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Abstract 

This paper presents an accelerated fault simulation approach 
for path delay faults. The distinct features of the proposed 

fault simulation method consist in the application of parallel 
processing of patterns at all stages of the calculation proce- 
dure, its versatility to account for both robust and non-robust 

detection of path delay faults, and its capability of efficiently 
maintaining large numbers of path faults to be simulated. 

1 Introduction 

In view of the steadily increasing quality requirements for 
VLSI chips and due to the fact that statistical timing rather 
than worst-case timing is frequently chosen as the basis for the 
design of high-speed circuits, delay testing has achieved great 
theoretica and practical importance. As is well-known, the 
purpose of delay testing is to ascertain that manufactured dig- 
ital circuits meet their timing specifications and operate cor- 
rectly at desired clock rates, which determine the maximum 
allowable path delay from primary inputs or latch outputs to 
primary outputs OK latch inputs. 

Two different delay fault models, called the gate deZay fault 
model and the path delay fault model, respectively, have been 
proposed and frequently dealt with. The gate delay fault 
model has been introduced, in order to model those defects 
that cause an actual propagation delay through a distinct 
gate to exceed its worst-case specification [l]. Formerly, it 
was also referred to as transition fault model, which merely 
allows a qualitative consideration of delay faults and which is 
consequently only useful for the detection of delay faults of 
large size [2,3,4]. Since being restricted to large delay faults 
is neither sufficient nor satisfactory, manifold research activi- 
ties have recently been undertaken, in order to introduce the 
indispensable quantitative point of view, i.e. to explicitly con- 
sider the actual size of the gate delay faults during automatic 
test pattern generation (ATG) and fault simulation [5,6,7,8]. 

On the other hand, in order to overcome the main deficiency 
associated with the gate delay fault model, which consists in 
its restriction to isolated failures, the path delay fault model 
has been developed [S]. Besides its capability to model distrib- 
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uted failures, which are typically caused by statistical varia- 
tions in the manufacturing process, it is of particular use for 
circuits that have been designed on a statistical timing basis. 
Since those circuits are known to have a non-zero probability 
fOK the occurrence of a delay fault, even when all gate delays 
are within their specified worst-case ranges, delay testing does 
not only involve the detection of defects resulting in excessive 
delays, but also the identification of slow paths. 

While a considerable number of ATG methods for path 
delay faults has been described during the last few years 
[10,11,12,13,14], the problem of fault simulation of path de- 
lay faults has only been addressed in [15]. Based upon the 
six-valued logic proposed in [15], this paper presents an accel- 
erated fault simulation approach for path delay faults, which 
applies parallel processing of patterns at all stages of the cal- 
culation procedure, in order to gain the capability of simulat- 
ing long pattern sequences for highly complex VLSI circuits 
within reasonable amounts of CPU-time. hloreover, many 
paths, that cannot be tested under the restrictive condition of 
robustness, may be well testable, if we refrain from that con- 
dition. This was our motivation for modifying the six-valued 
logic of [15] and devising a four-valued logic, in Order to addi- 
tionally account for non-robust detection of path delay faults. 
Finally, in view of the enormous number of paths that typ- 
ically exist in today’s circuits, we have developed a specific 
data structure, called the path tree, which has been designed 
to be highly economical in terms of memory requirements and 
which allows us to efficiently maintain hundreds of thousands 
of path faults to be simulated. 

2 Background and Basic Definitiom 

2.1 Hardware Model 

From an operational point of view, the global goal of delay 
testing is to guarantee that the propagation delays of all paths 
in a given circuit are less than the system clock interval. Ex- 
cept when using dynamic logic, it is well-known that testing 
a distinct delay fault requires a pair of two patterns rather 

than a single pattern as in the case of stuck-at testing. Fig. 1 
illustrates the hardware model, which is frequently taken as 
the basis for delay testing [10,11,12,15,16]. At time TO, the 
initialization vector VI is loaded into the input latches, which 
are assumed to be glitchless. After all signals of the circuit 
have been allowed to stabilize under VI, the propagation uec- 
tor Vz is applied to the circuit by activating clock Cl. Finally, 
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the logic values at the primary outputs are sampled into the 

output latches at time Ts = Tl +Tc by pulsing clock G2, where 

Tc denotes the system clock interval at the desired functional 

clock rate. 

---I--- t- 
c2 

Clock C2 i 

TO 

- 
7 -4 

7-1 
Tc . 

T2 

Fig. 1: Hardware Model and Clock Timings. 

2.2 Circuit Structure and Path Graph 

The Figs. 2 and 3 show how the structure of a combinational 

circuit C can be described by a directed graph G, = (V,, I&,), 
which is called the path graph and which has already been 

used in [9] for the purpose of delay testing. However, while 

the approach discussed in [9] is restricted to circuits consisting 

of simple gates (AND-, NAND-, OR-, NOR-gztes, buffers, in- 

verters) only, we have extended it, in order to correctly model 

circuits containing XOR- and XNOR-gates in addition. to sim- 

ple gates. Our method for constructing G, from the structure 

of a given combinational circuit C can be described as follows: 

Fig. 2: Circuit C. 

1) Identify all primary inputs (Pls) and all primary outputs 

(POS) of t1 re combinational circuit as well as all fanout 

stems and all output signals of XOR- and XNOR.-gates. 
For each of these signals, include two nodes, labeled rising 

and falling, respectively, into the node set V,. Thus, for 

circuit C illustrated in Fig. 2, V, is given by: 

2) Let (q”, 7’) and (E’, tf) be the two node pairs that cor- 

respond to the signals 7 and <. Furthermore, let S = 

(77, 61, “‘9 Kn, <) be a structural subpoUr from signal 77 to 

Fig. 3: Path Graph G, = (V,, Ep). 

signal <, which does not pass through a f,anout stern or the 

output signal of a XOR- or a XNOR-gate, i.e. 

,J( (4 6 w-4 4 VP)- (2) 
, ..,n 

If signal 6 does not represent the output signal of a XOR- 

or a XNOR-gate, 

l include two edges (nr, E’) and (qf, (I’) (($, [‘) and 

(v’, E’)) into Ep, if the number of inverting gates on 

S is even (odd). 

Otherwise, if signal [ denotes the output signal of a XOR- 

or a XNOR-gate, 

l include four edges (q’, F’), (r,rr, [‘), (nf, t”), and (vf, cf) 

into E,. 

Note that, for each structural subpath from signal 17 to sig- 

nal .$ that fulfills condition (2) stated above, we have to include 

the appropriate number of edges into En, in order to correctly 

model the structure of the circuit by the graph G,. 

2.3 Robust and Non-Robust Detection of Path 
Delay Faults 

Considering Fig. 1 reveals that delay testing basically con- 

sists in testing the propagation delays of all paths through 

the combinational logic against the functional system clock 

interval Tc. 

Definit.ion 1: Let P = (sir, . . . . K>) be a path in the path 
graph illustrated in Fig. 3, where nr and IE,, correspond to 

a PI and a PO of the combinational logic, respectively, and 

21, . . . . tn E {r, f}. Furthermore, let APD(P) represent the ac- 
tual propagation delay of transition tl along P. Then, P is 
said to have a path fault, if APD(P) exceeds Tc, i.e. 

APD(I’) > Tc. (3) 

Definition 2: Let (VI, V2) denote a two-pattern test applied to 
the combinational logic in the hardware environment shown 

in Fig. 1. At time Tr, when the circuit has stabilized under 

the initialization vector VI, all signals are said to have their 

initial ualues. Conversely, the final value of a distinct signal 

is defined as the binary logic value (0 or 1) which that signal 

would assume under the propagation vector Ci at time T2, if 

the circuit would be free of delay faults. 
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Definition 3: A two-pattern test (V,, V,) is called a robust test 

for a fault on path P, if it detects that fault independently 
of all other delays in the circuit and all other delay faults not 

located on the structural path corresponding to P. 

Definition 4: A two-pattern test (VI, Vi) is called a non-robust 

test for a fault on path P, if it detects that fault under the 

assumption that the off-path sensitizing inputs [10,11] of all 
gates on the structural path corresponding to P stabilize at 
their final valves prior to the time, at which the transition 

propagated along P arrives at them. 

Theorem 1: A two-pattern test (VI,V~> represents a robust 

test for a path fault on P, if, and only if, 

- it provokes the transition 11 at PI ~1 and 

- guarantees that all signals on the structural path corre- 

sponding to P cannot assume their final value according to 

r/2, unless the transition on the path under test has arrived 

at them. 
Theorem 2: A two-pattern test (VI, Vz) represents a non- 

robust test for a fault on path P, if, and only if, 

- it provokes the transition 11 at PI ~1 and 

- V2 causes all off-path sensitizing inputs along the structural 
path corresponding to P to assume those non-controlling 

values that allow the propagation of the transition 21 from 

Kl to Kn. 

Proofs. Follow readily from Definitions 3 and 4. - 

Consider circuit C shown in Fig. 2. Obviously, the indi- 

cated two-pattern test consists of the initialization vector 

lJ = (cu, fi, 7,6, c) = (1, 1, 1, 1,O) and the propagation vec- 

tor V2 = (O,l, O,l,O). According to Definition 3 and The- 

orem 1, this is a robust test for the fault on path PI = 
(r’,vr, Ef,af), since all signals on the corresponding struc- 

tural path (7,72,~~,nr, [, [r , 0) cannot assume their final val- 

ues, unless the transition propagated along PI has arrived at 

them. Conversely, (VI, V2) does not represent a robust test for 

the fault on path P2 = (yf, qf, [‘, ?), since an excessive delay 

in the rising transition on signal p may cause PO T to have 

its expected final value 1 at time T2, regardless of the delay 

along P2. This would lead to declaring circuit C as fault-free, 

although there might be a path fault on P2 in addition to the 

fault entailing the excessive delay in the transition on signal p. 

Actually, path P2 can easily be shown to be not testable un- 

der the restrictive condition of robustness that does justice to 

a multiple fault assumption, which is frequently avoided even 

in the less complicated case of stuck-at testing. On the other 

hand, (Vi, 55) fulfills the conditions of a non-robust test for 

P2, stated in Theorem 2. Assuming the transition on signal p 

to be “on time“, the correct final value 1 can only be observed 

at PO T, if there is no path fault on Pz. Finally, the interested 

reader may notice that the non-robust test (Vr , V2) for path 

P:, can be validated to be robust by a robust test for path 

P3 = (yf,$,p’,r’), as e.g. ((O,O,l,l,O>,(O,O,O,r,o)> PII. 
However, even in the case that a non-robust test is not vali- 

datable by another robust one, it is our conviction that having 

at least information concerning the non-robust detection of a 

distinct path fault is clearly advantageous over lacking any 

information about that fault. 

3 Robust and Non-Robust Path Delay 
Fault Simulation 

3.1 Six-Valued and Four-Valued Sinmlation Log- 
its 

In order to perform simulation of robust detection of path 

delay faults, we basically make use of the six-valued logic pro- 

posed in [15], which comprises the values OS, Op, 0-, Is, lp, and 

l-. Each of those six values can be viewed as an ordered pair 
(fw, pds). When assigned to a distinct signal K of the circuit, 
the first component fv(~) E {O,l} denotes the final value of 

signal 6 under the two-pattern test (VI, Vs) according to Def- 

inition 2. The second component pds(n) E {s, p,-}, called the 

path detectability status at signal n, is defined as follows: 

Definition 5: A distinct signal K of a combinational circuit C 
has pds(n) = s, if, and only if, it is guaranteed to remain 

stable at TV between Tl and Tz, i.e. it is definitely free 

of any transition and any hazards between Tl and T2. Oth- 
erwise, p&s(~) = p, if, and only if, there is at least one path 

from a PI to signal n whose corresponding path delay fault 

is robustly detectable at signal )E according to Definition 3 
and Theorem 1. Finally, if pds(~) # s and pds(rc) # p, then 

pds(K.) = -. 
Fig. 4 shows the propagation tables of the six-valued logic 

[15] for AND- and XOR-gates. Using an AND-gate with the 

two input signals IE~ and ~2 and the output signal ‘7 for the sake 

of illustration, note that (~1, ~2) = (Op, Op), (~1, ~2) = (Op,l-), 

and (KI, ~2) = (OP, 1~) result in u = 0-, indicating that the 

path faults, which are robustly detectable at nr, do not fullill 

the condition for robust detection at 9. The reason for this 

is that the falling transition, the possible hazard, or a delay 

in the rising transition on ~2 may cause the gate output n to 

have its final value0, although the transition on ~1 has not yet 

arrived. This contradicts Theorem 1 and, as a consequence, 

(VI, V2) cannot be a robust test for any path through signal 

9. 

Fig. 4: Six-valued propagation tables for AND- and XOR- 

gates for robust path delay fault simulation. 

Next, consider the case of non-robust path delay fault sim- 

ulation. Clearly, all combinations of input values of the men- 

tioned AND-gate, that lead to pds(~) = p in robust delay fault 

simulation, will result in pds(l) = p in non-robust delay fault 

simulation as well. In addition, since only the final values of 

the off-path sensitizing gate inputs are decisive for the non- 

robust detection of path delay faults (Theorem 2), the two in- 

put combinations(Kr, ~2) = (Op,l-), and (nr, ~2) = (Op, lp) do 

also allow the non-robust detection of faults on paths through 

~1 at the gate output 7, what has to be taken into account by 

n = Op. Thus, the propagation table for the AND-gate has to 
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be modified as illustrated in Fig. 5a, in order to perform non- 

robust path delay simulation. Now, if we recall that neither 

pds(p) = s nor p&(q) = - can be used for the detection of 

a path fault, the consideration of the six-valued propagation 

table in Fig. 5a reveals that the two columns corresponding to 

~1 = OS and ~1 = 0- as well as the two columns corresponding 

to ~1 = Is and ~1 = l- are entirely identical with regard to 

the resulting detectability of path faults at the output signal 

7. Since this holds true for OR- and XOR-gates as well, we 

combine the two values 0s and 0- (1s and l-) to a new one, 

denoted by Op(ljr). As a consequence, we end up with a four- 

valued logic for non-robust path delay fault simulation, whose 

corresponding propagation table for AND-gates is shown in 

Fig. 5b. 

0 
b) Four-Valued. 

a) Six-Valued. 

Fig. 5: Modified and reduced propagation tables for non- 

robust path delay fault simulation (AND-gate). 

3.2 Ellcodillg of Logic Values 

Since the final value of any signal K, TV, is either 0 or 1 in 

both the six-valued as well as the four-valued simulation logic, 

its encoding is trivial and can be accomplished by a single 

bit. Conversely, the path detectability status pds(r;) is three- 

valued in the six-valued simulation logic and, consequently, 

has to be encoded by an ordered pair of bits 

PWfi) = (S(K)>P(K)), (4) 

where s(s) and P(K) are called the s-bit (stable bit) and the p- 

bit (path bit) of the logic value of signal K, respectively. In the 
case of the four-valued simulation logic used for non-robust 

path fault simulation, however, there are only two possible 

values (p and p) for pds(rc). Thus, the p-bit is sufficient for 

encoding p&-(x). 
In order to transform a given signal value into its corre- 

sponding three-bit or two-bit representation, we need an ap- 

propriate coding technique. The Tables la and lb illustrate 

the code we have chosen for representing the logic values of the 

six-valued and the four-valued simulation logic, respectively. 

a) Six-Valued Logic. 
b) Four-Valued Logic. 

words in the case of robust fault simulation and two L-bit-wide 
machine words in the case of non-robust fault simulation for 

representing a set of L logic values of signal K, which usually 

correspond to a set of L pattern pairs (VI, T/z),, . . . . (I/;, fi),. 
Thereby, all bits reflecting the final value of signal K are stored 

in the first word, called the f?J-word uec[fv(K>]. 

Similarly, 

(54 

(5b) 

denotes the p-word. Finally, in the case of robust simulation, 
we additionally need 

wec[s(tc)] = (So,. . . ,s(ri)J, PC) 

which will be referred to as the s-word in the fallowing. .For ex- 
ample, choosing L = 5 and making use of the six-valued logic, 

the set { lp, OS, 0-, 13, Op} of logic values at s.ignal K is repre- 

sented by wec[fti(K)] = (l,O,O, l,O), wec[p(s)] = (I, O,O,O, l), 

and vec[s(r;)] = (0, 1, 0, 1,O). 

3.3 Parallel Pattern Path Delay Fault Siruula- 

-t ion 

First of all, the PIs of the combinational logic have to be 

initialized to their correct values according to the pattern 

pairs (VI, V2)1, . . . , (VI, I,$),. Provided that the input latches 

(Fig. 1) are glitchless, in both robust as well as non-robust 
path delay fault simulation, the value Op(lp) is assigned to PI 

CY for the pattern pair i, if (VI, fi); causes PI LY to assume the 
initial value l(0) and the final value O(1). Otherwise, if there 

is no difference between the initial value and the final value of 

PI (Y, i.e. if PI cy remains stable at 0 or 1 between Tr and T2, 
PI CY is initialized to OS or 1s in the robust case and to OF or 
lj? in the non-robust case. 

Subsequently, those logic values have to be propagated to- 
wards the POs of the combinational logic. Obviously, this can 

be accomplished by performing the gate evaluations in lev- 

elized order accordingly to the corresponding propagation ta- 

bles, as illustrated representatively for AND- and XOR-gates 

in Figs. 4 and 5. Considering an AND-gate with the input 

signals ~1 and 162 and the output signal 11, we have 

fv(V) = fw(‘Qj. f4K2), (6a) 

471) = f~(~l).S(nl)+fv(riz).s(K2) + 

f4w) . s(m). fV(Ki-2) * 3(62), and (6b) 

P(V) = fed . fV(K2j. [ph j + P(M~] + 

fW(K1) . P(Q) . f4R2) .S(KZ) -t 

fW(K2). P(K2). b(m). s(n1) 

in the case of robust path delay fault simulation and 

(6~) 

fw(v) = fv(m)- f74~2) and (7a) 
P(P) = fv(m) . P(tc2) -t fV(K2). P(m) (7b) 

Table 1: Encoding of logic values. 
in the case of non-robust path delay fault simullation. Similar 

Next, in order to support parallel processing of pattern formulas can easily be derived for all other gate types. Apply- 
pairs during fault simulation, we use three L-bit-wide machine ing the simulation procedure described so far to our circuit C 
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Gate Binary Operations 

Type Robust Path Delay FS Non-Robust Path Delay FS 

wec[s(9)] = wec[fw(fcl)] . wec[s(Kl)] + wec[fw(K2)]. wec[s(K2)]+ 

AND, vec[fv(nl)J . vec[s(m)] . tm$fv(Kz)J~ tm[s(Kz)l vecb(s)l = wec[fw(w 11. vec[p(m)]+ 

we+(q)] = wec[fw(Kl)] vec[fo(Kz)] . (w+(m)] + wxb(K2)J)+ vec[fw(m)l. vec[p(rtl)J 

NAND wec[jv(Kl)] .wec[p(ril)] .wec[.fw(m)] .wec[s(K2)]+ 

vec[fv(nz)] . vec[p(r;-2)] - vec[fv(w )] 1 wec[s(m)] 

wec[s(q)] = uec[fv(Kl)J . vec[s(Kl)J + vec[fu(Kz)]. vec[s(Kz)J+ 

OR uec[jw(Kl)] wec[s(e)] wec[fw(K2)] . wec[s(n2)] vec[p(9)] = vec[fw(~l)] . vec[p(m)]+ 

w&(9>] = wec[jv(Kl)] wec[fw(K2)]. (wx[p(Kl)l+ m+(m)])+ wec[fv(m)] . w+(m)] 

NOR wec[fw(Kl)] . wec[p(m)] . vec[fw(tcz)] * vec[s(w)J+ 

vec[fv(nz)] . vec[p(tc2)] . vec[fv(m)] . vec[s(m)] 

BUF, vec[s(T)J = vec[s(K)] 

INV dd9)l = ~44~>1 vecb(v)l = v4d~c)l 

XOR, wec[s(T)] = wec[s(Kl)] . wec(s(q)] 

XNOR, vec[p(v)] = we&(m)]. vec[s(Kz)] + we&(e)]. wec[s(KI)] 
vec[p(v)l = we+(w)] + wecb(K2)] 

Table 2: Binary operations for robust and non-robust path delay fault simulation. 

with the indicated two-pattern test (Fig. 21, we obtain 

(a, P, Y, 4 6, u, 9, t, P, 0% 7) = 

(OP, Is, OP, Is, OS,@, IP, OP, IP, OP, I-> and c-w 

(ff 1 P, Y, 4 f, u, 9, t, PI 0,7) = 

(OP, 1% OP, IF, OF, 07, IP, OP, IP, OP, IP) W) 

for robust and non-robust path delay fault simulation, respec- 

tively. 

By extending (6) to 

vec[fv(q)J = wc[fv(nl)J. vec[fw(w)], 

vec[s(o>l = 

@a) 

wec[/v(Ki)] . wec[s(Kl)] + wec[jw(rcz)] . wec[s(K2)] + 

vec[fv(Kl>l. ~ec[s(Kl>J~ vec[f4m)l . vec[s(m)J, W) 

wecb(0)l = 

wec[fw(Kl)] . wec[f+K2)1. (vec[p(m)l + wec[P(K2)]) + 

wec[fw(Kl)]. vec[p(Kl)] -wecVw(~2)]. vec[s(K2)] + 

vec[fw(m)] wec[p(n2)]. wec[.fv(m)] . wec[s(Kl)], (94 

and (7) to 

-4fv(rl)l= wec[fv(Kl)l. ~ec[fw(K2)1, (104 
v&(9)1 = vec[fw(m)l . vecb(K2)J + 

wec[f~(K2)1. ~ec(p(~l)l, (lob) 
we readily gain the capability of evaluating the AND-gate 

mentioned above in parallel for L pattern pairs, where 

wec[fw(q)], wec[s(q)], and wec[p(q)] denote the fu-word, the 

s-word, and the p-word of signal 9, respectively. Table 2 sum- 

marizes the binary operations, which are necessary for deter- 

mining the path detectability status by parallel processing of 

pattern pairs in robust and non-robust path delay fault simu- 

lation for all gate types considered. Note that, by applying the 

law of associativity, these operations can easily be extended to 

gates with more than two inputs. The corresponding formu- 

las for the parallel evaluation of the final value vec[fv(q)] are 

identical with those used in parallel pattern stuck-at fault sim- 

ulation [17]. Finally, it is worth noting that we have chosen the 

encoding of the logic values (Tables la and lb) in such way 

that the number of binary operations, required for performing 

parallel pattern path delay fautt simulation, is minimized. 

3.4 Path Delay Fault Detection 

After all gates of the combinational circuit ltave been eval- 

uated by employing the binary operations listed in Table 2, 

all path delay faults, that are either robustly or non-robustly 

detectable by the L pattern pairs simulated, have to be iden- 
tified. Just for the sake of explanation, let us first consider a 

single pattern pair (VI, V2). In the case of robust path delay 

fault simulation, the identification of the path faults detected 

by (VI, Vg) is trivial. In fact, it can simply be accomplished 

by tracing all those structural paths, on which all signals have 

either the value Op or lp, in a depth-first manner from the 
POs to the PIs 1153. Considkring Fig. 2 and Eq. (8a), the trace 

would proceed along u, (1, [, 91, Q, yz, and y, representing the 
only path with a robustly detected path fault. Consequently, 

since y = Op, we would mark the path 4 = (yf, qr, F’, af) as 
robustly tested. 

Contrary to robust path fault simulation, the identification 
of detected path faults is a little bit more involved in non- 

robust path fault simulation. Assuming that the path trace 

has arrived at the output signal ? of a distinct gate g with 

its inputs ~1,. . . , tcE,, we cannot simply extend our search for 

detected path faults over all inputs of g with the logic value 
Op or lp. In this case, we have to determine those gate inputs 
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: ., 
., c.,. 

entry ‘f’ in’ node (I(.$) Iefers to path Pi(&), while the entry 
‘I’. denotes path Pa(&). 

Contrary to PI ., P2, P,, and P5, the paths. P3 and Ps pass 
through a XOR-ga te. As is well-known, in the case of XOR- or 
XNOR-gates, the direction of the transition on the gate out- 
put signal is dependent of both the direction of the transition 
on the gate input signal located on the path under considera- 
tion as well as the logic value of the off-path+sensitizing gate 
input. Thus, in addition to ES and Pe, two functional paths 
P, = (Yf, vr, pf, r”) and Ps = (yr, T$, pf, rr) exist, which cor- 
respond to the same structural path as P3 and l’s d.o. In order 
to distinguish P3 and Pa, which both produce a rising tran- 
sition at the outpnt signal p of the XOR-gate, from P7 and 
Pa, we have to include the node pr in the pa.th tree (Fig. 6). 
Again, storing the falling and the rising transition at PI Y in 
the leaf node pr allows us to distinguish between P3 and P6 
and to uniquely refer to either of those two paths during fault 
simulation or ATG [13,14]. 

root node of 

‘\ path tree 
\ \ 

n’i, which have pds(si). = p and whose final \;alue fv(Ki) is 
observable at the gate output q, i.e. for which the local path 
sensitivity 

where 
Sir = fv(?4k)) 63 f*(?l(zi)) w 

denotes the Boolean Difference qrri with regard to the final val- 
ues of the signals 17 and pi. Inspecting our circuit C (Fig-S) 
and Eq. (8b), for the NAND-gate with the output signal r, we 
obtain p(&) = 1, rlz” = 1 , p(p) = 1, and r,f” = 0. Thus, 
in non-robust path fault simulation, we additionally would 
have to trace along T, (2, C, ~I,v, Y2, and Y and, consequently, 
mark the fault on path Pz = (Yf, vr, ef, .r’) as non-robustly 
detected. Note that, as a consequence from $v = 0, the trace 
must not proceed along r, p, 72,~, Y2, and Y, since the corre- 
sponding path fault on P3 = (Yf, $, pr, rf) is neither robustly 
nor non-robustly detectable by the pattern pair indicated in 
Fig. 2. 

Next, in order to support parallel processing of patterns 
also during the path trace, we introduce vec[po(q)] as the path 
observability mask of signal ‘I. Initializing the path trace at a 
distinct PO d by 

vecbo(u)l = we&(o)], (13) 

we recursively proceed in the mentioned depth-first manner 
from a gate output 7 to a gate input K by evaluating 

wecIpo(~)] = vec[po(7)1~ vec[bs(s)l, (14) 

where vec[Zps(r],)] is determined by parallel processing of pat- 
terns as expressed by 

wec[lps(q,)] = we+(K)]. vec[vL”]. (15) 

Thus, when the path trace arrives at a PI, say (Y, vec[po(cu)] 
indicates all those of the L pattern pairs that can be used for 
detecting path faults on the structural path traced along from 
PO u to PI cr. 

4 The Path Tree 

In order to effectively cope with the typically huge number of 
paths in today’s VLSI circuits; we have developed a highly 
economical data structure, called the path tree. Its basic 
idea consists in storing parts of paths, that are common to 
many paths from a distinct PI to the POs, only once rather 
than explicitly carrying them along for each path separately. 
hloreover, the structural subpath S = (9, ~1,. . . , K,,,.$) with 
7 E V, and 6 E V, is referred to only by that signal or 
that fanout branch, which uniquely identifies S. Consider 
the paths PI = (yf, q’,[j, J), P2 = (yl,$,t’, ?), ~~3 = 
(r’, vrj pr, rf) P4 = (yr, 71~) t’, 0, 9 = C-T, vf, E’, ~~1, and 
p6 = (Yr, 4, /, +. Recalling that, for example, the struc- 
tural subpath S = (y, ~2, q) is uniquely identified by the 
fanout branch ~2, the two paths PI and Pa (P2 and Pr,) ca.n be 
represented by the same three path tree nodes ~2~71, and (1 
(~2, ~1, and &). Since PI and Pa (I’2 and P.) correspond to the 
same structural path and differ in the transition propagated 
along them only, this can be taken into account by storing the 
respective direction of the transition at the PI, from which the 
paths emanate, in the common leaf node & (&). In Fig. 6, the 

Fig. 6: Path Tree for representing A, P2, Pa, Pa, P5, and PC. 

In this context, it should explicitly be mentioned that a dis- 
tinct structural path S in general corresponds to 2k+’ func- 
tional paths in the path graph, where k denotes the sum of 
the numbers of XOR- and XNOR-gates located on S. Thus, 
a given set of L pattern pairs may result in the robust or non- 
robust detection of delay faults on several of those functional 
paths. Denoting the number of delay faults on S that are 
detectable by a set of L pattern pairs by NDF:, we have 

N DF& 5 min(2 k+l, L). W> 

Naturally, in the special case where S does not pass through 
any XOR- or XNOR-gate, i.e. k = 0, S corresponds to exactly 
two functional paths and, consequently, 

NDF$ 2 min(2, L). ,(17) 

5 Experimental Benchmark Results 

The proposed fault simulation method for robust and non- 
robust detection of path delay faults has been implemented in 
the programming language C on a Micro-VAX, which has a 
machine word length L of 32 bits. In order to demonstrate the 
efficiency of our fault simulation approach, we have performed 
robust and non-robust path delay fault simulations of 10000 
random pattern pairs for the ten well-known 1SCA.S bench- 
marks [18]. Thereby, we did not impose any restriction on the 
number of path faults to be considered, but have simulated 
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the path delay faults on all functional paths, ranging in num- 
ber between 17284 for circuit ~880 and 1.98 * 102* for circuit 
~6288. 

The achieved results are summarized in Table 3, where 
PPPS and DPFP denote abbreviations for parallel pattern 
fault simulation and detected path fault processing, respec- 

tively. DPFP comprises the path trace, performed in parallel 

for 32 pattern pairs, and the maintenance of the path tree 

which, in this experiment, is used for recording all robustly 

and non-robustly detected path delay faults. As Table 3 sub- 
stantiates, our fault simulation approach is capable of both 
simulating long pattern sequences within reasonable amounts 
of CPU-time as well as maintaining large numbers of path 

faults considered. For example, in the case of circuit ~3540, 
the corresponding path tree for storing the 356681 detected 
path delay faults requires a total memory resource of 16.2 

megabytes, implying that on the average only 45.5 bytes are 
necessary for the representation of one path through the entire 
circuit. Moreover, as we would have expected from [16], only 
a few faults are detected under the restrictive condition of ro- 
bustness. On the other hand, the simulated 10000 random 

pattern pairs succeeded in detecting considerable numbers of 
path delay faults non-robustly in most circuits. Since many 
of those faults can be proved to be robustly undetectable (ro- 
bustly redundant) with the aid of a complete deterministic 
ATG approach, as e.g. [13,14], our fault simulator’s capabil- 
ity of accounting for non-robust detection of path delay faults 
may become extremely important, especially in the case of 
designs based upon statistical timing. 

yjk; / Det. P,ath Faults / CPU,-Times/Iloc.] IFg 

Name Robust Non-Rob. PPFS DPFP Total 

c432 476 9151 49.3 242.1 291.4 ‘237.1 
c499 39 120216 53.9 570.6 624.5 2879.4 
~880 1020 5720 111.6 302.1 413.7 106.2 
cl355 23 326551 165.2 1511.3 1676.5 10726.1 

cl908 695 38310 235.5 650.7 886.2 1275.6 
~2670 1486 50071 329.6 1871.1 2200.7 2080.1 

c3540 1546 355135 456.9 5440.9 5897.8 16241.5 

c5315 4928 144697 674.3 4238.7 4913.0 3996.9 

~6288 53 > 1000000 509.3 n.a. na. > 40000 
~7552 3257 154968 971.6 6772.0 7743.6 4070.6 

Table 3: Results of robust and non-robust path delay fault 
simulation of 10000 random pattern pairs. 

6 Conclusions 

In this paper we have described an accelerated fault simula- 
tion method for path delay faults. Based upon a six-valued 

logic and a four-valued logic, our fault simulation approach has 
been shown to be capable of simulating both robust as well as 
non-robust detection of path delay faults. Thereby, parallel 

processing of patterns is applied at a11 stages of the fault simu- 
lation procedure. Moreover, we have introduced a specifically 
developed data structure, called the path tree, which has been 
designed to be highly economical in terms of memory require- 
ments and which allows us to efficiently maintain hundreds of 

thousands of path faults to be simulated. 
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