
My Thoughts on Software Engineering in the Late 1960s

David Gries

Condl University

Two years after I received my PhD, while an assistant
professor at Stanford, I attended the NATO conference
in Garmish, Germany, where the “software crisis” was
first openly discussed and the term “software engineer-
ing” was brought to the fore. I suppose I was invited
because Fritz Bauer of Munich, Germany, one of the
organizers of this eventful international conference, was
my PhD advisor. I was close to the youngest of the 50-
odd participants.

I did my part. I listened attentively, I made a few very
small points, and I helped organize and run one of the
workshops. Yet I felt small and unsure of myself. I won-
dered whether I would ever be able to speak on a level
with these people (the Algol-60 people like Bauer, Naur,
and Perlis, who gave a good keynote speech, and Samel-
son; Doug McIlroy, who spoke so eloquently about the
need for components and reusable software; Dijkstra;
Galler; Graham; Ross; and others).

After the conference, I helped transcribe the tapes of the
sessions and organize notes for the editors of the pro-
ceedings, Peter Naur and Brian Randell. This gave me
a nice perspective, for I could go over what the people
said at leisure and ponder. I now read some of the com-
ments made during the conference with a chuckle (e.g.
“use high-level [languages] for research production, low-
level for commercial production”). But as I look back
at the proceedings, I am struck by the perceptiveness of
the attendees.

I knew that these people were right; we did not know
much about programming or software engineering. I
was a good programmer myself, a good hacker. But
my experiences in teaching introductory programming
at Stanford had shown me how little I really knew. I

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice IS given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee sad/or specrhc peimission.

remember quite clearly introducing my own version of
“stepwise refinement” and “top-down design,” but of
course I had neither the experience nor the eloquence
of a Wirth or Dijkstra, who wrote such excellent works
just a. few years later. I remember trying to teach my
students how to develop a loop, and realizing that I
really didn’t know how I developed one myself. I felt
funny indeed, in front of the class. And the conference
gave me the feeling that most of the other participants
felt the same way about programming. They might be
good programmers themselves, but they did not know
why and they couldn’t teach their trade to others.

Of program correctness concerns at that time, I knew
nothing. The notion did come up during the confer-
ence, but no one had any idea what it meant, really.
We were still floundering with the structure and organi-
zation of programs. The thought that programs might
be treated as mathematical entities was indeed men-
tioned from time to time (sometimes with dismay).

The conference pinpointed many problems, but few so-
lutions. However, it served its purpose of making peo-
ple aware of the problems and their significance. And it
stimulated the research that has had so much effect in
the past twenty years.

01989 ACM 0270-5257/89/0500/0098$00.75
98

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74587.74599&domain=pdf&date_stamp=1989-05-15

