
An Automatic Test Gerzeration Algorithm
for Hardware Descriptiolz Larzguages

Forrest E. Norrod
Hewlett Packard

3404 Harmon Road
Fort Collins, C b 80525

Abstract
A new approach to test generation from Hardware
Description Language circuit models has been developed
and implemented. The described E-algorithm generates
tests for control, operation, and data faults in sequential
and combinational logic modeled at the functional level.
A symbolic variable notation is introduced to permit
systematic fault propagation through control structures.
Results of the implementation are given for a set of test
cases and the application of the algorithm to a semi-
custom ASK are discussed.

Introduction
Traditional test generation techniques for digital

circuits have been rendered inadequate by the increasing
levels of integration achieved by VLSI technology. As
the number of active components on a chip reaches the
hundreds of thousands, the computational cost of using
gate level automatic test pattern generation (ATPG)
algorithms becomes prohibitive. Adequate tests for these
complex circuits must, however, still be devised. This
paper details an ATPG technique, the E-algorithm, that
accepts functional-level circuit models described using a
Hardware Description Language (HDL). A fault model
has been developed that addresses data path faults, faults
in control structures, and faults in functional operators.
The E-algorithm is able to generate tests for all modeled
fault types, and handles a wide variety of circuit types,
including sequential circuits. The algorithm has been
implemented; initial results are given.

Previous Research
As the computational costs of gate-levet test generation

have grown excessive, designers and test engineers have
turned to other testing methods. Often, these techniques
are somewhat ad-hoc such as: write test vectors to “toggle
every circuit node”. These approaches require a large

The research described in this paper was supported in part by Control
Data, IBM, MCC, NSF, and the Virginia Center for Innovative
Technology.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercia1 advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

investment in engineering time and yet fail to guarantee
adequate fault coverage. A popular alternative is to add
logic that makes the circuit easier to test; this method is
particularly useful for sequential circuits.

In recent attempts to devise systematic ATPG systems,
functional approaches to circuit description and test
generation have been examined. In these functional
approaches, the circuit input to the ATPG system is
described at the behavioral level rather than structural
level, reducing the amount of detail which must be
considered during the design and test process. Test
generation with such models requires a fault model based
on aberrations in the circuit function rather than
structural defects. Faults are modeled as perturbations in
the functional or control blocks of the circuit.

Levendel and Menon [l] proposed extensions to the
gate-level D-algorithm to handlen faults in functional
blocks of HDL’s. Their approach gives strategies for D-
propagation through functional blocks, but has an high
computationai cost for complex control structures.
Several other approaches to test generation for functional
circuit models have been presented [2 - 8,161 with varying
results. A number of these approaches have produced test
vector suites with gate-level fault coverages in the 95 -
100% range. However, a drawback of most functional
level ATPG systems is the lack of a clearly-defined fault
model, making functional fault coverage estimates
difficult to produce. Barclay and Armstrong [9,12]
devised an ATPG method for HDL circuit models which
incorporates a Chip-level fault model; the method was
implemented as a heuristic goal-oriented ATPG system.
Their technique generates tests for faults in control
structures as well as data path faults, but is
computationally expensive and can’t handle reconvergent
fanout. O’Neill analyzed and eliminated some of these
limitations [lo].

Test Generation Approach & Circuit Models
The test generation approach detailed herein is

extension of the D-algorithm [ll] that generates tests for
digital circuits described by a non-procedural HDL. A
graph transformation is applied to the HDL circuit model
to yield a representation that eases the description and
implementation of the E-algorithm. This representation
also forms the basis for a fault model for control faults.

The process of generating a set of test vectors for a
given fault in a circuit can be broken into three main
steps. The first step, Sensitization, is where the effect of
the fault is made to manifest itself at the fault site. The
second step is Fault Propagation where the effect of the
fault is moved through the circuit until it can be observed

26th ACM/IEEE Design Automation Conference@

Paper 27.3

0 1989 ACM O-89791 -31 O-8/89/0006/0429 $1.50 429

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74382.74454&domain=pdf&date_stamp=1989-06-01

at an output. The third step in the procedure works the
signals required to establish the propagation path back to
the inputs and is called Justification.

The E-algorithm employs_the standard notation, using
the logical values O,l,X,D,D where D is herein assumed
to = 1 (good signal value) and 0 (faulty value). During
test generation, the D-frontier lists the signals that
manifest the fault as propagation proceeds. A set of
symbolic variables E and E are introduced to propagate
fault syndromes through control structures. A further
extension to the standard notatiop is mandated by the
properties of sequential circuits. Each signal assignment
or justification requirement is given a time tag to specify
when the assignment is done or the signal needed.

A subset of VHDL (VHSIC Hardware Description
Language) is used to model digital circuits. Circuit
descriptions are limited to non-procedural data-flow
representations; these consist of groups of data signal
assignments and transformations using functionat bslocks
such as AND, and ADD operators. Signals can be of the
type BIT or BIT-VECTOR, from which other types can
be formed. Control statements such as IF. .THEN.. ELSE
and CASE are used to govern the flow of execution.
Algorithmic structures such as FOR loops or
REPEAT...UNTIL blocks are excluded.

A simple timing model is employed to permit
sequential behavior. All sequential logic is assumed to be
synchronous. Inputs are set at the beginning of a master
clock period and outputs sampled at the end. Explicit
signal transitions are modeled with the Signal’STABLE
boolean operation which is false immediately after signal
changes value. Thus, the use of the ‘STABLE operation
implies two time periods. A typical use of ‘STABLE is to
model clocked Iogic with statements such as: IF CLOCK
AND NOT CLOCK’STABLE THEN . . . where
assignments under control of the IF will execute on the
leading edge of CLOCK.

Graph Transformation & Fault Model
A data-flow graph of the circuit is derived from the

VHDL description. The graph is composed of operation
blocks corresponding to the basic data functions (eg.
NOR or SUBTRACT) specified in the VHDL
description. Operation blocks are interconnected by data
paths, data buffers, and control lines. Internal signals are
transformed into signal blocks. Each assignment in the
VHDL model to an internal signal is connected through a
data buffer to the input of the corresponding graph signal
block. The data buffers each have a control port that
regulates the flow of information into the connected
signal block. Whenever the graph branch attached to the
buffer control port has a logic value of ‘l’, the data a.t the
input of the buffer is loaded into the signal block. The
control branch will have a ‘1’ value when the conditions
controlling the data assignment in the VHDL model are
met. See Figure 1 for an example of VHDL-to-graph
transformation.

The fault model for the E-algorithm considers two
types of faults: defects in functional operation blocks, and
stuck-at faults in data or control lines. Each operation
block is faulted by having it fail to some other operation;
the current implementation faults an operation to its dual
or uses a user-defined fault syndrome table which altows
arbitrary faults to be modeled. Research has been
conducted to find what operation substitution(s) yield the

Paper 27.3

430

best fault coverage [131.

Data and control lines are faulted by impressing stuck-
at faults on the lines. For data paths, these faults usually
affect the entire path, ie. all bits in a vector-wide data
line are faulted to all O’s, all l’s, and1 alternating O-l
patterns. Control faults are modeled as stuck-at:-1 and
stuck-at-0 faults on control branches. A. stuck-at-0 fault
on a control branch will prevent data transfers through
the attached control buffer(s). In the VHDL description
this corresponds to a assignment statement being
prevented from executing. Similarly, a stuck-at-l fault on
a control branch causes the associated data transfer(s) to
occur at every time period, thus modeling assignment
statements which execute continuously.

VHDL

IF A XOR (B AND C) THEN
COM <= DTl;

ELSE
COM <= DT2;

ENDIF;
OUTPORT < = COM;

Graph Model

I)T

i r

1 D 1

I

OUTPORT

Figure 1. VHDL to Graph transfolrmation.

Sensitization & Propagation
For a test to be generated for a given fault, the fault

site must be sensitized so that at least one circuit line or
block produces or carries a value containing D or 6.
Sensitizing the fault is accomplished by choosing from a
fault table a primitive cube that specifies what conditions
must be set at the inputs to the faulted line or block to
produce the given faulty value. The faulty output of the
block or line is a set of values known <as the initial D-
vector for the fault.

After the fault has been sensitized, unless the fault
occurs at a circuit output, the effect of the fault (the fault
syndrome) must be moved to an output. Propagating the
fault syndrome consists of moving the D-vector of the
fault through the graph until an output iis reached. The
D-vector is driven through each successive data operation
or signal block in the path by using propagation rules
proposed by Levendel and Menon [l]. Propagating fault
syndromes through control branches is discussed in the
next section.

The E-algorithm uses a derivative of the D-algorithm
to propagate fault syndromes through data structures
(function or signal blocks):

1.

2.

3.

4.

5.

6.

7.

8.

Sensitize the fault: select fault cube; set D-frontier
to initial D-vector; set justification list to the
requirements of primitive fault cube; assign initial
time-tags to the D-vector and justification list.

At limits of the D-frontier, select the next object(s)
in path(s) to be propagated through. This selection
is based on stored observability measures for each
graph block. Typically, single-path propagation will
be tried first, but if no single consistent propagation
path can be found then multiple paths will be
examined.

Propagate the fault syndrome through the selected
object by intersecting the D-frontier and its time-
tags with the propagation requirements of the
object. This creates a new D-vector at the outputs
of the object. If propagation is through the data
path of a control buffer (and under a ‘STABLE),
then a new time tag is created for the new D-vector.

Check propagation requirements for consistency
with justification list. If inconsistencies arise,
attempt to reschedule data signal loads. Also check
signal values against an Illegal conditions table. The
illegal conditions table may be used to enumerate
illegal combinations of state lines, thus preventing
the system from wasting time generating a test using
a set of values which cannot be justified.

If no propagation cube is consistent, try another
path. GOT0 2.

Add propagation requirements to propagation list,
construct a new D-frontier.

If primary output has been reached, resolve
justification requirements back to primary inputs
and STOP - test has been generated. Uf
justification fails, backup and try another path.
GOT0 2)

If a primary output has not been reached, continue
propagation from new D-frontier. GOT0 2.

Whenever a path turns out to be a dead-end, the
algorithm backs up to the last untried path in the circuit
and propagates through that path. The choice of paths is
guided primarily by observability measures. The
observability measures are estimates of the difficulty in
reaching the output along a certain path; rules similar to
those discussed by Fong [15] are used by a pre-processor
to generate the observability of each circuit object.

Faults are propagated through simple logic elements
such as AND and OR gates by intersecting the D-frontier
with the gate’s propagation cubes. Propagating fault
syndromes through more complex operation blocks may
be accomplished with simple D-cube intersection [l], but
in a few cases (ex. DIVIDE and multi-bit PARITY
functions) a model of the operation is simulated to derive
the propagated syndrome (D-vector) and justification
requirements. The object’s propagated syndrome and
justification requirements are assigned time tags that
specify when they are available or required. The time
tags will be the same as the tag of the D-frontier elements
at the input of the object unless the object is a control
buffer or line under a ‘STABLE operation. In these
cases, at least two time periods are implied and new tags

(set to be before or after the D-frontier elements as
appropriate) are created for the signals.

Once the fault syndrome reaches a primary output, a
complete propagation path has been formed and the
justification algorithm is invoked. If an irresolvable
inconsistency is detected during justification, then the
propagation routine tries to find a different propagation
path. This can be, of course, rather expensive and a
focus of future research is implementing a set of
guidelines for pin-pointing the source of irresolvable
conflicts.

Consistency checks are performed during propagation
to check for direct contradictions (trying to set a line to
‘0’ and ‘1’ simultaneously for example), and also check
for signal combinations which are explicitly defined a
priori as illegal. This feature is used primarily to identify
illegal states in state machines. Without this feature it is
possible that the system will try generating a test where an
illegal state is to be justified on state lines. This condition
could endless looping during justification, searching in
vain for an initialization sequence.

Example
Figure 2 shows a VHDL fragment and its associated

graph. A fault has occurred which prevents the first
clause in the CASE statement from ever executing (a
DEADCLAUSE fault). In the graph model, this fault
corresponds to the control branch being stuck-at-O. This
fault prevents the connected data buffer from loading the
signal C. OP and G are primary outputs, while A, B, H,
P, OC, CK, and CD are primary inputs.

To generate a test for this fault, the fault is sensitized
by setting the output of eql to 1 at an initial time tag; this
produces a D on the faulted line. Propagation of the
fault syndrome begins by finding the most observable
object with an input connected to the faulted branch. In
this case, there exists no path through data paths - the
only route is through the control port of bufl.
Unfortunately, there is no way for the fault syndrome to
directly affect the data in the signal block, thus the effect
of the fault can not be propagated by using D-propagation
rules and a path for the syndrome must be found some
other way.

Propagation Through Control Branches
When a D-vector reaches a control branch, the data

path propagation algorithm invokes the control branch
propagation process to find a path for the fault:

1.

2.

3.

4.

Select a signal block connected to a data buffer
whose control port is attached to the branch
exhibiting the fault syndrome.

Load the selected signal block with a vector (as wide
as the signal block) containing subscripted E-bits.
The subscripts on the E bits indicate the bit’s
position in the signal block.

Propagate the E-vector towards the circuit outputs
using the D-propagation rules, but with ‘E’ values
instead of ‘D’ values.

When the E-vector reaches the output or a second
unavoidable control branch, invoke the E-
Justification routine to select a value or sequence of
values to be instantiated for the E-bits in the
original selected signal block.

Paper 27.3

431

CND

CASE CND is
WHEN ‘0’ => C <= A;
WHEN ‘1’ => C <= 8;

ENDCASE;

IF OC AND CLK AND (NOT CLK’STABLE) THEN
PRIN <= C AND P;

ENDIF; =3

IF PARITY(C) THEN
G c= H;

ENDIF;

Fuull.- D~ADCLAUSF when CHD = ‘0’
(%lause w/ never execute/.

Cnrrespunds lo 8 stuck-St-0 f~?ull PRIM
on the output of Eq/ b/m-k.

Figure 2. ExampIe of control branch fault.

The E-vector is used to establish a propagation path
for the fault syndrome from the signal block under the
faulty control branch. As the E-vector is propa.gated
from the signal block, it accumulates information on the
effect that values in the signal block have on other circuit
elements. Therefore, when the E-vector has reach,ed an
output, the output value can be specified as a function of
the E-bits of the E-vector and other signal. The effect of
a certain value in the selected data block upon the output
can now be discerned.

value produced by faulty controt branch. Figures 3.b -
3.e show these cases. If the faulty control branch is the
only one that can be used to load the signal block, then it
is first assumed to be fault-free, a preload value loaded,
and then a test for incorrect control branch value made.

To observe the fault syndrome, conditions must be
established so that when the fault is present one value is
loaded into the signal block, and when no fault exists a
different value is loaded. Values are chosen after
examining the E-vector at the output to determine which
bits of the signal block reach the output and in what
form. As different signal block values may produce
identical output values, an inequality satisfaction routine
is applied to the E-vector at the output to determine what
E-bit values in the signal block will produce different
outputs. The E-Justification routine chooses the values to
be loaded into the block. The sequence of values to be
instantiated for the E-vector at are chosen depending on
the topology of the faulty control branch and signal block.
Figure 3 shows the 5 basic cases of propagation through
control branches and-their E-load strategies. Note in
Figure 3 that E and E correspond to the two different
actual values (derived from the inequality satisfaction
routine) loaded into the bits of the E-vector which reach
an output.

Armed with the E-propagation and justification
routines, we may now return to the example of Figure 2.
The D @ to at the input to bufl causes C to be loaded
with E,cl_ij. This E-vector is now propagated using data
path rules. The most observable object under C is andl;
purl is not chosen as it requires propagation through
another control branch. Ec(r4, is intersected with the
propagation cubes of andf. A ‘1’ in an:y bit of P would
allow the syndrome to propagate through and2 but
assume here that the cube chosen for intersection requires
P = ‘1111’ and yields Output(andl) = E,(,+ @ r(l. Only
one route is available for further propagation at this
point, ~0 E,(M @ rU is intersected with the cube of buf3,
giving Of’ = E,c,4j @ ti. Note the output has now been
expressed as a function of the E-vector ‘E,(,,,. The new
tag tl is produced since buf3 is under a of CK.

In most cases sequences of values are loaded into the
E-vectors as a consequence of the nature of control faults.
If a single signal block has separate load buffers, with one
controlled by a branch with a value of ‘D’ and an.other
with a control branch value of %’ (Figure 3.a) then a test
that would detect this fault consists of placing one value
on the input to one buffer, and the inverse value on the
input to the other buffer. The value of the output will
indicate which load occurred, and thus the presence or
absence of the fault. However, if the D-frontier of the
fault doesn’t reach at least two buffers of the same :signal
block, then this strategy won’t work. Instead, these fault
cases are covered by checking if a load under control of
the faulty branch can be properly executed, A known
value is loaded into the selected signal block, and the
output then observed for a change or non-change in the

As the E-vector has reached an output, the E-
Justification procedure is invoked. The topology of the C
signal block / data buffer where E:,(r4) is loaded
corresponds to that of Figure 3-b. With the appropriate
substitutions (eg. IiVI = A, IN2 = B etc:.), the sequence
of Figure 3.b is used and the values for I:he E-vectors are
chosen based on the constraints accumulated during E-
vector propagation. In this case the ch_oice is simple: any
two different values ex.: E, = ‘11 ll’, E, = ‘0000’. After
justifying all required signals, a complete test for the
modeled fault is given by:

If the E-vector encounters another control branch
instead of an outpuf, E-Justification of the vector
proceeds as before and then a signal block under control
of the encountered control branch is loaded with a
different E-vector, Enew. E-propagation is then
reinitiated. However, since the fault syndr_ome at the
new control branch isn’t given by D or I), different

Paper 27.3

432

strategies must be used during E-Justification to
instantiate the E,,, vector values when the output or next
control branch is reached. The values are chosen based
on the sequence of explicit values the previous E-vector
induced at the new control branch. Figure 4 lists the
possible control branch conditions and the corresponding
E new load strategies.

IN1 IN2
Tag CI C2 INI IN2 Outf(SIG)

10 I 0 E E E/E
(goodifaulty)

To o?kput Figure 3.a

IN1 11\‘2
Cl c2

p;‘:

Tag Cl C2 IN1 IN2 Our f(SIG)

D t0 0 I X E E I E(prelond)

SIG KI I 0 E x i? I E(test)

To output Figure 3.b

Tag Cl C2 INI IN2 Out /(SIG)

t0 0 I X E E I -@reload)
tl 0 0 E x E I E(test)

Figure 3.c

Tag Cl INI Out f(SIG)

to 1 E E I E(preload)
tl 0 E E I &rest)

To o\ltput Figure 3.d

IN1
Tag Cl IN1 Out f(SIG)

to I E El-
ti I it E lunchangedfrom t0

Figure 3.e

Figure 3. E-Justification strategies for the five
basic control branch / signal block topologies.

An example of propagation through a second control
branch can be seen from the example of Figure 2: If the
path through buj3 were removed, then the fault syndrome
would have to propagate through the control branch of
buf4. The E-vector value at the output of par1 can be
given as Output(par1) = EC1 63 Ec2 Q E,s Q EC.,. When
the inequality routine is invoked, values for the E,(,,)
vector loads are chosen to meet this condition, ex: A =
0001 and B = 0000. This yields the sequence at the input
to buf4 of: O/O Q tl - t2; II0 @ ti. In order to match this
syndrome (given in Figure 3-b) with those given in Figure
4, the value I/O is to be held for two more time periods,
giving I/O @ t3-~5 and matching the first strategy in
Figure 4. This strategy requires the E,, vector to be
loaded into G and propagated to an output (easy enough

here). The values instantiated for E,,, and E,, are
chosen so as they differ (here just any two different
values). Thus, H (the load path) will be justified to: M =
E,, @ ti, t5; H = E,,, @ t4. The output will follow the
same sequence and the syndrome can be observed.

The strategies given in Figure 4 apply in cases where
the new control branch controls a buffer that may be
loaded with different values. If, however, the branch
controls the loading of a literal (eg. ‘00’), then the
previous E-vectors are altered to produce a_continuous
‘l/O’ or ‘011’ syndrome, effectively a D or D, and the
strategies of Figure 3 followed.

Seauerice E-Vector Outvut is
Time - at Branch Sequence fun&on of

to l/O E -new
tl l/O LW
t2 l/O E new

to 1 l- E “W E I-
tl 0 I - E _“~~ Ii2 I -
t2 1 I- E “cW E,,, I -

to 1 J 1 E -new EnewJ En,
t1 l/O E “e” E new J En,

to l/l E -Dew En, J Enew
t1 O/l E “IZW En,, J Lw

Figure 4. E-Justification strategies for
successive control branch propagation

Justification
Signal values required to sensitize the fault, establish

the propagation path, or load E-vectors are moved to the
circuit inputs with the justification procedure.
Justification proceeds in the standard manner; signals are
worked backwards by intersecting them with the singular
covers of operation blocks. If different paths for
justifying a signal are available, the more controllable is
chosen. If a signal is justified back through a signal block
and buffer, then the value of the signal must be available
at the buffer and Ioaded into the block at or before the
time the value is needed at the output of the signal block.
If conflicts develop during justification, the system
attempts to re-schedule signal block loads to eliminate the
contention. When all required values have been moved
back to the inputs and no inconsistency has arisen, then a
test for the fault has been found.

Implementation and Results
The E-algorithm has been implemented in PASCAL

running in a MS-DOS shell on a 25 MHz 80386
workstation. The complete system includes of a pre-
processor that derives the graph from the VHDL model
and calculates the controllability and observability
measures. A fault list is generated for the circuit that
includes faulting each operation block and placing stuck-
at faults on all control and data lines. Tests are
generated for each fault on the fault list except for faults
in ‘STABLE operation blocks which cause continuous
clocking.

Tests for several large MS1 circuits have been
generated, including a registered ALU and an S-bit
controlled counter. The ALU model used is equivalent to
the positive logic portion of a 74181, but with output

Paper 27.3

433

registers added. Tests for all 127 chip-level faults were
generated in 72 seconds of CPU time; this figure includes
the time consumed during pre-processing. The g-bit
controlled counter produced tests for 74 modeled faults;
tests for two faults failed due to poor controllability and 6
faults were excluded as they produced continuous
clocking. The total CPU time consumed during pre-
processing and test generation was 110 seconds.

Preliminary comparisons of generated test sets with
gate-level implementations of the circuits indicate gate-
level fault coverage on the order of 94%. Complete test
results and circuit models are found in [14].

More recently, a test set was generated for a Hevvlett-
Packard gate array, the BLENDER chip, to serve as a
production test set. The BLENDER gate array is a 1400
gate chip used in a high-performance 3-D
superworkstation to digitally blend multiple :high-
resolution images in real time. The BLENDER chip
contains a number of complex functional blocks,
including three carry-look-ahead adders. The
BLENDER contains 157 modeled, non-dominated and
non-equivalent chip-level faults. A test vector set to
cover those faults was generated in 537 CPU seconds,
including preprocessing and graph compilation time:. A
test suite of 143 vectors was produced after redundant
vector elimination and compacting. The vectors were
fault graded on a KILO-3 system and yielded equivalent
gate-level stuck-at fault coverage of 93%. All undetected
faults occurred in the adders, the adder fault model is
being updated to increase the fault coverage.

The algorithm performs well on complex sequential
circuits if the controllability of internal registers is good.
It does, however, suffer from a common limitation of
ATPG systems: when controllability of registers is poor,
test generation performance suffers. This limitation is the
result of the lack of high-level state transition
information, the system may have to exhaustively search
to find the sequence of inputs to move internal registers
to a state required for test generation. The addition of
higher-level state transition information (ie. a library of
initialization or homing sequences for circuit state
machines) would greatly expedite test generation in many
cases involving sequential machines.

Conclusions
This paper presented the E-algorithm, a method for

generating tests for general logic circuits modeled using a
Hardware Description Language. A fault model base:d on
faulting structures in a graph derived from the HDL
model, and a test generation algorithm that generates
tests for the modeled faults have been developed and
implemented. The E-algorithm has the ability to
propagate fault syndromes through high-level control
structures as well as data operations. Moreover, tests for
sequential logic can be generated. Preliminary results are
highly encouraging, yielding high fault coverages and
reasonable performance. Future work will attempt test
generation for larger circuits, and examine the probIem of
embedding state-transition knowledge.

Acknowledgements
The author would like to thank Dr. James Armstrong

for his support and guidance. Mike O’Neill, David
Miller, and Erann Gat all provided many helpful
comments. Joel Gengler assisted in the generation of
vectors for the BLENDER chip. Finally, the support of

Paper 27.3

434

GTD management is greatly appreciated.

References
Cl1

PI

[31

[41

[51

t61

PI

[Sl

PI

[lOI

Pll

[=I

[I31

[I41

[W

Y. Levendel and P. Menon, ‘Test Generation
Algorithms for Computer Hardware Description
Languages,“‘rEEE Trans. Comput. ,C-31, July 1982,
pp.577-588.

M.A. Breuer and A.D. Friedman,“Functional
Level Primitives in Test Generation,“ZEEE Trans.
Comput. ,C-29, March 1980, pp. 2213-235.

B.M. Huey and F.J. Hill,“Fault Test Generation
Using A Design Language,‘Proc. Syw.
CHDL,1975, pp.91-95.

S.Y.H. Su and T. Lin, “Fuoctional Testing
Techniques for Digital LSWLSI Systems,” in Proc.
21st Design Automation Conf., pp 517-528, June
1984.

C. Liaw, S.Y .H. Su, and Y. K.. Malaiya,“State
Diagram Approach for Functional Testing of
Control Section,‘Proc. Intl. Test Conf., 1981,
pp.433-446.

T. Lin and S.Y.H. Su, ‘VLSI Functional Test
Pattern Generation - A Design and
Implementation,” Proc. Intl. Test Conf., 1985, pp.
922-929.

----,‘The S-Algorithm: A Promising Solution for
Systematic Functional Test Eeneration,“IEEE
Trans. CAD, CAD-4, July 1985, pp. 250-263.

S.Y.H. Su and Y. Hsieh,‘Testing Functional
Faults in Digital Systems Described by Register
Transfer Language,‘Proc. Intl. Test Conf., 1981,pp.
447-457.

D. Barclay and J.R. Armstrong,“A Heuristic
Chip-Level Test Generation Algorithm,“Proc. 23rd
DACJ986, pp. 257-262.

M. O’Neill,“An Improved Chip-Level Test
Generation Algorithm”, MS thesis, Dept. of
Electrical Engineering, VP1 & SU, Blacksburg,
Jan. 1988.

J.P. Roth, “Diagnosis of Automata Failures: A
Calculus and a Method,” IBM Journal of Research
and Development, vol. 10, pp.278-291, July 1966.

D. Barclay, “An Automatic Test Generation
Method for Chip-Level Circuit D’escriptions,” MS
thesis, Dept. of Electrical Engineering, VP1 & SU,
Blacksburg, Jan. 1987.

C.H. Chao and F.G. Gray, “Micro-Operation
Perturbations in Chip Level Fault Modeling”,Proc.
25th DAC, 1988,pp. 579-582.

F.E. Norrod, ‘The E-Algorithm,, an Automatic
Test Generation Algorithm for Hardware
Description Languages,” MS thesis, Dept. of
Electrical Engineering, VP1 & SU, Blacksburg,
February 1988.

J.Y.O. Fong, “On Functional Controllability and
Observability Analysis”, Proc. Intl. Test Conf.,
1982, pp. 170-175.

S.M. Thatte and J.A. Abraham, “Test Generation
for Microprocessors”, IEEE Trans. on Computers,
June 1980, pp. 429-441.

