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Abstract 

A massively parallel processor proves to be a powerful tool for 

manipulating the very large Poisson series encountered in non- 

linear dynamics. Exploiting the algebraic structure of Poisson 

series leads quite naturally to parallel data structures and algo- 

rithms for symbolic manipulation. Exercising the parallel sym- 

bolic processor on the solution of Kepler’s equation reveals the 

need to reexamine the serial computational methods tradition- 

ally applied to problems in dynamics. 

I Introduction 

Developing literal, i.e. non-numeric, solutions to prob- 
lems in non-linear mechanics presents a great challenge. 
Once the symbolic processor has been tuned to pro- 
duce expansions to a given order, new problems of 
physical interest arise which cannot be answered unless 
the expansions are driven to even higher orders. The 
three particle Toda problem provides a case in point 
[S]. While observing in the analytical expansions that 
the residual perturbation kept breaking a degeneracy, 
we were forced to stop the calcuIations at order 20, 
when the calculations overwhelmed our Lisp worksta- 
tion. Indeed, in problems of this type, the complex- 
ity of the formulas grows in geometric proportion with 
the order. Hence, the computing time increa,ses dra- 
matically as intermediate steps keep exploding at an 
accelerated rhythm. Normalization of the three parti- 
cle Toda system represents only one of many problems 
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which reduce the Lisp machine to a state of constant 
garbage collection. 

The complexity of the non-linear systems encoun- 
tered in semi-classical quantum mechanics pales in 
comparison to the the problems faced in celestial me- 
chanics due to the number of variables involved, the 
Iength of the input expressions, and the multiplicity of 
intermediate operations. Geologists invite astronomers 
to provide a time scale valid over tens of millions of 
years; the history of the earth’s orbital eccentricity 
could serve the geologist’s purpose. Such a long time 
scale, however, supposes a theory of the solar system- 
a g-body problem-in completely literal form, and this 
theory must be valid to the fourth power in the mass 
ratios so as to include all major resonances of long pe- 
riod among planets. The task would be enormous, to 
say the least! Before we attack the planetary problem, 
we must create algorithms to simplify drastically the 
mathematics,] approaches, investigate software tech- 
niques designed to speed the code and facilitate its 
development, and explore the capabilities of new hard- 
ware as it becomes available [9]. 

Along these lines of research, we planned an experi- 
ment on a massively parallel processor to determine at 
what programming cost we could achieve modest in- 
creases in speed while performing some of the basic ma- 
nipulations proper to celestial mechanics. Right from 
the start, the new computing environment of the paral- 
lel processor demanded complete overhaul of the soft- 
ware we have been developing for years on Lisp work- 
stations. We wished to thoroughly explore the possi- 
bilities offered by the parallel machine without com- 
mitting ourselves to a complete redesign of our sym- 
bolic processing software. Once satisfied with the new 
mathema.tical scheme of canonical simplifications, we 
will be in position to move our major problems from 
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serial to parallel computers. Our tentative results ap- 
pear quite positive. The promise of these preliminary 
findings emerges quite vividly from Figure 1, where we 
compare the processing times of three symbolic algebra 
systems to complete a calculation to increasing orders 
of complexity. 
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Figure 1: (r/u)* cos 5f with rational coefficients 

Several criteria dictated the choice of a sample prob- 
lem on which to exercise our parallel symbolic proces- 
sor. First, to avoid entering massive series by hand, 
we looked for a problem which generates enormous ex- 
pressions from data involving only a handful of terms. 
Second, the problem had to be simple enough that it 
could be ported quickly from system to system. The 
problem used to test the parallel processor comes from 
the two-body problem, the basic paradigm of ceIestia1 
mechanics. The basic difficulty in celestial mechanics 
stems from the fact that Kepler’s equation 

E - e sin E = 1 

cannot be solved in finite terms to represent the ec- 
centric anomaly E as a function of the mean anomaly 
f! and the eccentricity e. Instead, assuming that e is 
small enough, E is developed as a Fourier series in e 
over the algebra of formal power series in e with ratio- 
nal coefficients. From these basic expansions emerge 
similar series for functions like 

f = (l-ecosE) 

and 

e cos f = :(l - e2)(cos E - e). 

For the reader not familiar with the problem, we re- 
produce below the first few terms in these series. 

r -- ( 1+ 
a 

$e2) + . . .) 

+ecos!( 1 + ie2 - &e” + . ..) 

+e2cos2& ( -3 + ie2 - &e4 + . ..) 

+e3cos31( -Q + se” + . ..) 

+e4cos4&( -Q+ $e2+ . ..) 

+ e5 cos 5! ( -g + . . .) 

+e6cos6t( -g+ . ..) 

+ . ..> 

ecosf = -e2 

+ecosl( 1- s ze2 + se4 + . .) 

+e2cos2! ( 1 - G)e2 + $je4 + . . .) 

+ e3 cos31 ( 8 - Ee2 + .) 

+e4cos41 ( 2 - ye2 + . ..) 

+ e5 cos 5t ( !j$$ + .) 

+e6cos61 ( g + . ..) 

+...) 

In the trial summarized in Figure 1, we measure the 
time required to obtain the product h = f4g, where 
f = r/a and g = cos 5-f) when these series are ex- 
panded to multiple 30 in e and power 30 in e. In one 
series of calculations, we use MACSYMA running on 
a Symbolics 3675 workstation; in the second series, we 
employ a special purpose processor, Mechanized Alge- 
braic Operations (MAO), designed by Dr. Bruce Miller 
to run on a Symbolics Lisp workstations. In the third 
series, we compute the product on a Connection Ma- 
chine using a package of procedures (MAO!!) we have 
written in *Lisp. In each run, we time the operations 
for increasing orders n in e. At order n = 30, each 
factor contains 256 terms. MACSYMA is desperately 
slow-it took almost 60 minutes to compute the result 
to order 10. MAO reached order 30 in approximately 
95 minutes, while MAO!! did the same five times faster. 
Appendix A contains the complete timing data for the 
calculations in Figure 1. 

2 Poisson Series Processors 

In the twobody problem, as in the overwhelming ma- 
jority of problems in celestial mechanics, the expres- 
sions to be processed take the form of Poisson series 
[5]. Poisson series may be viewed as formal double 
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(L,~)EIxK 

where L and R are vectors of natural integers (E 2) of 
dimension m and n, respectively. M[L] and T[K] stand 
for symbolic terms of the type 

M[L] = Xflxp . . .x2,-, 

T[K] = (RIAI + ltzA2 + . . . + +,A,z). 

Poisson series whose coefficients C,,, are numbers are 
said to be Aat. 

A given family of Poisson series forms a. commuta- 
tive algebra over the ring of its coefficients. Poisson 
series processors differ by the standard representation 
they adopt; existing processors represent Poisson series 
as arrays of vectors [1,2,12], as lists [6,11,16], as two- 
dimensional grids, or even as balanced binary trees. 
The organization of the memory heap determines the 
unique representation of a Poisson series as a vector in 
the free module generated by the products of mono- 
mials and trigonometric terms. This standard repre- 
sentation holds strictly not only in the final result of 
a.n operation, but at every intermediate step, however 
ephemeral. To paraphase J. Moser, all current Poisson 
series processors are as “radical” as one can be in the 
politics of simplification. Radical representations exist 
because the processors can afford to micro-manage all 
ba.sic operations of the algebra. Thus, when perform- 
ing additions, as well as multiplications and differenti- 
a,tions, similar terms combine as soon as they appear, 
terms of opposite sign cancel immediately, and angle 
multiples cha.nge sign to preserve normalization rules. 
In other words, all simplifications occur immediately 
without intervention by the user. 

By contrast, general purpose processors, such as 
MACSYMA [13], k now nothing of these structural con- 
straints. Moreover, MACSYMA does not give the user 
the possibility of enforcing his own representation stan- 
da.rds. So, even if we present the test with g and h in a 
standard format, for example as Fourier series over the 
algebra of polynomials in e, MACSYMA simply states 
that the product h is the expression (f**4)*g, and 
waits for the user to issue commands like trigexpand 
and trigsimp to tra.nsform the result h into the stan- 
dard form of a Poisson series. These simplifications are 
very expensive when applied to general representations 
tha.t do not reflect the algebraic structure of the prob- 
lem. Hence, a.s evidenced in Figure 1, MACSYMA can- 
not. possibly match the performance of a special pur- 
pose processor such as MAO. 

To use a Poisson series processor, the user must spec- 
ify parameters characterizing the particular families of 
Poisson series for the problem at hand: the number 
of terms in each series, the domain of coefficients, the 
number and name of the polynomial and angular vari- 
ables. Ideally, the user would specify these parameters 
at execution time. Existing processors based on linked- 
lists dynamically grow and free the series as the number 
of terms varies. As far as the other ‘parameters, they 
usually appear as macro variables in the source code; 
the software package then compiles to produce a set 
of routines which implements the desired Poisson se- 
ries algebras. Thus, the software becomes a meta-code 
which produces an entire family of Poisson series pro- 
cessors. This meta-code, however, is still not general 
enough, since the parameters of a Poisson series are 
attached not to a particular series but to the compiled 
code itself. Only those series whose structures have 
been foreseen at compile time may be manipulated; 
once compiled, the code precludes certain mathemati- 
cal maneuvers requiring the dynamic specification and 
creation of new families of Poisson series. 

The polynomial and angle variables of a Poisson se- 
ries specify the coordinate map choosen by the mathe- 
matician for a particular problem. A change in coordi- 
nates often marks a turning point in the calculation and 
should be accompanied by a corresponding restructur- 
ing of the Poisson series. For example, a problem may 
initially involve terms in cos g and sin g, a Fourier series 
in the argument of perigee g. Once recognized that the 
series exhibits the d’Alembert characteristic, it may be 
more efficient to recast the Fourier series as a polyno- 
mial in C = cosg and S = sing. In standard pro- 
cessors, the user must prepare for this eventuality by 
structuring all Poisson series with angle variable g and 
polynomial variables C and S. Thus, all advantages of 
this restructuring have been lost to the increased com- 
plexity of the series. Nevertheless, taking advantage 
of more modern programming contstructs allows us to 
design a processor which avoids such unnecessary com- 
plications. Such a processor must treat a Poisson series 
as an object. 

A Aavor suppiies the template characterizing a fam- 
ily of objects. An object embodies both descriptive 
information detailing the state of the object, as well 
as procedural information implementing various oper- 
ations on the object. For instance, multiplying the 
Poisson series P by the series Q may be accomplished 
by sending a message to P requesting that it form its 
product with Q and store the result in a new series ob- 
ject. Any information that P needs about Q may be 
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obtained by addressing the proper message to Q. The 
real power of object-oriented programming comes from 
the ability to construct hierarchies of flavors, whereby 
the programmer creates his own taxonomy of objects. 
If object P’ belongs to a sub-flavor of P, then P’ owns 
all the descriptive information found in P, and possi- 
bly more. P’ possesses all the procedural information 
found in P, and may even handle additional messages. 
This method of abstract programming proves a pow- 
erful tool for preserving the algebraic structure of ex- 
pressions in a symbolic processor. 

The current version of MAO, written in Symbolics 
Common Lisp, implements the concept of an algebra 
A over a ring D as an abstract programming object, 
which in turn refers to another object representing the 
domain of coefficients. The coefficient domain may in 
turn represent a new polynomial or Fourier algebra, to 
any level of recursion. The hierachy of algebras tnust 
stop eventually at the field of real or rational numbers. 
Figure 2 details the Poisson series hierarchy used in 
the two-body problem. Indeed, with object-oriented 
progra.mming, this process now becomes dynamic; de- 
pending on the state of a calculation, we may introduce 
uew hierarchies of algebras and recast series into this 
new algebraic structure. 

p------ 

over 

Figure 2: Hierarchy of algebras for two-body problem 

MAO has proved a very powerful tool in solving 
medium sized problems in non-linear dynatnics. In 
spite of all provisions made to ensure speed aud effi- 
ciency, MAO appears far too slow to handle very large 
problems. Take the case of the lunar theory. Syn- 
chronization of time signals at nanosecond precision 
requires a lunar theory exact to 1 centimeter, but pre- 
cision of 20 meters requires series of some 20,000 terms. 
In search of a faster tool, we turn to the Connection 
Machine for processing Poisson series. 

4 The Connection Machine 

The Connection Machine (CM) is a SIMD machine 
with thousands of processors arranged at the vertices 
of an N-dimensional hypercube [4,10]. The Naval Re- 
search Laboratory has a quarter machine with 2i4 pro- 

cessors. The simple, bit-serial processors each address 
a local memory of 2 l6 bits. Instructions consist of two 
one bit operands plus a flag bit, and return a one bit 
result along with a flag bit. The applications program- 
mer, however, remains safely above the bit level since 
PARIS (parallel mstruction get) provides arithmetic 
operationson integer and floating-point numbers, com- 
munication between processors, and exchange between 
the front-end computer and the CM [15]. PARIS cor- 
responds to the familiar assembly languages on serial 
machines. 

A CM application runs on a front-end computer 
which controls the operations of the Connection Ma- 
chine. The parallel portions of the code consist in 
sending PARIS instructions and data to the CM, and 
in retrieving the results from the processors. Since the 
Connection Machine follows a SIMD architecture, all 
processors in the hypercube receive the same PARIS 
instructions. Programs implement flow of control by 
directing sets of processors to sit out portions of the 
instruction stream. 

Fortunately, higher-level languages have been ex- 
tended for parallel computation. The front-end com- 
puter controlling the CM interprets or cotnpiles the 
parallel portions of the high-level language into PARIS 
instructions. MAO!! runs on a Symbolics workstation, 
and was coded in *Lisp [17,183 (a parallel extension of 
Common Lisp [19]) along with Symbolics Flavors ex- 
tensions for object-oriented programming. Due to the 
pioneering state of the system software, it was often 
necessary to consult the *Lisp sources--sometimes to 
clarify the documentation, at other times, to modify a 
*Lisp primitive to make it work under conditions not 
foreseen by the designers. 

The CM’s memory may be pictured as a matrix of 
2N columns, each consisting of 2l” bits. Every pro- 
cessor owns a column; a parallel variable (or pvar in 
*Lisp) constitutes a set of contiguous rows. *Lisp and 
PARIS partition the processor memory into two parts, 
handling one part as a stack for temporary parallel vari- 
ables, and another part as a heap for global variables. 
*Lisp correctly handles the evaluation of nested expres- 
sions through the allocation and deallocation of inter- 
mediate results on the stack or heap. 

For very large series, MAO!! exploits PARIS facil- 
ities which multiplex each processor into 2”’ virtual 
processors. The number L cm is referred to as the virt,ual 
processor (VP) ratio. Earlier versions of PARIS forced 
the ratio to be specified at the outset of an application, 
with all pvars allocated according to the same VP ratio. 
However, PARIS now permits dynamic virtualization 
of individual pvars. Even more, PARIS allows pvars to 
communicate values among one another, irrespective 
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of their virtual processor set. This software enhance- 
ment proved crucial in coping with the tremendous ex- 
plosions in the intermediate results when operating on 
large series. 

Simplification and multiplication of series rely criti- 
cally on the ability to establish various patterns of com- 
munication among processors. The CM-2 supplies two 
communication mechanisms. Given a source pvar S 
and a target pvar T) how do processors transfer values 
from S to T? The router constitutes a gigantic tele- 
phone system, where each processor is identified by its 
phone number or send address. To use the router, the 
programmer specifies a pvar A of send addresses. For a 
read, all processors read the value in S at the processor 
specified in their value of A and set the value into T. 
For a write, all processors write their value of S into 
T at the processor whose address is given in A. Note 
that the mapping A may be an injection, and collisions 
may occur-a set of processors may either read from 
or write to a single processor. PARIS provides various 
functions to combine colliding messages in the course 
of a write. 

In addition to the router, the CM-2 provides the 
grid mechanism, which is less flexible but more effi- 
cient. Conceptually, grid communication consists of 
two elements. First, there is some configuration of the 
machine as an n-dimensional grid. The processor’s co- 
ordinate in this Cartesian space forms its grid address 
g. Second, a local pattern of communication consists 
of a vector of offsets o. For a read operation, each 
processor reads the value S from the processor at grid 
address g + o and sets the result in T. For a write op- 
eration, each processor writes the value in S into the 
pvar T at the processor with grid address g + o. Note 
tha.t the vector offset o specifies a bijective mapping 
between grid addresses, and no collisions are possible 
during either the read or write operations. 

MAO!! uses both communication mechanisms to ad- 
vantage. Sorting the terms of a series, for instance, 
requires permuting the terms among the processors. 
This type of information shuffling calls for the router. 
Checking if neighboring terms are similar and should 
be combined, on the other hand, involves a local pat- 
tern of communications where each term examines its 
neighbor. Such an operation fits nicely into the grid 
mechanism. 

5 MAO!! 

The Poisson series processor developed on the Con- 
nection Machine has been christened MAO!!-the su- 
fix “!!” following the CM programmer’s convention for 
denoting parallelism. MAO!! achieves its gains over 

MAO by spreading massive Poisson series over thou- 
sands of processors. Each processor in the CM holds a 
single term of a Poisson series. Thus, many series may 
remain ac.tive in the CM, limited only by the number of 
processors. This distribution of terms provides a sim- 
ple resource allocation scheme flexible enough to deal 
with the constant explosion and implosion of partial re- 
sults so typical of symbolic algebra. During the course 
of a calculation, MAO!! allocates free processors to 
hold intermediate terms. During subsequent simpiifi- 
cation steps, terms are eliminated by deallocating their 
representative processors. 

Figure 3 details the front-end structure which holds 
the state of each Poisson series during processing. Each 
series is identified by a name, by which it may be re- 
ferred to in the front-end. The tag identifies which pro- 
cessors hold terms of this series. The front-end struc- 
ture also keeps track of the number of terms in the 
series. Each time MAO!! retrieves the series from CM 
memory, the front-end structure keeps the unpacked 
terms and resets the changed? flag. The unsorted? 
flag tells the MAO!! routines that the series is not cur- 
rently in sorted order in the CM. Finally, series must 
be marked as killed when they are deallocated. 

Poisson Series 

name 

tag 
number of terms 
unpacked terms 
changed? 

unsorted? 
killed? 

Figure 3: Front-end descriptor for Poisson series 

Each term in a Poisson series resides in a single pro- 
cessor. The structure describing such a term is shown 
in Figure 4. Each term consists of a coefficient which 
may be a real or rational number. The angle vari- 
ables in each term are packed into a single field, as 
are the polynomial exponents. The packed angles and 
packed exponents fields contain the angle multiples and 
polynomial exponents, respectively. Packing the angles 
and exponents reduces storage overhead, and also al- 
lows several angle multiples and exponents to be added, 
subtracted or multiplied by a scalar in a single opera- 
tion. A trig flag, 0 for cosine and 1 for sine, completes 
the term structure. 
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Packed Term 

coefficient 
packed angles 
trig flag 
packed exponents 

I , 

Figure 4: Packed term in Poisson series 

From the standpoint of parallelism, algebraic opera- 
tions fall into two classes. Multiplication by a mono- 
mial, partial differentiation and integration typify lo- 
cal operations, requiring only isolated computation in 
each processor. On the other hand, multiplication and 
simplification constitute global operations in the sense 
that processors representing terms of the series must 
communicate among themselves to produce the final 
result. Global operations highlight the real power of 
the CM. Among the global operations, we concentrate 
on two problems: multiplication and simplification. In 
both ca.ses, we succeed in introducing a high degree 
of parallelism. The secret lies in effectively combining 
general router communications with local communica- 
tions operations on a grid of terms. 

6 Multiplication in Parallel 

MAO!! multiplies Poisson series by replicating the fac- 
tors and forming all partial products simultaneously. 
The algorithm becomes clear by looking at a simple 
example. To multiply a second degree polynomial in 
one variable cr + bx + cx2 by a polynomial A + Bx, we 
arrange the machine so that the first six processors on 
a one-dimensional grid contain the following quantities. 

Then, all partial products are computed in parallel so 
that the one-dimensional grid now holds the quantities 
below. 

There remains to pass the series to the simplifica- 
tion routine and store away the remaining terms. The 

dynamic virtualization mechanism of the CM makes 
the multipbcation of large series possible. Realize that 
when multiplying two polynomial series of 256 terms 
each, the intermediate result will have 2r6 terms, while 
our CM provides only 2r4 physical processors. Never- 
theless, the CM may configured as if it had 216 virtual 
processors, where each physical processor emulates four 
virtual ones. 

The situation becomes slightly more complicated 
when multiplying Fourier series rather than polyno- 
mials. The intermediate product now contains twice 
as many terms, since each product of sines or cosines 
produces two new terms. Once again, the flexibility 
of the virtual processor mechanism and grid address- 
ing comes in handy. Once the two products have been 
spread out, as in the case for polynomial multiplica- 
tion, MAO!! merely recopies each product to produce 
the doubling of terms. MAO!! then applies the stan- 
dard trigonometric identities to combine the angles and 
produce coefficients of the correct sign and magnitude. 
The example below shows the result of multiplying the 
Poisson series cos 2 + sin 2 by the series cos y + sin y, 
thereby demonstrating all possible combinations. 

P4 P5 P6 P7 

cos 2 sin 2 cos 2 sin 2 
cos y cos y sin y sin y 

1 L 1 1 

COS(X + yj sin(x + y’, 
-7 

COS(X + yj 

7 Simplification in Parallel 

The most critical operation performed by MAO!! is 
the simplification of intermediate results. Well-timed, 
speedy simplification steps help to control the expres- 
sion swell during calculations. The overall performance 
of a Poisson series processor depends directly on the ef- 
ficiency of the simplification routine. 

In order to simplify a series, MAO!! first collects 
all the terms into consecutive processors along a one- 
dimensional grid. Next, the terms of the series must 
be sorted. As shown in Figure 5, the packed terms 
are recast as sorting terms by considering the packed 
angles, trig flag, and packed exponents as a single un- 
signed integer. The CM’s hypercube architecture pro- 
vides rapid ranking of the terms in logarithmic time. 
Sorting the terms-rearranging them according to the 
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given ranking-requires a global routing step to per- 
mute the terms. 

Sorting Term 

coefficient 

key 

Figure 5: Poisson series term viewed for sorting 

Once sorted, the series may be simplified. Since the 
terms lie along a one-dimensional grid, local commu- 
nications may be used by each processor to see if it 
contains a term simi1a.r to its neighbor on the right. 
The processors form a new pvar containing a 1 if their 
term is similar to their neighbor’s, and containing a 0 
otherwise. This pvar divides the processors into con- 
tiguous segments of similar terms. The figure below 
continues the example of Section 6. The result of the 
multiplication has been sorted and the processors have 
determined the segment boundaries. 

In the final step of simplification, MAO!! applies a 
parallel prefix reduction, or scan operator, to the pvar 
of coed-Kcients. For the case of combining like terms, 
the operator must be addition. After the scan oper- 
ation, each processor in a segment contains the result 
of the scan operator applied to all previous processors 
in the segment, including itself. Thus, the last term in 
each segment now contains the sum of all its similar 
terms. Note that the CM performs these parallel pre- 
fix reductions in logarithmic time, with the order pro- 
portional to the length of the longest segment. Once 
similar terms are combined, MAO!! shifts the segment 
pvar one neighbor to the left. As shown in the fig- 
ure below, those processors now containing a 1 will be 
kept in the final result; MAO!! sets the coefficients of 
the remaining processors to zero and later deallocates 
them. 

PO Pl P2 P3 P4 P5 

UA 0 bA+aB 0 cA+bB cB 
x0 x1 x1 x2 x2 x3 

1 0 1 0 1 1 

8 Kepler’s Equation 

For Kepler’s equation, as well as for many fundamental 
problems of non-linear dynamics, parallel architectures 
force a rex.amination of the established methods of so- 
lution. A literal solution to Kepler’s equation tradi- 
tionally emerges from two main directions-either by 
iteration or by application of Laplace’s formula. 

The iterative method begins with Ea = e, and con- 
tinues with 

El = e+esin& =e+esin1+U(e2), 

E2 = e-i-esinEr =f!+esin(e+esine) 

= e+esinei- $e2sin2C+0(e3), 

and so on. At step n, the iteration adds to E the 
finite Fourier series in !? that is the coefficient of e”. 
The method is easy to implement, providing one has 
at hand a good procedure for expanding Taylor series. 

The iterative method, however, has a serious draw- 
back; it addresses exclusively the problem-of solving 
Kepler’s equation. For the more general case of a func- 
tion F G F(E$,e), one has to resort to straightfor- 
ward substitution of the solution into F itself developed 
as a power series 

F=C$gI 
nzo . e=o 

Such expansions usually lead to elaborate combinations 
of Fa2r de Bruno’s partial differential operators for func- 
tions of a function defined through an implicitz equa- 
tion. One often replaces such operators with ad hoc 
compositions of Taylor series. 

Laplace’s formula. addresses preciseIy the question of 
building functions of E immediately as power series 
in e without necessarily solving Kepler’s equation in 
advance. If G(E) is analytical in E around E = e, 
then Laplace’s formula states that 

G(E) = G(C) + 2 CC [sin Y%G(o] 
j21 j! db-1 (1) 

Equation (1) fits quite naturally on a serial computer. 
Given G, the pr0gra.m proceeds iteratively. From the 
product 

Gj = sinj esG(C), 

one calculates the product 

Gj+l = sin .!!G, 

at step j + 1, and then computes successively the first 
j derivates of Gi+l. 
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Using MACSYMA, we implemented Laplace’s for- 
mula to produce at low orders in e the coefficients 
against which we checked the series produced on the 
CM. It must be noted, however, that as the order 
increases, Laplace’s formula requires more and more 
derivatives; all derivatives at order j except the last 
one become garbage as soon as the loop enters the next 
cycle. Moreover, the work has to be restarted from 
scratch each time another function requires expansion. 

Techniques in computational analysis appeared some 
time ago [7] which address precisely this defficiency 
,with Laplace’s formula. Most recently, these tech- 
niques have been adapted :to solve implicit equations 
depending on a small parameter [14]. The basic con- 
cept is as follows. 

?Vith y = E - e, Kepler’s equation is rewritten as an 
implicit equation of the form 

fb,e;4 - Y - e sin(! - y) = 0. 

This equation has a root y = 0 at e = 0. The implicit 
equation is solved if one finds a family of transforma- 
tions 

$J : 2 w y(x:,e;l) 

parametrized by e. The transformation should be such 
tha.t y(z, 0; J?) = 2; furthermore, it should change f into 

The latter identity implies in particular that ~(0, e; !) 
is the solution of the implicit equation that vanishes 
at e = 0. The transformation 11, will be built as a 
Lie transformation, i.e. as the solution of a differential 
equation 

& - = W(y,e;l) 
de (2) 

for the initial condition y = x at e = 0. 
In other words, instead of constructing 4 as a power 

series, one constructs the right hand member W of a 
differential equation for which $ is a solution. This 
sort of indirection has enormous advantages. Indeed, 
the differential equation 2 defines the Lie operator 

/Cc= 
a 
z+wg-. 

Geometrically speaking, C defines the derivative of any 
function in the direction determined by the vector field 
IV. In particular, to obtain that the transformation 
generated by W changes f into x, it is necessary and 
sufficient to impose that l(f) = 0. 

For the case of Kepler’s equation, one easily obtains 
a simple recurrence relation for the terms in W: 

{ 

-f1 n=O 
T/v, = -we dfi nl 

dY 
11 > 0 

In the solution of Kepler’s ,equation, we have pushed 
this Lie transformation to degree 30 in e. At that or- 
der, some of the coefficients, all reductions performed, 
have numerators and denominators exceeding 40 deci- 
mal digits. Indeed, the process proves so efficient that a 
method we designed specifically fur a massively paral- 
lel processor ends up underemploying the power of the 
CM. As evidenced by Figure 6, we must reach order 15 
in the calculation of II, with real coefficients before the 
CM overtakes the Lisp machine. 

30 , 1 

- MAO 
‘;; 20 - MAO!! 

E 
c 10 

0 
0 5 10 15 20 

Order 

Figure 6: ?c, with real coefficients 

Having obtained the Lie transformation generating 
the solution to Kepler’s equation, we may compute the 
expansions of many classical functions in the two-body 
problem. For any function F(+,;e,l), 

These developments were first tabulated by Cayley 
and his students in the mid-nineteenth century, and 
many symbolic processors developed by astronomers 
have been exercised by reproducing Cayley’s tables [3]. 
Since they were computed by hand, the developments 
were only carried out to low order, far too low to serve 
the needs of celestial mechanics today. With MAO!!, 
we were able to extend Caytey’s tables for the first time 
to order 30. Figure 1 shows one such development from 
Cayley’s tables. 

9 Conchsions 

The trials described in Sections 1 and 8 bring convinc- 
ing evidence that massively parallel processors present 
a unique opportunity for computa.tional astronomers. 
Obviously, problems in celestial mecha.nics prove far 
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too large for general-purpose systems such as MAC- 
SYMA. Special-purpose systems running on serial ma- 
chines, like MAO, can handle medium-sized problems. 
Even implementing MAO on more powerful sequential 
machines will not be enough; tackling the large prob- 
lems in celestial mechanics requires the economies of 
scale that only massively parallel processing can offer. 

By exploiting the algebraic structure of Poisson series 
and the natural parallelism in symbolic manipulation, 
the astronomer working on a Connection Machine may 
some day push his analytical theories to much higher 
orders than once thought possible. 

Doubtless, MAO!! needs to evolve. The algorithms, 
as they now stand, require im rovement. 
the routines in PARIS would e lminate the f 

Recodin 
overhea 2 

inherent in *Lis 
Furthermore, M Ip 

and produce large gains in speed. 
O!! needs to become more abstract. 

The underlymg concept of Poisson series is too limiting. 
Ideally, one should be able to treat hierarchies of poly- 
nomial or Fourier algebras in order to match precisely 
the algebraic structure of the problem. 

References 
[I] Agnese, J.-C. Logiciel MSTN: Manipulation de Skies 

Trigonolllkt~iclues. Technical Report CT/DTI/MS/MN/262 

(1984), Centre National d’kudes Spatiales (CNES). 

[2] Broucke, R., and Garthwaite, I<. A Programming System 
for Analytical Series Expansions on a Computer. Celestial 
Mechanics 1 (1969)) 271-284. 

[3] Cayley, A. Tables of the Developments of Functions in the 

Theory of Elliptic Motion. Memoir.5 of the Roy& Astro- 
nomical Society 29, 191-306. Reprinted in The Collected 
h4athematical Papers of Arthur Cayley, Vol. 3. Cambridge 
University Press, 1890, pp. 360-474. 

[d] Connection Machine Model CM-2 Technical Summary. 
Thinking Machines Corporation, Cambridge, Mass., 1987. 

[5] Danby A. J., Deprit, A., and Rom A. The Symbolic Ma- 
nipulation of Poisson Series. Boeing Document Dl-S2-0481 

(1965), Boeing Scientific Research Laboratory. 

[6] Dasenbrock, R. R. A FORTRAN-Based Program for 
Computerized Algebraic Manipulation. NRL Report 8611 

(1982), U.S. Naval Research Laboratory. 

[7] Deprit, A. Canonical Transformations Depending on a 
Small Parameter. Celestial Mechanics 1 (1969), 12-30. 

[S] Deprit, A., and Miller, Bruce R. Normalization in the Face 

of iktegrability. dnnals of the New York Academy of Sci- 
ences 536 (1988), 101-126. 

[O] Deprit, A., and Miller, Bruce R. Simplify or Perish. To 

appear in Proceedings of the lnternationd Astronomjcal 
u man Colloquium #IO9 in Celestial Mechanics. 

[lOI Hillis, M’. Daniel. The Comection Machine. The MIT Press, 

Cambridge, Mass., lSS5. 

[II] Jefkrys, W. H. A Fortran Based Lisp Processor for Poisson 
Series. CeJes tial Mechanics 2 (1970), 4741150. 

[12] Kusmin, A. V. SASM: Operations on Series. The Algo- 
rithms of Celestial Mechanics (Institute of Theoretical As- 
tronomy, U.S.S.R. Academy of Sciences, Leningrad) 40 

(19S2), 54. 

[13] MACSYMA Reference Manual: Version 13. Symbol&, 

Lnc., Cambridge, Mass., 1988. 

[14] Meyer, K.R. Bifurcations and Stability by Lie Transforma- 
tions. To appear in Proceedings of the International Astro- 
nom&I Union Colfoquium #109 in Celestial Mechanics. 

[15] Paris Reference Manual. Thinking Machines Corporation, 
Cambridge, Mass., 1988. 

[16] Rom, A. Mechanized Algebraic Operations (MAO). CeJes- 
tial Mechanics 1 (1970), 301-319. 

[17] *Lisp Reference Manual. Version 5.0. Thinking Machines 

Corporation, Cambridge, Mass., 1988. 

[lS] *Lisp Release Notes. Thinking Machines Corporation, Cam- 
bridge, Mass., 1988. 

[IS] Steele Jr., G. L. Common LISP: The Language. Digital 

Press, Burlington, Mass., 1984. 

A Sample Timings 

Order Terms Macsyma MAO 

(4 

Mf 
Total 

(4 

I!! 
Usage 

(%) 

1 3 0.157 0.002 0.2284 91.94 
2 6 0.645 0.007 0.329 92.24 

3 10 1.419 0.014 0.369 92.33 

4 15 2.732 0.024 0.417 so.47 

5 21 4.521 0.038 0.444 91.33 

6 27 7.803 0.063 0.508 90.59 

7 33 13.158 0.085 0.548 89.57 

8 40 21.142 0.114 0.614 89.02 

9 47 35.853 0.150 0.667 88.33 

10 55 57.377 0.203 0.745 87.42 

11 63 0.264 0.805 86.70 

12 72 0.391 0.928 85.87 
13 81 0.530 1.013 85.00 
14 91 0.742 1.111 84.85 
15 101 1.047 1.214 84.55 

16 112 1.500 1.355 84.12 
17 123 2.318 1.491 83.51 

18 135 3.516 1.694 83.49 

19 147 5.074 1.848 83.54 

20 160 7.258 2.674 86.93 

21 173 9.974 3.074 87.66 

22 187 13.706 3.677 88.43 

23 201 18.242 4.003 88.19 

24 216 24.161 6.006 91.30 

25 231 31.085 6.874 91.90 

26 247 39.895 8.250 92.57 

27 263 50.201 9.014 92.56 
28 2SO 62.905 9324 92.6s 

29 297 77.400 14.312 94.54 

30 315 95.21s Ii.932 95.31 

Table 1: (~/a)~ cos 5f with rational coefficients 
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