
Rule-Based DeIegation for Prototypes

Jay Aimarode

Oregon Graduate Center

ABSTRACT

Arguments have been given recently for providing the functionality of prototypes in object-
oriented languages. Prototypes allow more flexible sharing of code and data by delegating messages to
parent objects without the rigid structure of a class hierarchy. Prototypes can implement classes, and
delegation can be used to model both single and multiple inheritance. However, one drawback with
delegation is the difficulty in enforcing the semantics that delegation is used to model. This paper pro-
poses a novel mechanism to control the delegation of messages with rules. In this system, the delegation
of messages is governed by a set of rules possessed by each object. Rules can be used to implement clas-
sical single inheritance and can implement various solutions to multiple inheritance. In addition, rules
can be created dynamically to model application-specific semantics. This paper describes how rule-
based delegation works and illustrates various rules for rule-based delegation that have been imple-
mented.

Introduction

Recent literature on prototypes [Borning 861,
[Lieberman 861, and [Ungar Smith 871 has illustrated the
flexibility such systems provide. Some systems, such as
exemplar based Smalltalk [LaLonde Thomas Pugh 861,
have combined both prototypes and classes. The key to
the flexibility of prototypes is delegation. Delegation can
model class-based inheritance in addition to other rela-
tionships between objects. However, one drawback of
delegation is the difficulty in recognizing and enforcing the
semantics associated with delegation. Delegation can be
used to model various relationships, but the flexibility of
delegation tends to obscure what semantics are being
modelled. This paper proposes a novel mechanism to
model the various semantics of delegation, especially in
the context of multiple inheritance. This mechanism,
called rule-based delegation, provides a concise, declara-
tive way to specify delegation. Rule-based delegation can
implement classical single and multiple inheritance, in
addition to modelling other relationships and allowing for
the dynamic creation of rules for delegation. This paper
will first review the differences between class-based objects
and prototypical objects and how prototypes can imple-
ment classes. Next various solutions for multiple inheri-
tance will be discussed. Finally, rule-based delegation will
be described and various rules for rule-based delegation
will be illustrated.

Classes and Prototypes

In classical object-oriented languages such as
Smalltalk [Goldberg Robson 831 and Flavors [Moon 861,
each object is an instance of some class, The class
specifies the operations, called methods, that can be

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/0010/0363 $1.50

invoked on instances of the class. A class ‘defines the
instance variables of each instance and may also define
class variables that can be accessed by all instances of the
class. New instances of a class are created by sending a
message, such as new, to the class. Each class is defined
as being a subclass of some other class(es), thus forming a
chain of classes. When a class has only one immediate
superclass, the class hierarchy is a tree and this form of
inheritance is called single inheritance. When a class
specifies more than one superclass, the chain of classes
forms a directed acyclic graph and this form of inheri-
tance is called multiple inheritance.

In delegation-based prototypical languages, an
object is not an instance of some class, but rather it is
simply a collection of named slots. A slot may contain
another object or a block of code. When any message is
sent to an object, the receiver determines if it has a slot
corresponding to the message. If the slot contains a value,
then it returns that value. If the slot contains a block of
code, the block is executed and the result returned. If the
object does not have a slot corresponding to the message,
it delegates the message to some other object. Typically,
the message is forwarded to the object contained in a
designated parent slot of the receiver.

Since there are no classes in prototypical languages,
an object does not inherit methods from its class. Instead,
messages are forwarded to parent objects until a slot is
found or no parent link is found. Because of delegation,
the notion of self is different in delegation-based
languages. The original receiver of a message is desig-
nated as self. This object remains as self even after
delegating the message to another object, which is desig-
nated as the client. If the client does not recognize the

October 1-6, 1989 OOPSLA ‘89 Proceedings 363

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74878.74915&domain=pdf&date_stamp=1989-09-01

message, it delegates the message to its parent, which
becomes the new client. When a block of code is found in

delegate the message to its superclass, class Object, This
is the object contained in the “superclass” slot for class

some client, it is executed and references to self are to the Person. The class Object contains methods that are
original receiver of the message, not the client, inherited by all objects (the print method, for example).

Implementing Classes with Prototypes

Although there is no notion of classes in prototypi-
cal languages, prototypes can easily implement the func-
tionality provided by classes. To implement classes with
prototypes, all the common behavior of similar objects is
combined into a single object that serves the same role as
a class. A class-representing prototype has slots that con-
tain code blocks corresponding to class and instance
methods and slots that contain the values of class vari-
ables. Each instance object inherits what is stored in the
class-representing object’s slots by setting its parent link
to the class-representing prototype. An instance object
has slots corresponding to instance variables. Messages
are delegated to the class-representing prototype through
the parent link named “class”.

Figure 1 illustrates the implementation of class Per-
son, class Object, and class Class with prototypes. In this
figure, aPerson is an instance of class Person, therefore its
“class” slot points to the class-representing prototype for
class Person. This object also has slots for name and
birthdate that correspond to instance variables. The class
Person, on the other hand, is an instance of a class, so its
“class” slot points to the class-representing prototype for
class Class. The prototype for class Person also has a slot
containing a method to calculate the age of a person
(called c&Age) and a slot that points to the superclass of
Person, class Object. When a message is sent to aPerson,
the receiver first determines if it has a slot corresponding
to the message. If not, the message is delegated to the
object contained in the “class” slot. If class Person does
not have a slot corresponding to the message, it must

Figure 1 also points out a difficulty when delegation
is used to implement class inheritance. If a message is ini-
tially sent to class Person instead of delegated to it, then
delegation should be handled differently. For example, if
the new message is sent to class Person, it should delegate
the message to class Class, which contains the default
method for instantiating new objects. This is because
class Person is an instance of class Class, therefore its
“class” slot points to class Class. In this case, instead of
delegating a message to the object in its “superclass” slot,
as was done when the message was originally sent to aPer-
son, class Person should delegate the message to the
object in its “class” slot. In class-based systems, this dis-
tinction is hard-coded in the method search algorithm.
When a message is sent to an object, the search first tar-
gets the class of the object, then follows the chain of
superclasses. In delegation-based prototypical systems,
however, delegation occurs outside the context that the
message is sent. The delegation mechanism does not
know if an object is the original receiver of the message or
if the object is a client for a delegated message.

Multiple Inheritance

Many different approaches have been devised to
handle multiple inheritance in class-based systems. The
main issue involved with multiple inheritance is what to
do when name conflicts exist between attributes and
between methods of the multiple superclasses. Solutions
have ranged from regarding name conflicts as errors which
must be disambiguated, as in Smalltalk [Borning Ingalls
821, to allowing the programmer full control over how mul-
tiple inherited methods are invoked and their results com-

Object
code block to print an object 1

print / 4
Class

superclass J

Person

calcAge
new instances 1

[code block to calculate age of a person I

Figure 1. implementing Classes With Prototypes

OOPSLA ‘89 Proceedings October I-6, 1989 364

bined, as in Flavors [Flavors 861. Both these languages
provide extensions to specify which method(s) to invoke.
Smalltalk allows compound selectors to exactly specify
which methods to invoke, and Flavors provides a rich set
of method-combination types to invoke more than one
method and combine the results. However, multiple inher-
itance can become unwieldy when inheritance is used to
model disjoint conceptual hierarchies. Classes impose a
strict inheritance hierarchy and require that all instances
have the same structure that is determined at instance
creation.

Multiple inheritance has been proposed in prototyp-
ical languages as well. In the Self language [Ungar Smith
871, a prototype may have multiple parents which to
delegate the message. Name conflicts among the slots of
multiple parents are resolved by only searching on the
path from the receiver of the message (self) to the object
that has a slot with a code block from which the message
was sent, Exemplar based Smalltalk [LaLonde Thomas
Pugh 861 allows two different kinds of multiple inheri-
tance: AND inheritance and OR inheritance. With AND
inheritance, an exemplar inherits the union of the attri-
butes and methods of its parents, while with OR inheri-
tance it only inherits from one of its multiple parents.

Rule-Based Delegation

It is a basic knowledge representation dilemma
whether to represent concepts as abstract sets (classes) or
as concrete prototypes. Classes embody the common func-
tionality that is believed to be true of all members of a
set. A prototype, on the other hand, represents an actual
instance of the concept, one believed to be a typical
member of the set. Other members of the set refer to the
prototype to share the characteristic functionality of all
members. Classes are advantageous because they guaran-
tee that all instances have the same external interface,
and allow for specialization through subclassing. Proto-
types are good for representing default knowledge and
exceptional objects. A system that supports both proto-
types and classes can gain the best of both worlds. Such a
system can aid initial software development and
encourage exploratory programming. The key to such a
system is the flexibility provided by delegation. However,
one drawback of delegation is the difficulty in recognizing
and enforcing the semantics associated with delegation.
Delegation can be used to model various semantics,
including single and multiple inheritance, but the flexibil-
ity of delegation tends to obscure what semantics are
being modelled.

The purpose of rule-based delegation is to provide
the programmer with a mechanism to model the various
semantics of delegation, especially in the context of multi-
ple inheritance. In this system, the delegation mechanism
is governed by the evaluation of a set of rules possessed by
each object. In this way, the implementation of delega-
tion is declarative and centralized in a single location,
instead of embedded in the methods of many objects.
With rule-based delegation, the delegation mechanism can
be dynamic instead of fixed in a method search algorithm.
Since each object possesses its own rule set (which can be
shared), delegation can be customized per object. Rule-
based delegation allows the relationship between the
receiver and other objects to determine to which object to
delegate the message.

Rule-based delegation works in the following way.
When an object receives a message, each rule in the
object’s rule set is evaluated until a rule is found in which

all the conditions of the rule are true. If such a rule is
found, it is fired, i.e. its action code block is executed.
The action block of a rule is responsible for returning a
value for the message. If the result of the firing of a rule
is nil (actually a “special” nil value, since ordinary nil may
be an appropriate result), then the next rule with true
conditions is fired. The rules are prioritized by a weight
value assigned to each rule. If no rules are eligible to fire,
then the message was not understood and an error mes-
sage is output.

A rule is composed of conditional parts and an
action code block. A rule can have many conditional
parts and each one must evaluate to true or false. If all
conditional parts evaluate to true, then the rule can fire.
The action block of a rule returns a value for the message.
The action block can access the receiver directly, forward
the message to other objects, delegate a new message to
other objects, alter the receiver (by adding new slots to
self, for example), or alter future delegations (by adding
new rules to the delegation rule set). To achieve rule-
based delegation, statements inside the conditional parts
and the action block of a rule can refer to self, the client,
the message and its arguments, or any previous messages
and the objects to which they were sent.

Rules for Rule-Based Delegation

The following section discusses individual rules that
have been implemented for rule-based delegation, The
discussion will focus on the rationale for the rules, with
examples given where the rules prove useful. Psuedo code
will illustrate the conditional parts and action block of
each rule.

Rules When the Receiver Has a Corresponding Slot
When an object is sent a message for which it has a

corresponding slot, the object typically returns the object
at that slot. This object can be a stored value or it can
be computed. Since rules determine what action to take
when a message is sent, there must exist some rules that
retrieve the value at the slot and return it. Obviously,
these rules are necessary to end the delegation of the mes-
sage, so they are given a higher priority than other rules.
In fact, two rules are necessary to retrieve the object at a
slot. One rule (the blockSlotRule) takes effect when the
value of the slot is a block, since the block must first be
executed. The other rule (the slotRule) takes effect when
the value of the slot is anything other than a block, in
which case the object is returned directly.

blockSlotRule
IF [client has a slot corresponding to the message]
AND [the value of the slot is a block of code)
THEN [execute the block and return the result]

slotRule
IF [client has a slot corresponding to the message]
THEN [return the value at the slot]

Is-A Rules

The Is-A relationship as described in [Brachman 831,
can model a number of different semantics for inheritance.
The following “Is-A” rules delegate the message according
to the meanings associated with specific slot names that
correspond to the different meanings of the Is-A relation-
ship. Class-based systems model the Is-A relationship in
two ways: one is the relationship between an instance and

October 1-6, 1969 OOPSLA ‘69 Proceedings 365

its class, and the other is the relationship between a class
and its superclass. To allow both single and multiple
inheritance with these relationships, four rules are used:
the instanceRule, the instanceRuleForMultipleInheritance,
the SubclassRule, and the subcIassRuleForMultipleInheri-
tance.

Both instance rules check to see if the receiver has a
slot named class, instanceof, or isMemberOf. If so, then
the object is considered to be an instance of the class-
representing prototype contained in the slot. These rules
also check that the current binding of the pseudo-variabie
“self” is the same as the pseudo-variable “client”. If this is
the case, then the object is the original receiver of the
message, and the message should be delegated to the
class-representing prototype. This correctly handles the
situation mentioned previously when a message is initially
sent to a class (Person) and should be delegated to class
Class.

instanceRule
IF [client has a slot named “class”, “instanceQf”, or

YsMemberOf”]
AND [client = self]
THEN [delegate the message to the object contained

in the slot]

instanceRuleForMuLtipleInheritance
IF [client has a slot named “class”, “instanceOf”, or

“isMemberOf”]
AND the value at the slot is a collection]
AND client = self] I
THEN [delegate to each class according to the Smalltalk

multiple inheritance algorithm]

The two subclass rules check to see if the receiver
has any slots named ISA, superclass, subclassof, subsetof,
aKindOf, or specializationof. If it does, then the receiver
is considered to be a subclass of the class-representing pro-
totype contained in the slot. Note that the implementa-
tion of multiple inheritance for the Is-A rules is the
Smalltalk multiple inheritance algorithm. This implemen-
tation of multiple inheritance may be overridden by other
rules described later.

subclassRule
IF [client has a slot named “ISA”, “superclass”, “SubclassOf”,

“subsetof”, “aKindOf”, or “specializationOf”]
THEN [delegate the message to the object contained

in the slot]

subclassRuleForMultipleInheritance
IF [client has a slot named “ISA”, “superclass”, “SubclassOf”,

“subsetof”, “aKindOf”, or “SpecializationOf”]
AND [the value at the slot is a collection]
THEN (delegate to each superclass according to the

Smalltalk multiple inheritance algorithm]

Figure 2 illustrates the use of the Is-A rules. In this
example, myoffice is an instance of class OfficeAtHome.
OfficeAtHome has multiple superclasses: class Home and
class Office. Both class Home and class Office are subc-
lasses of class Dwelling. When a message is sent to
myoffice, the instanceRule delegates the message to the
object contained in the slot “class”. If class OfficeAtHome
does not understand the message, the SubclassRuleFor-
MultipleInheritance is fired since this object has a slot
named “superclass” and the object contained in this slot is
a collection. This rule searches all superclasses for a slot
corresponding to the message. If more than one superclass

7 Dwellinq

addRoom [..I 1 4

Home

superclass superclass \

CalcPropertyTax t ,,. 1 1 calcPropertyTax [. . . 1

OfficeAtHome

superclass 0 4
calcTaxWriteOff [,,. I

myoffice

class
address 1 st Ave.

numRooms 6 J

366
Figure 2. The Is-A Rules

OOPSLA ‘89 Proceedings October l-6, 1989

contains a slot corresponding to the message, it is an
error. For example, if the message was c&PropertyTaz, a
corresponding slot would be found in both class Home and
class Office, so an error is signalled. It is not an error if
the same slot is found via different paths, For example, if
the message was addRoom, a corresponding slot is found
when delegating the message to both class Home and class
Office. However, the slot was found in the same object
(class Dwelling), so it is not an error.

Other Rules for Multiple Inheritance

As mentioned earlier, the Self language constrains
the search for a slot only on paths that contain the
sender. The PathOfSenderRule checks to see if the object
that just received the message (the client) has any slot
values that are clients for a currently invoked method (i.e.
a code block that is currently executing). If the receiver
has any slot values that are also clients for a currently
invoked method, then that object exists on the path of the
sender. The pathOfSenderRule delegates the message to
the object on the path.

Figure 3 illustrates how the pathOfSenderRule
works when parent objects have slots with the same name.
In this example, aVersatileAthlete is both a football
player and a baseball player. The object aVersatileAth-
lete has two parents, the footbatlPlayerPart and the
baseballPlayerPart, that both have a slot named position.
The footballPlayerPart contains the slots for an indivi-
dual instance of a football player and the class Foot-
ballPlayer contains slots that are shared by all football
player instances. The baseballPlayerPart contains slots
for an individual baseball player and is an instance of
class BaseballPlayer.

Suppose the message LeRunningBack is sent to aver-
satileAthlete. This message returns true if the football
player is a fullback (#FB) or halfback (#HB). The
method corresponding to this message is found in class
FootballPlayer as’s result of being delegated to the foot-
ballPlayerPart because of the subpartsRule (discussed
later) and then to the class FootballPlayer because of the
instanceRule. As the method isRunningBack is executed,
the message position is sent to self (aVersatileAthlete). At
this point, the delegation path of the initial message
(isRunningBack) is from aVersatileAthlete to the foot-
ballPlayerPart to the class FootballPlayer. The pathOf-
SenderRule overcomes the problem of deciding to which
parent to delegate the message position by limiting the
search path of the slot lookup. When the message position
is sent to self (aVersatiIeAthlete), the message is delegated
only to the footballPlayerPart because the footballPlayer-
Part is on the path of the sending method.

pathOfSenderRule
IF 1 client has a slot that is on the path from self to the

object containing the currently executing code block]
THEN [delegate the message to the object contained

in the slot]

Also mentioned earlier was the capability provided
by Flavors to allow more than one method of an
instance’s multiple superclasses to be invoked and their
results combined into a single value. The methodcom-
binationRule recognizes when a method-combination type
is defined for the given message. Since method-
combination types are defined on a class/message pair, it
is necessary to determine the class of the object receiving
the message and then determine if a method-combination
type is defined for that class and the message. This
re&ires that each class-representing ; prototype have a siot

[(Set new add: *HB add: *FBI includes: (self pos ition) 1

FootballPlayer

IsRunningBack -

team ‘LA Ratders’ team ‘KC Royal5
positlon #FB positlon ‘CF

helmetsize 32 batLength 40

aVersatileAthlete

footballpart
baseballpart

October 1-6, 1989

Figure 3. PathOfSenderRule

OOPSLA ‘89 Proceedings 367

called “className” that contains the name of the class.
The method-combination rule makes sure a method-
combination type is defined for the given message, and if
SO, it executes the code block associated with that
method-combination type. The arguments to the
method-combination code block are an ordered collection
of class-representing objects that corresponds to the com-
ponent ordering of superclasses (i.e. the class hierarchy
where the most specific classes are first and more general
classes are last). These are the objects to which the mes-
sage will be delegated and from which the return values
will be combined.

methodCombinationRule
IF [client has a slot named “class”]
AND [there is a method combination type corresponding

to the class and the message)
THEN [execute the method combination code block]

A-Part-Of Rules

Frequently, a message may be sent to an object
that is composed of many subparts, one of which has a
slot corresponding to the message. For example, the mes-
sage number0fCylinder.s may be sent to an object
representing an automobile. The automobile may have
slots containing objects that correspond to its subparts,
such as engine, body, chassis, passenger compartment, etc.
The engine subpart, in turn, may have slots that contain
its subparts, such as engine block, crankshaft, electrical
system, etc. The slot that contains the number of
cylinders is contained in the engine block subpart of the
engine. For the prototype representing the aggregate
automobile to return a result for the message num-
berOfCyliptders, it must delegate the message to its engine
subpart and the engine subpart in turn must delegate the
message to its engine block subpart, The subpartsRule
delegates the message to each subpart of a composite
object. If more than one subpart is found that has a
corresponding slot, all the results are returned in an
ordered collection. This rule can result in the message
being delegated to many objects which do not have a
corresponding slot before the appropriate object is found.
Consequently, it is desirable that this rule be fired only
when no other rules can be used, since it may result in a
large number of unsuccessful delegations.

To overcome the proliferation of message delega-
tions resulting from the subpartsRule, it is desirable that
when the appropriate delegation path is found in response
to a message, that the path is “remembered” for future
delegations of the same message. Not only should the
delegation path be remembered for the object that
received the message, but also for all similar objects, i.e.
all objects that are instances of the same class. The sub-
partsRule accomplishes this by creating a new rule for
specifically handling the message and placing the new rule
in the rule set of the class of the receiver. In this way, if
any other instances of the same class receive the same
message, the new rule will attempt to delegate the mes-
sage along the same path that was previously found to be
successful. Of course, if the correct path has changed or
the receiver is an exceptional object, the new rule will fail
and other rules may attempt to delegate the message.

su bp a&Rule
IF [true]
THEN [delegate message to each subpart and group

any non-nil results in a collection]

Figure 4 illustrates how the subpartsRule creates a
new rule to handle future delegations of the same message.
When the message numberOfCylinders is initially sent to a
car object (Carl), the object does not have a corresponding
slot. All other rules fail to delegate the message success-
fully, so the subpartsRule tries delegating the message to
each subpart of the car. The delegation of the message to
the chassis subpart fails, as well as delegating the message
to the body subpart. However, when the message is
delegated to the engine subpart, the following happens.
The engine object tries delegating the message with other
rules that are unsuccessful, so the subpartsRule is called
upon again to delegate the message to the subparts of the
engine. When the message is delegated to anEngineBlock
object, the corresponding slot is found and a value is
returned as the result of the message. The subpartsRule
that was invoked for the engine subpart recognizes that
the delegation was successful, so it creates a new rule for
this delegation. The new rule checks if the message is
numberofcylinders and if the receiver has a slot named
engineBloc(a;. If so, the rule will delegate the message to
the object contained in the engineBlock slot. This new
rule is placed in the rule set of class Engine so that all
instances of Engine will benefit from this rule. A similar
process occurs when the result of the message is returned
to the subpartsRule that was invoked for the car1 object.
In this case, another new rule is created that checks if the
message is numberOfCylinders and if the receiver has a
slot named engine. This new rule is placed in the rule set
of class Car. Now if any instances of car are sent this
message, the message will be delegated to the class by the
instanceRule, and the class will have a specific rule to
handle the message.

In some cases, it may be desirable for the subpart of
an object to inherit attributes from its aggregate object.
For example, a car door object may be sent the message
color to get the color of the door. In this case, the door is
a part of the body of car, and the door should inherit the
same color as the body of the car. The APartOfRule
delegates the message to the object(s) contained in a slot
named APartOf or APO. One may think of the sub-
partsRule as delegating the message “inward” for a com-
posite object, while the APartOfRule delegates the mes-
sage from the subparts of an object “outward” to the
aggregate object. There may be more than one object
contained in the APartOf slot for an object. In this case,
the message is delegated to each object in the collection
and the results are grouped in a collection and returned.

APartOfRule
IF [client has a slot named “APartOf” or “APO”]
THEN [delegate the message to the object contained

in the slot]

The Order Rules Are Fired

If more than one rule can fire when a message is
sent, the order the rules are tried is determined by the
weight associated with each rule. As mentioned before,
the rules with the highest priority are the ones for which
the receiver has a slot corresponding to the message. The
rules to be tried next are the ones that implement various
solutions for multiple inheritance: the methodcombina-
tionRule and the pathOfSenderRule. The methodcom-
binationRule is tried first because method-combination is
a programmer specified mechanism that is intended to
override any default mechanism. The pathOfSenderRule
is tried next because it limits the search path for multiple

360 OOPSLA ‘89 Proceedings October 1-6, 1989

IF [msg = numberofcylinders I IF [msg = numberOfCylinders 1
AND 1 self hasSlot: englne 1 AND I self hasSlot: engineBlock 1
THEN [(self getSlot: engine) THEN [(self getSlot: engineBlock

respondTo: numberofcylinders I respondTo: numberofcylinders 1

Car Engine

slots for slots for
class Car class Engine

chassis

engineBlock
crankshaft
elecsystem

anEnqineBlock . r
) numberofcylinders 6

* * *

Figure 4. Creating a New Rule with the SubpartsRule

inheritance and therefore should be fired before the Is-A
rules for multiple inheritance, which search the paths of
all superclasses. The Is-A rules are tried next, before the
rules that search composite objects (the APartOfRule and
the SubpartsRule) because the Is-A rules implement classi-
cal single and multiple inheritance. The subpartsRule is
tried last because it can result in the delegation of the
message to a large number of objects before the appropri-
ate one is found. However, the subpartsRule may create
new rules for specific messages and these new rules have
weight values that are higher than the methodcombina-
tionRule. Rules have weights which order them as fol-
lows:

1. blockSlotRule
2. slotRule
3. any new rules created by the subpartsRule
4. methodCombinationRule
5. pathOfSenderRule
6. instanceRuleForMultipleInheritance
7. instanceRule
8. subclassRuleForMultipleInheritance
9. subclassRule

10. AF’artOfRule
11. subpartsRule

Conclusions

Rule-based delegation is a flexible mechanism for
controlling delegation in a system with classes and proto-
types With rule-based delegation, a number of multiple
inheritance solutions can be integrated in a common
framework. In this way, the programmer can choose the
appropriate semantics of delegation for the application.
The cost of the flexibility of rule-based delegation is per-
formance. Every message sent can result in the evalua-
tion of many rules. In many cases, either the receiver has
a slot corresponding to the message or delegation follows
the path of classical single inheritance. To increase per-
formance, rules that implement such behavior could be
hard-coded into the delegation mechanism at the expense
of flexibility.

To explore rule-based delegation, the functionality
of prototypes and rule-based delegation has been imple-
mented in Smalltalk-80. All of the rules mentioned in this
paper have been implemented and work. Future areas to
be explored include other conflict resolution strategies for
rules, interactive rules in which the conditional part of a
rule prompts the user for more information, and rules to
promote prototypes to classes [Stein 871.

The advent of systems such as exemplar based
Smalltalk illustrates the trend toward inciuding the func-
tionality of prototypes in object-oriented languages. A
law-based approach [Minsky Rozenshtein 871 is another

October 1-6, 1989 OOPSLA ‘89 Proceedings 369

similar way of controlling delegation. As languages add
this functionality, the semantics associated with delega-
tion will need to be clearly understood and made available
to the programmer. This research has illustrated one
means in which to specify the semantics of delegation in a
simple framework.

Acknowledgements

I would like to extend a special thanks to Professor
Jim Diederich and Professor Jack Milton of the University
of California at Davis for providing stimulating discussion
and valuable guidance in the writing of this paper.

References

Borning, A. “Classes versus Prototypes in Object-Oriented
Languages”, Proceedings of the ACM/IEEE Fall Joint
Computer Conference, Dallas, TX, November, 1986.

Borning, A., D. Ingalls. “Multiple Inheritance in
Smalltalk-80”, Proceedings of the AAAI Conference, Pitts-
burgh, PA., 1982.

Brachman, R. “What IS-A Is and Isn’t: An Analysis of
Taxonomic Links in Semantic Networks”, Computer,
October 1983.

Flavors, Chapter I7 of “Symbolics Common Lisp:
Language Concepts”, August 1986.

Goldberg, A., D. Robson. “Smalltalk-80: The Language
and its Implementation”, Addison-Wesley, 1983.

LaLonde, W., A. Thomas, J. Pugh. “An Exemplar Based
Smalltalk”, OOPSLA ‘86 Proceedings.

Lieberman, H. “Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems”, OOPSLA
‘86 Proceedings.

Minsky, N., D. Rozenshtein. “A Law-Based Approach to
Object-Oriented Programming”, OOPSLA ‘87 Proceedings.

Moon, D. “Object-Oriented Programming with Flavors”,
OOPSLA ‘86 Proceedings.

Stein, L. “Delegation Is Inheritance”, OOPSLA ‘87
Proceedings.

Ungar, D., R. Smith. “Self: The Power of Simplicity”,
OOPSLA ‘87 Proceedings.

370 OOPSLA ‘89 Proceedings October 1-6, 1989

