
PARALLEL PATTERN FAULT SIMULATION
OF PATH DELAY FAULTS

Michael H. Schulz Franz Fink Karl Fuchs
Institute of Computer Aided Design, Department of Electrical Engineering

Technical University of Munich, D-8000 Munich 2, West Germany

Abstract

This paper presents an accelerated fault simulation approach
for path delay faults. The distinct features of the proposed

fault simulation method consist in the application of parallel
processing of patterns at all stages of the calculation proce-
dure, its versatility to account for both robust and non-robust

detection of path delay faults, and its capability of efficiently
maintaining large numbers of path faults to be simulated.

1 Introduction

In view of the steadily increasing quality requirements for
VLSI chips and due to the fact that statistical timing rather
than worst-case timing is frequently chosen as the basis for the
design of high-speed circuits, delay testing has achieved great
theoretica and practical importance. As is well-known, the
purpose of delay testing is to ascertain that manufactured dig-
ital circuits meet their timing specifications and operate cor-
rectly at desired clock rates, which determine the maximum
allowable path delay from primary inputs or latch outputs to
primary outputs OK latch inputs.

Two different delay fault models, called the gate deZay fault
model and the path delay fault model, respectively, have been
proposed and frequently dealt with. The gate delay fault
model has been introduced, in order to model those defects
that cause an actual propagation delay through a distinct
gate to exceed its worst-case specification [l]. Formerly, it
was also referred to as transition fault model, which merely
allows a qualitative consideration of delay faults and which is
consequently only useful for the detection of delay faults of
large size [2,3,4]. Since being restricted to large delay faults
is neither sufficient nor satisfactory, manifold research activi-
ties have recently been undertaken, in order to introduce the
indispensable quantitative point of view, i.e. to explicitly con-
sider the actual size of the gate delay faults during automatic
test pattern generation (ATG) and fault simulation [5,6,7,8].

On the other hand, in order to overcome the main deficiency
associated with the gate delay fault model, which consists in
its restriction to isolated failures, the path delay fault model
has been developed [S]. Besides its capability to model distrib-

Permission to copy without fee all or Part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and tie title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

uted failures, which are typically caused by statistical varia-
tions in the manufacturing process, it is of particular use for
circuits that have been designed on a statistical timing basis.
Since those circuits are known to have a non-zero probability
fOK the occurrence of a delay fault, even when all gate delays
are within their specified worst-case ranges, delay testing does
not only involve the detection of defects resulting in excessive
delays, but also the identification of slow paths.

While a considerable number of ATG methods for path
delay faults has been described during the last few years
[10,11,12,13,14], the problem of fault simulation of path de-
lay faults has only been addressed in [15]. Based upon the
six-valued logic proposed in [15], this paper presents an accel-
erated fault simulation approach for path delay faults, which
applies parallel processing of patterns at all stages of the cal-
culation procedure, in order to gain the capability of simulat-
ing long pattern sequences for highly complex VLSI circuits
within reasonable amounts of CPU-time. hloreover, many
paths, that cannot be tested under the restrictive condition of
robustness, may be well testable, if we refrain from that con-
dition. This was our motivation for modifying the six-valued
logic of [15] and devising a four-valued logic, in Order to addi-
tionally account for non-robust detection of path delay faults.
Finally, in view of the enormous number of paths that typ-
ically exist in today’s circuits, we have developed a specific
data structure, called the path tree, which has been designed
to be highly economical in terms of memory requirements and
which allows us to efficiently maintain hundreds of thousands
of path faults to be simulated.

2 Background and Basic Definitiom

2.1 Hardware Model

From an operational point of view, the global goal of delay
testing is to guarantee that the propagation delays of all paths
in a given circuit are less than the system clock interval. Ex-
cept when using dynamic logic, it is well-known that testing
a distinct delay fault requires a pair of two patterns rather

than a single pattern as in the case of stuck-at testing. Fig. 1
illustrates the hardware model, which is frequently taken as
the basis for delay testing [10,11,12,15,16]. At time TO, the
initialization vector VI is loaded into the input latches, which
are assumed to be glitchless. After all signals of the circuit
have been allowed to stabilize under VI, the propagation uec-
tor Vz is applied to the circuit by activating clock Cl. Finally,

26th ACM/IEEE Design Automation Conference@
Paper 23.4

0 1989 ACM O-89791 -31 O-8/89/0006/0357 $1.50 357

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74382.74442&domain=pdf&date_stamp=1989-06-01

the logic values at the primary outputs are sampled into the

output latches at time Ts = Tl +Tc by pulsing clock G2, where

Tc denotes the system clock interval at the desired functional

clock rate.

---I--- t-
c2

Clock C2 i

TO

-
7 -4

7-1
Tc .

T2

Fig. 1: Hardware Model and Clock Timings.

2.2 Circuit Structure and Path Graph

The Figs. 2 and 3 show how the structure of a combinational

circuit C can be described by a directed graph G, = (V,, I&,),
which is called the path graph and which has already been

used in [9] for the purpose of delay testing. However, while

the approach discussed in [9] is restricted to circuits consisting

of simple gates (AND-, NAND-, OR-, NOR-gztes, buffers, in-

verters) only, we have extended it, in order to correctly model

circuits containing XOR- and XNOR-gates in addition. to sim-

ple gates. Our method for constructing G, from the structure

of a given combinational circuit C can be described as follows:

Fig. 2: Circuit C.

1) Identify all primary inputs (Pls) and all primary outputs

(POS) of t1 re combinational circuit as well as all fanout

stems and all output signals of XOR- and XNOR.-gates.
For each of these signals, include two nodes, labeled rising

and falling, respectively, into the node set V,. Thus, for

circuit C illustrated in Fig. 2, V, is given by:

2) Let (q”, 7’) and (E’, tf) be the two node pairs that cor-

respond to the signals 7 and <. Furthermore, let S =

(77, 61, “‘9 Kn, <) be a structural subpoUr from signal 77 to

Fig. 3: Path Graph G, = (V,, Ep).

signal <, which does not pass through a f,anout stern or the

output signal of a XOR- or a XNOR-gate, i.e.

,J((4 6 w-4 4 VP)- (2)
, ..,n

If signal 6 does not represent the output signal of a XOR-

or a XNOR-gate,

l include two edges (nr, E’) and (qf, (I’) (($, [‘) and

(v’, E’)) into Ep, if the number of inverting gates on

S is even (odd).

Otherwise, if signal [denotes the output signal of a XOR-

or a XNOR-gate,

l include four edges (q’, F’), (r,rr, [‘), (nf, t”), and (vf, cf)

into E,.

Note that, for each structural subpath from signal 17 to sig-

nal .$ that fulfills condition (2) stated above, we have to include

the appropriate number of edges into En, in order to correctly

model the structure of the circuit by the graph G,.

2.3 Robust and Non-Robust Detection of Path
Delay Faults

Considering Fig. 1 reveals that delay testing basically con-

sists in testing the propagation delays of all paths through

the combinational logic against the functional system clock

interval Tc.

Definit.ion 1: Let P = (sir, K>) be a path in the path
graph illustrated in Fig. 3, where nr and IE,, correspond to

a PI and a PO of the combinational logic, respectively, and

21, tn E {r, f}. Furthermore, let APD(P) represent the ac-
tual propagation delay of transition tl along P. Then, P is
said to have a path fault, if APD(P) exceeds Tc, i.e.

APD(I’) > Tc. (3)

Definition 2: Let (VI, V2) denote a two-pattern test applied to
the combinational logic in the hardware environment shown

in Fig. 1. At time Tr, when the circuit has stabilized under

the initialization vector VI, all signals are said to have their

initial ualues. Conversely, the final value of a distinct signal

is defined as the binary logic value (0 or 1) which that signal

would assume under the propagation vector Ci at time T2, if

the circuit would be free of delay faults.

Paper 23.4

358

Definition 3: A two-pattern test (V,, V,) is called a robust test

for a fault on path P, if it detects that fault independently
of all other delays in the circuit and all other delay faults not

located on the structural path corresponding to P.

Definition 4: A two-pattern test (VI, Vi) is called a non-robust

test for a fault on path P, if it detects that fault under the

assumption that the off-path sensitizing inputs [10,11] of all
gates on the structural path corresponding to P stabilize at
their final valves prior to the time, at which the transition

propagated along P arrives at them.

Theorem 1: A two-pattern test (VI,V~> represents a robust

test for a path fault on P, if, and only if,

- it provokes the transition 11 at PI ~1 and

- guarantees that all signals on the structural path corre-

sponding to P cannot assume their final value according to

r/2, unless the transition on the path under test has arrived

at them.
Theorem 2: A two-pattern test (VI, Vz) represents a non-

robust test for a fault on path P, if, and only if,

- it provokes the transition 11 at PI ~1 and

- V2 causes all off-path sensitizing inputs along the structural
path corresponding to P to assume those non-controlling

values that allow the propagation of the transition 21 from

Kl to Kn.

Proofs. Follow readily from Definitions 3 and 4. -

Consider circuit C shown in Fig. 2. Obviously, the indi-

cated two-pattern test consists of the initialization vector

lJ = (cu, fi, 7,6, c) = (1, 1, 1, 1,O) and the propagation vec-

tor V2 = (O,l, O,l,O). According to Definition 3 and The-

orem 1, this is a robust test for the fault on path PI =
(r’,vr, Ef,af), since all signals on the corresponding struc-

tural path (7,72,~~,nr, [, [r , 0) cannot assume their final val-

ues, unless the transition propagated along PI has arrived at

them. Conversely, (VI, V2) does not represent a robust test for

the fault on path P2 = (yf, qf, [‘, ?), since an excessive delay

in the rising transition on signal p may cause PO T to have

its expected final value 1 at time T2, regardless of the delay

along P2. This would lead to declaring circuit C as fault-free,

although there might be a path fault on P2 in addition to the

fault entailing the excessive delay in the transition on signal p.

Actually, path P2 can easily be shown to be not testable un-

der the restrictive condition of robustness that does justice to

a multiple fault assumption, which is frequently avoided even

in the less complicated case of stuck-at testing. On the other

hand, (Vi, 55) fulfills the conditions of a non-robust test for

P2, stated in Theorem 2. Assuming the transition on signal p

to be “on time“, the correct final value 1 can only be observed

at PO T, if there is no path fault on Pz. Finally, the interested

reader may notice that the non-robust test (Vr , V2) for path

P:, can be validated to be robust by a robust test for path

P3 = (yf,$,p’,r’), as e.g. ((O,O,l,l,O>,(O,O,O,r,o)> PII.
However, even in the case that a non-robust test is not vali-

datable by another robust one, it is our conviction that having

at least information concerning the non-robust detection of a

distinct path fault is clearly advantageous over lacking any

information about that fault.

3 Robust and Non-Robust Path Delay
Fault Simulation

3.1 Six-Valued and Four-Valued Sinmlation Log-
its

In order to perform simulation of robust detection of path

delay faults, we basically make use of the six-valued logic pro-

posed in [15], which comprises the values OS, Op, 0-, Is, lp, and

l-. Each of those six values can be viewed as an ordered pair
(fw, pds). When assigned to a distinct signal K of the circuit,
the first component fv(~) E {O,l} denotes the final value of

signal 6 under the two-pattern test (VI, Vs) according to Def-

inition 2. The second component pds(n) E {s, p,-}, called the

path detectability status at signal n, is defined as follows:

Definition 5: A distinct signal K of a combinational circuit C
has pds(n) = s, if, and only if, it is guaranteed to remain

stable at TV between Tl and Tz, i.e. it is definitely free

of any transition and any hazards between Tl and T2. Oth-
erwise, p&s(~) = p, if, and only if, there is at least one path

from a PI to signal n whose corresponding path delay fault

is robustly detectable at signal)E according to Definition 3
and Theorem 1. Finally, if pds(~) # s and pds(rc) # p, then

pds(K.) = -.
Fig. 4 shows the propagation tables of the six-valued logic

[15] for AND- and XOR-gates. Using an AND-gate with the

two input signals IE~ and ~2 and the output signal ‘7 for the sake

of illustration, note that (~1, ~2) = (Op, Op), (~1, ~2) = (Op,l-),

and (KI, ~2) = (OP, 1~) result in u = 0-, indicating that the

path faults, which are robustly detectable at nr, do not fullill

the condition for robust detection at 9. The reason for this

is that the falling transition, the possible hazard, or a delay

in the rising transition on ~2 may cause the gate output n to

have its final value0, although the transition on ~1 has not yet

arrived. This contradicts Theorem 1 and, as a consequence,

(VI, V2) cannot be a robust test for any path through signal

9.

Fig. 4: Six-valued propagation tables for AND- and XOR-

gates for robust path delay fault simulation.

Next, consider the case of non-robust path delay fault sim-

ulation. Clearly, all combinations of input values of the men-

tioned AND-gate, that lead to pds(~) = p in robust delay fault

simulation, will result in pds(l) = p in non-robust delay fault

simulation as well. In addition, since only the final values of

the off-path sensitizing gate inputs are decisive for the non-

robust detection of path delay faults (Theorem 2), the two in-

put combinations(Kr, ~2) = (Op,l-), and (nr, ~2) = (Op, lp) do

also allow the non-robust detection of faults on paths through

~1 at the gate output 7, what has to be taken into account by

n = Op. Thus, the propagation table for the AND-gate has to

Paper 23.4

359

be modified as illustrated in Fig. 5a, in order to perform non-

robust path delay simulation. Now, if we recall that neither

pds(p) = s nor p&(q) = - can be used for the detection of

a path fault, the consideration of the six-valued propagation

table in Fig. 5a reveals that the two columns corresponding to

~1 = OS and ~1 = 0- as well as the two columns corresponding

to ~1 = Is and ~1 = l- are entirely identical with regard to

the resulting detectability of path faults at the output signal

7. Since this holds true for OR- and XOR-gates as well, we

combine the two values 0s and 0- (1s and l-) to a new one,

denoted by Op(ljr). As a consequence, we end up with a four-

valued logic for non-robust path delay fault simulation, whose

corresponding propagation table for AND-gates is shown in

Fig. 5b.

0
b) Four-Valued.

a) Six-Valued.

Fig. 5: Modified and reduced propagation tables for non-

robust path delay fault simulation (AND-gate).

3.2 Ellcodillg of Logic Values

Since the final value of any signal K, TV, is either 0 or 1 in

both the six-valued as well as the four-valued simulation logic,

its encoding is trivial and can be accomplished by a single

bit. Conversely, the path detectability status pds(r;) is three-

valued in the six-valued simulation logic and, consequently,

has to be encoded by an ordered pair of bits

PWfi) = (S(K)>P(K)), (4)

where s(s) and P(K) are called the s-bit (stable bit) and the p-

bit (path bit) of the logic value of signal K, respectively. In the
case of the four-valued simulation logic used for non-robust

path fault simulation, however, there are only two possible

values (p and p) for pds(rc). Thus, the p-bit is sufficient for

encoding p&-(x).
In order to transform a given signal value into its corre-

sponding three-bit or two-bit representation, we need an ap-

propriate coding technique. The Tables la and lb illustrate

the code we have chosen for representing the logic values of the

six-valued and the four-valued simulation logic, respectively.

a) Six-Valued Logic.
b) Four-Valued Logic.

words in the case of robust fault simulation and two L-bit-wide
machine words in the case of non-robust fault simulation for

representing a set of L logic values of signal K, which usually

correspond to a set of L pattern pairs (VI, T/z),, (I/;, fi),.
Thereby, all bits reflecting the final value of signal K are stored

in the first word, called the f?J-word uec[fv(K>].

Similarly,

(54

(5b)

denotes the p-word. Finally, in the case of robust simulation,
we additionally need

wec[s(tc)] = (So,. . . ,s(ri)J, PC)

which will be referred to as the s-word in the fallowing. .For ex-
ample, choosing L = 5 and making use of the six-valued logic,

the set { lp, OS, 0-, 13, Op} of logic values at s.ignal K is repre-

sented by wec[fti(K)] = (l,O,O, l,O), wec[p(s)] = (I, O,O,O, l),

and vec[s(r;)] = (0, 1, 0, 1,O).

3.3 Parallel Pattern Path Delay Fault Siruula-

-t ion

First of all, the PIs of the combinational logic have to be

initialized to their correct values according to the pattern

pairs (VI, V2)1, . . . , (VI, I,$),. Provided that the input latches

(Fig. 1) are glitchless, in both robust as well as non-robust
path delay fault simulation, the value Op(lp) is assigned to PI

CY for the pattern pair i, if (VI, fi); causes PI LY to assume the
initial value l(0) and the final value O(1). Otherwise, if there

is no difference between the initial value and the final value of

PI (Y, i.e. if PI cy remains stable at 0 or 1 between Tr and T2,
PI CY is initialized to OS or 1s in the robust case and to OF or
lj? in the non-robust case.

Subsequently, those logic values have to be propagated to-
wards the POs of the combinational logic. Obviously, this can

be accomplished by performing the gate evaluations in lev-

elized order accordingly to the corresponding propagation ta-

bles, as illustrated representatively for AND- and XOR-gates

in Figs. 4 and 5. Considering an AND-gate with the input

signals ~1 and 162 and the output signal 11, we have

fv(V) = fw(‘Qj. f4K2), (6a)

471) = f~(~l).S(nl)+fv(riz).s(K2) +

f4w) . s(m). fV(Ki-2) * 3(62), and (6b)

P(V) = fed . fV(K2j. [ph j + P(M~] +

fW(K1) . P(Q) . f4R2) .S(KZ) -t

fW(K2). P(K2). b(m). s(n1)

in the case of robust path delay fault simulation and

(6~)

fw(v) = fv(m)- f74~2) and (7a)
P(P) = fv(m) . P(tc2) -t fV(K2). P(m) (7b)

Table 1: Encoding of logic values.
in the case of non-robust path delay fault simullation. Similar

Next, in order to support parallel processing of pattern formulas can easily be derived for all other gate types. Apply-
pairs during fault simulation, we use three L-bit-wide machine ing the simulation procedure described so far to our circuit C

Paper 23.4

360

Gate Binary Operations

Type Robust Path Delay FS Non-Robust Path Delay FS

wec[s(9)] = wec[fw(fcl)] . wec[s(Kl)] + wec[fw(K2)]. wec[s(K2)]+

AND, vec[fv(nl)J . vec[s(m)] . tm$fv(Kz)J~ tm[s(Kz)l vecb(s)l = wec[fw(w 11. vec[p(m)]+

we+(q)] = wec[fw(Kl)] vec[fo(Kz)] . (w+(m)] + wxb(K2)J)+ vec[fw(m)l. vec[p(rtl)J

NAND wec[jv(Kl)] .wec[p(ril)] .wec[.fw(m)] .wec[s(K2)]+

vec[fv(nz)] . vec[p(r;-2)] - vec[fv(w)] 1 wec[s(m)]

wec[s(q)] = uec[fv(Kl)J . vec[s(Kl)J + vec[fu(Kz)]. vec[s(Kz)J+

OR uec[jw(Kl)] wec[s(e)] wec[fw(K2)] . wec[s(n2)] vec[p(9)] = vec[fw(~l)] . vec[p(m)]+

w&(9>] = wec[jv(Kl)] wec[fw(K2)]. (wx[p(Kl)l+ m+(m)])+ wec[fv(m)] . w+(m)]

NOR wec[fw(Kl)] . wec[p(m)] . vec[fw(tcz)] * vec[s(w)J+

vec[fv(nz)] . vec[p(tc2)] . vec[fv(m)] . vec[s(m)]

BUF, vec[s(T)J = vec[s(K)]

INV dd9)l = ~44~>1 vecb(v)l = v4d~c)l

XOR, wec[s(T)] = wec[s(Kl)] . wec(s(q)]

XNOR, vec[p(v)] = we&(m)]. vec[s(Kz)] + we&(e)]. wec[s(KI)]
vec[p(v)l = we+(w)] + wecb(K2)]

Table 2: Binary operations for robust and non-robust path delay fault simulation.

with the indicated two-pattern test (Fig. 21, we obtain

(a, P, Y, 4 6, u, 9, t, P, 0% 7) =

(OP, Is, OP, Is, OS,@, IP, OP, IP, OP, I-> and c-w

(ff 1 P, Y, 4 f, u, 9, t, PI 0,7) =

(OP, 1% OP, IF, OF, 07, IP, OP, IP, OP, IP) W)

for robust and non-robust path delay fault simulation, respec-

tively.

By extending (6) to

vec[fv(q)J = wc[fv(nl)J. vec[fw(w)],

vec[s(o>l =

@a)

wec[/v(Ki)] . wec[s(Kl)] + wec[jw(rcz)] . wec[s(K2)] +

vec[fv(Kl>l. ~ec[s(Kl>J~ vec[f4m)l . vec[s(m)J, W)

wecb(0)l =

wec[fw(Kl)] . wec[f+K2)1. (vec[p(m)l + wec[P(K2)]) +

wec[fw(Kl)]. vec[p(Kl)] -wecVw(~2)]. vec[s(K2)] +

vec[fw(m)] wec[p(n2)]. wec[.fv(m)] . wec[s(Kl)], (94

and (7) to

-4fv(rl)l= wec[fv(Kl)l. ~ec[fw(K2)1, (104
v&(9)1 = vec[fw(m)l . vecb(K2)J +

wec[f~(K2)1. ~ec(p(~l)l, (lob)
we readily gain the capability of evaluating the AND-gate

mentioned above in parallel for L pattern pairs, where

wec[fw(q)], wec[s(q)], and wec[p(q)] denote the fu-word, the

s-word, and the p-word of signal 9, respectively. Table 2 sum-

marizes the binary operations, which are necessary for deter-

mining the path detectability status by parallel processing of

pattern pairs in robust and non-robust path delay fault simu-

lation for all gate types considered. Note that, by applying the

law of associativity, these operations can easily be extended to

gates with more than two inputs. The corresponding formu-

las for the parallel evaluation of the final value vec[fv(q)] are

identical with those used in parallel pattern stuck-at fault sim-

ulation [17]. Finally, it is worth noting that we have chosen the

encoding of the logic values (Tables la and lb) in such way

that the number of binary operations, required for performing

parallel pattern path delay fautt simulation, is minimized.

3.4 Path Delay Fault Detection

After all gates of the combinational circuit ltave been eval-

uated by employing the binary operations listed in Table 2,

all path delay faults, that are either robustly or non-robustly

detectable by the L pattern pairs simulated, have to be iden-
tified. Just for the sake of explanation, let us first consider a

single pattern pair (VI, V2). In the case of robust path delay

fault simulation, the identification of the path faults detected

by (VI, Vg) is trivial. In fact, it can simply be accomplished

by tracing all those structural paths, on which all signals have

either the value Op or lp, in a depth-first manner from the
POs to the PIs 1153. Considkring Fig. 2 and Eq. (8a), the trace

would proceed along u, (1, [, 91, Q, yz, and y, representing the
only path with a robustly detected path fault. Consequently,

since y = Op, we would mark the path 4 = (yf, qr, F’, af) as
robustly tested.

Contrary to robust path fault simulation, the identification
of detected path faults is a little bit more involved in non-

robust path fault simulation. Assuming that the path trace

has arrived at the output signal ? of a distinct gate g with

its inputs ~1,. . . , tcE,, we cannot simply extend our search for

detected path faults over all inputs of g with the logic value
Op or lp. In this case, we have to determine those gate inputs

Paper 23.4

361

: .,
., c.,.

entry ‘f’ in’ node (I(.$) Iefers to path Pi(&), while the entry
‘I’. denotes path Pa(&).

Contrary to PI ., P2, P,, and P5, the paths. P3 and Ps pass
through a XOR-ga te. As is well-known, in the case of XOR- or
XNOR-gates, the direction of the transition on the gate out-
put signal is dependent of both the direction of the transition
on the gate input signal located on the path under considera-
tion as well as the logic value of the off-path+sensitizing gate
input. Thus, in addition to ES and Pe, two functional paths
P, = (Yf, vr, pf, r”) and Ps = (yr, T$, pf, rr) exist, which cor-
respond to the same structural path as P3 and l’s d.o. In order
to distinguish P3 and Pa, which both produce a rising tran-
sition at the outpnt signal p of the XOR-gate, from P7 and
Pa, we have to include the node pr in the pa.th tree (Fig. 6).
Again, storing the falling and the rising transition at PI Y in
the leaf node pr allows us to distinguish between P3 and P6
and to uniquely refer to either of those two paths during fault
simulation or ATG [13,14].

root node of

‘\ path tree
\ \

n’i, which have pds(si). = p and whose final \;alue fv(Ki) is
observable at the gate output q, i.e. for which the local path
sensitivity

where
Sir = fv(?4k)) 63 f*(?l(zi)) w

denotes the Boolean Difference qrri with regard to the final val-
ues of the signals 17 and pi. Inspecting our circuit C (Fig-S)
and Eq. (8b), for the NAND-gate with the output signal r, we
obtain p(&) = 1, rlz” = 1 , p(p) = 1, and r,f” = 0. Thus,
in non-robust path fault simulation, we additionally would
have to trace along T, (2, C, ~I,v, Y2, and Y and, consequently,
mark the fault on path Pz = (Yf, vr, ef, .r’) as non-robustly
detected. Note that, as a consequence from $v = 0, the trace
must not proceed along r, p, 72,~, Y2, and Y, since the corre-
sponding path fault on P3 = (Yf, $, pr, rf) is neither robustly
nor non-robustly detectable by the pattern pair indicated in
Fig. 2.

Next, in order to support parallel processing of patterns
also during the path trace, we introduce vec[po(q)] as the path
observability mask of signal ‘I. Initializing the path trace at a
distinct PO d by

vecbo(u)l = we&(o)], (13)

we recursively proceed in the mentioned depth-first manner
from a gate output 7 to a gate input K by evaluating

wecIpo(~)] = vec[po(7)1~ vec[bs(s)l, (14)

where vec[Zps(r],)] is determined by parallel processing of pat-
terns as expressed by

wec[lps(q,)] = we+(K)]. vec[vL”]. (15)

Thus, when the path trace arrives at a PI, say (Y, vec[po(cu)]
indicates all those of the L pattern pairs that can be used for
detecting path faults on the structural path traced along from
PO u to PI cr.

4 The Path Tree

In order to effectively cope with the typically huge number of
paths in today’s VLSI circuits; we have developed a highly
economical data structure, called the path tree. Its basic
idea consists in storing parts of paths, that are common to
many paths from a distinct PI to the POs, only once rather
than explicitly carrying them along for each path separately.
hloreover, the structural subpath S = (9, ~1,. . . , K,,,.$) with
7 E V, and 6 E V, is referred to only by that signal or
that fanout branch, which uniquely identifies S. Consider
the paths PI = (yf, q’,[j, J), P2 = (yl,$,t’, ?), ~~3 =
(r’, vrj pr, rf) P4 = (yr, 71~) t’, 0, 9 = C-T, vf, E’, ~~1, and
p6 = (Yr, 4, /, +. Recalling that, for example, the struc-
tural subpath S = (y, ~2, q) is uniquely identified by the
fanout branch ~2, the two paths PI and Pa (P2 and Pr,) ca.n be
represented by the same three path tree nodes ~2~71, and (1
(~2, ~1, and &). Since PI and Pa (I’2 and P.) correspond to the
same structural path and differ in the transition propagated
along them only, this can be taken into account by storing the
respective direction of the transition at the PI, from which the
paths emanate, in the common leaf node & (&). In Fig. 6, the

Fig. 6: Path Tree for representing A, P2, Pa, Pa, P5, and PC.

In this context, it should explicitly be mentioned that a dis-
tinct structural path S in general corresponds to 2k+’ func-
tional paths in the path graph, where k denotes the sum of
the numbers of XOR- and XNOR-gates located on S. Thus,
a given set of L pattern pairs may result in the robust or non-
robust detection of delay faults on several of those functional
paths. Denoting the number of delay faults on S that are
detectable by a set of L pattern pairs by NDF:, we have

N DF& 5 min(2 k+l, L). W>

Naturally, in the special case where S does not pass through
any XOR- or XNOR-gate, i.e. k = 0, S corresponds to exactly
two functional paths and, consequently,

NDF$ 2 min(2, L). ,(17)

5 Experimental Benchmark Results

The proposed fault simulation method for robust and non-
robust detection of path delay faults has been implemented in
the programming language C on a Micro-VAX, which has a
machine word length L of 32 bits. In order to demonstrate the
efficiency of our fault simulation approach, we have performed
robust and non-robust path delay fault simulations of 10000
random pattern pairs for the ten well-known 1SCA.S bench-
marks [18]. Thereby, we did not impose any restriction on the
number of path faults to be considered, but have simulated

Paper 23.4

362

the path delay faults on all functional paths, ranging in num-
ber between 17284 for circuit ~880 and 1.98 * 102* for circuit
~6288.

The achieved results are summarized in Table 3, where
PPPS and DPFP denote abbreviations for parallel pattern
fault simulation and detected path fault processing, respec-

tively. DPFP comprises the path trace, performed in parallel

for 32 pattern pairs, and the maintenance of the path tree

which, in this experiment, is used for recording all robustly

and non-robustly detected path delay faults. As Table 3 sub-
stantiates, our fault simulation approach is capable of both
simulating long pattern sequences within reasonable amounts
of CPU-time as well as maintaining large numbers of path

faults considered. For example, in the case of circuit ~3540,
the corresponding path tree for storing the 356681 detected
path delay faults requires a total memory resource of 16.2

megabytes, implying that on the average only 45.5 bytes are
necessary for the representation of one path through the entire
circuit. Moreover, as we would have expected from [16], only
a few faults are detected under the restrictive condition of ro-
bustness. On the other hand, the simulated 10000 random

pattern pairs succeeded in detecting considerable numbers of
path delay faults non-robustly in most circuits. Since many
of those faults can be proved to be robustly undetectable (ro-
bustly redundant) with the aid of a complete deterministic
ATG approach, as e.g. [13,14], our fault simulator’s capabil-
ity of accounting for non-robust detection of path delay faults
may become extremely important, especially in the case of
designs based upon statistical timing.

yjk; / Det. P,ath Faults / CPU,-Times/Iloc.] IFg

Name Robust Non-Rob. PPFS DPFP Total

c432 476 9151 49.3 242.1 291.4 ‘237.1
c499 39 120216 53.9 570.6 624.5 2879.4
~880 1020 5720 111.6 302.1 413.7 106.2
cl355 23 326551 165.2 1511.3 1676.5 10726.1

cl908 695 38310 235.5 650.7 886.2 1275.6
~2670 1486 50071 329.6 1871.1 2200.7 2080.1

c3540 1546 355135 456.9 5440.9 5897.8 16241.5

c5315 4928 144697 674.3 4238.7 4913.0 3996.9

~6288 53 > 1000000 509.3 n.a. na. > 40000
~7552 3257 154968 971.6 6772.0 7743.6 4070.6

Table 3: Results of robust and non-robust path delay fault
simulation of 10000 random pattern pairs.

6 Conclusions

In this paper we have described an accelerated fault simula-
tion method for path delay faults. Based upon a six-valued

logic and a four-valued logic, our fault simulation approach has
been shown to be capable of simulating both robust as well as
non-robust detection of path delay faults. Thereby, parallel

processing of patterns is applied at a11 stages of the fault simu-
lation procedure. Moreover, we have introduced a specifically
developed data structure, called the path tree, which has been
designed to be highly economical in terms of memory require-
ments and which allows us to efficiently maintain hundreds of

thousands of path faults to be simulated.

Acknowledgement

The authors are very grateful to Prof. K. J. Antreich of Tech-
nical University of Munich for his valuable suggestions and his
helpful advice.

References
[l] Z. Barzilai and B. K. Rosen. “Comparison of AC Self - Testing

Procedures”. IEEE Int. Test Conf., 89 - 91, Oct. 1983.

[2] J. A. Walcukauski, E. Lindbloom, B. K. Rosen, and V. S.
Iyengar. “Transition Fault Simulation”. IEEE Design and
Test, 32 - 38, April 1987.

[3] M. H. Schulz and F. Brglez. “Accelerated Transition Fault
Simulation”. Proc. 84th DAC, 237 - 243, June 1987.

[4] S. Koeppe. “Modeling and Simulation of Delay Faults in
CMOS Logic Circuits”. IEEE Int. Test Conf., 530 - 536, Sept.
1986.

[5] J. L. Carter, V. S. Iyengar, and B. I<. Rosen. “Efficient Test
Coverage Determination for Delay Faults”. IEEE rnt. Test
Conf., 418 - 427, Sept. 1987.

[6] V. S. Iyengar, B. K. Rosen, and I. Spillinger. “Delay Test
Generation 1 - Concepts and Coverage Metrics”. IEEE Int.
Test Conf., 857 - 866, Sept. 1988.

[7] V. S. Iyengar, B. K. Rosen, and I. Spillinger. “Delay Test Gen-
eration 2 - Algebra and Algorithms”. IEEE Int. Test Conf.,
867 - 876, Sept. 1988.

[8] A. K. Pramanick and S. M. Reddy. “On~the Detection of Delay
Faults”. IEEE Int. Test Conf., 845 - 856, Sept. 1988.

[Q] J. J. Shedletsky and J. D. Lesser. “An Experimental Delay
Test Generator for LSI Logic”. IEEE Trans. On Camp., Vol.
C-29, No. 3, 235 - 248, March 1980.

[lo] C. J. Lin and S. M. Reddy. “On Delay Fault Testing in Logic
Circuits”. IEEE Trans. On CAD, Vol. 6, No. 5, 684 - 703,
Sept. 1987.

[ll] S. M. Reddy, C. J. Lin, and S. Patil. “An Automatic Test
Pattern Generator for the Detection of Path Delay Faults”.
I%%E Int. Conf. On CAD, 284 - 287, Nov. 1987.

[12] E. S. Park and M. R. Mercer. “Robust and Nonrobust Tests
for Path Delay Faults in a Combinational Circuit”. IEEE Int.
Test Conf., 1027 - 1034, Sept. 1987.

[13] M. H. Schulz, K. Fuchs, and F. Fink. “Advanced Automatic
Test Pattern Generation Techniques for Path Delay Faults”.
19th FTC’S, June 1989.

[14] M. H. Schulz, K. Fuchs, and F. Fink. “An Improved and
Versatile Automatic Test Pattern Generation Algorithm for
Path Delay Faults”. To be published.

[15] G. L. Smith. “Model for Delay Faults Based Upon Paths”.
IEEE Int. Test Conf., 342 - 349, Sept. 1985.

1161 J. Savir and W. H. McAuney. “Random Pattern Testability
of Delay Faults”. IEEE TTans. On Comp., Vol. 37, No. 3,
291 - 300, March 1988.

[17] K. J. Antreich and M. H. Schulz. “Accelerated Fault Simu-
lation and Fault Grading in Combinational Circuits”. 1EEE
Tmns. On CAD, Vol. CAD-6, No. 5,704 - 712, Sept. 1987.

[18] F. Brglez and H. Fujiwara. “A Neutral Netlist of 10 Combi-
national Benchmark Circuits and a Target Translator in For-
tran”. PTOC. IEEE Symposium on Circuits and Sysfems; Spe-
cial Session on ATPG and Fault Simulation, 663 - 698, June
1985.

Paper 23.4

363

