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A partitioning model is formulated in which components are 
assigned probabilities of being placed in bins separated by 
partitions. The expected number of nets crossing partitions is a 
quadratic function of these probabilities. Mirtimization of this 
expected value forces condensation of the probabilities into 13 
“definite”state representing a very good partitioning. The 
bipartitioning case is treated explicitly. 

Partitioning and placement are plagued by the problem of 
local minima. This is true in spite of the development of good 
heuristics [KER70] for the partitioning problem. This difficulty 
has prompted the development of such techniques as simulated 
annealing which exploit some “uncertainty” at the beginning of 
the placement process. 

These methods are very powerful, being known to tend to 
global optimality asymptotically [ROM84). But their demand 
upon resources is vast, and this consideration prompted the 
author to wonder if one could explicitly imbed this uncertainty 
requirement in the problem statement. 

Consider the problem of partitioning N cells into a number 
M of bins, so as to minimize nets crossing the partitions. One 
might characterize the partitioning at any phase of the process 
by a set of probabilities, for each cell, of being in any bin. Then 
it is possible to write down the expected number of crossings 
over the partitions. The probability distribution now carries the 
uncertainty of the partitioning, and one hopes that these 
probabilities may be intelligently forced to the necessary O’s and 
1’s which characterize a real partitioning. This represents a 
“condensation” in probability space. 

Consider the special case of bipartitioning with no fixed c:ells. 
L&p, be the probability of cell i being on the “left” side of 

the partition, and so Z-p, will be the probability of it being on the 
right. In addition, let C, be the number of connections between 
cell i and cellj. In the case of 2-node nets, CiJ is simply the 
number of nets connecting cell i and cell j. When nets have m.ore 
than 2 nodes, the nets may be approximately decomposed as a 
collection of 2-node nets which correspond to the edges of the 
complete graph constructed on the net’s nodes with altered 
connectivities. Then the number of crossings due to i andj will 
be zero if i and j are on the same side, and Cti if they are on 
different sides. The expected number of crossings due to the ij 
pair will be 
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(1) P$j f0) + tl-PJPj CC,.) + Pi (I-Pj) CCij) + (I-Pi) (I-Pj) (0) 

= cij IPi + Pje2P,Pjl 
Thus the total expected number of crossings due to all cells 

will be 
N 

r = ‘/z t Cij [pi + pj-2Pipj/ 
i,J’ 

The factor of ‘/ comes from counting pairs twice. Now make 
the substitution 

pi = % + % E; 

Sincepi E /O,ZJ then E,E /--Cl/ Then (1) may be written: 
N 

r = % Z Co (1/2-1/ &i&j) 
ij 

Thus minimizing r amounts to maximizing 
N 

r’ = t CijEjEj 
i,.i 

The constraint of finishing with N/2 cells on each side of 
the partition can be imposed by requiring the exlpected number 
of cells on the left be N/2 at each phase of the partitioning: 

N N N N 
N/2 = ~pi = Z( % + ‘h~i) = N/2 + % t hi or I: Ei = 0 

i i i i 
This is not, however, the most difficult constraint. That is the 
requirement that p,~[O,l] or E,E [--Cl/. This is addressed in the 
next section. 

Geometric ideas in partitioning N 
The problem is, maximize f’ = I Cij&,rj subject to E,E (-1,IJ. 

i.i 
This suggests figure 1 where a three-dimensional version of 

the N dimensional space is portrayed. A point in the N-space 
represents the entire state of the partitioning at some time. The 
concentric ellipsoids represent surfaces of constant F’ = Z C,r;~j 
with values increasing with expanding ellipsoids. (Summatrons 
are from 1 to N if not explicitly stated otherwise). The vertices of 
the N-cube represent “certain” partitionings, since they have all 
ai as either 1 or -1, corresponding to thep, being either 1 or 0. 
The subset of vertices which satisfy ZeLi = 0 will be the “legal” 
partitionings, since that constraint corresponds to Ipi = N/2. 

Figure 1 is subtly misleading, because the ellipsoids 
correspond to positive eigenvalues of &I, whereas [C,/ may 
have negative eigenvalues. The correct figure will Ithen be an 
N-dimensional hyperboloid, as shown in figure 2. The reader is 
advised to consider both figures in the discussion which follows. 

The space in which the optimization takes place, the N-cube, 
is convex. This suggests gradient optimization on the quadratic 
objective fuction [BER82], [WAL79]. Thus in figure 3, one starts 
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at a point A and follows the gradient outward (in the direction of 
increasing I’). When a constraint is encountered (a face of the 
N-cube), a new gradient is calculated, and its projection along 
the face of the cube is followed for the next iteration (point B, 
figure 3). To calculate the gradient (g;). simply use 

gi = E = 2t CijEj 
I j 

This will not give the global maximum, since the quadratic 
objective function discussed here is not convex. Thus, if the 
process is started at a different point (C), the final vertex reached 
may be different. However, it does appear that the process will 
terminate with the partitioning state at some vertex. Provided 
the Xsi = 0 constraint has been adhered to, this will be an accept- 
able partitioning. 

But one can actually do much better. Since the starting point 
is variable, it can be chosen in a way which enhances the gradient 
search. Consider figure 4, where the N-cube has been replaced 
with an N-sphere. Then the constraints are that Z&z = Rd, where 
R, is the radius of the N-sphere, so the maximum of 1 Ctisir; 
occurs along the eigenvector corresponding to the largest 
eigenvalue A,of /C/, with value &R,,J. This is shown in 
[NOB69], for instance. It is assumed here that [C] is nonsingular. 
A connection between eigenvectors and partitioning is shown 
in [DON@] but without the use of a probabilistic scheme. 

Thus. a strategy emerges. Find the largest-eigenvalued 

follow until another constraint surface is reached, repeat, etc. 
This constraint method will terminate at an N-cube vertex, 
which defines the required partitioning. 

Unfortunately, the eigenvector found will not obey the 
constraint ZE, = 0. But it is possible to find a maximizing “ray” 
which is “close” to this eigenvector, and which does maximize 
the form E CV~i~j over the surface of the sphere while satisfying 
E .E; = 0. Space does not permit a proof of this, but the 
construction of this maximizing ray will be explained in the 
implementation section which follows. 

Implementation Issues 
Two implementation issues deserve special discussion. 

A. Solving for the maximizing ray. 
This is accomplished by a variation of the power method 

[FAD63]. In this method, a random vector is chosen, and it is 
repeatedly multiplied by the matrix [Cij/. This will asymptotically 
yield the largest-magnitude eigenvalue and its associated 
eigenvector. If that eigenvalue happens to be negative, the power 
method can still be used by “shifting” the eigenvalue spectrum 
to make all eigenvalues positive. 

A modification is necessary to the classic power method. 
The constraint Zsj = 0 requires the si vector should be 
perpendicular to the vector IT = (&I,&. . .I). So after every 
multiplication, the 1 component of the e vector can be subtracted 
from itself. This method will generally construct the vector 

eigenvector, probe-out from the origin in this direction, and 
find where this ray intersects the constraint cube. Then reevaluate 

which minimizes ZC~&i&j subj&t to the 2.~~ = 0 constraint. The 
vector so constructed will in general not be an eigenvector of C. 

the gradient from this point, project along the face of the cube, For a demonstration, see [BLA85]. 

Paper 43.1 



B. The constrained gradient method. 
There are some subtleties here. First, it is useful to consider 

the causes of suboptimality in the gradient search ,method 
outlined above. 
(1) the function f’ is not convex, so no global optimum can be 
claimed. This has already been discussed. 
(2) the gradient should really be followed only for infinitesimal 
distances in the partitioning space. However, the gradient is 
expensive to calculate, and with 2N constraint surfaces, each 
gradient projection will only be followed a short distance 
anyway before another face of the N-cube is hit. 
(3) This is a problem of constrained vs. free gradients. The 
gradient may not always point to the “outside” of t.he N-cube 
from a face. It certainly will when that constraint is invoked, but 
it need not during later phases of the partitioning (because the 
objective function is not linear.) Thus, one might argue that the 
gradient should be tested at each iteration on the constraints 
which are “active”, to see if they can be relaxed. However, this 
ignores the kEi = 0 constraint. It is very difficult to satisfy this 
while simultaneously shifting “face” constraints. The best 
solution found was to keep a “face” constraint in place 
permanently after being invoked. Once the solution point hits a 
face of the N-cube, it is “stuck” there. Future research may treat 
this problem differently. With this last simplification, the 
implementation of the constrained gradient method is clear. At 
each iteration, there will be a set of N’ free gj and a set of 
constrained g,. If these constraints are fixed, then the Zgi = I) 
constraint must be absorbed by the remaining free gb Thus, for 
the projection of the gradient onto the allowable constraint face, 

g’i (free) = g, (free) - $@e.e) and g; (fixed) = 0 

This clearly satisfies the constraints. 

Experimental Results 
The experimental results of bipartitioning on four test cases 

of various sizes are shown in Table 1. These are actual circuits 
although bipartitioning is not necessarily indicated as a layout 
step for them. 

Some explanation is necessary here. 
(1) The first score column shows the full-blown scheme as 
outlined above: eigenvector calculation, followed by gradient 
ascent to the solution vertex. 
(2) The second score column gives the score result after a 
sequence of RR trial pairwise interchanges followed each casfe. In 
only one case out of four was the pairwise exchange able to 
improve the score by even 1%. The failure of the pairwise 
interchange phase provides the strongest support of probabilistic 
partitioning. 
(3) Next, the effectiveness of using the eigenvector as a starting 
direction was tested. A random vector on the surface of the 
N-sphere was used to start the partitioning. Column 3 gives the 
score resulting from that (random) partitioning. This score is 
bad, as expected. Next, column 4 shows this random partitioning 
followed by the pairwise interchange sequence. In every case, this 

is still much worse than “ordered” partitioning. Column 5 shows 
the scores resulting from a random vector followed by gradient 
ascent, and column 6 illustrates a random vector followed by 
gradient ascent followed by pairwise exchange; this seems roughly 
comparable to column 4, so there seems little reason to perform 
gradient ascent without the benefit of the eigenvector starting 
direction. 
(4) Fi-nally, the effectiveness of using gradient ascent was tested. 
Column 7 shows the eigenvector solution follow’ed by pairwise 
exchange, with gradient ascent excluded from the job stream. In 
case #1 and #2 this process worked almost as well as the full- 
blown probabilistic partitioning, but not so in the larger cases. 

The conclusion in the case of bipartitioning seems to be that 
the sequence of eigenvector calculation followed by gradient 
ascent works better than any other subset of that method, even 
when augmented by massive pairwise exchange. 

Complexity 
N iterations are needed (one for each constraint) and each 

one requires a gradient calculation, which is O(NB) where B is 
the number of cells to which an average cell has connections. So 
the complexity of the algorithm is O(WB). The actual CPU 
times for the tests are shown in Table 1. Tests were run on an 
Apollo DN3000. 

For the above, the gradient is recalculated after each face is 
hit. But it might be adequate to calculate the gradient after every 
N/ 100 faces had been hit, for instance. Thus only 100 gradients 
would have to be calculated, suggesting the possibility of a 
linear-time partitioner. This idea will be examined later. 
Extensions 

The probabilistic partitioning algorithm discussed here is 
obviously restricted in its applications. Several extensions are 
being investigated: 
A. Partitioning into >2 bins, with different required “weights” in 
the partitions: 

Each cell i can be assigned a probabilitypij of being in binj, 
and the required partitioning objective function can be shown 
to be quadratic in the (pij). The difficulties of this extension are: 
(1) The time and space required for storing and manipulating the 
variables (pJ. 
(2) Now the constraints are more difficult. For the bipartitioning 
case, the assignment of each cell was dictated by one variable E; 
varying between -1 and 1. For M bins, M-l variables are required, 
with coupled, complicated constraint equations. 

In spite of these difficulties, the success of the bipartitioning 
case suggests the extension can be made to work. 
B. Handling “fixed” cells (ie, cells permanently assigned to a 
given bin): 

This causes a linear term in addition to the quadratic portion 
of the objective function. Methods such as those used in 
[BLA85fare expected to solve this problem. 
C. Nets with >2 nodes. 

While many -node nets can be approximated by the 
techniques discussed earlier, it would be preferable to have an 
explicit technique for handling them. 

Table 1 Partitioning Scores 

(1) (2) (3) (4) (5) 
Eigenvector Eigenvector & 

and Gradient & Random & Random 
CPU Gradient Painvise Paiiwise & 

Case #Devices Seconds Ascent Exchange Random Exchange Gradient 
1 32 37 31 31 106 44 58 
2 509 1572 299 295 1458 390 421 
3 788 3661 354 354 2833 481 650 
4 1491 11.528 639 636 5291 1247 1994 
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The effect of these nets can be included in the objective func- 
tions in terms which are cubic, quartic, or of higher order. It may 
be that perturbation theory can be used here. 

Conclusion 
The probabilistic partitioning scheme developed here appears 

quite promising. Two reasons may be hypothesized for its 
success: 
(1) The formulation of the problem in continuous variables 
(probabilities) rather than discrete or binary variables appear to 
lend flexibility and fluidity to the convergence process, and 
(2) The objective function obtained in this formulation is 
quadratic, and thus is well-behaved. 

Generalization of the technique to multipartitioning (and 
other extensions) is certainly not straightforward. But the initial 
success argues the algorithm can be made to work well for those 
problems. 
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