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Abstract

In this paper, we propose the use of feedback schemes in multiprocessors that use an interconnec-
tion network with distributed routing control. We show that by altering system behavior so as to minim-
ize the occurrence of a performance-degrading situation, the overall performance of the system can be
improved.

As an example, we have considered the problem of tree saturation caused by hot spots in multistage
interconnection networks. Tree saturation causes degradation to all processors in a system, including
those not participating in the hot spot activity. We see that feedback schemes can be used to control tree
saturation, reducing degradation to other memory requests and thereby increasing total system bandwidth.
As a companion to feedback schemes, damping schemes are also considered. Simulation studies
presented in this paper show that feedback schemes can improve overall system performance significantly
in many cases.

* This work was supported by National Science Foundation Grant CCR-8706722






1. INTRODUCTION

One of the most important and widely used concepts in the design of engineering control systems is
the concept of feedback [2]. Feedback is primarily used to: (i) prevent instability in a system and (ii)
prevent the system from settling down into a stable but undesirable situation. Figure 1 illustrates how
feedback works. Without feedback (Figure 1(a)), the inputs of the system are independent of events that
might be occurring in the system. Consequently, an unstable or an undesirable situation could arise.
With feedback (Figure 1(b)), the outputs of the system (and possibly other state values of the system) are
fed back to the inputs. Based upon the feedback information, the system input generator attempts to
modify the system inputs to prevent the occurrence of an unstable or an undesirable situation.

Modem computing systems have evolved into large-scale parallel processors that consist of possibly
hundreds of processors and memory modules interconnected together in some fashion. Figure 2 illus-
trates a typical processing system based on a shared-memory programming paradigm [13]. The process-
ing system consists of a set of processing elements, a set of memory modules and an interconnection net-
work. The interconnection network is logically broken into a forward network and a reverse network
though it is possible that the two networks could be the same physical network (for example a set of
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buses). It is important to realize that the overall performance of such a processing system is not deter-
mined solely by the performance of the individual components; it is affected by how the components
interact when they are connected together.

Let us compare Figures 1 and 2. If we assume that the forward interconnection network is the Sys-
tem, then the inputs to the system are the requests generated by the processors and the outputs of the sys-
tem are the inputs to the memory modules. An example of an undesirable situation in such a system is
blockage or congestion which unnecessarily reduces the effective bandwidth of the interconnection net-
work. Considering the resemblance between figures 1 and 2, we ask ourselves: (i) why has explicit feed-
back not been used thus far in the design of computing systems and (ii) why might it be useful now?

Traditionally, a computing system consisted of a single processor (system input generator). In a
single processor system, the control mechanism of the processor has sufficient information about the state
of the overall system (processor, network and memory) to prevent the occurrence of an undesirable situa-
tion. This is because the single processor is generally the only entity that is generating requests which
can alter the state of the system. Moreover, there exists some implicit feedback in the responses to
memory requests. The rate at which memory requests are entered into the network is directly influenced
by the rate at which responses are received. In a multiprocessmf‘ system, however, many processors are
generating requests without knowledge of the state of other components in the system. In such a process-
ing system, it is possible that the collective input of the processors could interact in such a way as to
cause undesirable degradation of the network. The implicit feedback (via the reverse network) to indivi-
dual processors cannot generally convey enough information to correct the anomalous behavior. Thus,
explicit feedback mechanisms may be warranted. :

One could alter the processing system of Figure 2 to resemble the system of Figure 1(b) by provid-
ing an explicit feedback from points in the system to the system input generators (see Figure 3). This
explicit feedback could then be used to detect potential undesirable situations and instruct the processors
to modify their inputs to the network such that they do not contribute to the undesirable situation. If an
undesirable situation is prevented, the overall performance of the system could be enhanced.

In this paper, we target one particular undesirable situation in a parallel computer system that uses
multistage interconnection networks -- the problem of tree saturation. We demonstrate how feedback
concepts can be used to instruct the processors to modify their requests to the interconnection network so
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that the problem is alleviated.

The outline of this paper is as follows. In section 2, we consider the undesirable situation of tree
saturation in multistage interconnection networks that use a distributed routing control. We see that, if
tree saturation could be controlled, the overall bandwidth of the network (and consequently the
throughput of the multiprocessor) could be improved in many cases. In section 3, we propose schemes
for controlling tree saturation. In section 4, we present the results of a simulation analysis carried out to
test the effectiveness of the tree-saturation-controlling mechanisms. In section 5, we present a discussion
of the feedback concept in light of the results of section 4, and in section 6 we present concluding
remarks.

2. TREE SATURATION IN MULTISTAGE INTERCONNECTION NETWORKS

A popular interconnection network for medium to large scale multiprocessors is a blocking,
O (NlogN ) multistage interconnection network (ICN) with distributed routing control. An example of
such a ICN is the Omega network [8]. An Omega network consists of logN levels of switching elements
(or switches). Messages enter the network at the inputs to the first stage and proceed to the outputs of the
last stage, one level at a time. Routing decisions are made local to each switch. Since there is no global
control mechanism, the state of any particular switch is unknown to other entities (processors, memories,
other switches) in the multiprocessor and a particular input request pattern to the network might cause an
undesirable situation.

The problem of tree saturation is a classic example of what we consider to be an undesirable situa-
tion in a multiprocessor system. This problem was first observed by Pfister and Norton in conjunction
with requests to a hot spot [11]. In their analysis, the hot spot was caused by accesses to a shared lock
variable. When the average request rate to a hot memory module exceeds the rate at which the module
services the requests, the requests will back up in the switch which connects to the hot memory module.
When the output queue in this switch is full, it will back up the queues in the switches that feed it. In
turn, those switches will back up the switches feeding them. Eventually, a tree of saturated switches
results. Depending upon the number of outstanding requests and the reference patterns of the various pro-
cessors, this tree of saturated queues may extend all the way back to every processor. Any request which
must pass through any of the switches in the saturated tree, whether to a hot module or not, must wait
until the saturated queues are drained. Thus, even requests whose destinations are idle will be blocked for
potentially long periods of times, thereby leading to unnecessary degradation of the network bandwidth.

Since the problem of tree saturation (caused by hot spot activity) can be catastrophic to the perfor-
mance of systems such as the NYU Ultracomputer [3], Cedar[5] and the IBM RP3 [12], considerable
effort has been devoted to studying the problem and suggesting solutions to it [3,9, 11, 15].

When the problem is caused by accesses to synchronization variables (or more generally, by
accesses to the same memory location), combining can be used. Hardware combining uses special
hardware in the network switches to combine requests destined to the same memory location. On the
return trip, the response for the combined request is broken up into responses for the individual requests.
It is estimated in[11] that using combining hardware would increase the cost of a multistage interconnec-
tion network by a factor of 6 to 32. Software combining[15] uses a tree of variables to effectively spread
out access to a single, heavily-accessed variable. It is only applicable to known hot spot locations such as
variables used for locking or barrier synchronization.

Since the overall bandwidth of the network is determined by the number (or equivalently the rate) of
requests that have to be serviced by the hot module, combining can improve overall network bandwidth
by reducing the number of requests that have to be serviced by the memory module. Combining also
improves the latency of memory requests that do not access the hot memory module since it alleviates
tree saturation. Unfortunately, combining cannot alleviate the bandwidth degradation or the tree satura-
tion if the hot requests are to different memory locations in the same memory module, that is, the entire
memory module is hot. Such a situation could arise from a larger percentage of shared variables residing



in a particular module, stride accesses that result in the non-uniform access of the memory modules or
temporal swings where variables stored in a particular module are accessed more heavily. In these cases,
one module will receive more requests than its uniform share, just as if it contained a single hot variable.
Recognizing this problem, the RP3 researchers have suggested scrambling the memory to distribute
memory locations randomly across the memory modules [1,10]. With a scrambled distribution, it is
hoped that non-uniformities will occur less often, though we are unaware of any hard data to support this
fact.

Even though processor requests may be distributed uniformly amongst the memory modules, tree
saturation can still occur if any of the switches in the network has a higher load (in the short term) than
other switches at the same level[7]. Alternate queue designs may improve the latency of memory
requests that do not access the hot module [14], but eventually tree saturation will occur even with alter-
nate queue designs [14].

To alleviate the problem of tree saturation in general, we need a mechanism that detects the possi-
bility of tree saturation and instructs the processors to hold requests that might contribute to the tree
saturation. If many of the problem-causing requests can be held outside the network (for example, in the
processor queues), the severity of the problem can be reduced.

Before proceeding further, let us convince the reader that alleviating the undesirable situation
caused by tree saturation can indeed result in an increase in the overall performance of the system. We
shall only consider hot requests that cannot be combined in this paper since no solution to the problem of
tree saturation is known in this case. We shall also restrict ourselves to N XN Omega networks.

2.1. Bandwidth Degradation Due to Tree Saturation

Consider a processing situation in which a fraction f of the processors are making requests to a hot
module with a hot probability of ~ on top of a background of uniform requests to all memory modules,
and the remaining processors are making only uniform requests. Processors may have multiple outstand-
ing requests. This is a likely scenario if more than one job is run on the multiprocessor. Let r; be the rate
at which the processors with hot requests can generate requests and let r, be the rate at which processors
generating uniform requests can generate requests. The number of requests per cycle that appear at the
hot module is therefore:

Ryp =fr1(AN +(1=h)) + (1 =f)r, (1)

Since the hot module can only service one request in each memory cycle, the maximum value of R, is
one. Equating the right hand side of equation (1) to 1 and rearranging terms we get:
L 1=0=pr
P FA+h(N =1))
To calculate the overall bandwidth of the network, we observe that fN processors have a throughput

of ry and (1-f )N processors have a throughput of r,. Therefore, the maximum bandwidth per processor
is:

2)
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If the (1—f ) processors that are generating uniform requests can do so without any interference from the
fN processors that are generating hot requests, then we can calculate an upper bound for the system
bandwidth by setting r, to 1. This yields an average cutoff bandwidth per processor of:
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However, tree saturation normally prevents the uniform requests from proceeding without interfer-
ence. When tree saturation is present, all requests in the system can become blocked, and the rate at
which the (1—f )N processors generating uniform requests is limited by the rate at which the fN proces-
sors are generating hot requests. Based upon experiments that we have carried out, it is observed that
when this occurs, the throughput of the system appears as if all N processors had a smaller hot spot of fA
rather than fN processors having a hot spot of 2 and (1-f )N processors having no hot spot. In this case,
the average cutoff bandwidth per processor is:

BV, 1

“ = T 1) ®

Figure 4 plots the bandwidths suggested by equations (4) and (5) as a function of f , for & =4%, and
N =256. As can be seen from the figure, it appears that the overall bandwidth of the network can be
improved significantly if the problem of tree saturation is alleviated, allowing the processors generating
uniform requests to access the network without interference. The bandwidth improvement is zero at the
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endpoints, and largest for values of f near 1/2. Our experimental results in section 4 will confirm this.

3. CONTROLLING TREE SATURATION

As mentioned earlier, tree saturation occurs if the rate at which the processors are generating
requests to a hot module is greater than the rate at which the memory module can service them. Once
requests to a hot module enter the network, they block within the network and eventually lead to tree
saturation. When tree saturation is present, even processors that do not participate in the hot spot activity
are penalized.

To alleviate the problem of tree saturation, requests that would compound the problem must be
prevented from entering the network until the problem has subsided. Ideally, requests to the hot module
must be made to wait outside the network (at the processor interface) until the hot module is ready (or
slightly before it is ready) to service them, and then proceed at a rate at which they can be serviced by the
hot module. Now, we present two schemes that try to achieve this goal.

The two schemes are limiting and feedback. Let us discuss each of these schemes and their imple-
mentation in some more detail.

3.1. Limiting the Number of Requests

One way of preventing the problem of tree saturation is to limit the number of requests to each
memory module that enter the network each cycle to the number of requests that the memory module can
service in one cycle. Requests that cannot enter the network in a particular cycle must be blocked until a
later cycle. Unfortunately, in its complete generality, limiting suffers from two problems.

The first problem is that limiting may unnecessarily constrain the available bandwidth of the system
when no hot spot exists (as we shall see in section 4). With limiting, multiple requests to the same
memory module will not be allowed to proceed in the same cycle, thereby delaying each processor whose
request was held back. When no hot spots exist, this delay is unnecessary, as multiple requests could
enter the network in the same cycle (thereby allowing their processors to continue) and proceed to the
final stage of the network without hindering requests to other memory modules. In the final stage, they
can queue up and be serviced one at a time.

The second problem is the cost of implementing a full-blown limiting scheme. To implement limit-
ing from all N processors to all N memory modules requires a global arbiter that is capable of performing
N arbitrations every cycle (one for each memory module) where each arbitration has an input from each
of the N processors. The hardware costs of doing so can be prohibitive. Furthermore, limiting is not
scalable. As an alternative to full-blown limiting, limiting could be restricted to a single hot spot. This
would require a single arbiter to control access to the module currently identified as the hot module.
While still expensive, this scheme is much more practical than full limiting. We will discuss this more in
section 5.

3.2. Use of Feedback

Figure 3 presents a multiprocessing system with feedback. Select state information is tapped from
the ICN and the memory modules and fed back to the processors. The processors respond by holding
back problem-aggravating requests.

The feedback scheme that we use in this paper is very simple. The only state information that we
monitor is the size of a queue at the input to each memory module (or output of the network). If the size
of the queue exceeds a certain threshold 7', we assume that the module is hot and notify the processors.
The processors respond by holding back requests to the hot modules. When the size of the queue falls
below the threshold T, the module is considered to be cold and the processors can again submit requests
to it.



This feedback scheme prevents a module from causing full tree saturation, because as soon as the
module becomes hot, requests to that module are stopped from entering the network. However, there are
some problems. First, there is a finite delay between the time when requests enter the network and when
they reach their destination memory module and trigger the feedback to the processors (if need be). At
the instant that a module becomes hot, there may be many requests for that module already in transit.
These requests may temporarily cause some tree saturation and congest the network. However, the result-
ing tree saturation will not be as severe as the tree saturation caused when requests can enter the network
arbitrarily. It has been estimated in [6] that the onset of full tree saturation occurs as quickly as several
network traversal times (the time for a packet to traverse the network in one direction, equivalent to the
depth of the network). The feedback scheme outlined above allows only a single network traversal time
before stopping requests to a hot module.

A second problem is that if the threshold value is less than the number of levels in the network, a
hot module may become become cold and service all its queued requests before any newly released
requests arrive, thus laying idle for some number of cycles. A final problem is that when a hot module
becomes cold, many hot requests blocked in the processors may be released simultaneously, leading to
overflow at the memory module queue when the requests arrive. These problems are very similar to
overshoot, undershoot and oscillation in engineering control systems with feedback [2].

To reduce overshoot, undershoot and oscillation, some form of damping may be introduced [2].
The damping must allow a systematic release of requests to the hot module into the network. This is pre-
cisely what a limiting scheme accomplishes. Limiting could be used to dampen a feedback scheme as
follows. When a module is hot, only one request to that module is allowed to enter per cycle. Up to two
requests for every cold module are allowed to enter the network each cycle. Allowing one request per
cycle to a hot module prevents the module’s queue from becoming empty. Allowing only two requests
per cycle for each cold module prevents queues from overflowing quickly, keeping any temporary tree
saturation to a minimum.

In this paper, we have limited our simulations of feedback to straight feedback and feedback with
the limiting-damping discussed above. As will be seen, this strong form of damping is highly effective.
In section 5, we discuss several other aspects of feedback system design which may be used to improve
upon simple feedback at a more reasonable cost.

The hardware complexity of implementing a feedback scheme is minimal. To implement the
scheme that we have described (without damping), all that we need to do is to monitor the size of the
queue at each memory module and notify the processors if it exceeds a threshold. Doing so requires only
a single wire (signal) per memory module, that is, a total of N signals that the processors must monitor.
Processors decode the destinations of their requests, and only issue a request when its destination is cold.
If we further assume that only a single module is hot at any given time instant, we can convey the same
information (hot module number) with only logN wires. Clearly, this is a small overhead compared to
the complexity of the ICN.

4. SIMULATION MODEL AND RESULTS

4.1. Network Model

For all our experiments we considered an NXN Omega network connecting N processors to N
memory modules. A forward network carries requests from the processors to the memories and a reverse
network is used for responses from the memory modules to the processors.

A 2x2 crossbar switching element (shown in Figure 5) is used as the basic building block. The size
of the queue at each output is Q requests and each queue can accept a request from both inputs simultane-
ously if it has room for the requests. The order that multiple inputs are gated to the same output is chosen
randomly.
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Figure 5: Switch Used in Simulation and Model

Requests move from one stage of the network to the next in a single network cycle. Each memory
module can accept a single request every network cycle and the latency of each memory module is one
network cycle. Therefore, the best-case round trip time for a processor request is 2logoN + 2 network
cycles [issue (1) + forward network hops (log,N ) + memory module service (1) + reverse network hops

(logoN)).

In each network cycle, a processor makes a request with a probability of r. A fraction f of the pro-
cessors make a fraction A of their requests to a hot memory module and the remaining (1-4) of their
requests are distributed uniformly over all memory modules. The remaining fraction (1-f ) of the proces-
sors make uniform requests over all memory modules.

4.2. Simulation Results

The results presented in this section are for 256x256 (N=256) Omega networks with queue sizes of
4 elements (Q=4) at each switching element output. We also simulated 64x64, 128x128 and 512x512
Omega networks, each with varying queue sizes and memory latencies. The results follow a similar trend
to the results we report for 256x256 networks with queue sizes of 4 and memory latencies of 1, though
the magnitude of the results are different. For reasons of brevity, we shall not present those results in this
paper.
Four varieties of networks were simulated:
e Regular omega networks.
o Networks with feedback (T" =1,2,3, and 4 queue elements).
e Networks with straight limiting (one request per module per cycle).
e Networks with feedback (T'=1), plus limiting-damping.

In Figure 6, we consider the saturation bandwidth of the network in different situations. Figure 6(a)
plots the saturation bandwidth per processor for a regular network (without feedback) as f varies from 0
to 1. Various hot rates & are considered. From Figure 6(a) we see that as the fraction of processors mak-
ing hot requests increases, the overall system bandwidth decreases. The higher the hot rate, %, the faster
the bandwidth drops off. When all processors are making hot requests, the bandwidth is severely affected
by the hot rate.

The purpose of feedback schemes and limiting schemes is to control tree saturation and conse-
quently improve overall network bandwidth. At the end points of each curve in Figure 6(a), i.e., f =0 and
f =1, feedback is of little use in improving the bandwidth (but as we shall see, it can still improve
memory latency). This is because when all processors are making uniform requests (f =0), little tree
saturation occurs, and when all processors are making hot requests (f =1), the bandwidth is limited by the
rate at which the hot module can service requests and not by the tree saturation that is present. Overall
bandwidth of the network can be improved by controlling tree saturation only when the tree saturation is
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actually limiting the bandwidth, i.e., f is between 0 and 1.

Now we consider the use of our feedback schemes of Section 3.2. Figures 6(b), 6(c), 6(d) and 6(e)
plot the relative bandwidths for networks with feedback thresholds of 1, 2, 3, and 4, respectively. The
relative bandwidth is the bandwidth of the modified network divided by the bandwidth of a regular net-
work with no feedback or limiting. Note that these figures qualitatively confirm the results that were
predicted in section 2. When f lies between 0 and 1, the use of feedback alleviates the tree saturation
caused by the hot requests, allowing the processors making uniform requests to proceed with less interfer-
ence, and increasing overall system bandwidth. The actual magnitude of the improvement is less than
possible, due to the fact that tree saturation has not been eliminated, but rather just alleviated.

We can also make two additional observations concerning threshold values for feedback. The first
observation is that under high hot rates, lower thresholds give more improvement than higher thresholds.
This is due to the fact that lower thresholds prevent hot traffic from entering the network sooner, and thus
have less temporary hot module queue overflow. With a threshold of 1, a hot module’s queue can accept
3 more requests at the time it becomes hot, without overflowing and causing tree saturation. With a thres-
hold of 4, the queue is already full by the time it becomes hot and further requests to the module that are
already in the network will cause partial tree saturation.

The second observation is that using thresholds that are too small can limit bandwidth to less than
the bandwidth of a regular network. The smaller the threshold, the more likely a request is to be blocked
at the entrance to the network even though the destination memory module of the request is receiving an
average of less than one request per cycle. Networks with larger thresholds are less likely to unneces-
sarily restrict bandwidth due to temporal fluctuations in the traffic pattern. Another reason that smaller
thresholds restrict bandwidth is that they allow the hot module’s queue to become empty for longer
periods of time (as discussed in section 3.2). Under high hot rates, these problems are offset by the
smaller threshold’s ability to better control tree saturation.

On closer look at Figure 6(e), we see that even with a high feedback threshold T' of 4, the bandwidth
is sometimes slightly less than the bandwidth of a regular network. This can be attributed to the problem
of the hot module’s queue occasionally becoming idle for a few cycles. When f=0 (no hot spots) the
relative bandwidth is unity. This indicates that normal traffic is not being restricted. If the queue sizes
permitted a threshold equal to the number of levels in the network, then the problem of hot modules’
queues becoming idle could be eliminated. We have simulated larger queue sizes and thresholds and
found this to be the case.

The higher the hot rate, the more the overall network bandwidth is improved by using feedback.
With a hot rate of 4 or 8%, significant increases in system bandwidth occur even with a small percentage
of processors making hot requests. As systems become larger, the tree saturation caused by a given hot
rate will become more severe, and the hot rate needed to cause a given level of tree saturation will
decrease. In such cases, the need for feedback is even more compelling,

Now let us examine the results of using limiting (Figure 6(f)) and feedback with limiting-damping
(Figure 6(g)). From the figures, we see that both techniques are quite effective when the hot rate is high.
Tree saturation is not allowed to develop and processors making only uniform requests see much less
interference from processors making hot requests. For example, with 50% of the processors making
requests with a hot rate of 8%, system bandwidth is improved by a factor of 4. It is worth noting here,
that since the feedback and limiting are not improving the bandwidth of the processors making hot
requests (they cannot, since the bandwidth of the processors making hot requests is being limited by the
number of requests to the hot module), and since the average bandwidth is increased by a factor of 4, then
the bandwidth of the processors making uniform requests is actually being increased by a factor of 8.

For low hot rates, straight limiting is overly conservative and unnecessarily restricts bandwidth, as
pointed out in Section 3.1. For example, when f = 0 in Figure 6(f), the relative bandwidth of the network
is somewhat less than 1. Feedback with limiting-damping (Figure 6(g)) does not unnecessarily restrict
bandwidth since the limiting mechanism is triggered only when a hot module is actually encountered.
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The relative bandwidth with this scheme never drops below 1. Moreover, it has the highest relative
bandwidths of all the networks.

So far, we have seen how bandwidth can be improved when a fraction of processors are making hot
requests and the rest are making uniform requests. The improvement stems from reducing the tree satura-
tion that blocks the processors which are not participating in the hot spot activity. However, in all cases,
no bandwidth improvement is obtained in the cases where all processors are making hot requests (f =1).
How can we be sure that tree saturation is being controlled even in this case (and in cases where little
bandwidth improvement is obtained)? As we have noted before, the maximum bandwidth is inherently
limited by the number of requests that all must go to the same module and the only thing that can be done
to improve the bandwidth is to cut down on the number of requests. However, the round trip latency
experienced by the cold requests give us a good handle on the degree of tree saturation in the network.

Figure 7 shows the round trip latency of cold requests as a function of bandwidth for various values
of h and the various networks. The latency is measured as the time taken by a request since its genera-
tion by the processor until the time the processor receives a response from the memory module (waiting
times in all queues are included). All cases (Figures 7(a)-(d)) have the same saturation bandwidth (except
7(c), which is slightly lower as explained above) since f=1. However, the round trip latency of cold
requests in each case is significantly different because of the different degrees of tree saturation present in
the network in each case (note the difference in scales).

In a regular network (Figure 7(a)), the cold requests experience a long latency. This is consistent
with the results reported by Pfister and Norton [11]. When simple feedback (with T=4) is used (Figure
7(b)), tree saturation is controlled somewhat and the latency is reduced, especially if the hot spot is more
severe. Limiting (Figure 7(c)) is very effective in preventing tree saturation as is feedback with limiting-
damping (Figure 7(d)). In the latter two cases, the hot rates restrict the bandwidth, but have very little
effect on the latency of the cold requests. At the saturation bandwidth for a given hot rate, the cold
requests encounter only slightly more contention than they would in a network with no hot spots carrying
the same bandwidth. This is true because the bandwidth has been reduced by keeping the hot requests out
of the network, rather than blocking them within the network.

5. DISCUSSION

It is clear that using simple feedback can help alleviate the degradation caused by tree saturation in
the network. This allows processors making uniform requests to proceed with less interference, thus
increasing system throughput. It is also clear that this simple feedback method suffers from some prob-
lems analogous to overshoot and oscillation in classical control theory. If steps can be taken to reduce
these problems, the effectiveness of feedback can be significantly enhanced. In this paper, we have dis-
cussed a strong form of damping which limited requests to cold modules to 2 per cycle and requests to
hot modules to 1 per cycle. This proved to be very effective, but had a high hardware cost associated
with it. We would like to explore other techniques to improve upon the basic limiting scheme.

One obvious improvement is to use large queues at the memory modules to increase the buffering of
temporary tree saturation. Using larger queues toward the memory side of the switch has already been
proposed in [13] for general networks. This technique is particularly appropriate for networks with feed-
back. First, it allows larger thresholds. Recall from the simulation results that the larger the threshold,
the less bandwidth was unnecessarily restricted. With thresholds of 1 and 2, bandwidth was reduced to
below that of a regular network for low hot rates. With a threshold of 4, bandwidth was not degraded at
all when no hot spots were present. However, it was occasionally reduced slightly when hot spots were
present, due to the hot module’s queue becoming temporarily drained. If the threshold can be set to the
number of levels in the network, then this degradation can be essentially eliminated.

Larger queues at the modules will also buffer more of the overshoot tree saturation that occurs with
feedback. Since the queue overflow in a network using feedback is temporary, and will be stopped by the
feedback mechanism, larger queues can potentially absorb all or much of the partial tree saturation, even
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in the presence of a steady state hot spot. In a regular network, there is nothing to prevent tree saturation
from overflowing larger sized queues in the steady state.

Another simple way to improve upon our basic feedback scheme would be to shorten the delay
between inputs and feedback. It is this delay which is primarily responsible for the overshoot in the sys-
tem. Such schemes would involve feedback from points internal to the network. Performance would be
enhanced by detecting congestion at earlier stages in the network and restricting requests that would
aggravate this congestion. Alternately, mechanisms that fed information back info switches within the
network could be constructed. The design of such mechanisms is beyond the scope of this paper.

Some form of damping would still be beneficial. Full-blown limiting as a damping mechanism may
be impractical to build, but it may be reasonable to build a system which performs limiting on a single
hot spot, as suggested in section 3.1. Memory queue threshold detectors and a single arbiter could be
used to identify the hot module. Another arbiter would be used by processors attempting to make a
request to the hot module. A global arbiter will not scale easily, but the cost for a single arbiter need not
be prohibitive. An N-way arbiter can be built from a small tree of arbiters with lesser fan-ins. The
arbiters need be only one bit wide, and can be constructed from readily available parts. As such their
complexity should be small as compared to the interconnection network. It is not clear how effective a
system would be that only dealt with one hot module, but preliminary experience shows [4, 11] that large
scale parallel programs typically have only one or two hot spots at a time.

Other weaker forms of damping could be used as well. If limiting could be done separately in &
slices of the processors, then the maximum number of requests to a particular module could be limited to
k per cycle. This could significantly reduce the overshoot caused by many requests entering the network
at once when a hot module becomes cold. Another possibility would be some sort of variable waiting
time after a module becomes cold before different requests destined for that module enter the network
(similar to the exponential back off scheme used with ethernets).

6. CONCLUSIONS

In this paper, we have proposed the use of feedback in multistage interconnection networks as an
aid in the distributed routing process and evaluated the effectiveness of feedback mechanisms in control-
ling the tree saturation problem in such networks. We saw that, with feedback mechanisms, tree satura-
tion can be controlled. That is, processors can avoid sending hot requests into the network where they
will consume buffer space and block requests that could otherwise proceed. A network with feedback
could be used in conjunction with software combining to provide protection against hot spots which were
not caused by synchronization variables. Alternately, in systems with a general purpose and a combining
network, feedback could be profitably applied to the general purpose network.

While we have only considered the example of tree saturation in multistage interconnections, feed-
back techniques are general enough to be used in any parallel or distibuted system where a resource can
be accessed without the use of a global control mechanism and when contention for access to this
resource can degrade the overall system. A network with feedback presents an alternative to a network
with global control (that is expensive to implement) or a network with only a distributed routing control
(that is prone to degradation because of non-uniform access of its resources). For example, feedback con-
cepts could easily be applied to prevent undesirable situations in hypercube computers or in distributed
computers.

The hardware requirements of feedback are modest. In a multistage interconnection network, feed-
back from the destinations to the sources requires no alteration of the interconnection network itself, and
could thus be added to existing network designs with minimal upheaval. We believe that feedback could
be used easily in many systems and specifically recommend its use for preventing undesirable situations
in large-scale multiprocessors that use distributed routing controlled interconnection networks.
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