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Abstract 
A new approach to test generation from Hardware 
Description Language circuit models has been developed 
and implemented. The described E-algorithm generates 
tests for control, operation, and data faults in sequential 
and combinational logic modeled at the functional level. 
A symbolic variable notation is introduced to permit 
systematic fault propagation through control structures. 
Results of the implementation are given for a set of test 
cases and the application of the algorithm to a semi- 
custom ASK are discussed. 

Introduction 
Traditional test generation techniques for digital 

circuits have been rendered inadequate by the increasing 
levels of integration achieved by VLSI technology. As 
the number of active components on a chip reaches the 
hundreds of thousands, the computational cost of using 
gate level automatic test pattern generation (ATPG) 
algorithms becomes prohibitive. Adequate tests for these 
complex circuits must, however, still be devised. This 
paper details an ATPG technique, the E-algorithm, that 
accepts functional-level circuit models described using a 
Hardware Description Language (HDL). A fault model 
has been developed that addresses data path faults, faults 
in control structures, and faults in functional operators. 
The E-algorithm is able to generate tests for all modeled 
fault types, and handles a wide variety of circuit types, 
including sequential circuits. The algorithm has been 
implemented; initial results are given. 

Previous Research 
As the computational costs of gate-levet test generation 

have grown excessive, designers and test engineers have 
turned to other testing methods. Often, these techniques 
are somewhat ad-hoc such as: write test vectors to “toggle 
every circuit node”. These approaches require a large 
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investment in engineering time and yet fail to guarantee 
adequate fault coverage. A popular alternative is to add 
logic that makes the circuit easier to test; this method is 
particularly useful for sequential circuits. 

In recent attempts to devise systematic ATPG systems, 
functional approaches to circuit description and test 
generation have been examined. In these functional 
approaches, the circuit input to the ATPG system is 
described at the behavioral level rather than structural 
level, reducing the amount of detail which must be 
considered during the design and test process. Test 
generation with such models requires a fault model based 
on aberrations in the circuit function rather than 
structural defects. Faults are modeled as perturbations in 
the functional or control blocks of the circuit. 

Levendel and Menon [l] proposed extensions to the 
gate-level D-algorithm to handlen faults in functional 
blocks of HDL’s. Their approach gives strategies for D- 
propagation through functional blocks, but has an high 
computationai cost for complex control structures. 
Several other approaches to test generation for functional 
circuit models have been presented [2 - 8,161 with varying 
results. A number of these approaches have produced test 
vector suites with gate-level fault coverages in the 95 - 
100% range. However, a drawback of most functional 
level ATPG systems is the lack of a clearly-defined fault 
model, making functional fault coverage estimates 
difficult to produce. Barclay and Armstrong [9,12] 
devised an ATPG method for HDL circuit models which 
incorporates a Chip-level fault model; the method was 
implemented as a heuristic goal-oriented ATPG system. 
Their technique generates tests for faults in control 
structures as well as data path faults, but is 
computationally expensive and can’t handle reconvergent 
fanout. O’Neill analyzed and eliminated some of these 
limitations [lo]. 

Test Generation Approach & Circuit Models 
The test generation approach detailed herein is 

extension of the D-algorithm [ll] that generates tests for 
digital circuits described by a non-procedural HDL. A 
graph transformation is applied to the HDL circuit model 
to yield a representation that eases the description and 
implementation of the E-algorithm. This representation 
also forms the basis for a fault model for control faults. 

The process of generating a set of test vectors for a 
given fault in a circuit can be broken into three main 
steps. The first step, Sensitization, is where the effect of 
the fault is made to manifest itself at the fault site. The 
second step is Fault Propagation where the effect of the 
fault is moved through the circuit until it can be observed 
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at an output. The third step in the procedure works the 
signals required to establish the propagation path back to 
the inputs and is called Justification. 

The E-algorithm employs_the standard notation, using 
the logical values O,l,X,D,D where D is herein assumed 
to = 1 (good signal value) and 0 (faulty value). During 
test generation, the D-frontier lists the signals that 
manifest the fault as propagation proceeds. A set of 
symbolic variables E and E are introduced to propagate 
fault syndromes through control structures. A further 
extension to the standard notatiop is mandated by the 
properties of sequential circuits. Each signal assignment 
or justification requirement is given a time tag to specify 
when the assignment is done or the signal needed. 

A subset of VHDL (VHSIC Hardware Description 
Language) is used to model digital circuits. Circuit 
descriptions are limited to non-procedural data-flow 
representations; these consist of groups of data signal 
assignments and transformations using functionat bslocks 
such as AND, and ADD operators. Signals can be of the 
type BIT or BIT-VECTOR, from which other types can 
be formed. Control statements such as IF. .THEN.. ELSE 
and CASE are used to govern the flow of execution. 
Algorithmic structures such as FOR loops or 
REPEAT...UNTIL blocks are excluded. 

A simple timing model is employed to permit 
sequential behavior. All sequential logic is assumed to be 
synchronous. Inputs are set at the beginning of a master 
clock period and outputs sampled at the end. Explicit 
signal transitions are modeled with the Signal’STABLE 
boolean operation which is false immediately after signal 
changes value. Thus, the use of the ‘STABLE operation 
implies two time periods. A typical use of ‘STABLE is to 
model clocked Iogic with statements such as: IF CLOCK 
AND NOT CLOCK’STABLE THEN . . . where 
assignments under control of the IF will execute on the 
leading edge of CLOCK. 

Graph Transformation & Fault Model 
A data-flow graph of the circuit is derived from the 

VHDL description. The graph is composed of operation 
blocks corresponding to the basic data functions (eg. 
NOR or SUBTRACT) specified in the VHDL 
description. Operation blocks are interconnected by data 
paths, data buffers, and control lines. Internal signals are 
transformed into signal blocks. Each assignment in the 
VHDL model to an internal signal is connected through a 
data buffer to the input of the corresponding graph signal 
block. The data buffers each have a control port that 
regulates the flow of information into the connected 
signal block. Whenever the graph branch attached to the 
buffer control port has a logic value of ‘l’, the data a.t the 
input of the buffer is loaded into the signal block. The 
control branch will have a ‘1’ value when the conditions 
controlling the data assignment in the VHDL model are 
met. See Figure 1 for an example of VHDL-to-graph 
transformation. 

The fault model for the E-algorithm considers two 
types of faults: defects in functional operation blocks, and 
stuck-at faults in data or control lines. Each operation 
block is faulted by having it fail to some other operation; 
the current implementation faults an operation to its dual 
or uses a user-defined fault syndrome table which altows 
arbitrary faults to be modeled. Research has been 
conducted to find what operation substitution(s) yield the 
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best fault coverage [ 131. 

Data and control lines are faulted by impressing stuck- 
at faults on the lines. For data paths, these faults usually 
affect the entire path, ie. all bits in a vector-wide data 
line are faulted to all O’s, all l’s, and1 alternating O-l 
patterns. Control faults are modeled as stuck-at:-1 and 
stuck-at-0 faults on control branches. A. stuck-at-0 fault 
on a control branch will prevent data transfers through 
the attached control buffer(s). In the VHDL description 
this corresponds to a assignment statement being 
prevented from executing. Similarly, a stuck-at-l fault on 
a control branch causes the associated data transfer(s) to 
occur at every time period, thus modeling assignment 
statements which execute continuously. 

VHDL 

IF A XOR (B AND C) THEN 
COM <= DTl; 

ELSE 
COM <= DT2; 

ENDIF; 
OUTPORT < = COM; 

Graph Model 

I )T 

i r 

1 D 1 

I 

OUTPORT 

Figure 1. VHDL to Graph transfolrmation. 

Sensitization & Propagation 
For a test to be generated for a given fault, the fault 

site must be sensitized so that at least one circuit line or 
block produces or carries a value containing D or 6. 
Sensitizing the fault is accomplished by choosing from a 
fault table a primitive cube that specifies what conditions 
must be set at the inputs to the faulted line or block to 
produce the given faulty value. The faulty output of the 
block or line is a set of values known <as the initial D- 
vector for the fault. 

After the fault has been sensitized, unless the fault 
occurs at a circuit output, the effect of the fault (the fault 
syndrome) must be moved to an output. Propagating the 
fault syndrome consists of moving the D-vector of the 
fault through the graph until an output iis reached. The 
D-vector is driven through each successive data operation 
or signal block in the path by using propagation rules 
proposed by Levendel and Menon [l]. Propagating fault 
syndromes through control branches is discussed in the 
next section. 



The E-algorithm uses a derivative of the D-algorithm 
to propagate fault syndromes through data structures 
(function or signal blocks): 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Sensitize the fault: select fault cube; set D-frontier 
to initial D-vector; set justification list to the 
requirements of primitive fault cube; assign initial 
time-tags to the D-vector and justification list. 

At limits of the D-frontier, select the next object(s) 
in path(s) to be propagated through. This selection 
is based on stored observability measures for each 
graph block. Typically, single-path propagation will 
be tried first, but if no single consistent propagation 
path can be found then multiple paths will be 
examined. 

Propagate the fault syndrome through the selected 
object by intersecting the D-frontier and its time- 
tags with the propagation requirements of the 
object. This creates a new D-vector at the outputs 
of the object. If propagation is through the data 
path of a control buffer (and under a ‘STABLE), 
then a new time tag is created for the new D-vector. 

Check propagation requirements for consistency 
with justification list. If inconsistencies arise, 
attempt to reschedule data signal loads. Also check 
signal values against an Illegal conditions table. The 
illegal conditions table may be used to enumerate 
illegal combinations of state lines, thus preventing 
the system from wasting time generating a test using 
a set of values which cannot be justified. 

If no propagation cube is consistent, try another 
path. GOT0 2. 

Add propagation requirements to propagation list, 
construct a new D-frontier. 

If primary output has been reached, resolve 
justification requirements back to primary inputs 
and STOP - test has been generated. Uf 
justification fails, backup and try another path. 
GOT0 2) 

If a primary output has not been reached, continue 
propagation from new D-frontier. GOT0 2. 

Whenever a path turns out to be a dead-end, the 
algorithm backs up to the last untried path in the circuit 
and propagates through that path. The choice of paths is 
guided primarily by observability measures. The 
observability measures are estimates of the difficulty in 
reaching the output along a certain path; rules similar to 
those discussed by Fong [15] are used by a pre-processor 
to generate the observability of each circuit object. 

Faults are propagated through simple logic elements 
such as AND and OR gates by intersecting the D-frontier 
with the gate’s propagation cubes. Propagating fault 
syndromes through more complex operation blocks may 
be accomplished with simple D-cube intersection [l], but 
in a few cases (ex. DIVIDE and multi-bit PARITY 
functions) a model of the operation is simulated to derive 
the propagated syndrome (D-vector) and justification 
requirements. The object’s propagated syndrome and 
justification requirements are assigned time tags that 
specify when they are available or required. The time 
tags will be the same as the tag of the D-frontier elements 
at the input of the object unless the object is a control 
buffer or line under a ‘STABLE operation. In these 
cases, at least two time periods are implied and new tags 

(set to be before or after the D-frontier elements as 
appropriate) are created for the signals. 

Once the fault syndrome reaches a primary output, a 
complete propagation path has been formed and the 
justification algorithm is invoked. If an irresolvable 
inconsistency is detected during justification, then the 
propagation routine tries to find a different propagation 
path. This can be, of course, rather expensive and a 
focus of future research is implementing a set of 
guidelines for pin-pointing the source of irresolvable 
conflicts. 

Consistency checks are performed during propagation 
to check for direct contradictions (trying to set a line to 
‘0’ and ‘1’ simultaneously for example), and also check 
for signal combinations which are explicitly defined a 
priori as illegal. This feature is used primarily to identify 
illegal states in state machines. Without this feature it is 
possible that the system will try generating a test where an 
illegal state is to be justified on state lines. This condition 
could endless looping during justification, searching in 
vain for an initialization sequence. 

Example 
Figure 2 shows a VHDL fragment and its associated 

graph. A fault has occurred which prevents the first 
clause in the CASE statement from ever executing (a 
DEADCLAUSE fault). In the graph model, this fault 
corresponds to the control branch being stuck-at-O. This 
fault prevents the connected data buffer from loading the 
signal C. OP and G are primary outputs, while A, B, H, 
P, OC, CK, and CD are primary inputs. 

To generate a test for this fault, the fault is sensitized 
by setting the output of eql to 1 at an initial time tag; this 
produces a D on the faulted line. Propagation of the 
fault syndrome begins by finding the most observable 
object with an input connected to the faulted branch. In 
this case, there exists no path through data paths - the 
only route is through the control port of bufl. 
Unfortunately, there is no way for the fault syndrome to 
directly affect the data in the signal block, thus the effect 
of the fault can not be propagated by using D-propagation 
rules and a path for the syndrome must be found some 
other way. 

Propagation Through Control Branches 
When a D-vector reaches a control branch, the data 

path propagation algorithm invokes the control branch 
propagation process to find a path for the fault: 

1. 

2. 

3. 

4. 

Select a signal block connected to a data buffer 
whose control port is attached to the branch 
exhibiting the fault syndrome. 

Load the selected signal block with a vector (as wide 
as the signal block) containing subscripted E-bits. 
The subscripts on the E bits indicate the bit’s 
position in the signal block. 

Propagate the E-vector towards the circuit outputs 
using the D-propagation rules, but with ‘E’ values 
instead of ‘D’ values. 

When the E-vector reaches the output or a second 
unavoidable control branch, invoke the E- 
Justification routine to select a value or sequence of 
values to be instantiated for the E-bits in the 
original selected signal block. 
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CND 

CASE CND is 
WHEN ‘0’ => C <= A; 
WHEN ‘1’ => C <= 8; 

ENDCASE; 

IF OC AND CLK AND (NOT CLK’STABLE) THEN 
PRIN <= C AND P; 

ENDIF; =3 

IF PARITY(C) THEN 
G c= H; 

ENDIF; 

Fuull.- D~ADCLAUSF when CHD = ‘0’ 
(%lause w/ never execute/. 

Cnrrespunds lo 8 stuck-St-0 f~?ull PRIM 
on the output of Eq/ b/m-k. 

Figure 2. ExampIe of control branch fault. 

The E-vector is used to establish a propagation path 
for the fault syndrome from the signal block under the 
faulty control branch. As the E-vector is propa.gated 
from the signal block, it accumulates information on the 
effect that values in the signal block have on other circuit 
elements. Therefore, when the E-vector has reach,ed an 
output, the output value can be specified as a function of 
the E-bits of the E-vector and other signal. The effect of 
a certain value in the selected data block upon the output 
can now be discerned. 

value produced by faulty controt branch. Figures 3.b - 
3.e show these cases. If the faulty control branch is the 
only one that can be used to load the signal block, then it 
is first assumed to be fault-free, a preload value loaded, 
and then a test for incorrect control branch value made. 

To observe the fault syndrome, conditions must be 
established so that when the fault is present one value is 
loaded into the signal block, and when no fault exists a 
different value is loaded. Values are chosen after 
examining the E-vector at the output to determine which 
bits of the signal block reach the output and in what 
form. As different signal block values may produce 
identical output values, an inequality satisfaction routine 
is applied to the E-vector at the output to determine what 
E-bit values in the signal block will produce different 
outputs. The E-Justification routine chooses the values to 
be loaded into the block. The sequence of values to be 
instantiated for the E-vector at are chosen depending on 
the topology of the faulty control branch and signal block. 
Figure 3 shows the 5 basic cases of propagation through 
control branches and-their E-load strategies. Note in 
Figure 3 that E and E correspond to the two different 
actual values (derived from the inequality satisfaction 
routine) loaded into the bits of the E-vector which reach 
an output. 

Armed with the E-propagation and justification 
routines, we may now return to the example of Figure 2. 
The D @ to at the input to bufl causes C to be loaded 
with E,cl_ij. This E-vector is now propagated using data 
path rules. The most observable object under C is andl; 
purl is not chosen as it requires propagation through 
another control branch. Ec(r4, is intersected with the 
propagation cubes of andf. A ‘1’ in an:y bit of P would 
allow the syndrome to propagate through and2 but 
assume here that the cube chosen for intersection requires 
P = ‘1111’ and yields Output(andl) = E,(,+ @ r(l. Only 
one route is available for further propagation at this 
point, ~0 E,(M @ rU is intersected with the cube of buf3, 
giving Of’ = E,c,4j @ ti. Note the output has now been 
expressed as a function of the E-vector ‘E,(,,,. The new 
tag tl is produced since buf3 is under a of CK. 

In most cases sequences of values are loaded into the 
E-vectors as a consequence of the nature of control faults. 
If a single signal block has separate load buffers, with one 
controlled by a branch with a value of ‘D’ and an.other 
with a control branch value of %’ (Figure 3.a) then a test 
that would detect this fault consists of placing one value 
on the input to one buffer, and the inverse value on the 
input to the other buffer. The value of the output will 
indicate which load occurred, and thus the presence or 
absence of the fault. However, if the D-frontier of the 
fault doesn’t reach at least two buffers of the same :signal 
block, then this strategy won’t work. Instead, these fault 
cases are covered by checking if a load under control of 
the faulty branch can be properly executed, A known 
value is loaded into the selected signal block, and the 
output then observed for a change or non-change in the 

As the E-vector has reached an output, the E- 
Justification procedure is invoked. The topology of the C 
signal block / data buffer where E:,(r4) is loaded 
corresponds to that of Figure 3-b. With the appropriate 
substitutions (eg. IiVI = A, IN2 = B etc:.), the sequence 
of Figure 3.b is used and the values for I:he E-vectors are 
chosen based on the constraints accumulated during E- 
vector propagation. In this case the ch_oice is simple: any 
two different values ex.: E, = ‘11 ll’, E, = ‘0000’. After 
justifying all required signals, a complete test for the 
modeled fault is given by: 

If the E-vector encounters another control branch 
instead of an outpuf, E-Justification of the vector 
proceeds as before and then a signal block under control 
of the encountered control branch is loaded with a 
different E-vector, Enew. E-propagation is then 
reinitiated. However, since the fault syndr_ome at the 
new control branch isn’t given by D or I), different 
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strategies must be used during E-Justification to 
instantiate the E,,, vector values when the output or next 
control branch is reached. The values are chosen based 
on the sequence of explicit values the previous E-vector 
induced at the new control branch. Figure 4 lists the 
possible control branch conditions and the corresponding 
E new load strategies. 

IN1 IN2 
Tag CI C2 INI IN2 Outf(SIG) 

10 I 0 E E E/E 
(goodifaulty) 

To o?kput Figure 3.a 

IN1 11\‘2 
Cl c2 

p;‘: 

Tag Cl C2 IN1 IN2 Our f(SIG) 

D t0 0 I X E E I E(prelond) 

SIG KI I 0 E x i? I E(test) 

To output Figure 3.b 

Tag Cl C2 INI IN2 Out /(SIG) 

t0 0 I X E E I -@reload) 
tl 0 0 E x E I E(test) 

Figure 3.c 

Tag Cl INI Out f(SIG) 

to 1 E E I E(preload) 
tl 0 E E I &rest) 

To o\ltput Figure 3.d 

IN1 
Tag Cl IN1 Out f(SIG) 

to I E El- 
ti I it E lunchangedfrom t0 

Figure 3.e 

Figure 3. E-Justification strategies for the five 
basic control branch / signal block topologies. 

An example of propagation through a second control 
branch can be seen from the example of Figure 2: If the 
path through buj3 were removed, then the fault syndrome 
would have to propagate through the control branch of 
buf4. The E-vector value at the output of par1 can be 
given as Output(par1) = EC1 63 Ec2 Q E,s Q EC.,. When 
the inequality routine is invoked, values for the E,(,,) 
vector loads are chosen to meet this condition, ex: A = 
0001 and B = 0000. This yields the sequence at the input 
to buf4 of: O/O Q tl - t2; II0 @ ti. In order to match this 
syndrome (given in Figure 3-b) with those given in Figure 
4, the value I/O is to be held for two more time periods, 
giving I/O @ t3-~5 and matching the first strategy in 
Figure 4. This strategy requires the E,, vector to be 
loaded into G and propagated to an output (easy enough 

here). The values instantiated for E,,, and E,, are 
chosen so as they differ (here just any two different 
values). Thus, H (the load path) will be justified to: M = 
E,, @ ti, t5; H = E,,, @ t4. The output will follow the 
same sequence and the syndrome can be observed. 

The strategies given in Figure 4 apply in cases where 
the new control branch controls a buffer that may be 
loaded with different values. If, however, the branch 
controls the loading of a literal (eg. ‘00’), then the 
previous E-vectors are altered to produce a_continuous 
‘l/O’ or ‘011’ syndrome, effectively a D or D, and the 
strategies of Figure 3 followed. 

Seauerice E-Vector Outvut is 
Time - at Branch Sequence fun&on of 

to l/O E -new 
tl l/O LW 
t2 l/O E new 

to 1 l- E “W E I- 
tl 0 I - E _“~~ Ii2 I - 
t2 1 I- E “cW E,,, I - 

to 1 J 1 E -new EnewJ En, 
t1 l/O E “e” E new J En, 

to l/l E -Dew En, J Enew 
t1 O/l E “IZW En,, J Lw 

Figure 4. E-Justification strategies for 
successive control branch propagation 

Justification 
Signal values required to sensitize the fault, establish 

the propagation path, or load E-vectors are moved to the 
circuit inputs with the justification procedure. 
Justification proceeds in the standard manner; signals are 
worked backwards by intersecting them with the singular 
covers of operation blocks. If different paths for 
justifying a signal are available, the more controllable is 
chosen. If a signal is justified back through a signal block 
and buffer, then the value of the signal must be available 
at the buffer and Ioaded into the block at or before the 
time the value is needed at the output of the signal block. 
If conflicts develop during justification, the system 
attempts to re-schedule signal block loads to eliminate the 
contention. When all required values have been moved 
back to the inputs and no inconsistency has arisen, then a 
test for the fault has been found. 

Implementation and Results 
The E-algorithm has been implemented in PASCAL 

running in a MS-DOS shell on a 25 MHz 80386 
workstation. The complete system includes of a pre- 
processor that derives the graph from the VHDL model 
and calculates the controllability and observability 
measures. A fault list is generated for the circuit that 
includes faulting each operation block and placing stuck- 
at faults on all control and data lines. Tests are 
generated for each fault on the fault list except for faults 
in ‘STABLE operation blocks which cause continuous 
clocking. 

Tests for several large MS1 circuits have been 
generated, including a registered ALU and an S-bit 
controlled counter. The ALU model used is equivalent to 
the positive logic portion of a 74181, but with output 
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registers added. Tests for all 127 chip-level faults were 
generated in 72 seconds of CPU time; this figure includes 
the time consumed during pre-processing. The g-bit 
controlled counter produced tests for 74 modeled faults; 
tests for two faults failed due to poor controllability and 6 
faults were excluded as they produced continuous 
clocking. The total CPU time consumed during pre- 
processing and test generation was 110 seconds. 

Preliminary comparisons of generated test sets with 
gate-level implementations of the circuits indicate gate- 
level fault coverage on the order of 94%. Complete test 
results and circuit models are found in [14]. 

More recently, a test set was generated for a Hevvlett- 
Packard gate array, the BLENDER chip, to serve as a 
production test set. The BLENDER gate array is a 1400 
gate chip used in a high-performance 3-D 
superworkstation to digitally blend multiple :high- 
resolution images in real time. The BLENDER chip 
contains a number of complex functional blocks, 
including three carry-look-ahead adders. The 
BLENDER contains 157 modeled, non-dominated and 
non-equivalent chip-level faults. A test vector set to 
cover those faults was generated in 537 CPU seconds, 
including preprocessing and graph compilation time:. A 
test suite of 143 vectors was produced after redundant 
vector elimination and compacting. The vectors were 
fault graded on a KILO-3 system and yielded equivalent 
gate-level stuck-at fault coverage of 93%. All undetected 
faults occurred in the adders, the adder fault model is 
being updated to increase the fault coverage. 

The algorithm performs well on complex sequential 
circuits if the controllability of internal registers is good. 
It does, however, suffer from a common limitation of 
ATPG systems: when controllability of registers is poor, 
test generation performance suffers. This limitation is the 
result of the lack of high-level state transition 
information, the system may have to exhaustively search 
to find the sequence of inputs to move internal registers 
to a state required for test generation. The addition of 
higher-level state transition information (ie. a library of 
initialization or homing sequences for circuit state 
machines) would greatly expedite test generation in many 
cases involving sequential machines. 

Conclusions 
This paper presented the E-algorithm, a method for 

generating tests for general logic circuits modeled using a 
Hardware Description Language. A fault model base:d on 
faulting structures in a graph derived from the HDL 
model, and a test generation algorithm that generates 
tests for the modeled faults have been developed and 
implemented. The E-algorithm has the ability to 
propagate fault syndromes through high-level control 
structures as well as data operations. Moreover, tests for 
sequential logic can be generated. Preliminary results are 
highly encouraging, yielding high fault coverages and 
reasonable performance. Future work will attempt test 
generation for larger circuits, and examine the probIem of 
embedding state-transition knowledge. 
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