

2.1.1. A simple implementation 
The adjacency groups are considered in a decreasing gain 

order. The goal is to assign to each group a set of 
distinguishing internal variables; their values constitute the 
identification pattern of the group. These variables define the 
face of the hypercube dedicated to this group. Internal variables 

are associated progressively. For the ith adjacency group, the 
algorithm is the following : 

1) Are there already assigned internal variables which 
take the same value for all the states of this adjacency group ? If 
yes, they are distinguishing internal variables for this 
adjacency group: Go to 2. If no, go to 3. 

2) Are there states which do not belong to this adjacency 
group and have the same value of the distinguishing variables 
of this adjacency group .? If yes, assign a new internal variable 
distinguishing these states from those of the adjacency group. 
The value of this variable for all other states is indifferent. If 
no, go to 4. 

3) Assign a new internal variable to distinguish the 
states of the adjacency group from the other ones. Go to 4. 

4) Consider a new adjacency group. Go to 1. 

In a final step, final internal variables are added, if 
necessary, to distinguish all the states. 

Let US illustrate this with an example. In a lo-state 
controller, four adjacency groups have been identified : 

Paper 22.2 

323 



(1.2.3,4). (2.3.7). (8.9.10) and (4,6,8). The different steps can 
be followed in Figure 3. 

Step 1 : First adjacency group (1,2,3,4) 
Variable Yl is assigned to distinguish (1.2.3.4); the 

identification pattern is [O]. 

Step 2 : Second adjacency group (2,3,7) 
Variable Y2 is assigned to this group, the identification 

pattern of which is [-01. 

Step 3 : Third adjacency group (8,9,10) 
A part of the identification pattern is [ 111; a third variable 

will be necessary to distinguish (8,9,10) from ($6). Therefore, 
variable Y3 is added and the identification pattern becomes 

[llO]. 

step 4 : Fourth adjacency group (4,6,8) 
A part of the identification pattern is [-l-l; a fourth 

internal variable is necessary to distinguish (4,6,8) from 
(1,5,9,1O). 

Figure 3 Column encoding 

Of course, if the number of interna variables is limited, 
the set of considered adjacency groups may be limited 
consequently. 

2.1.2. Improved column encoding [ROSSS] 
Inspired by the CADDY system, a simple improvement of 

the column encoding has been implemented. The adjacency 
groups are partitioned into clusters such that a state appears 
only once in a cluster. A minimal set of internal variables are 
then chosen to distinguish the adjacency groups in each cluster. 
The states belonging to none of the adjacency groups <of the 
cluster constitute an additional group. Additional variables 
have to be added to distinguish all the states in the final step. 

Consider the following list of adjacency groups obtained 
for a set of 10 states : (1,2,3,4), (2,4,5), (5.6,7). (1,7). (6,8,9) 
and (8,9) 

The clustering procedure will give : 
Cl = I (1,ZWh (5,6,7), (8.91, (10) 1 
C2 = I (2,4,5), (1,7), (6,899). (3,lO) 1 

Two variables (Yl.Y2) are chosen to identify the blocks of 
Cl and two variables (Y3,Y4) distinguish the blocks of C2. 

I Variable Yl 00000001 1 2 3 4 5 6 7 8 YZ 
I I 

9 11 10 I 
0000111001 

y3 1 0 1 0 0 0 1 0 0 1 

y4 00100 101 1 1 

identical codes 2 1 
Figure 4 Improved column encoding I 

A single variable is necessary to distinguish 8 and 9 (as 
well as 2 and 4) as the intersection of all the partitions in Cl 

and 9 is (1>(2.4)(5>(6>(7)(8,9)(10). 

2.2. The assignment based on an intersectiug cube 
theory of the Boolean lattice 

2.2.1. The hypercube considered as a lattice of the 
parts of a set of N elements 

The following representations given in Figure 5 of a 3- 
cube are equivalent and illustrate the hy:yrcube seen as a 
Boolean lattice. The coordinates of Figures 5b and 5c are called 
rela.tive coordinates. They indicate which bits in the binary 
code differ from the origin code. Once the code of an element is 
chosen. all the other codes are defined. 

b 
FiguriS Different representations of a 3-cube 

C 

An ordering relation corresponding to the classical 
inclusion relation is defined among the relative coordinates. 
For example, we have 12 c 123 and 3 < 123. 

Faces in the hypercube 
A face can be defined by the couple of the minimal and 

maximal relative coordinates of its nodes (Emin, Em,,) with 

&max 2 &rnm. If hax = Emin, the cube is reduced to a node. In 

the 3-cube of Figure 5c, [2,123], [1,123] are 2-cubes, [0.123] 
is the 3-c&e itself. The set of elements EC = ~~~~ - Emin is 

called the characteristic index set of the cube. The dimension of 
the cube is given by the cardinality of the set of its 
characteristic indices. For example (1,3) and (2.3) are 
respectively the characteristic sets of the two cubes [2.123] and 
[ 1.1231. A cube can also be defined either by ( ~~~ , EC) or by ( 

EC9 &max . ) 

2.2.2. The intersecting cube theory 

Definition : 
The cube intersection of two cubes ((:min, E,,,) and 

(&‘min, &‘max ) is defined by ( Emin u E’min, &maX n elmaX). 

The intersection is empty if &max n &‘max does not include 

E& U &‘min* 

Properties : 
The intersection cube has as characteristic indices the 

intersection of the sets of characteristic indices of the original 
cubes. 

Two cubes have a non empty intersection if 

Emax 2 &‘min and &‘max 2 Emin 
For example, the two 2-cubes [ 1.1231 and [2,123] intersect 

at the edge [ 12,123]. There is no intersection between cubes 
[2,123] and [24,2345] as (2.4) is not included in (l&3). 

Basic procedure used in the embedding phase : 
Given a fixed k-cube, find a k-cube having an intersection 

with the k-cube, the intersection being a k”-cube. 
The first cube is given by its two characteristic sets [Emin, 

&mm u EC]. For the second cube we shall construct its pair of 

sets of indices [Elmin, &lrnaX ] by distinguishing four subsets of 

I?,,, which can be written as &‘maxI u ~‘~~~~2 u ~‘~~~3 u 

Elmax where 
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* ~‘maxl is the locally inherited set of indices within this 

cube and is equal to E’~, 

* &‘maxZ is the set of indices inherited from the Fust cube 

and is equal to hin - ~‘~n, 

* ~‘~~~3 is the set of characteristic indices of the 

intersection and is therefore composed of k” elements of EC - 

& min* 
* dmax. is the remaining part of ElmaX and is made up of 

&‘-IE’maxz l-k”) indices belonging to EN - E,, in which EN is 

the whole set of indices of the cube; E’,,,4 may be empty. 

The construction of E’,,, is summarized in figure 6: 

&maxi E max2 5nax3 hax4 

Gin ml,- Gin choose k” elements 
from EC- Gin 

choose k’ -1 max2 I- k” 
elements from Q- Cax 

Figure 6 Structure of the intersecting cube 

Let us illustrate this with an example: suppose we have a 3- 
cube [12,12345] and that we look for another 3-cube having a 
2-c&e intersection with the first one in a 5-c&e. Suppose we 

take (1,5) as Elmin* then the second cube will be defined as 

indicated in figure 7. 

&‘max4 is empty, the intersection is [125,12345]. 

E’min is chosen among Em,,, i.e. Ernh U Ec. In ASYL, 

&‘min is chosen so that the origin node of the second cube is in 
the leftmost layer. This allows an optimized filling of the 
hypercube. 

2.2.2. The embedding algorithm 
The embedding algorithm is very simple. The adjacency 

groups are processed in a decreasing gain order. Once a group 
has been assigned, the groups intersecting with it, are 
processed first according to the basic procedure. The different 
solutions are stored for backtracking. When all the intersecting 
groups have been embedded, the next group is considered. If no 
solution is found, the dimension is increased within an allowed 
range or a closest neighborhood solution is taken (similar to 
the MUSTANG approach). 

Let us illustrate that with the fist example (section 2.1.1). 
The adjacency groups extended to cubes in a decreasing order 

gain are (1,2,X4), (2.37,~~). (8,9,10,(p) ad (4,6,8,cp). The 
four groups are embedded in a 4-cube as shown in Figure 8. 

~1 
Figure 8 Embedding results for the first example 

The adjacency group (4,6,8,q) has been processed before 

(8,9,lO,cp) as it intersects with (1,2,3,4). As an example, let us 

comment on the assignment of (4,6,8.(p). We look for a Z-cube 
which intersects through one node with (1,2,3.4) and which 
does not intersect with (2,3.7,(p). A node which is included in 

~~~~ of (1,2,3,4) and not included in Emax of (2,3,7,cp) is 
chosen; for instance, let’s take 2. Then two other indices are 

chosen. They must not be included in Emax of (1,2.3,4). 
Otherwise the intersection with [@,12] will be too large. 
Therefore (3,4) is chosen. 

Let us now consider the second example (section 2.1.2). 
Without any backtracking the solution shown in the following 
table (Figure 9) is found. 

Figure 9 Embedding results for the second example 

As shown in Figure 10, this gives a very dense solution on 
a small portion of the 4-cube. If we take the code 0000 for the 
state 4 (relative coordinate 0), the number of “1” in the codes is 
minimized, As an ultimate optimization criterion, the choice of 
the 0 code is left as an option in the last step. Notice also that 
the fist four adjacency groups can be respected on a 3-cube. 

0 
234 

34 
Figure 10 State assignment in the 4-cube 

III. Results 
A first version of the algorithm presented here has been 

implemented in cooperation with VLSI Technology 
Inc.(France). Some features are not yet available (not all the 
situations are detected and no backtracking for example). But 
the present results seem very encouraging and, as they are 
implemented in a real industrial environment, they can be 
considered as significant. 

Let us first comment about state assignment evaluation. 
State assignment of controllers should be evaluated on a 
reasonable number of controllers having adequate features. The 
problem is mainly how to evaluate it. The controller synthesis 
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goes through different steps and, of course, &y the state 
assignment has to be evaluated. 

The first and the best manner to evaluate a state 
assignment algorithm by an absolute information is to 
summarize the number of situations recognized in the control 
flowgraph and the percentage of situations or constraints 
satisfied during the state assignment. Any other estimation 
tends to compare a combination of two or more algorithms. The 
number of literals after factoring depends on the final target 
(area versus time optimization, structure of the library, . ..). The 
number of product terms on PLA depends on the two-level 
minimizer. 

The second manner to evaluate properly state assignment 
is to do comparisons with an average number of random 
encodings. The comparison can therefore be done at any level 
of the synthesis process with the appropriate criteria: :number 
of literals after factoring, number of standard cells. area, speed, 
etc. Any other comparison does not reflect a physical 
implementation. 

Notations 
#i,#o,#s: Number of inputs, outputs, states 
#svm : Minimum number of state variables 
#svc : Number of state variables required to satisfy all 
the recognized situations 
#ptcol : Number of product terms after column encoding 
using the minimum number of state variables 
#ptrow : Number of product terms using the ASYL row 
encoding algorithm 
#ptra : Number of product terms after random encodings 
#egr : Number of equivalent gates after multi-level 
optimization using random encodings 
#egv : Number of equivalent gates using VLSI- 
adjacency-state-encoding 

Figure 11 State assignment results 

The first part of the table in figure 11 gives the 
benchmarks characteristics. 

The second part of the table illustrates the superiority of 
our row encoding with respect to the column encoding for PLA 
implementation when using a minimal number of internal 
variables. As mentioned previously, this is mandatory for 
highly optimized large controllers where the wiring problem is 
predominant. The ratio (x##ptra / z#ptrow) is 1.41, compared to 
the ratio (z#ptra / c#ptcol) which is equal to 1.28. The number 
of product terms have been obtained by using the VLSI 
Technology two-level minimizer. 

The third part of the table gives the result of the presented 
approach in the VLSI Technology multi-level implementation 
environment. The measure used is based on the gate equivalent 
notion defined in the VLSI Technology user environment. A 
gate equivalent represents the number of transistors of a 2- 
input-CMOS-NAND gate (4 transistors). This number is 
associated with any gate of the VLSI Technology library. It 

represents the number of transistors divided by four 
([VSClOO]). This criterion has been chosen as being properly 
related to the area. The Ratio (C#egr / z#e:gv) = 1.35 indicates 
a gain of 35% in the number of ‘gate equivalent’ in the standard 
cells implementation. This result is more significant than a 
literal count and proves an effective gain. The computation 
time is presently negligible compared to the multi-level 
synthesis time. 

The gains (41% for PLA, 35% for multilevel logic) show 
that the unified package implementing this approach affords 
good results for both targets. The comparative evaluation after 
real implementation gives great confidence as no further 
optimization phase can be suspected to decrease this gain. 

Conclusion 
The present results confirm the importance of state 

assignment in the controller synthesis. The method shown 
above is successful for several targets (PLA or multi-level 
logic) and relies on a deep understand.ing of embedding 
problems. Moreover, this state assignment method simplifies 
and tends to shorten the work of the multi-level minimization 
tool, resolving an important practical issue. 
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