
Massively Parallel Symbolic Computation

And& Deprit
National Institute of Standards and Technology

Gaithersburg, MD 20899

Etienne Deprit
Naval Research Laboratory

Washington, DC 20375

Abstract

A massively parallel processor proves to be a powerful tool for

manipulating the very large Poisson series encountered in non-

linear dynamics. Exploiting the algebraic structure of Poisson

series leads quite naturally to parallel data structures and algo-

rithms for symbolic manipulation. Exercising the parallel sym-

bolic processor on the solution of Kepler’s equation reveals the

need to reexamine the serial computational methods tradition-

ally applied to problems in dynamics.

I Introduction

Developing literal, i.e. non-numeric, solutions to prob-
lems in non-linear mechanics presents a great challenge.
Once the symbolic processor has been tuned to pro-
duce expansions to a given order, new problems of
physical interest arise which cannot be answered unless
the expansions are driven to even higher orders. The
three particle Toda problem provides a case in point
[S]. While observing in the analytical expansions that
the residual perturbation kept breaking a degeneracy,
we were forced to stop the calcuIations at order 20,
when the calculations overwhelmed our Lisp worksta-
tion. Indeed, in problems of this type, the complex-
ity of the formulas grows in geometric proportion with
the order. Hence, the computing time increa,ses dra-
matically as intermediate steps keep exploding at an
accelerated rhythm. Normalization of the three parti-
cle Toda system represents only one of many problems

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

which reduce the Lisp machine to a state of constant
garbage collection.

The complexity of the non-linear systems encoun-
tered in semi-classical quantum mechanics pales in
comparison to the the problems faced in celestial me-
chanics due to the number of variables involved, the
Iength of the input expressions, and the multiplicity of
intermediate operations. Geologists invite astronomers
to provide a time scale valid over tens of millions of
years; the history of the earth’s orbital eccentricity
could serve the geologist’s purpose. Such a long time
scale, however, supposes a theory of the solar system-
a g-body problem-in completely literal form, and this
theory must be valid to the fourth power in the mass
ratios so as to include all major resonances of long pe-
riod among planets. The task would be enormous, to
say the least! Before we attack the planetary problem,
we must create algorithms to simplify drastically the
mathematics,] approaches, investigate software tech-
niques designed to speed the code and facilitate its
development, and explore the capabilities of new hard-
ware as it becomes available [9].

Along these lines of research, we planned an experi-
ment on a massively parallel processor to determine at
what programming cost we could achieve modest in-
creases in speed while performing some of the basic ma-
nipulations proper to celestial mechanics. Right from
the start, the new computing environment of the paral-
lel processor demanded complete overhaul of the soft-
ware we have been developing for years on Lisp work-
stations. We wished to thoroughly explore the possi-
bilities offered by the parallel machine without com-
mitting ourselves to a complete redesign of our sym-
bolic processing software. Once satisfied with the new
mathema.tical scheme of canonical simplifications, we
will be in position to move our major problems from

1989 ACM O-89791-325-6/89/0007/0308
308

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74540.74577&domain=pdf&date_stamp=1989-07-17

serial to parallel computers. Our tentative results ap-
pear quite positive. The promise of these preliminary
findings emerges quite vividly from Figure 1, where we
compare the processing times of three symbolic algebra
systems to complete a calculation to increasing orders
of complexity.

80

-60

.ii 40
I-

20

- Macsyma
- MAO
- MAO!!

” Order
20

Figure 1: (r/u)* cos 5f with rational coefficients

Several criteria dictated the choice of a sample prob-
lem on which to exercise our parallel symbolic proces-
sor. First, to avoid entering massive series by hand,
we looked for a problem which generates enormous ex-
pressions from data involving only a handful of terms.
Second, the problem had to be simple enough that it
could be ported quickly from system to system. The
problem used to test the parallel processor comes from
the two-body problem, the basic paradigm of ceIestia1
mechanics. The basic difficulty in celestial mechanics
stems from the fact that Kepler’s equation

E - e sin E = 1

cannot be solved in finite terms to represent the ec-
centric anomaly E as a function of the mean anomaly
f! and the eccentricity e. Instead, assuming that e is
small enough, E is developed as a Fourier series in e
over the algebra of formal power series in e with ratio-
nal coefficients. From these basic expansions emerge
similar series for functions like

f = (l-ecosE)

and

e cos f = :(l - e2)(cos E - e).

For the reader not familiar with the problem, we re-
produce below the first few terms in these series.

r -- (1+
a

$e2) + . . .)

+ecos!(1 + ie2 - &e” + . ..)

+e2cos2& (-3 + ie2 - &e4 + . ..)

+e3cos31(-Q + se” + . ..)

+e4cos4&(-Q+ $e2+ . ..)

+ e5 cos 5! (-g + . . .)

+e6cos6t(-g+ . ..)

+ . ..>

ecosf = -e2

+ecosl(1- s ze2 + se4 + . .)

+e2cos2! (1 - G)e2 + $je4 + . . .)

+ e3 cos31 (8 - Ee2 + .)

+e4cos41 (2 - ye2 + . ..)

+ e5 cos 5t (!j$$ + .)

+e6cos61 (g + . ..)

+...)

In the trial summarized in Figure 1, we measure the
time required to obtain the product h = f4g, where
f = r/a and g = cos 5-f) when these series are ex-
panded to multiple 30 in e and power 30 in e. In one
series of calculations, we use MACSYMA running on
a Symbolics 3675 workstation; in the second series, we
employ a special purpose processor, Mechanized Alge-
braic Operations (MAO), designed by Dr. Bruce Miller
to run on a Symbolics Lisp workstations. In the third
series, we compute the product on a Connection Ma-
chine using a package of procedures (MAO!!) we have
written in *Lisp. In each run, we time the operations
for increasing orders n in e. At order n = 30, each
factor contains 256 terms. MACSYMA is desperately
slow-it took almost 60 minutes to compute the result
to order 10. MAO reached order 30 in approximately
95 minutes, while MAO!! did the same five times faster.
Appendix A contains the complete timing data for the
calculations in Figure 1.

2 Poisson Series Processors

In the twobody problem, as in the overwhelming ma-
jority of problems in celestial mechanics, the expres-
sions to be processed take the form of Poisson series
[5]. Poisson series may be viewed as formal double

309

SUlllS 3 M.AO

(L,~)EIxK

where L and R are vectors of natural integers (E 2) of
dimension m and n, respectively. M[L] and T[K] stand
for symbolic terms of the type

M[L] = Xflxp . . .x2,-,

T[K] = (RIAI + ltzA2 + . . . + +,A,z).

Poisson series whose coefficients C,,, are numbers are
said to be Aat.

A given family of Poisson series forms a. commuta-
tive algebra over the ring of its coefficients. Poisson
series processors differ by the standard representation
they adopt; existing processors represent Poisson series
as arrays of vectors [1,2,12], as lists [6,11,16], as two-
dimensional grids, or even as balanced binary trees.
The organization of the memory heap determines the
unique representation of a Poisson series as a vector in
the free module generated by the products of mono-
mials and trigonometric terms. This standard repre-
sentation holds strictly not only in the final result of
a.n operation, but at every intermediate step, however
ephemeral. To paraphase J. Moser, all current Poisson
series processors are as “radical” as one can be in the
politics of simplification. Radical representations exist
because the processors can afford to micro-manage all
ba.sic operations of the algebra. Thus, when perform-
ing additions, as well as multiplications and differenti-
a,tions, similar terms combine as soon as they appear,
terms of opposite sign cancel immediately, and angle
multiples cha.nge sign to preserve normalization rules.
In other words, all simplifications occur immediately
without intervention by the user.

By contrast, general purpose processors, such as
MACSYMA [13], k now nothing of these structural con-
straints. Moreover, MACSYMA does not give the user
the possibility of enforcing his own representation stan-
da.rds. So, even if we present the test with g and h in a
standard format, for example as Fourier series over the
algebra of polynomials in e, MACSYMA simply states
that the product h is the expression (f**4)*g, and
waits for the user to issue commands like trigexpand
and trigsimp to tra.nsform the result h into the stan-
dard form of a Poisson series. These simplifications are
very expensive when applied to general representations
tha.t do not reflect the algebraic structure of the prob-
lem. Hence, a.s evidenced in Figure 1, MACSYMA can-
not. possibly match the performance of a special pur-
pose processor such as MAO.

To use a Poisson series processor, the user must spec-
ify parameters characterizing the particular families of
Poisson series for the problem at hand: the number
of terms in each series, the domain of coefficients, the
number and name of the polynomial and angular vari-
ables. Ideally, the user would specify these parameters
at execution time. Existing processors based on linked-
lists dynamically grow and free the series as the number
of terms varies. As far as the other ‘parameters, they
usually appear as macro variables in the source code;
the software package then compiles to produce a set
of routines which implements the desired Poisson se-
ries algebras. Thus, the software becomes a meta-code
which produces an entire family of Poisson series pro-
cessors. This meta-code, however, is still not general
enough, since the parameters of a Poisson series are
attached not to a particular series but to the compiled
code itself. Only those series whose structures have
been foreseen at compile time may be manipulated;
once compiled, the code precludes certain mathemati-
cal maneuvers requiring the dynamic specification and
creation of new families of Poisson series.

The polynomial and angle variables of a Poisson se-
ries specify the coordinate map choosen by the mathe-
matician for a particular problem. A change in coordi-
nates often marks a turning point in the calculation and
should be accompanied by a corresponding restructur-
ing of the Poisson series. For example, a problem may
initially involve terms in cos g and sin g, a Fourier series
in the argument of perigee g. Once recognized that the
series exhibits the d’Alembert characteristic, it may be
more efficient to recast the Fourier series as a polyno-
mial in C = cosg and S = sing. In standard pro-
cessors, the user must prepare for this eventuality by
structuring all Poisson series with angle variable g and
polynomial variables C and S. Thus, all advantages of
this restructuring have been lost to the increased com-
plexity of the series. Nevertheless, taking advantage
of more modern programming contstructs allows us to
design a processor which avoids such unnecessary com-
plications. Such a processor must treat a Poisson series
as an object.

A Aavor suppiies the template characterizing a fam-
ily of objects. An object embodies both descriptive
information detailing the state of the object, as well
as procedural information implementing various oper-
ations on the object. For instance, multiplying the
Poisson series P by the series Q may be accomplished
by sending a message to P requesting that it form its
product with Q and store the result in a new series ob-
ject. Any information that P needs about Q may be

310

obtained by addressing the proper message to Q. The
real power of object-oriented programming comes from
the ability to construct hierarchies of flavors, whereby
the programmer creates his own taxonomy of objects.
If object P’ belongs to a sub-flavor of P, then P’ owns
all the descriptive information found in P, and possi-
bly more. P’ possesses all the procedural information
found in P, and may even handle additional messages.
This method of abstract programming proves a pow-
erful tool for preserving the algebraic structure of ex-
pressions in a symbolic processor.

The current version of MAO, written in Symbolics
Common Lisp, implements the concept of an algebra
A over a ring D as an abstract programming object,
which in turn refers to another object representing the
domain of coefficients. The coefficient domain may in
turn represent a new polynomial or Fourier algebra, to
any level of recursion. The hierachy of algebras tnust
stop eventually at the field of real or rational numbers.
Figure 2 details the Poisson series hierarchy used in
the two-body problem. Indeed, with object-oriented
progra.mming, this process now becomes dynamic; de-
pending on the state of a calculation, we may introduce
uew hierarchies of algebras and recast series into this
new algebraic structure.

p------

over

Figure 2: Hierarchy of algebras for two-body problem

MAO has proved a very powerful tool in solving
medium sized problems in non-linear dynatnics. In
spite of all provisions made to ensure speed aud effi-
ciency, MAO appears far too slow to handle very large
problems. Take the case of the lunar theory. Syn-
chronization of time signals at nanosecond precision
requires a lunar theory exact to 1 centimeter, but pre-
cision of 20 meters requires series of some 20,000 terms.
In search of a faster tool, we turn to the Connection
Machine for processing Poisson series.

4 The Connection Machine

The Connection Machine (CM) is a SIMD machine
with thousands of processors arranged at the vertices
of an N-dimensional hypercube [4,10]. The Naval Re-
search Laboratory has a quarter machine with 2i4 pro-

cessors. The simple, bit-serial processors each address
a local memory of 2 l6 bits. Instructions consist of two
one bit operands plus a flag bit, and return a one bit
result along with a flag bit. The applications program-
mer, however, remains safely above the bit level since
PARIS (parallel mstruction get) provides arithmetic
operationson integer and floating-point numbers, com-
munication between processors, and exchange between
the front-end computer and the CM [15]. PARIS cor-
responds to the familiar assembly languages on serial
machines.

A CM application runs on a front-end computer
which controls the operations of the Connection Ma-
chine. The parallel portions of the code consist in
sending PARIS instructions and data to the CM, and
in retrieving the results from the processors. Since the
Connection Machine follows a SIMD architecture, all
processors in the hypercube receive the same PARIS
instructions. Programs implement flow of control by
directing sets of processors to sit out portions of the
instruction stream.

Fortunately, higher-level languages have been ex-
tended for parallel computation. The front-end com-
puter controlling the CM interprets or cotnpiles the
parallel portions of the high-level language into PARIS
instructions. MAO!! runs on a Symbolics workstation,
and was coded in *Lisp [17,183 (a parallel extension of
Common Lisp [19]) along with Symbolics Flavors ex-
tensions for object-oriented programming. Due to the
pioneering state of the system software, it was often
necessary to consult the *Lisp sources--sometimes to
clarify the documentation, at other times, to modify a
*Lisp primitive to make it work under conditions not
foreseen by the designers.

The CM’s memory may be pictured as a matrix of
2N columns, each consisting of 2l” bits. Every pro-
cessor owns a column; a parallel variable (or pvar in
*Lisp) constitutes a set of contiguous rows. *Lisp and
PARIS partition the processor memory into two parts,
handling one part as a stack for temporary parallel vari-
ables, and another part as a heap for global variables.
*Lisp correctly handles the evaluation of nested expres-
sions through the allocation and deallocation of inter-
mediate results on the stack or heap.

For very large series, MAO!! exploits PARIS facil-
ities which multiplex each processor into 2”’ virtual
processors. The number L cm is referred to as the virt,ual
processor (VP) ratio. Earlier versions of PARIS forced
the ratio to be specified at the outset of an application,
with all pvars allocated according to the same VP ratio.
However, PARIS now permits dynamic virtualization
of individual pvars. Even more, PARIS allows pvars to
communicate values among one another, irrespective

311

of their virtual processor set. This software enhance-
ment proved crucial in coping with the tremendous ex-
plosions in the intermediate results when operating on
large series.

Simplification and multiplication of series rely criti-
cally on the ability to establish various patterns of com-
munication among processors. The CM-2 supplies two
communication mechanisms. Given a source pvar S
and a target pvar T) how do processors transfer values
from S to T? The router constitutes a gigantic tele-
phone system, where each processor is identified by its
phone number or send address. To use the router, the
programmer specifies a pvar A of send addresses. For a
read, all processors read the value in S at the processor
specified in their value of A and set the value into T.
For a write, all processors write their value of S into
T at the processor whose address is given in A. Note
that the mapping A may be an injection, and collisions
may occur-a set of processors may either read from
or write to a single processor. PARIS provides various
functions to combine colliding messages in the course
of a write.

In addition to the router, the CM-2 provides the
grid mechanism, which is less flexible but more effi-
cient. Conceptually, grid communication consists of
two elements. First, there is some configuration of the
machine as an n-dimensional grid. The processor’s co-
ordinate in this Cartesian space forms its grid address
g. Second, a local pattern of communication consists
of a vector of offsets o. For a read operation, each
processor reads the value S from the processor at grid
address g + o and sets the result in T. For a write op-
eration, each processor writes the value in S into the
pvar T at the processor with grid address g + o. Note
tha.t the vector offset o specifies a bijective mapping
between grid addresses, and no collisions are possible
during either the read or write operations.

MAO!! uses both communication mechanisms to ad-
vantage. Sorting the terms of a series, for instance,
requires permuting the terms among the processors.
This type of information shuffling calls for the router.
Checking if neighboring terms are similar and should
be combined, on the other hand, involves a local pat-
tern of communications where each term examines its
neighbor. Such an operation fits nicely into the grid
mechanism.

5 MAO!!

The Poisson series processor developed on the Con-
nection Machine has been christened MAO!!-the su-
fix “!!” following the CM programmer’s convention for
denoting parallelism. MAO!! achieves its gains over

MAO by spreading massive Poisson series over thou-
sands of processors. Each processor in the CM holds a
single term of a Poisson series. Thus, many series may
remain ac.tive in the CM, limited only by the number of
processors. This distribution of terms provides a sim-
ple resource allocation scheme flexible enough to deal
with the constant explosion and implosion of partial re-
sults so typical of symbolic algebra. During the course
of a calculation, MAO!! allocates free processors to
hold intermediate terms. During subsequent simpiifi-
cation steps, terms are eliminated by deallocating their
representative processors.

Figure 3 details the front-end structure which holds
the state of each Poisson series during processing. Each
series is identified by a name, by which it may be re-
ferred to in the front-end. The tag identifies which pro-
cessors hold terms of this series. The front-end struc-
ture also keeps track of the number of terms in the
series. Each time MAO!! retrieves the series from CM
memory, the front-end structure keeps the unpacked
terms and resets the changed? flag. The unsorted?
flag tells the MAO!! routines that the series is not cur-
rently in sorted order in the CM. Finally, series must
be marked as killed when they are deallocated.

Poisson Series

name

tag
number of terms
unpacked terms
changed?

unsorted?
killed?

Figure 3: Front-end descriptor for Poisson series

Each term in a Poisson series resides in a single pro-
cessor. The structure describing such a term is shown
in Figure 4. Each term consists of a coefficient which
may be a real or rational number. The angle vari-
ables in each term are packed into a single field, as
are the polynomial exponents. The packed angles and
packed exponents fields contain the angle multiples and
polynomial exponents, respectively. Packing the angles
and exponents reduces storage overhead, and also al-
lows several angle multiples and exponents to be added,
subtracted or multiplied by a scalar in a single opera-
tion. A trig flag, 0 for cosine and 1 for sine, completes
the term structure.

312

Packed Term

coefficient
packed angles
trig flag
packed exponents

I ,

Figure 4: Packed term in Poisson series

From the standpoint of parallelism, algebraic opera-
tions fall into two classes. Multiplication by a mono-
mial, partial differentiation and integration typify lo-
cal operations, requiring only isolated computation in
each processor. On the other hand, multiplication and
simplification constitute global operations in the sense
that processors representing terms of the series must
communicate among themselves to produce the final
result. Global operations highlight the real power of
the CM. Among the global operations, we concentrate
on two problems: multiplication and simplification. In
both ca.ses, we succeed in introducing a high degree
of parallelism. The secret lies in effectively combining
general router communications with local communica-
tions operations on a grid of terms.

6 Multiplication in Parallel

MAO!! multiplies Poisson series by replicating the fac-
tors and forming all partial products simultaneously.
The algorithm becomes clear by looking at a simple
example. To multiply a second degree polynomial in
one variable cr + bx + cx2 by a polynomial A + Bx, we
arrange the machine so that the first six processors on
a one-dimensional grid contain the following quantities.

Then, all partial products are computed in parallel so
that the one-dimensional grid now holds the quantities
below.

There remains to pass the series to the simplifica-
tion routine and store away the remaining terms. The

dynamic virtualization mechanism of the CM makes
the multipbcation of large series possible. Realize that
when multiplying two polynomial series of 256 terms
each, the intermediate result will have 2r6 terms, while
our CM provides only 2r4 physical processors. Never-
theless, the CM may configured as if it had 216 virtual
processors, where each physical processor emulates four
virtual ones.

The situation becomes slightly more complicated
when multiplying Fourier series rather than polyno-
mials. The intermediate product now contains twice
as many terms, since each product of sines or cosines
produces two new terms. Once again, the flexibility
of the virtual processor mechanism and grid address-
ing comes in handy. Once the two products have been
spread out, as in the case for polynomial multiplica-
tion, MAO!! merely recopies each product to produce
the doubling of terms. MAO!! then applies the stan-
dard trigonometric identities to combine the angles and
produce coefficients of the correct sign and magnitude.
The example below shows the result of multiplying the
Poisson series cos 2 + sin 2 by the series cos y + sin y,
thereby demonstrating all possible combinations.

P4 P5 P6 P7

cos 2 sin 2 cos 2 sin 2
cos y cos y sin y sin y

1 L 1 1

COS(X + yj sin(x + y’,
-7

COS(X + yj

7 Simplification in Parallel

The most critical operation performed by MAO!! is
the simplification of intermediate results. Well-timed,
speedy simplification steps help to control the expres-
sion swell during calculations. The overall performance
of a Poisson series processor depends directly on the ef-
ficiency of the simplification routine.

In order to simplify a series, MAO!! first collects
all the terms into consecutive processors along a one-
dimensional grid. Next, the terms of the series must
be sorted. As shown in Figure 5, the packed terms
are recast as sorting terms by considering the packed
angles, trig flag, and packed exponents as a single un-
signed integer. The CM’s hypercube architecture pro-
vides rapid ranking of the terms in logarithmic time.
Sorting the terms-rearranging them according to the

313

given ranking-requires a global routing step to per-
mute the terms.

Sorting Term

coefficient

key

Figure 5: Poisson series term viewed for sorting

Once sorted, the series may be simplified. Since the
terms lie along a one-dimensional grid, local commu-
nications may be used by each processor to see if it
contains a term simi1a.r to its neighbor on the right.
The processors form a new pvar containing a 1 if their
term is similar to their neighbor’s, and containing a 0
otherwise. This pvar divides the processors into con-
tiguous segments of similar terms. The figure below
continues the example of Section 6. The result of the
multiplication has been sorted and the processors have
determined the segment boundaries.

In the final step of simplification, MAO!! applies a
parallel prefix reduction, or scan operator, to the pvar
of coed-Kcients. For the case of combining like terms,
the operator must be addition. After the scan oper-
ation, each processor in a segment contains the result
of the scan operator applied to all previous processors
in the segment, including itself. Thus, the last term in
each segment now contains the sum of all its similar
terms. Note that the CM performs these parallel pre-
fix reductions in logarithmic time, with the order pro-
portional to the length of the longest segment. Once
similar terms are combined, MAO!! shifts the segment
pvar one neighbor to the left. As shown in the fig-
ure below, those processors now containing a 1 will be
kept in the final result; MAO!! sets the coefficients of
the remaining processors to zero and later deallocates
them.

PO Pl P2 P3 P4 P5

UA 0 bA+aB 0 cA+bB cB
x0 x1 x1 x2 x2 x3

1 0 1 0 1 1

8 Kepler’s Equation

For Kepler’s equation, as well as for many fundamental
problems of non-linear dynamics, parallel architectures
force a rex.amination of the established methods of so-
lution. A literal solution to Kepler’s equation tradi-
tionally emerges from two main directions-either by
iteration or by application of Laplace’s formula.

The iterative method begins with Ea = e, and con-
tinues with

El = e+esin& =e+esin1+U(e2),

E2 = e-i-esinEr =f!+esin(e+esine)

= e+esinei- $e2sin2C+0(e3),

and so on. At step n, the iteration adds to E the
finite Fourier series in !? that is the coefficient of e”.
The method is easy to implement, providing one has
at hand a good procedure for expanding Taylor series.

The iterative method, however, has a serious draw-
back; it addresses exclusively the problem-of solving
Kepler’s equation. For the more general case of a func-
tion F G F(E$,e), one has to resort to straightfor-
ward substitution of the solution into F itself developed
as a power series

F=C$gI
nzo . e=o

Such expansions usually lead to elaborate combinations
of Fa2r de Bruno’s partial differential operators for func-
tions of a function defined through an implicitz equa-
tion. One often replaces such operators with ad hoc
compositions of Taylor series.

Laplace’s formula. addresses preciseIy the question of
building functions of E immediately as power series
in e without necessarily solving Kepler’s equation in
advance. If G(E) is analytical in E around E = e,
then Laplace’s formula states that

G(E) = G(C) + 2 CC [sin Y%G(o]
j21 j! db-1 (1)

Equation (1) fits quite naturally on a serial computer.
Given G, the pr0gra.m proceeds iteratively. From the
product

Gj = sinj esG(C),

one calculates the product

Gj+l = sin .!!G,

at step j + 1, and then computes successively the first
j derivates of Gi+l.

314

Using MACSYMA, we implemented Laplace’s for-
mula to produce at low orders in e the coefficients
against which we checked the series produced on the
CM. It must be noted, however, that as the order
increases, Laplace’s formula requires more and more
derivatives; all derivatives at order j except the last
one become garbage as soon as the loop enters the next
cycle. Moreover, the work has to be restarted from
scratch each time another function requires expansion.

Techniques in computational analysis appeared some
time ago [7] which address precisely this defficiency
,with Laplace’s formula. Most recently, these tech-
niques have been adapted :to solve implicit equations
depending on a small parameter [14]. The basic con-
cept is as follows.

?Vith y = E - e, Kepler’s equation is rewritten as an
implicit equation of the form

fb,e;4 - Y - e sin(! - y) = 0.

This equation has a root y = 0 at e = 0. The implicit
equation is solved if one finds a family of transforma-
tions

$J : 2 w y(x:,e;l)

parametrized by e. The transformation should be such
tha.t y(z, 0; J?) = 2; furthermore, it should change f into

The latter identity implies in particular that ~(0, e; !)
is the solution of the implicit equation that vanishes
at e = 0. The transformation 11, will be built as a
Lie transformation, i.e. as the solution of a differential
equation

& - = W(y,e;l)
de (2)

for the initial condition y = x at e = 0.
In other words, instead of constructing 4 as a power

series, one constructs the right hand member W of a
differential equation for which $ is a solution. This
sort of indirection has enormous advantages. Indeed,
the differential equation 2 defines the Lie operator

/Cc=
a
z+wg-.

Geometrically speaking, C defines the derivative of any
function in the direction determined by the vector field
IV. In particular, to obtain that the transformation
generated by W changes f into x, it is necessary and
sufficient to impose that l(f) = 0.

For the case of Kepler’s equation, one easily obtains
a simple recurrence relation for the terms in W:

{

-f1 n=O
T/v, = -we dfi nl

dY
11 > 0

In the solution of Kepler’s ,equation, we have pushed
this Lie transformation to degree 30 in e. At that or-
der, some of the coefficients, all reductions performed,
have numerators and denominators exceeding 40 deci-
mal digits. Indeed, the process proves so efficient that a
method we designed specifically fur a massively paral-
lel processor ends up underemploying the power of the
CM. As evidenced by Figure 6, we must reach order 15
in the calculation of II, with real coefficients before the
CM overtakes the Lisp machine.

30 , 1

- MAO
‘;; 20 - MAO!!

E
c 10

0
0 5 10 15 20

Order

Figure 6: ?c, with real coefficients

Having obtained the Lie transformation generating
the solution to Kepler’s equation, we may compute the
expansions of many classical functions in the two-body
problem. For any function F(+,;e,l),

These developments were first tabulated by Cayley
and his students in the mid-nineteenth century, and
many symbolic processors developed by astronomers
have been exercised by reproducing Cayley’s tables [3].
Since they were computed by hand, the developments
were only carried out to low order, far too low to serve
the needs of celestial mechanics today. With MAO!!,
we were able to extend Caytey’s tables for the first time
to order 30. Figure 1 shows one such development from
Cayley’s tables.

9 Conchsions

The trials described in Sections 1 and 8 bring convinc-
ing evidence that massively parallel processors present
a unique opportunity for computa.tional astronomers.
Obviously, problems in celestial mecha.nics prove far

315

too large for general-purpose systems such as MAC-
SYMA. Special-purpose systems running on serial ma-
chines, like MAO, can handle medium-sized problems.
Even implementing MAO on more powerful sequential
machines will not be enough; tackling the large prob-
lems in celestial mechanics requires the economies of
scale that only massively parallel processing can offer.

By exploiting the algebraic structure of Poisson series
and the natural parallelism in symbolic manipulation,
the astronomer working on a Connection Machine may
some day push his analytical theories to much higher
orders than once thought possible.

Doubtless, MAO!! needs to evolve. The algorithms,
as they now stand, require im rovement.
the routines in PARIS would e lminate the f

Recodin
overhea 2

inherent in *Lis
Furthermore, M Ip

and produce large gains in speed.
O!! needs to become more abstract.

The underlymg concept of Poisson series is too limiting.
Ideally, one should be able to treat hierarchies of poly-
nomial or Fourier algebras in order to match precisely
the algebraic structure of the problem.

References
[I] Agnese, J.-C. Logiciel MSTN: Manipulation de Skies

Trigonolllkt~iclues. Technical Report CT/DTI/MS/MN/262

(1984), Centre National d’kudes Spatiales (CNES).

[2] Broucke, R., and Garthwaite, I<. A Programming System
for Analytical Series Expansions on a Computer. Celestial
Mechanics 1 (1969)) 271-284.

[3] Cayley, A. Tables of the Developments of Functions in the

Theory of Elliptic Motion. Memoir.5 of the Roy& Astro-
nomical Society 29, 191-306. Reprinted in The Collected
h4athematical Papers of Arthur Cayley, Vol. 3. Cambridge
University Press, 1890, pp. 360-474.

[d] Connection Machine Model CM-2 Technical Summary.
Thinking Machines Corporation, Cambridge, Mass., 1987.

[5] Danby A. J., Deprit, A., and Rom A. The Symbolic Ma-
nipulation of Poisson Series. Boeing Document Dl-S2-0481

(1965), Boeing Scientific Research Laboratory.

[6] Dasenbrock, R. R. A FORTRAN-Based Program for
Computerized Algebraic Manipulation. NRL Report 8611

(1982), U.S. Naval Research Laboratory.

[7] Deprit, A. Canonical Transformations Depending on a
Small Parameter. Celestial Mechanics 1 (1969), 12-30.

[S] Deprit, A., and Miller, Bruce R. Normalization in the Face

of iktegrability. dnnals of the New York Academy of Sci-
ences 536 (1988), 101-126.

[O] Deprit, A., and Miller, Bruce R. Simplify or Perish. To

appear in Proceedings of the lnternationd Astronomjcal
u man Colloquium #IO9 in Celestial Mechanics.

[lOI Hillis, M’. Daniel. The Comection Machine. The MIT Press,

Cambridge, Mass., lSS5.

[II] Jefkrys, W. H. A Fortran Based Lisp Processor for Poisson
Series. CeJes tial Mechanics 2 (1970), 4741150.

[12] Kusmin, A. V. SASM: Operations on Series. The Algo-
rithms of Celestial Mechanics (Institute of Theoretical As-
tronomy, U.S.S.R. Academy of Sciences, Leningrad) 40

(19S2), 54.

[13] MACSYMA Reference Manual: Version 13. Symbol&,

Lnc., Cambridge, Mass., 1988.

[14] Meyer, K.R. Bifurcations and Stability by Lie Transforma-
tions. To appear in Proceedings of the International Astro-
nom&I Union Colfoquium #109 in Celestial Mechanics.

[15] Paris Reference Manual. Thinking Machines Corporation,
Cambridge, Mass., 1988.

[16] Rom, A. Mechanized Algebraic Operations (MAO). CeJes-
tial Mechanics 1 (1970), 301-319.

[17] *Lisp Reference Manual. Version 5.0. Thinking Machines

Corporation, Cambridge, Mass., 1988.

[lS] *Lisp Release Notes. Thinking Machines Corporation, Cam-
bridge, Mass., 1988.

[IS] Steele Jr., G. L. Common LISP: The Language. Digital

Press, Burlington, Mass., 1984.

A Sample Timings

Order Terms Macsyma MAO

(4

Mf
Total

(4

I!!
Usage

(%)

1 3 0.157 0.002 0.2284 91.94
2 6 0.645 0.007 0.329 92.24

3 10 1.419 0.014 0.369 92.33

4 15 2.732 0.024 0.417 so.47

5 21 4.521 0.038 0.444 91.33

6 27 7.803 0.063 0.508 90.59

7 33 13.158 0.085 0.548 89.57

8 40 21.142 0.114 0.614 89.02

9 47 35.853 0.150 0.667 88.33

10 55 57.377 0.203 0.745 87.42

11 63 0.264 0.805 86.70

12 72 0.391 0.928 85.87
13 81 0.530 1.013 85.00
14 91 0.742 1.111 84.85
15 101 1.047 1.214 84.55

16 112 1.500 1.355 84.12
17 123 2.318 1.491 83.51

18 135 3.516 1.694 83.49

19 147 5.074 1.848 83.54

20 160 7.258 2.674 86.93

21 173 9.974 3.074 87.66

22 187 13.706 3.677 88.43

23 201 18.242 4.003 88.19

24 216 24.161 6.006 91.30

25 231 31.085 6.874 91.90

26 247 39.895 8.250 92.57

27 263 50.201 9.014 92.56
28 2SO 62.905 9324 92.6s

29 297 77.400 14.312 94.54

30 315 95.21s Ii.932 95.31

Table 1: (~/a)~ cos 5f with rational coefficients

316

