
Object Management in a CASE Environment

Evan W. Adams Masahiro Honda Terrence C. Miller

Sun Microsystems, Inc.

2.550 Garcia Ave

Mt. View, Calif. 94043

Abstract

The Sun Network Software Environment (NSE) is a net-
work-based object manager for software development. The
NSE supports parallel development through an optimistic
concurrency control mechanism, in which developers do
not acquire locks before modifying objects. Instead, devel-
opers copy objects, modify the copies, and merge the
modified objects with the originals. Objects managed by
the NSE are typed, and the set of types can be extended by
tool builders. The NSE is designed to work with heteroge-
neous implementations and poor communication.

1 Introduction

A large software product consists of a wide variety of ob-
jects. It consists not only of source, object, and executable
code objects, but also of requirement, specification, de-
sign, schedule, test plan, test data, and documentation ob-
jects. Systems to manage these objects must address a
number of problems. These problems include:

1) multiple people problems-large software projects in-
volve multiple people working together on a com-
mon set of objects. Developers must worry about
other developers concurrently updating objects they
depend on.

2) multiple object problems-large software projects in-
volve multiple objects, often numbering in the thou-
sands. Developers must deal with sets of objects as
units. They must be able to identify the versions of
all the objects that make up a consistent unit, such
as a release.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyri@t notice and the title of the publication and
Its date appear, and notice IS given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specdic permission.

3) multiple release problems-large software projects in-
volve development and maintenance of multiple re-
leases at the same time, which requires the same
object to have multiple versions undergoing change.
Problems arise in trying to merge changes made in
one release with changes made in another release.

4) multiple machine problems-workstations and network-
ing exacerbate the above problems. Users must
know where objects are located on the network. In
addition, copies of objects can proliferate over the
network, making it difficult to locate consistent ver-
sions of objects. Cooperative development on het-
erogeneous and geographically distributed networks
must also be supported.

5) multiple tool problems-software development organi-
zations have substantial investments in their exist-
ing tools. An object management system must be
able to manage the objects that these tools manipu-
late without requiring that the tools be modified ex-
tensively.

A CASE environment which attempts to deal with these
problems must include a distributed object manager capa-
ble of handling multiple versions of objects of different
types.

2 The NSE Approach

The NSE’s approach to solving the problems mentioned
above is derived from three basic principles:

1) Parallel development should be encouraged and sup-
ported.

2) Management of objects manipulated by a wide variety
of existing and future tools should be supported.

3) Cooperation between users who are physically as well
as logically separated and employing heterogeneous
implementations should be supported.

The following three sections describe the results of apply
ing these principles.

154
0 1989 ACM 0270-5257/89/05OO/Ol54$00.75 Recommended by: Mark Dowson

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74587.74610&domain=pdf&date_stamp=1989-05-15

3 Parallel Development

Parallel development is supported by the NSE through an
optimistic concurrency control scheme we call the copy-
mod@-merge transaction paradigm. Simply stated, a devel-
oper copies a set of objects without locking them, modifies
a subset of the copies, and then merges the modified cop-
ies with the originals. This paradigm allows developers to
work in isolation from one another since changes are made
to copies of objects. Because locks are not used, develop-
ment is not serialized and can proceed in parallel. Devel-
opers, however, must merge changes to objects before the
transaction can be committed. In particular, a developer
must resolve conflicts when the same object has been
modified by someone else.

The NSE design assumes that it is possible to provide tools
that make the cost of resolving conflicts less than the cost
of delays due to serialization. Our experience using the
NSE to develop itself has provided good evidence to sup-
port this assumption.

Locks also do not adequately prevent other developers
from updating files you depend on. You often only lock
the files you intend to update, so you have no protection
against others updating files that you depend on and as-
sume will not change. You must at least read-lock all the
files you depend on in order to get this level of protection,
which serializes development even more.

In addition, we have seen that developers often subvert
locks in systems that require them. Developers, in order to
avoid waiting, make copies of files without getting locks,
and only acquire locks when the changes have been made
and the files are ready to be checked in. This paradigm is
essentially copy-modify-merge. The NSE formalizes and
legitimizes this paradigm by directly supporting develop-
ment without locks.

3.1 Copy-modify-merge Problems

For a tool to successfully manage objects with the copy-
modify-merge paradigm, a number of problems must be
addressed. First, since software development involves mul-
tiple objects, it is not sufficient to just make copies of the
objects that are to be modified. Instead, the entire set of
objects that make up a program or system must be copied
as a unit, so that after the changes are made, the changed
objects can be tested to make sure they are consistent with
all other objects in the set. Developers must therefore be
able to locate and copy consistent versions of objects. Note
that consistent versions are needed of not only the source

code, but also of other objects such as documents, design
specifications, and test scripts. These objects must all be
kept consistent with each other.

Second, making physical copies of objects can be costly in
both time and space. Methods for reducing the number of
physical copies are needed.

Third, it is desirable to not have to change the names of
objects when they are copied. That is, the name space for
the copies should be identical to the original name space.
Otherwise, references made from one object to another,
such as absolute references to included files from source
files, need to be changed, which is not only a nuisance but
another source of error.

Fourth, after the changes have been made and tested, the
objects that have been modified need to be identified and
merged back with the originals. Due to the large number
of objects that can be involved in a change, this step is
very error-prone if done manually. Furthermore, conflicts
must be detected so that another developer’s changes
made in parallel are not overwritten.

Finally, effective mechanisms are needed to rapidly re-
solve conflicts between two versions of an object.

3.2 NSE Copy-modify-merge Solutions

The NSE operates on sets of objects called components.
Components are used to group objects together so that
they can be managed as a single unit. Snapshots of compo-
nents can be taken to create components revisions, so that
consistent versions of objects can also be grouped together
as a unit. Component revisions are immutable. Component
revisions are implemented using sparse copies: only files
modified since the previous revision are copied. The ex-
tensions to the Sun file system that enable sparse copies
are described in [7]. Components are described further in
the discussion of object types in section 4.1.3.

The NSE implements the copy step of the copy-modify-
merge paradigm through an operation called acquire.
Acquire takes a component revision as an argument and
creates a copy of the versions of all objects in that compo-
nent revision. Consistent versions of related objects are
therefore copied together. The acquire operation nor-
mally does not create physical copies of file objects. In-
stead, the file is shared until the copy is modified. The
extensions to the Sun file system that implement file shar-
ing and copy-on-write semantics are also described in 171.

155

Components are acquired between NSE environments. An
environment is a work space that contains (logical) copies
of objects. Each environment can have a different copy of
an object. An environment also provides a virtual name
space for its objects, so the same name can refer to differ-
ent versions of the object in different environments. For
example, the file /usr/src/diff/diff .c in envi-
ronment El can be a different version of diff.c than the
file /usr/src/diff/diff .c in environment E2.

Environments have network-wide names, and can be ac-
cessed from any machine on a network. Developers need
not know the physical network topology in order to access
environments.

A developer acquires a component from a common parent
environment to a private child environment. The parent
environment serves as an integration area for a group of
developers working on the same project. Each developer
updates acquired objects in the developer’s child environ-
ment in isolation.

Figure 1 shows an example environment hierarchy. The
parent environment, called languages, contains a compo-
nent called compiler. The compiler component contains
all the files for a simple compiler, which are scan.c and
parse.c, together with the Makefile. There are two devel-
opers, Jon and Mary. Jon works on the scanner so he ac-
quires the compiler component from the languages envi-
ronment into his own environment called scanner-dev.
Mary works on the parser, so she acquires the compiler
component from the languages environment to her own
parser-dev environment. Note that both Jon and Mary ac-
quire the complete set of files for the compiler, scan.c and
parsex, plus the Makefile, since the component compiler
is acquired. Both Jon and Mary will need the three files to
test their changes.

After making changes and testing them in the child envi-
ronment, a developer attempts to commit the modified ob-
jects in the parent using the reconci le operation. The
reconci 1 e operation copies the changed objects in the
component back to the parent environment. The NSE
keeps track of what objects have been changed in an envi-
ronment. This information is used to determine what ob-
jects to copy back and also to determine what objects are
in conflict as a result of parallel changes.

A reconc i 1 e by a developer will fail if any object con-
tained in the component has changed in the parent since it
was acquired. This usually means that a second developer
working in another child environment has concurrently

languages env

Jon: scanner-dev Mary: parser-dev

Figure 1
changed and reconciled objects that are also in the compo-
nent that the first developer is trying to reconcile. The
reconcile fails because the first developer’s changes
may no longer be consistent with the second developer’s
changes. For example, the second developer may have
changed a common include file, which could cause the
first developer’s changes to no longer compile.

In such a case the reconcile operation does not copy
back the changed objects. Instead, it calls the resync
operation to acquire into the first developer’s environment
the new versions of objects in the parent. If an object has
been changed only in the parent, the new version replaces
the old one in the child. If the object has been changed in
both parent and child, a conflict exists. Resync acquires
the information needed to resolve conflicts; this is usually
a copy of the new version from the parent and the version
which is the common ancestor of the versions now in both
the parent and child. The NSE resolve operation can
then be called to resolve conflicts on each conflicting ob-
ject. Rosa lve invokes the appropriate merging tool on
each object depending on the object’s type (object types
are explained in the next section). Each object type inte-
grated with the NSE provides a merging tool.

For ASCII files, the NSE provides a window-based merg-
ing tool, called f ileresolve, as shown in Figure 2.
Fileresolve uses information from the common an-
cestor of the two versions being merged. The merge tech-
nique is a simple three-way merge based on the Unixt

tUnix is a trademark of AT&T.

156

Yours vs. Ancestor Theirs vs. Ancestor

ldef 1 ne NSELINK-NO-DATAEV,SE -89

rdef i ne NSELINK-DE.-DUPL ICATE -14
Idefine NSELINK DB ERROR -15
ldef 1 ne NSELINK-NODE FOUND - -

f’ Cc.nstanta for rpc fast acknwledge ‘/

rdefine NSELINK FA
ldef Ine NSELINK-FA
rdef I ne NSELINK-FA

#define NSELINK OUT OF MEM -12
,ldefinm NSELINK-NO &?&SE -98

/defina NSELJNK-DB-DUPLICATE -14
#define NSELINK-DB-ERROR -1s

, #define NSELINKINOEE-FOUND -08 /* used by
l I’m chs
l chockln
l Q&S ,,”

‘/

+Ideflne NSELINK-NEW-ERRDR-CODE -17

I- Constants for rpc fast PCknWl9dQs -I

/usrlsrc/nss/lnclude/nse/lib~~rrcode.h
(1 of 1)

#define NSELINK DR DUPLICATE
ldsfine NSELINK:CB:ERRDR

l #define NSELINK NEW ERROR CODE -17 -- -

rpc fast acknowledge */
Scroll a Lock u Unlock
Unrooalved Diffo: 3 of 5

Merged

Figure 2
Control Panel

resy resync .n

bug fix new development

Figure 3

157

d i f f program. In our experience, this simple technique
has proven to be very effective. When two versions of a
source file are merged, for example, it is usually the case
that each version is modified in different places; conflicts
due to modifications to the same lines rarely occur. Fur-
thermore, each version is usually modified for different
purposes and so semantic conflicts are also rare. We have
found that source files can be merged with little or no help
from the user most of the time. Since the merge is not
semantic-based, however, testing is required after all files
have been merged.

The resync operation can also be used to update a new
release with changes, such as bug fixes, made in an old
release. When work on a new release is to start, a parent
integration environment for the new release is initialized
by acquiring objects from the old release’s integration en-
vironment. Changes can then occur in parallel to both re-
leases. As bugs are fixed in the old release, the changes
can be resync-ed to the new release. Figure 3 illustrates
this method.

4 Typed Objects

The NSE can manage objects produced by tools used in all
phases of the software development life cycle. The key to
the NSE’s generality is the notion of typed objects. Each
object has a type. A type manager, which controls the
type-specific aspects of managing objects of each type, can
be integrated with the NSE. Examples of object types are
data flow diagrams managed by a CASE tool and docu-
ments produced by electronic publishing software-as well
as source and object files.

An NSE object may be compound (containing a set of sub-
objects) or primitive and includes:

1) a standard set of attributes used to control NSE opera-
tions.

2) optional type-specific attributes.

3) for compound objects-either an enumeration of the set
of subobjects or an algorithm for computing them.

4) uninterpreted data (the object’s contents)

4.1 Standard Object Types

Three principal object types are built into the NSE, these
are files, targets, and components. These are general-
purpose objects applicable to any software project.

4.1.1 Files

In a software project, the most common objects are source
and derived files. Derived files, such as object files, librar-

ies, and executable programs, are built from source files
by programs such as compilers and linkers. The NSE file
object covers both source and derived files.

4.1.2 Targets

An N!jE target is a compound object which dynamically
computes its set of subobjects. It automates much of the
bookkeeping associated with derived files generated using
the Unix make utility [4]. The subobjects of a target are
a derived file and the objects needed to build it. The ob-
jects needed to build a derived file consist of a Makefile
and a collection of dependencies. A Makefile describes how
to construct a derived file in the fewest possible steps. De-
pendencies are files such as source files, object files, li-
braries, and header files that, if changed, require the de-
rived file to be rebuilt. The NSE automatically keeps the
contents of targets up to date when Makefiles and depend-
encies are changed. The NSE also does not require that
users explicitly list all dependencies in the Makefile. For
example, it automatically includes files referenced in
#i nc lude statements in C programs.

During such operations as acquire and reconcile,
the NSE will compute the validity of derived files using the
same time-based algorithm used by make. Invalid files are
neither acquired nor reconciled.

4.1.3 Components

Whereas a target is a special compound object to hold a
derived file and a set of consistent dependencies together,
an NS’E component is a general-purpose compound object
that can be used to group any collection of related objects.
Objects of any type can be members of a component, in-
cluding other components, and one object can be a mem-
ber of two or more components. Although the NSE does
not restrict the contents of components, a typical compo-
nent might contain a target object representing a program,
and all other objects related to that program. These might
include specifications, design diagrams, documentation,
test data-in short anything that someone interested in the
progra.m might want to have available in one place to sim-
plify examination or modification.

Because components can contain other components, they
can represent the hierarchical structure of a complex soft-
ware product. A typical system might consist of one top-
level component representing the entire system; this com-
ponent might have one component per subsystem, and
these components might have subcomponents for pro-
grams. When components are used in this way to represent

158

levels of abstraction, each component can contain an intel-
lectually manageable number of objects, say, five to ten.
Some of these objects will be components representing the
next lower level of detail. To see the next level of detail
you can examine the subcomponents.

Components are the basic building blocks of NSE-man-
aged software projects. Components are a project’s work
units, on which programmers can work in parallel.

4.2 Type Extensibility

The NSE allows tool writers or third party tool vendors to
add object types to the NSE. These additional object types
are “first-class” citizens of the NSE; users cannot distin-
guish built-in object types from those that have been
added.

4.2.1 Type-Specific Operations

To implement a new type within the NSE, the type integra-
tor writes a collection of procedures. These procedures im-
plement a set of type-specific operations defined by the
NSE. The type integrator then compiles the procedures
and links them with the NSE. Types may also inherit pro-
cedures (methods) from a parent type.

Figure 4 shows how the code that implements an NSE
command is divided into four levels of procedures. When
you invoke an NSE command such as acquire, you start
the execution of a program of the same name. This main
program parses command line arguments and then calls a
corresponding generic procedure; for example, acqu i x-e
calls rise-generic-acquire.

A generic procedure performs type-independent command
processing and then calls a corresponding type-specific
procedure based on the type of the object. Generic proce-
dures call type-specific procedures indirectly through a
mechanism called an ops vector. There is one ops vector
per operation, and each vector contains the addresses of
the procedures that handle each object type. For example,
the acquire ops vector contains the addresses of the
component acquire procedure, the target acquire
procedure, and so on. New types are accommodated by
adding corresponding entries to the ops vectors, a job done
by a table driven configuration utility.

There are two classes of type-specific operations, called
primary and secondary. There are seven primary opera-
tions, which correspond to NSE commands such as ac-
quire and reconcile. There are about 20 secondary
operations which mainly retrieve attributes of the objects

such as last modification time. Secondary operations are
mainly called by generic procedures.

Note that a primary type-specific procedure may call a
generic procedure. This is how the NSE recursively applies
an operation to all subobjects of compound objects. For
example, the component acquire procedure calls
rise-generic-acquire for every object in the compo-
nent.

In each environment are several small databases which
type-specific and generic procedures can use to store and
retrieve information about objects. In general, these simple
databases are used to store object attributes and revision
histories. They are usually not used for the contents of an
object; these are stored in the same way they were before
integration with the NSE. In particular, files are stored as
files in the underlying file system. As explained below,
this greatly simplifies tool integration.

4.2.2 Inheritance

The NSE allows a limited form of operation inheritance. A
new type may use some or all of the operations of an ex-
isting type. In the simplest case, only the type name need
be different. This type renaming is surprisingly useful,
since it allows, for example, simple file types to be man-
aged by the NSE with very little work.

4.2.3 Tool Integration

Tools should be able to integrate with the NSE (i.e., have
their objects managed by the NSE) without sacrificing the
tool builders’ freedom to represent objects the way they
want. To support this desire, file objects in an NSE envi-
ronment are accessed using the same interfaces as files
outside of NSE. CASE tools that use files to store their
objects need not change their data representations in order
for their objects to be managed by the NSE. Integrating
such tools into the NSE framewdrk requires minimal modi-
fication (often none). If the tool creates objects whose
presence cannot be discovered by the corresponding type-
specific operations, the tool must register the objects in the
databases maintained by the NSE. Tools that can delete or
rename objects must also register those events. This allows
the NSE to maintain object revision histories for deleted or
renamed objects.

5 Heterogeneous Distribution

From the viewpoint of a single user, NSE environments
are divided into two classes, locuE and remote. The user
activates, does normal work in, and makes revisions in

159

Main

Generic

Type-specific

Database
Utilities

Remote

User Command (e.g., acqu i re)

--
--

Figure 4 - Command Procedure Calling Hierarchy

(parent) Local

Rpc 0 server

(child)

I

Figure 5 - Reconcile

160

local environments (the files and databases which make up
a local environment need not be on the users machine but
must be accessible by NFS, the Network File System).
While working in a local environment, the user may ac-
quire (or resync) from or reconcile to a remote environ-
ment.

The NSE programs which perform acquire or recon-
c i 1 e never access the remote environment directly. They
communicate via remote procedure call (RPC) with a
server running on the machine at which the environment is
located. The remote server supplies information about ob-
jects in its environment but never makes changes. There is
never more than one server per environment, allowing the
server to prevent overlapping operations on the same envi-
ronment.

The reconc i le operation requires that the reconcile
command produce changes in the parent environment,
which it cannot make directly. Figure 5 shows the process
structure which preserves the local/remote distinction dur-
ing reconcile. The steps are:

1) The reconcile command invokes the recon-
c i 1 e-check operation which uses information
obtained from local databases and the parent’s
server to verify that the reconci le may take
place (that there are no conflicts).

2) The command then asks the server to start a reconcile
process local to the parent environment and sends
that process a list of objects which need to be rec-
onciled. The server itself does not perform the
reconcile operation in order to free itself to
serve other requests while the reconci lo is in
progress.

3) The reconcile process executes the reconc i le opera-
tion which makes requests to the child’s server in
order to obtain the new objects (the process is the
reverse of acquire).

By carefully preserving the local/remote distinction, the
NSE alIows acquire/resync/reconcile to work
between environments with widely varying implementa-
tions. Except during those operations, there is no commu-
nication between environments and local work can con-
tinue even if the communications channel is interrupted.

6 Relation to Other Work

A number of software tools have addressed some of the
problems NSE addresses. SCCS [11, RCS [131, and DSEE
[lo] address software engineering problems for software

objects that are individual files, primarily source code files
(although DSEE also handles object code files). These sys-
tems provide no integrated method for managing files
along with other types of objects.

SCCS, RCS, and DSEE all use file locking to control con-
current updates to files. Locking, as mentioned, has the
disadvantage of serializing development. Developers are
forced to wait until locks on files they need to modify are
released. Locking also does not adequately protect a devel-
oper from inconsistencies imposed by changes made by
others on files the developer depends on but is not updat-
ing.

RCS can associate symbolic names with versions of files
that belong to a revision, so consistent versions can be
tagged with a common name. DSEE configuration threads
provide a mechanism for tools to transparently access ver-
sions of files for a particular configuration. SCCS control5
versioning of individual files but not sets of files.

To handle multiple releases, SCCS, RCS, and DSEE sup-
port the concept of branching version histories for individ-
ual files. Because software development involves multiple
files, however, branching needs to be supported for sets of
files, rather than just on individual files.

A system closer to the NSE is the DF system [9, 111 found
in Cedar [6]. The DF system provides mechanisms for de-
fining sets of consistent files. Developers copy a set of
files to their workstations and modify the copies in isola-
tion. The modified copies are then copied back to be
merged with the originals. The DF system does not pro-
vide the same degree of support for logical work spaces as
the NSE does. For example, it uses physical workstation
disks as work spaces.

PCTE[S] is a more general object manager but does not
provide a mechanism for isolating users working in paral-
lel. The DAPSE[2] work does define methods for identify-
ing consistent sets of objects and for controlling parallel
changes. However, its approach to tool integration is the
opposite of the NSE’s: existing tools must be modified to
conform to DAPSE’s interfaces.

In contrast to NSE’s copy-modify-merge paradigm, Pu,
Kaiser and Hutchinson [12] have recently introduced the
idea of split-transactions to reduce serialization in long
transactions. The basic idea is to allow a transaction to be
split so that part of the data can be released for others to
access without waiting for the entire set of data to be
freed. Split-transactions promote parallel development,

161

but the degree of parallelism is limited to the extent that
splitable subsets of the data can be identified. The copy-
modify-merge paradigm does not have this limitation.

Type extensibility has been a technique used in program-
ming languages for a long time. NSE’s adaptation of this
technique to management of software objects makes it
similar to ISTAR [3], although ISTAR is more oriented
towards project management.

Semantic-based program merge techniques using data
flow analysis have been recently investigated by Horwitz,
Prins and Reps [8]. Their methods, however, are not yet
suitable for general programming languages, such as C.

7 Current Status

The first version of the NSE has been implemented and
released as a product and is in use at Sun and at a number
of large software development groups outside of Sun. The
NSE was developed using itself (180,000 lines of source
code) for the last 18 months. Work is in progress to imple-
ment NSE types for objects produced by a number of ex-
isting software development tools.

8 Conclusions

The NSE provides a uniform mechanism for managing the
development and maintenance of different kinds of soft-
ware objects. Not only can different objects types be man-
aged, but types can be combined in components that are
managed together as a unit. New kinds of objects can be
added to the NSE. The copy-modify-merge paradigm used
by the NSE supports parallel development without the use
of locks. The NSE provides the necessary bookkeeping and
tools needed to facilitate parallel development. Experience
has shown that the cost of merging when using the NSE is
less than the cost of delays due to serialization caused by
locks. FinaIly, the NSE is architected to allow development
in a heterogeneous distributed network.

9 Acknowledgments

This paper reflects the work of the entire NSE team at Sun
Microsystems. The people involved, in addition to the
authors. include Azad Bolour, Jonathan Feiber, Jill Foley,
David Hendricks, Tom Lyon, Russell Sandberg, and
Daniel Scales.

10 References

PI Bell Telephone Laboratories, “Source Code Control
System User’s Guide”, UNIX System III Program-
mer’s Manual, Oct. 1981.

PI

t31

141

[51

[61

[71

PI

[91

El01

1111

S. Boyd, “Status of the DAPSE Project: A Distrib-
uted Ada Programming Support Environment”,
ACM Sigsof Sofware Engineering Notes 12(3), April
1987.

M. Dowson, “ISTAR - An Integrated Project Sup-
port Environment”, Proceedings of the ACM SIG-
SOFTISIGPLAN Sofiware Engineering Symposium on
Practical Sofiware Development Environments, Jan.
1987, pp. 27-33

S. I. Feldman, “Make - A Program for Maintaining
Computer Programs”, Software: Practice and Experi-
ence, April 1979.

F. Gallo, R. Minot, I. Thomas, “The Object Man-
agement System of PCTE as a Software Engineer-
ing Database Management System”, Proceedings of
the ACM SIGSOFTISIGPLAN Software Engineering on
Practical Software Development Environments, April
1984.

D. K. Gifford, R. M. Needham, and M. D.
Schroeder, “The Cedar File System”, CACM March
1988, pp. 288-298.

D. Hendricks, “The Translucent File Service”, Pro-
ceedings of the European Unix Systems User Group
Autumn I988 Conference, October 1988.

S. Horwitz, J. Prins, and T. Reps, “Integrating Non-
Interfering Versions of Programs”, pp. 133-145,
Conference Record of the Fifteenth ACM Symposium on
Principles of Programming Languages, (San Diego,
CA, Jan, 13-15, 1988) ACM, New York, NY (1988)

B. Lampson and E. Schmidt, “Organizing Software
in a Distributed Environment”, Proceedings of the
SIGPLAN ‘83 Symposium on Programming Language
Issues in Software Systems, June 1983, pp. ,l-13.

D. B. Leblang and R. P. Chase, “Computer-Aided
Software Engineering in a Distributed Workstation
Environment”, Proceedings of the ACM SIGSOFTI
SIGPLAN Sofiware Engineering on Practical Software
Development Environments, April 1984, pp. 104-112.

B. Lewis, “Experience with a System for Control-
ling Software Versions in a Distributed Environ-
ment”, Proceedings of the Symposium on Application
and Assessment of Automated Tools for Software Devel-
opment, Nov. 1983.

162

[12] C. Pu, G. Kaiser, N. Hutchinson, “Split-Transac-
tions for Open-Ended Activities”, Proceedings of the
Fourteenth International Conference on Very Large
Data Bases, Aug. 1988.

[13] W. F. Tichy, “Design, Implementation, and EvaIu-
ation of a Revision Control System”, 6th ICSE,
Sept. 1982.

163

