
The Implementation of a Coherent Memory Abstraction
on a NUMA Multiprocessor: Experiences with PLATINUM

Alan L. Cox
Robert J. Fowler

Department of Computer Science
TJniversity of Rochester

Rochester, NY 14627

Abstract

PLATINUM is an operating system kernel with a novel mem-
ory management system for Non-Uniform Memory Access
(NUMA) multiprocessor architectures. This memory man-
agement system implements a coherent memory abstraction.
Coherent memory is uniformly accessible from all processors
in the system. When used by applications coded with ap-
propriate programming styles it appears to be nearly as fast
as local physical memory and it reduces memory contention.
Coherent memory makes programming NUMA multiproces-
sors easier for the user while attaining a level of performance
comparable with hand-tuned programs.

This paper describes the design and implementation of
the PLATINUM memory management system, emphasizing
the coherent memory. We measure the cost of basic opera-
tions implementing the coherent memory. We also’ measure
the performance of a set of application programs running
on PLATINUM. Finally, we comment on the interalction be-
tween architecture and the coherent memory system.

PLATINUM currently runs on the BBN Butterfly PlusTM
Multiprocessor.

1 The Need for Transparent Manage-
ment of Non-Uniform Memory

PLATINUM is an operating system kernel designed to be a
platform for research on memory management systems for
Non- Uniform Memory Access (NUMA) multiprocessor ar-
chitectures, those in which the distributed, sharedi memory
of the machine can be referenced by any processor on the
machine, but the cost of accessing a particular physical Ioca-
tion varies with the distance between the processor and the
memory module. The name “PLATINUM” is an acronym
for “Platform for Investigating Non-Uniform Memory”. Its
purpose is the experimental evaluation of a software imple-
mentation of a coherent memory abstraction on top of non-

This work is supported in part by U. S. Army Engineering
Topographic Laboratories research contract no. DACA 76-85-C-
0001, in part by ONR research contract no. N00014-134-K-0655,
and in part by NSF research grant no. CCR-8704492.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-338-3/89/0012/0032 $1.50

uniform access physical memory architectures. PLATINUM
runs on BBN Butterfly PlusTM Parallel Processors.

One can achieve impressive speedup due to parallelism on
a NUMA multiprocessor, but unfortunately this can entail
a considerable effort. Because remote memory references
are an order of magnitude more expensive than local refer-
ences and because remote references are subject to several
forms of potential contention, the physical location of data
is critical to performance. On the BBN ButterflyTM Par-
allel Processor, a popular and productive way to deal with
the problem of shared data location is to avoid the ques-
tion by using libraries [20] and languages [26] that support
message passing. When using a non-uniform access memory
directly, however, one has to deal with data Iocality. This
programming of data locality is reminiscent of the explicit
management of memory hierarchies using overlays: attain-
ing performance can be non-intuitive and can depend upon
dynamic properties of program execution; worse, it has to
be done explicitly by every application programmer. The
importance of this tuning is such that a programmer can
expend far more effort on “programming the memory archi-
tecture” than in solving the original application problem.

Our goal is to explore the possibility of achieving per-
formance comparable to that of hand-tuned programs with
a simple, easy-to-program shared-memory model. It is our
hypothesis that it is crucial to present users with a simple
model of shared memory implemented so as to attain good
parallel performance on applications written in a natural
programming style. The coherent memory model imple-
mented by PLATINUM is an exercise in doing this trans-
parently in an operating system kernel on top of an exist-
ing NUMA multiprocessor. Because we wish to explore the
limits of this approach, PLATINUM assumes neither special
architectural support nor extensive language-specific assis-
tance from a compiler. We do believe that these are vital
in the long run and exploring these issues is a part of our
long-term research interests.

NUMA multiprocessor organization leads to memory
management design choices that differ markedly from those
that are common in systems designed for uniprocessors or
UMA multiprocessors. If two or more processes on a unipro-
cessor are sharing read-only data such as a common code
segment, it is wasteful to allocate multiple private copies.
Such replication is expensive in terms of the number of phys-
ical pages used and in terms of the expense of copying the
data. For example, to reduce this expense, the implemen-
tation of Mach [23] minimizes the amount of data-copying
and replication through the use of copy-on-write and other

32

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74851.74855&domain=pdf&date_stamp=1989-11-01

techniques.
In contrast, extra data motion in the form of replication

and migration can yield greatly improved performance on
a NUMA machine. Placing data in the local memory of a
processor that is using it decreases memory access latency.
More importantly, a processor accessing local data is not
performing remote operations that contend for remote mem-
ory modules and for the processor-memory switch. These
two factors also motivate the use of caches in bus-based mul-
tiprocessors [13]. The advantages of replication and data
motion distinguish the problem of managing memory on a
NUMA machine from the same problem on uniprocessors
and Uniform Memory Access (UMA) multiprocessors.

PLATINUM’s implementation of coherent memory repli-
cates and migrates data to the processors using it, thus cre-
ating the appearance that memory is uniformly and rapidly
accessible. The protocol for controlling this data movement
is derived by extending a directory-based cache coherency
algorithm using selective invalidation [7, 21. The extension
exploits the NUMA architecture by adding the option of
using the remote memory access mechanism rather than
replicating or migrating data to local memory on an ac-
cess miss. Using remote memory access effectively disables
caching on a block-by-block basis. This is crucial when
write-shared data is modified at fine temporal and spatial
granularities because the overhead of executing a coherency
protocol can be more expensive than not caching. With the
large block sizes and overheads associated with software-
assisted caching, the effect can be especially bad. This is
a critical distinction between NUMA memory management
in PLATINUM and the software caching of Li’s Distributed
Virtual Memory [22] or the software-controlled caching of
the VMP Multiprocessor [9, 81.

Because the measured performance of real applications
is a far better indicator of the success of a system than
analytic predictions, simulations, or simplified experiments,
PLATINUM provides enough of a general-purpose applica-
tion environment to support such programs. We are actively
building a library of applications designed to test the perfor-
mance of PLATINUM with a variety of programming styles
that use different memory access patterns. The results are
encouraging. Figure 1 plots the speedup of a program that
simulates Gaussian elimination without pivoting on dense
matrices. In this case the input is 800 by 800. This par-
ticular problem was chosen because it was used in perfor-
mance studies of programming systems [lo, 181 on earlier
versions of the Butterfly. It simulates Gaussian elimination
in the sense that it uses integer rather than floating-point
operations, thus emphasizing the relative impact of memory
performance with respect to the speed of arithmetic opera-
tions.

The design of PLATINUM targets factors such as ease of
programming and performance, since these are the primary
criteria by which the coherent memory abstractions should
be judged. While other issues such as security, protection,
and long-term storage have been considered in the abstract
design, they have received only cursory attention in the cur-
rent version.

1.1 PLATINUM Programming Model

Since our goal is the exploration of transparent NUMA
memory management, we use familiar abstractions and in-
terfaces as much as possible. This decision determined the

16-

1 4 -.

12-.

1 0 -’

8 -I

6 -I

4 -’

2 -’

0 2 4 6 8 10 12 14 16

Figure 1: Gaussian Elimination (Speedup vs. Processors)

interface presented to the user and some of the internal ker-
nel interfaces. We used the Mach [23] model of memory as
the prototype because of its modularization into machine-
dependent and -independent parts. Within a stripped-down
version of this model, PLATINUM coherent memory is im-
plemented as a replacement for the machine-dependent part
of the memory management system.

PLATINUM exports to user programs an abstract mul-
tiprocessor model in which all primary memory accessible
to user programs appears to be a fast (on average) shared
physical memory module uniformly accessible from all of
the processors in the system. The physical location of data
in primary memory is hidden from the user. PLATINUM
allocates memory in page-aligned regions. Page boundaries
are not hidden, enabling the user to reduce interprocessor
interference by allocating shared data with different access
patterns to distinct pages.

The fundamental abstractions supported by PLATINUM
are the thread, the memory object, the port, and the address
space. These objects all appear in a single flat global name
space.

A memory object is an abstraction of an ordered list of
memory pages. A range of pages within a memory object
may be bound to any contiguous page-aligned virtual ad-
dress range of the same size. Neither the virtual address
range nor the access rights need be the same in every ad-
dress space. Since they have global names, memory objects
are the natural unit of data- or code-sharing between ad-
dress spaces.

A thread is a kernel-scheduled thread of control. At any
time it is bound to a single processor. An explicit migration
operation can move it to another location. It is, however,
constrained to execute within a single address space.

An address space is a list of bindings of memory objects
and access rights to virtual address ranges. It defines the

33

environment in which one or more threads may execute.
The threads in a single address space may be distributed to
multiple processors.

A port is a message queue that can have any number of
senders and receivers ‘. Messages are variable-length arrays
of zero or more bytes. Globally named, ports provide a com-
munication medium usable by threads that do not share a
common memory object. They also provide blocking syn-
chronization.

Logical concurrency is realized through the use of mul-
tiple threads to implement a single application. ‘True par-
allelism is realized by running those threads on multiple
processors. Communication between threads can be based
on either shared memory or message-passing via ports.
Threads that coexist within a single address space share all
of the memory objects mapped into that address space. This
implies, in addition to data coherency, that these threads
share a coherent view of the mappings of memory objects
that constitute the shared space. A more restricted form of
sharing is realized by mapping a memory object into multi-
ple address spaces. The shared object can be accessed by all
of the threads in those spaces, but the non-shared objects
in each address space are protected from threads in other
spaces.

A comprehensive description of the interface can be found
in [ll]. Given the initial successes with PLATINUM, its in-
terfaces are being extended aa required to provi’de added
functionality and ease of programming to support larger ex-
periments. We are also adding an instrumentation interface
to the kernel to help interpret its behavior. The design is
intended to make it easy to integrate PLATINUM coherent
memory with Mach.

2 Organization and Implementation of
the Memory Management System

A typical virtual memory system has traditionally managed
a memory hierarchy consisting of a cache, a uniformly acces-
sible primary memory, and a significantly slower secondary
memory. The existence of remote primary memory on a
NUMA multiprocessor adds at least one more level to this
hierarchy. PLATINUM memory management is structured
to separate the traditional responsibilities of virtual mem-
ory management from the additional requirements imposed
by the NUMA architecture. The memory managelment sys-
tem is constructed in three layers. The highest layer is the
Virtual Memory system. The middle layer is the Coher-
ent Memory system. The lowest layer is the Phy.sical Map
system.

2.1 Organization

The virtual memory system manages the mappings from
virtual address ranges to memory objects and from memory
objects to coherent pages (see the left side of Figure 2). The
machine-independent part of Mach memory mana,gement is
the prototype for this layer.

The coherent memory system is responsible for the map-
pings from coherent pages to physical pages. Thes,e may be

‘A message queue that allows multiple receivers is usually
called a “mailbox”. The use of “port” reveals the Maclh ancestry
of PLATINUM.

one-to-many. The left side of Figure 2 shows coherent-to-
physical mappings for one of the three memory objects.

The coherent memory system also guarantees the consis-
tency of the physical pages backing a coherent page. This is
implemented by extending a directory-based protocol that
uses selective invalidation to maintain coherency [7]. For
each coherent page the system maintains a directory of the
set of physical pages backing it. A new physical page is
added to the set when the system chooses to replicate the
coherent page. The replication policy makes the decision
between the replication of a coherent page and the creation
of a mapping to an existing physical page. When a pro-
cessor writes to a replicated coherent page, all but a single
physical copy are invalidated and removed from the set.

The implementation of the protocol makes heavy use of
the hardware memory management unit (MMU), on the
Butterfly Plus a Motorola MC68851. Access rights to phys-
ical pages are potentially more restrictive than those spec-
ified by the virtual memory system in order to ensure the
generation of traps by memory accesses which require ac-
tion. Most transitions in the protocol are thus initiated by
address translation and protection faults, and are performed
by the page fault handler.

The physical map system is a simple machine-dependent
page table and address translation cache management mod-
ule. For each address space a physical page map (Pmap)
is used to cache the compositions of the logical mappings
maintained by the virtual and coherent memory systems.
Each physical mapping illustrated on the right side of Fig-
ure 2 is the composition of a corresponding sequence of map-
pings on the ieft side of the figure.

2.2 Implementation Strategy

The promise of high performance, scalable parallelism us-
ing a shared-memory model of computation makes NUMA
multiprocessor architectures interesting. It is therefore vital
that an operating system kernel be very efficient and avoid
limiting the scalability of the system. The memory manage-
ment system is implemented with this in mind. Kernel oper-
ations and data structures are decentralized to provide max-
imum concurrency. Wherever possible, atomic memory op-
erations are used to implement concurrent data structures.
When an explicit lock is needed, the scope over which it is
held is kept small to reduce the residual impact of contention
between concurrent kernel operations. Remote memory ac-
cesses in critical sections are avoided, especially within the
coherent page fault handler. In some cases the algorithms
and data structures use several local memory accesses to
avoid a single remote memory access.

The kernel address space consists of two regions, one in
physical memory and the other in coherent memory. Ker-
nel code and the data structures for the lowest kernel layers
are in physical memory. These structures implement phys-
ical and coherent memory systems as well as physical de-
vice handlers. The kernel replicates its code and read-only
data. Since writable data in physical memory can only have
one copy, each writable page in kernel physical memory is
mapped for remote access by all but its local processor.

The layers of the kernel that implement virtual memory,
threads, and ports keep their data structures in the coherent
memory region. Because they are in the coherent memory
region, kernel stacks for threads require special handling.
Otherwise, the first fault after a thread has moved would
try to save the processor state on the kernel stack for the

34

Virtual Memory
Address Objects

Coherent
Memory

Distributed
Physical

Memories

Virtual
Address
Spaces

Memory
Objects

Coherent Distributed
Memory Physical

Memories

Figure 2: LogicaI and physical page mappings in PLATINUM. The coherent-to physical mappings for only one of the the
memory objects are shown.

thread, generating a coherent memory fault. This circular
dependence is broken by explicitly moving the kernel stack
with the thread.

2.3 Implementation Structure

The coherent memory system consists of two modules:

1. The coherent map (Cmap) system is responsible for
maintaining the coherency of the mappings from vir-
tual to physical pages for each processor. The interface
provided by the Cmap to the virtual memory system
is similar to the Mach pmap interface.

2. The coherent page (Cpage) system is responsible for
allocating and freeing coherent pages as well as the the
physical pages that back them. It also maintains their
coherency and implements a replication policy. The
Cpage system includes the page fault handler and a
defrost daemon.

The coherent and physical memory management systems
use the following data structures (see Figure 3):

l The mappings from virtual addresses to memory ob-
jects and from memory objects to coherent pages are
kept by the virtual memory system. For each address
space the coherent memory system caches the compo-
sition of these mappings in a Cmap. A Cmap contains
a table of virtual-to-coherent page mappings (Cmap
entries), a queue of Cmap messages describing recent
changes to the address space, a bit mask denoting pro-
cessors with this address space active, and a separate
local page table (Pmap) for each of these processors.

Pmaps folap 1
- Mm0l-y

] Cmap Entses 1 / \

Figure 3: The data structures involved in the management
of a Cpage mapped into two address spaces. The Cmap
message queues are not shown.

35

l

.

3

The

A Cmap entry is analogous to a page table entry. It
contains a pointer to the coherent page, an access rights
field, and a bit vector called the reference mask. If a
processor has a virtual-to-physical translation for the
coherent page in its Pmap, the bit corresponding to
that processor is set.

A Cmap message describes a change made toI a virtual
address space that affects virtual-to-physical mappings
held by two or more processors. It contains a virtual
address and a directive either to invalidate the current
translation or to restrict the access rights in it. Each
processor is responsible for making these changes be-
fore running any thread in that address space.

The Cpage table is the list of all coherent pages. Each
entry in the Cpage table describes the state of a Cpage.
This information includes a directory of physical pages
backing the Cpage and indicates whether there is a
virtual-to-physical translation allowing write access.
The directory consists of a bit mask indicating which
memory modules contain a physical page backing the
Cpage and a list of these physical pages. An sentry also
records the time of the most recent invalidation and
whether the Cpage has been frozen by the replication
policy.

Each memory module contains an inverted *page table
describing the state of each physical page in the mod-
ule. An entry indicates whether the physical page is
allocated and to which coherent page.

Shared-Memory Coherency

shared-memory coherency problem has two major
facets, data coherency and address space coheren.cy. Much
of the literature on coherent caches for multiprocessors con-
cerns the data coherency part of the problem. On UMA
multiprocessors with coherent caches the address space co-
herency problem is primarily a matter of maintaining the
consistency of address translation caches [5]. Given the lack
of any direct hardware support for either form of coherency,
PLATINUM solves both aspects of the problem in one unified
framework; data coherency and address space cohlerency are
implemented using a mechanism for invalidating or restrict-
ing the access granted by a mapping.

3.1 A NUMA Multiprocessor Shootdown
Mechanism

When an address space is modified by the addition of new
mappings or by relaxing the protection on a range of virtual
addresses, it is easy to distribute the changes. A,uy proces-
sor attempting to use its expanded privilege will cause a bus
error and thus be able to discover and react to the change.
On the other hand, when an address space is restricted by
removing mappings or restricting access rights, some addi-
tional mechanism is necessary to ensure consistency. For ex-
ample, consider a UMA multiprocessor with a single shared
page table per address space. Since page table entries are
cached in the address translation cache (ATC) of each pro-
cessor’s hardware memory management unit, these cached
copies must be invalidated whenever the corresponding page
table entry is invalidated or restricted. Because address
translation caches are usually private to the processor to

which the MMU is attached, multiprocessor operating sys-
tems such as Mach use a software shootdown mechanism to
implement this part of the address space coherency protocol
[5]. The PLATINUM shootdown mechanism is very different
from that used in Mach. The differences arise largely be-
cause the PLATINUM mechanism is designed specifically for
NUMA multiprocessors.

Because code and data are replicated in PLATINUM each
processor needs to have its own private set of virtual-to-
physical mappings for each address space. While Mach uses
a single shared page table (Pmap) per address space, each
processor in PLATINUM must have its own private Pmap
per address space. Since a Pmap is only a cache of the
valid virtual-to-physical translations, it need not contain
mappings for everything in an address space, rather only
a working set for that processor. Thus, in contrast with
a scheme examined by Holliday [15], scalability is not re-
stricted by replication of page tables.

In addition to reducing latency and contention, using a lo-
cal, private Pmap for each processor allows the construction
of a fast shootdown mechanism. Black et al. discuss two
problems that result from multiple processors sharing a sin-
gle Pmap in Mach. If the processor initiating the shootdown
instructs a target processor to flush its ATC before updating
the Pmap, the target processor may reload an inconsistent
entry. If, on the other hand, the initiating processor up
dates the Pmap before instructing the target processor to
flush its ATC, the target processor may write back its ATC
entry to update the reference or modify bits, thereby creat-
ing an inconsistent Pmap. Their solution to these problems
is to stall the target processors while the initiator changes
the Pmap. Since,PLATINUM uses a Pmap per processor, it
does not face either of these problems.

A consequence of the replication of mapping information .
is that the Pmaps must be kept coherent as well as the
ATCs. Part of the protocol is performed by the processor
initiating the shootdown and part is performed by the pro-
cessors sharing the address space with the initiator. They
communicate through the Cmap message queues and syn-
chronize through interprocessor interrupts.

The initiating processor posts a short message describing
the change of mapping to the Cmap message queue of each
affected address space. A change to a specific address space
affects only that address space, but a change of mappings
required by the data coherency protocol must affect every
address space in which the Cpage is mapped. Part of each
message is the bit mask specifying the set of target proces-
sors that eventually have to apply the change to their Pmap
for this address space. This set is exactly the set of proces-
sors appearing in the reference mask of each Cmap entry for
this Cpage. The set of target processors is thus restricted
to those that are actually using a mapping for this Cpage.
Furthermore, a processor need only be interrupted to per-
form the change if the address space is currently active. The
remainder of the target processors will update their Pmaps
when they activate the address space. In contrast, the Mach
shootdown mechanism must interrupt each processor with
the address space activated, even if that processor has never
referenced the page.

On the target processors the update is performed by a
Cmap synchronization handler that is called as a result of
an interprocessor interrupt or as part of the activation of
an address space. Consequently, kernel code that runs at
the interprocessor interrupt level or higher is not allowed to
access coherent memory. The synchronization handler scans

36

the queue of change messages. If the processor appears in
the target mask of a message, it applies the change to its
Pmap and removes itself from the target mask. When the
target mask is clear, the message is removed from the queue.

The memory management system obtains a significant re-
duction of overhead by deactivating the kernel address space
when a processor begins running in user mode. This reduces
the number of interprocessor interrupts each processor re-
ceives. When a processor reenters the kernel to service a
trap or interrupt, it has to reactivate the kernel address
space before it can access coherent memory.

3.2 The Data Coherency Protocol

The data coherency protocol is derived from a directory-
based cache coherency protocol that uses selective invalida-
tion of cache blocks [7]. When a processor tries to access a
Cpage that has no local physical page backing it, the coher-
ent memory mechanism can always choose either to make a
local copy of a page or to create a mapping to an existing
remote page. The ability to use remote mappings is espe-
cially important when multiple processors make frequent,
interleaved, and fine-grain modifications to a shared data
structure. The resulting interprocessor interference causes
the frequent execution of any protocol to maintain coher-
ence among multiple copies. By using remote mappings
the mechanism can, in effect, selectively and dynamically
disable replication and migration when interference is de-
tected.

A coherent page can be in one of four states:

empty means that there are no physical pages backing the
Cpage. Thus, there are no virtual-to-physical map-
pings to this page.

present1 means that there is exactly one physical page
backing the Cpage and all virtual-to-physical mappings
are restricted to read access. A virtual-to-coherent
mapping may permit write access to the Cpage, but
the virtual-to-physical mapping is restricted in order
to implement the coherency protocol.

present+ means that there are two or more physical pages
in different memory modules backing the Cpage. All
virtual-to-physical mappings for the Cpage are re-
stricted to read access. As above, a virtual-to-coherent
mapping may permit write access to the Cpage.

modified means that there is one physical page backing
the Cpage and at least one virtual-to-physical mapping
allows write access.

Figure 4 is a transition diagram for the protocol. The
present1 state is distinguished from the present+ state
for performance reasons. The transition from present+ to
modified on a write miss requires the invalidation of at
least one virtual-to-physical mapping and the reclamation
of at least one physical page. The transition from present1
to modified requires neither.

Transitions between states are triggered by page faults
or the defrost daemon. When a page fault occurs during an
attempted access to a non-empty Cpage, the Cpage system
can either map an existing physical copy for remote access,
or create and then map a local physical copy. For example,
if there is a write miss on a Cpage in the modified state,
the choice is between mapping the existing physical copy or

Figure 4: State Transition Diagram

allocating a local physical page, copying the data, and then
invalidating the original copy. Similar decisions arise for the
other cases.

A policy module within the Cpage system chooses the
appropriate action on each page fault. The current policy
uses the history of recent invalidations for the Cpage. Re-
cent invalidation indicates that the Cpage is being actively
write-shared. The Cpage system uses this information to
limit the overhead of running the protocol by forcing re-
mote mappings for recently invalidated pages and allowing
replication for the others.

3.3 Replication and Data Coherency

Both the replication mechanism and the data coherency pro-
tocol are implemented by the page fault handler. When
a page fault occurs, the Cpage fault handler searches the
Cmap for an entry that maps the faulting virtual address.
If an entry is found, the page fault is a coherent memory
fault. Otherwise, the fault is passed to the virtual memory
fault handler.

The Cmap entry contains a pointer to an entry in the
Cpage table. The fault handler tests the bit mask in the
Cpage to discover whether a local physical page backs it
(see Figure 3). Since Cpages may be shared by multiple
address spaces, a local physical copy may already exist. If
a local copy exists, the handler applies a hash function to
the index of the Cpage and scans the inverted page table
to find the physical page. The inverted page table is used
rather than the list of physical pages in the directory for the
Cpage because the former is guaranteed to use strictly local
memory accesses, thus decreasing both latency and poten-
tial contention. Even when contention is not a problem it
is cheaper to scan over a few collisions in the inverted page
table than to search the list of physical pages with remote

37

memory accesses.
If there is no local physical copy and the fault is a read

miss, the fault handler consults the replication policy mod-
ule to determine whether or not it should replicate the
Cpage. If the Cpage is to be replicated, the handler uses
the inverted page table to find a free physical page then allo-
cates the physical page by entering the address of the Cpage
in the inverted page table entry for the physical pa.ge. If the
existing state of the Cpage is modified, the handler uses
the shootdown mechanism to restrict all virtual-to-physical
translations for the Cpage to read-only access. The handler
then performs a block transfer from another physical copy,
and adds the physical page to the directory.

Similar sequences of actions occur on a write miss. For
example, if the state of the Cpage is present+, the handler
first uses the shootdown mechanism to invalidate all virtual-
to-physical translations for the remote physical copies, and
then frees all of these pages. The handler concludes by
mapping the chosen physical copy of the Cpage with the
necessary access rights.

If the policy indicates that the Cpage should be frozen
rather than replicated, there can only be one physical page
backing the Cpage. Furthermore, the Cpage must be in a
modified state. The handler creates a mapping for the re-
mote physical page granting the full access rights Ipermitted
by the virtual memory system.

4 Performance and Choice of Replica-
t ion Policy.

The copying of data in a PLATINUM page migration oper-
ation is a kernel-initiated, page-aligned block transfer of a
known size. In the absence of contention this takes 1.11 ms
for the default page size of 4K bytes.

The total time for a read miss that replicates a non-
modified page ranges from 1.34 ms to 1.38 ms. T:he shorter
time occurs when the relevant kernel data structures are lo-
cal, while the longer time results from remote data access.
Of this time, copying the page accounts for 1.11 ms, and the
fixed overhead of allocating and mapping a physical page
accounts for the remaining 0.23 ms to 0.27 ms.

A read miss that replicates a modified page takes from
1.38 ms to 1.59 ms if only one processor has to be inter-
rupted to restrict its mapping to read-only access. The fixed
overhead in this case ranges from 0.27 ms to 0.4E; ms. The
additional cost compared to a read miss on a non-:modified
is due to the address-space coherency protocol.

A write miss on a present+ page takes from 0.25 ms
to 0.45 ms when only one processor has be interrupted to
invalidate its mapping and one physical page is freed. For
up to 16 processors, the incremental delay to the initiating
processor of interrupting each additional processor to inval-
idate a mapping and freeing a physical page is no more than
17 ps. Freeing a physical page uses one remote memory read
and one write, accounting for about 10 /LS of this time. We
therefore believe that the incremental cost of interrupting a
processor to restrict a mapping to be about 7 ps. In con-
trast, Black et al. report an incremental cost of 65 ~LS on a
16-processor NS32332 Encore Multimax [5].

These timings were gathered on a 16-processor IBBN But-
terfly Plus Multiprocessor. A processing node on this ma-
chine consists of a 16.67MHz MC68020 with a MC68851
MMU and 4 MBytes of physical memory.

4.1 When does it pay to migrate a page?

To decide when it is appropriate to migrate a data page
rather than make a remote mapping, it, is necessary to es-
timate the relative costs of each of these options. The fol-
lowing analysis is based on the contention-free latency of
remote memory access. Contention, both at the memories
and in the switch, increases latency by serializing requests.
In the presence of contention the benefits of migration or
replication can be much higher than indicated here.

Suppose a data structure, X, is shared and written by
p processors; further suppose that X is the sole occupant
of a coherent page. Each processor operates on X in a
critical section as follows: obtain the lock for X, perform
a computation f entailing T memory references on it, and
release the lock. If this operation were encapsulated in a
procedure call it might be performed in one of three ways:

The operation is executed by the processor requesting
it and the data is not moved. The operation is an
ordinary procedure call using any combination of local
and remote memory references to access the data.

The data and the process executing the operation are
co-located by moving the data. The operation is an
ordinary procedure call using local memory references.

The data and the process executing the operation are
co-located by performing a remote procedure call. Ac-
cess to the data uses local memory references.

While implementations of languages such as Emerald [17]
on top of PLATINUM would utilize the third option, we re-
strict ourselves to consider the choice between the first two.
Let Gemote be the cost of using remote memory references,
Ctocal be the cost of using local references, and CmigraCe be
the cost of moving the data. It is cheaper to move the data
when

Cremate > !7(P)Cmigrate + Clocal~ (1)

where g(p) is the average number of data movements neces-
sary to save a remote operation. It is the ratio of the total
number of executions of f to the number of executions of f
that would use remote memory access if the data were not
moved. When p processors access X in strict round-robin
order, g(p) = P/(P - 1). F or example, consider two proces-
sors that alternate in touching X. If X is not moved, there
will be one remote and one local execution of f per cycle.
If it is moved, there will be two local executions of f and
two data movements per cycle. Thus g(2) = 2. This is the
worst-case scenario. For large p, g(p) approaches 1. If the
operations are not interleaved among the processors then
g(p) can be less than 1.

Let

s be the size of a page expressed in terms of the typical unit
of access. On the Butterfly Plus this is a 32-bit word.

Tl be the time to perform a typical local memory reference
on a 32-bit word. On a Butterfly Plus this is about 320
ns.

T, be the time to perform the corresponding remote mem-
ory reference. On the Butterfly Plus this is about
5000 ns to read a 32-bit quantity. Write operations
are faster.

38

TiF
0.24
0.35
0.48
0.60
0.75

1.0
1.5
2.0

minimun
g(p) 7,“;;

445
232
149
111

85
61
39
28

Smin,
Iage size

G
never

973
435
298
210
141

84
61

words

%ks
never
never
never
1784

793
412
210
141

Table 1: Inequality 2 evaluated at some interesting points.
It always pays to migrate data when the page size is greater
than Smin.

Tb be the time to copy a word in a page migration operation.
This is about 1100 ns on the Butterfly Plus.

Define p E T/S to be the density of references to X. For
example, if the size of X is s and f reads and writes every
location in X, p = 2. On the other hand, if X occupies only
half the page and f writes one half of X’s data, p = 0.25.

We therefore have Crocal = psTl, and C,.,,,t, = PST,..
The cost of migration is divided into the cost of block trans-
fer, si!& plus a fixed overhead, about 0.48 ms in the current
implementation. Substituting these into inequality 1 and
rearranging the terms, we conclude that it always pays to
migrate when

s> 107g(p)
P - O.wJ(P) .

Note that the constant in the numerator is proportional to
the fixed overhead of the migration operation and that the
coefficient of g(p) in the denominator is the ratio %/(Tr -
TL). From this we make the following observations:

l To determine when migration is economical, the ratio
Tb/(T, - TI) of block transfer time to the time that can
be saved by using local rather than remote memory
access operations is the single most important charac-
teristic of the architecture. It puts a lower bound on
the minimum reference density p for which migration
makes sense for any block size. This in turn bounds
the minimum usable page size. The existence of a fast
block transfer mechanism is vital to the performance of
any program that uses data migration and replication
on a NUMA machine!

l For each g(p) and p pair, the need to amortize the fixed
overhead of the coherence protocol puts a lower bound
on the page size that can be used economically. For
a fixed g(p) and p, a decrease in overhead results in
a proportional decrease in the minimum page size for
which migration makes sense.

s With round-robin access, as the number of processors
sharing X increases, g(p) decreases towards 1, thus
making migration more attractive.

These factors determine the granularity of data access
that must be seen in the application to ensure that migration

is always the correct action for a given page size. Some
values for inequality 2 are presented in Table 1.

This analysis emphasizes the’importance of coarse data-
access granularity for attaining good performance on a
NUMA machine, especially if data migration on a per-page
basis is used. A large page size allows us to better amor-
tize the fixed overhead of data transfer and thus to tolerate
a slightly smaller p. For a fixed granularity of data access
smaller than the size of a page, however, p is inversely pro-
portional to page size, thus negating any potential advan-
tage of increasing page size. On the other hand, if a program
has a granularity of data access that is greater than the size
of a page, p remains more or less constant as pages grow.
For a fixed problem size one would expect the granularity
of sharing to decrease as the number of processors in a mul-
tiprocessor increases. On the other hand, we believe, as
do others [28, 141, that a major role of parallel machines is
to solve ever-larger problems rather than to solve fixed-size
problems in ever-shorter times. These larger problems will
allow the continued use of coarse granularity as systems are
made larger.

4.2 Replication Policy

While the replication and migration of data has significant
benefit when data access granularity is relatively coarse, the
overhead of trying to maintain coherency in the presence of
fine-grained write-sharing could be prohibitively expensive.
In such circumstances it is less expensive to access remote
memory than to try to migrate or replicate the data. Since
the choice between data movement and remote access de-
pends upon the relative costs of the alternatives, we have
delayed discussion of the replication policy until the details
of the mechanism and of its cost have been presented. PLAT-
INUM is designed to support experimentation with a family
of policies. We focus on the interim policy currently used.

Since invalidations occur as a result of interprocessor in-
terference, all policies use a recorded history of recent in-
validations to estimate the interference for’each coherent
page. The current version uses a minimal history consisting
of a timestamp for the most recent invalidation by the co-
herency protocol of a mapping for that coherent page. On
a page fault handled by coherent memory, a coherent page
is replicated or migrated if the the last invalidation by the
protocol was at least tr in the past. Otherwise it is frozen
rather than replicated. Since invalidations cause the Cpage
to go into the modified state and since it could not have
been replicated since then, there can only be one physical
page backing a frozen Cpage. While it remains frozen, all
new mappings to a Cpage are to that single physical page.
We have used two policies for dealing with faults occurring
after the tl ms period expires on a frozen Cpage. The de-
fault policy is to continue to create remote mappings for the
Cpage until the page is explicitly thawed. The alternative
is to allow the frozen coherent page to be replicated and
thus thawed as a consequence of an attempted access. The
programs we have examined thus far exhibit no significant
difference in performance between these policies.

Based on the speed of the Butterfly processor and the
need to amortize the replication of a coherent page over
a reasonable number of accesses, 21 is currently set to 10
ms. A few tests indicated that application performance is
insensitive to varying tl from 10 ms up to about 100 ms.
Once the collection of application programs has grown to a

39

:. .,

reasonable size we will perform systematic experiments on
the effects of varying this and other parameters.

After all of the threads that share a frozen Cpage have
mappings to it, further access to that Cpage causes neither
additional faults nor the associated overhead. Since the co-
herency protocol as described thus far is driven strictly by
page faults, the Cpage could remain frozen permanently.
While it may be appropriate to freeze a Cpage at ,a partic-
ular point in the execution of a program, a change in the

access pattern of that page may make it desirable to thaw it
in the future. PLATINUM therefore has a simple mechanism
for thawing pages, thus allowing the memory management
system to react to phase changes as well to thaw any incor-
rectly frozen pages.

The Cpage module maintains a list of frozen Cpages and
a clock interrupt every t2 seconds activates the defrost dae-

mart to invalidate all mappings to the frozen pages. Subse-
quent access attempts will cause faults that may replicate
or migrate a recently thawed coherent page. To keep the
overhead low, t2 is currently set to 1 second. Reducing tz
may allow coherent pages frozen accidentally to .be repli-
cated sooner, but it just adds overhead for coherent pages
that should remain frozen.

An alternative is to maintain the list of frozen pages as
a priority queue ordered by thaw time. This allows the
daemon to run more often than every t2 seconds. It also
allow t2 to be set adaptively on a per-page basis. Although
there is evidence that thawing frozen pages is important for
performance, we do not yet have reason to believe that a
more sophisticated policy for thawing will have much effect.
Since a more sophisticated policy would add overhead to
the system, we plan to continue to use the simple policy
described above until the problem is better understood.

A possible reason for the access pattern of a page to
change is that two or more variables with different access
patterns are in that page. For example, co-locating a syn-
chronization variable such as a lock or event count with a
read-only variable on one page can lead to problems because
they demand very different treatments from the memory
management system. Active use of synchronization vari-
ables will cause their pages to be frozen while a read-only
variable should be replicated. The preferred solution to this
problem is for the programmer, the compiler, and the lan-
guage run-time support to be intelligent about the alloca-
tion of variables to virtual pages. Even if this allocation is
done poorly, thawing can salvage reasonable performance if
each variable is used primarily in a different phase of the

program.
Experiences with our first version of the Gaussian elimi-

nation program, described in the next section, provide anec-
dotal evidence of the importance of intelligent memory al-
location, thawing, and performance instrumentation. The
program takes the problem matrix size as a parameter and
writes this value to a variable during the startup phase. The
matrix size is used in the termination test of the inner loop
of the algorithm so it is vital that each processor have a
local copy. The slave threads did not make private ‘copies of
this variable, but the page was replicated. Later we added
a spin-lock variable to facilitate measurement of execution
times. It is used as a barrier at the start of the elimina-
tion phase of the program and is not touched thereafter.
Spinning on the lock froze the Cpage. Consequently, all
but one thread generated a remote access in its inner loop.
This increased the latency for accessing the shared variable.
This dramatically increased the execution time and became

a bottleneck with five or more processors.
In addition to timing data, the kernel produces a detailed

report on the behavior of memory management. For each
Cpage this includes the number of coherent memory faults,
a measure of contention in the Cpage fault handler for that
page, and whether the Cpage was frozen by the replication
policy. Given this instrumentation it was a simple matter to
diagnose the problem and program around it by giving each

thread a private matrix-size variable. Thawing was soon
added to the kernel and the old version of the program took
less than two seconds more to run than the new version. The
overhead of running the defrost daemon adds no measurable
overhead to the new version of the program.

5 Application Performance

We report preliminary performance measurements for three
application programs running on PLATINUM. Each of these
programs has a memory access pattern distinct from the
others.

5.1 Gaussian Elimination

The first application we examined was the simulation of
Gaussian elimination described in the introduction. This
particular computation was chosen because it had been
studied previously on an earlier version of the Butterfly
for a variety of programming systems and styles [18, 191.
LeBlanc compared the performance of an implementation
on the Uniform System from BBN [3] with Gaussian elimi-
nation implemented on SMP [20], a message passing library
developed at the University of Rochester. We used the same
800x800 matrix as LeBlanc.

The PLATINUM implementation is similar to the coarse-
grain implementation on the Uniform System found to be
the most efficient in LeBlanc’s study. There is a single
thread per processor and each thread is statically allocated
a number of rows of the matrix. In each round some thread
selects a pivot row which is then read by all of the other
threads. Each thread then performs the elimination opera-
tion on its set of rows.

The differences between the two versions of the Butter-
fly reduce the accuracy of quantitative comparisons of per-
formance measures. Nevertheless, such measures provide a
framework for qualitative comparison. The program run-
ning on PLATINUM yields a 16-processor speedup of 13.5
versus 10.6 for the Uniform System program [18]. In con-
trast, the SMP message-passing implementation yielded a
speedup of 15.3.

An examination of the post-mortem statistics gathered
by the kernel shows that the PLATINUM implementation ex-
hibits high contention in the Cpage fault handler for Cpages
that contain the pivot rows. This is attributable to a seri-
alization in hardware of the replication of the data backing
a Cpage. As expected, only the Cpage containing an array
of event counts used for synchronization was frozen.

5.2 Merge Sort,

This is a parallel merge sort using a simple tree of merge
operations, each of which is performed by a single thread.
We chose this program because it had been studied on a

40

16-

14 --

12 -.

10 -.

8 --

6..

4 --

2 --

4 Bfly 40k 4 Bfly 40k

*OS Seq 40k *OS Seq 40k

*Ma Perfect Speedup *Ma Perfect Speedup

,[7- Bfly 80k ,[7- Blly 80k

0 2 4 6 8 10 12 14 16

Figure 5: Merge Sort Speedup

Sequent Symmetry Multiprocessor [l]. The Sequent Sym-
metry is a UMA multiprocessor. The one used in the study
had model A processors with 8Kbyte write-through caches.

Figure 5 shows the measured speedup curves for this pro-
gram. The program shows better speedup running on the
Butterfly Plus under PLATINUM than on the Sequent Sym-
metry for the same size problem on the same number of pro-
cessors. We believe this is due to the small cache size and
write-through policy on the Sequent. During each merge
phase one half of the data to be merged will already be in
the merging processor’s local memory. Furthermore, with
the linear access pattern of merging, the processor will touch
all of the data prefetched by each coherent page fault. The
problem is large enough, however, that none of the data will
remain in the Sequent cache between merge phases.

5.3 Neural Network Simulator

A very different application is a simulator used by neural
network researchers at the University of Rochester studying
recurrent backpropagation networks [27]. Unlike the oth-
ers, this program was developed by someone with no previ-
ous experience programming the Butterfly Plus. While the
other programs were written to exploit coarse-grain paral-
lelism on large amounts of data, the simulator operates on
much less data and at a very fine granularity.

We measured (Figure 6) the performance of a simulation
of a three layer network learning a classic encoder problem
[24]. There were 40 units and 16 pairs of inputs and outputs.
The simulator is parallelized by simple for-loop paralleliza-
tion on units. Each processor continually simulates a set
of units depending only on the atomicity of memory opera-
tions for synchronization when it accesses data shared with
other threads. The non-determinism produced by the lack
of synchronization introduces negligible variability of execu-

I
I I I I I I
2 4 6 8 10 12

Figure 6: Recurrent Backpropagation Simulator (Speedup
vs. Processors)

tion time. Given the very fine-grain nature of the algorithm,
PLATINUM cannot use replication or migration to good ad-
vantage. The coherent memory system quickly gives up and
the data pages of the application are frozen in place. The
speedup curve is linear over the range measured, but the
extensive use of remote accesses limits the contribution of
each incremental processor to about l/2 that of a processor
that makes only local memory references.

6 Experiences Programming on a Co-
herent Memory

In our experience, it is much easier to write applications to
run on coherent memory than to run on non-uniform physi-
cal memory. PLATINUM programs are smaller than both
Uniform System programs and programs using message-
passing styles because one need not write code either for
explicit communication, or for explicit management of data
location. For example, the code for the elimination phase
of the PLATINUM, Uniform System, and SMP implementa-
tions of Gaussian elimination are 17, 41, and 64 lines long,
respectively.

Despite the apparent familiarity of PLATINUM’s abstract
machine model, a programmer still needs to understand and
apply certain fundamental facts about parallel programming
on a NUMA machine. It is of overwhelming importance to
avoid programming styles entailing fine-grain write-sharing.
Whether memory is being managed automatically by the
coherent memory system or explicitly by the programmer,
this fine-grain write-sharing introduces both latency that re-
duces the effective processor speed and memory contention
that serializes logically parallel computations. It is vital
that most of the sharing of writable data be done at coarse

41

enough spatial and temporal granularities that a fast block
transfer mechanism can be used effectively.

In order for the coherent memory system to effectively
manage data location, the programmer or compiler must un-
derstand the sharing properties of data. Data with different
access patterns should not be co-located on a single page.
The private data of each thread should be separated from
private data of other threads and from shared data. Read-
only data should be kept separate from modifiable data.
Coarse-grain modifiable data should be separated from fine-
grain modifiable data such as locks. A run-time library for
defining disjoint memory allocation zones and for specify-
ing page-aligned allocation helps PLATINUM programmers
to do this with a minimum of effort, even without com-
piler support. Because a typical NUMA multiprocessor has
a very large physical memory, the internal fragmentation
introduced by this strategy has little impact and is vastly
preferable to interprocessor interference.

7 Architectural Considerations

The benefits of replication cannot be measured solely in
terms of the ratio of local to remote memory access times.
As the degree of parallelism increases on a mac:hine with
a large number of processors, contention for memory mod-
ules and for the interconnection network become the domi-
nant factors determining performance. The most important
impact of coherent memory is that it effectively uses local
memories as caches to reduce contention.

An effective block transfer mechanism is critical to an ef-
ficient implementation of coherent memory. It should be
both fast and asynchronous with respect to progr.am execu-
tion. The analysis in Section 4.1 quantifies the importance
of block transfer speed in one scenario. AlthoughL the But-
terfly Plus has a fast, asynchronous block transfer mecha-
nism, it consumes 75% of the available local memory bus
bandwidth on both nodes involved in the trans:fer. Both
processors are memory-starved during a block transfer. Re-
designing the memory system to allow more concurrency
between processing and block transfers would help to re-
duce further the effects of memory contention.

Although the Butterfly Plus does not have datta caches
in the processor nodes, the PLATINUM coherent memory
system is compatible with a generation of NUMA multipro-
cessors with local caches but without internode coherency
support. In addition to reducing latency on local memory
operations, local data caches would reduce cont,ention for
the local memory module between the local processor and
remote memory operations. Such local data caches could be
relatively cheap because they need not incorporate a hard-
ware cache coherency mechanism. Cache coherency would
be maintained by the coherent memory system. Almost all
data is cachable. Only modified Cpages that are mapped
by remote processors cannot be cached. Replicating a mod-
ified Cpage would, however, require flushing a write-back
cache, slowing the invalidation operation.

8 Related Work

The management of NUMA memory is a topic of consider-
able current interest. Recent studies of methods for manag-
ing the location of data in a NUMA machine include the
analysis and simulation of competitively optimal NUMA

memory management by Black et al. [4], Scheurich and
DuBois’ simulation of data migration in mesh-connected
NUMA machines [25], and Bolliday’s simulation of data mi-
gration on a Butterfly [16]. The design of the Psyche mem-
ory manager [21] contains a layer that deals with NUMA
data location issues.

In Bolosky’s addition of NUMA memory management
to Mach on the IBM ACE Multiprocessor Workstation [S]
writable pages are never replicated and are allowed to mi-
grate only a small number of times before being frozen in
global shared memory. While this results in performance im-
provements compared to static placement, our experiences
with coarse-grained sharing indicate that there is room for
improvement. If write operations on a large piece of a data
structure are not interleaved at a fine grain, it continues to
be appropriate to migrate data throughout the lifetime of
an application. Further it is not only appropriate to repli-
cate immutable objects, but also those modifiable objects
that are, either by accident or design, not modified during
some phase of execution.

While one effect of replication and migration in the PLAT-
INUM coherent memory system is the reduction of latency,
we contend that for large hardware configurations a far more
important benefit is the reduction of memory and switch
contention. Therefore, we have have not expended much
effort trying to tune the mechanism for the optimal place-
ment of frozen pages that are being actively modified at a
fine granularity by multiple processors. While careful place-
ment and migration can reduce average access latency in the
absence of contention, there is no demonstrated reduction in
contention. Since the proposed placement mechanisms are
not cheap, entailing hardware reference counts [4, 251 or sim-
ulations of reference counting in software [16, 211, we believe
that it is better to have a simple, low-overhead placement
policy and to devote more resources to reducing contention
by reducing the amount of fine-grain write-sharing.

9 Status and Future Directions

Our experiences thus far indicate that the PLATINUM mem-
ory management system will achieve its goals. Foremost,
the memory management system makes it easier to pro-
gram a NUMA architecture without an unacceptable sacri-
fice in performance. Although initial programming experi-
ments used the kernel interface directly without too much
programmer effort, we are rapidly accumulating run-time
libraries, shells, and other support software to further ease
the programming process. An important part of this will
be the installation of instrumentation for performance mon-
itoring, analysis, and visualization [12]. The feedback from
such instrumentation is useful to application programmers,
compiler writers;and system implementors for NUMA ma-
chines.

We are continuing to study the behavior of the coher-
ent memory system under a variety of applications. Once
the collection of applications has grown to a reasonable size
we will systematically experiment with the implementation
by changing parameters such as page size and replication
policy.

The kernel itself is designed to scale well to machines with
a much larger number of processors. Its decentralized design
keeps the number of remote memory accesses in the kernel
to a minimum. We are particularly pleased with the success
of the decentralized and concurrent implementation of the

42

coherency protocol, especially the low incremental cost per
shootdown and the techniques for reducing the number of
processors involved in a shootdown.

Although providing coherent memory transparently in
the operating system has proven itself useful, it is not hard
to construct scenarios in which better performance could
be obtained if interface between the application and the
memory management system were not so transparent. The
kernel interface will be extended to support these. While
such information could be provided by the programmer di-
rectly, this additional burden runs contrary to the goal of
providing a simple programming environment. We there-
fore anticipate that these hooks will be utilized primarily
by programming languages and their run-time support.

In its current incarnation, PLATINUM is a limited experi-
mental platform for experimenting with the implementation
of coherent memory. We will extend it as necessary to serve
this purpose. On the other hand, dealing with issues such
as file systems and protection is not in our plans. When and
if it becomes appropriate to make coherent memory avail-
able in a general-purpose operating system, we anticipate
reintegrating those parts of PLATINUM with Mach.

Acknowledgements.

We thank the referees and Hugh Lauer for their construc-
tive comments. Niki Fowler deserves special credit for her
editorial assistance on the revised version of this paper.

References

[II

PI

PI

VI

[51

[61

[71

R. J. Anderson. An experimental study of parallel
merge sort. Technical Report 88-05-01, Department
of Computer Science, University of Washington, May
1988.

James Archibald. The Cache Coherence Problem in
Shared-Memory Multiprocessors. PhD thesis, Depart-
ment of Computer Science, University of Washington,
February 1987.

BBN Laboratories, Cambridge, Massachusetts. The
Uniform System Approach To Programming the But-
terfly Parallel Processor, October 1985.

D. Black, A. Gupta, and W.D. Weber. Competitive
management of distributed shared memory. In Spring
Compcon, 1989.

D.L. Black, R.F. Rashid, D.B. Golub, C.R. Hill, and
R.V. Baron. Translation lookaside buffer consistency:
A software approach. Technical Report CMU-CS-
88-201, Department of Computer Science, Carnegie-
Mellon University, December 1988.

William J. Bolosky, Michael L. Scott, and Robert P.
Fitzgerald. Simple but effective techniques for NUMA
memory management. Technical report, Department
of Computer Science, University of Rochester, March
1989.

Lucien M. Censier and Paul Feautrier. A new solution
to coherence problems in multicache systems. IEEE

PI

PI

DOI

Pll

WI

WI

P4

[I51

WI

P71

WI

Transactions on Computers, C-27(12):1112-1118, De-
cember 1978.

D. Cheriton, A. Gupta, P. Boyle, and Hendrik Goosen.
The VMP Multiprocessor: Initial experience, refine-
ments and performance evaluation. In Proceedings of
the 15th Annual Symposium on Computer Architecture,
pages 410-421, June 1988.

D. Cheriton, G. Slavenburg, and P. Boyle. Software-
controlled caches in the VMP Multiprocessor. In Pro-
ceedings of the 13th Annual Symposium on Computer
Architecture, pages 366-374, June 1986.

W. Crowther, J. Goodhue, E. Starr, R. Thomas,
W. Milliken, and T. Blackadar. Performance measure-
ments on a 128-node Butterfly Parallel Processor. In
Proceedings of the 1985 International Conference on
Parallel Processing, pages 531-540, August 1985.

R. Fowler and A. Cox. An overview of PLATINUM: A
platform for investigating non-uniform memory. Tech-
nical Report TR-262, Computer Science Department,
University of Rochester, November 1988.

R.J. Fowler, T.J. LeBlanc, and J.M. Mellor-Crummey.
An integrated approach to parallel program debugging
and performance analysis on large-scale multiproces-
sors. In Proceedings of the SIGPLAN/SIGOPS Work-
shop on Parallel and Distribute Debugging, pages 74-
182, Madison, Wisconsin, May 1988. Association for
Computing Machinery.

James R. Goodman. Using cache memory to reduce
processor-memory traffic. In Proceedings of the 10th
International Symposium on Computer Architecture,
pages 124-131, 1983.

John L. Gustafson. Reevaluating Amdahl’s law. Com-
munications of the ACM, 31(5):532-533, May 1989.

Mark A. Holliday. Page table management in lo-
cal/remote architectures. Technical Report CS-1988-
2, Department of Computer Science, Duke University,
July 1988.

Mark A. Holliday. Reference history, page size, and
migration daemons in local/remote architectures. In
Proceedings of the Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 104-112, April 1989.

Eric Jul, Henry Levy, Norman Hutchinson, and An-
drew Black. Fine-grained mobility in the Emerald sys-
tem. ACM Transactions on Computer Systems, pages
109-133, February 1988.

T. J. LeBlanc. Shared memory versus message-passing
in a tightly-coupled multiprocessor:a case study. Tech-
nical Report Butterfly Project Report 3, Computer
Science Department, University of Rochester, January
1986. A shorter version appears in Proceedings of the
1986 International Conference on Parallel Processing,
August 1986, pp. 463-466.

43

[19] Thomas J. LeBlanc. Problem decomposition and com-
munication tradeoffs in a shared-memory multiproces-
sor. In Martin Schultz, editor, Numerical Algorithms
for Modern Parallel Computer Architectures, volume 13
of The IMA Volumes in Mathematics and its Applica-
tions, pages 145-163. Springer-Verlag, 1988.

[20] Thomas J. LeBlanc. Structured Message Passing on a
shared-memory multiprocessor. In Proceedings of the
.2lst Annual Hawaii International Conference on Sys-
tem Sciences, pages 188-194, January 1988.

[21] Thomas J. LeBlanc, Brian D. Marsh, and Michael L.
Scott. Memory management for large-scale NUMA
multiprocessors. Technical report, Department of Com-
puter Science, University of Rochester, March, 1989.

[22] K. Li. Shared Virtual Memory on Loosely Coupled Mul-
tiprocessors. PhD thesis, Department of Computer Sci-
ence, Yale University, September 1986.

[23] R. Rashid, A. Tevanian, M. Young, D. Golub,
R. Baron, D. Black, W. Bolosky, and J. Chew.
Machine-independent virtual memory management for
paged uniprocessor and multiprocessor architectures.
In Proceedings of the Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 31-39, 1987.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Parallel Distributed Processing, chapter Learning inter-
nal representations by error propagation, pa.ges 318-
364. MIT Press, 1986.

[25] C. Scheurich and M. DuBois. Dynamic page migra-
tion in multiprocessors with distributed global mem-
ory. IEEE Transactions on Computers, 38(8):1154-
1163, August 1989.

[26] Michael L. Scott and Alan L. Cox. An empirical study
of message-passing overhead. In Proceedings o.f the Seu-
enth International Conference on Distributed Comput-
ing Systems, pages 242-249, September 1987.

[27] P. Simard, M. Ottaway, and D. Ballard. Analysis of
recurrent backpropagation. In Connectionist Summer
School Proceedings, 1988.

[28] L. Snyder. Type architectures, shared memory, and
the corollary of modest potential. In Annual .Reuiew of
Computer Science, volume 1, pages 298-317. Annual
Reviews Inc., 1986.

44

